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Existence of weak solutions for unsteady
motions of generalized Newtonian fluids

LARS DIENING, MICHAEL RUZICKA AND JORG WOLF

Abstract. We prove the existence of weak solutions u : Q7 — R” of the equa-
tions of unsteady motion of an incompressible fluid with shear-dependent viscos-
ity in a cylinder Q7 = € x (0, T), where 2 C R" denotes a bounded domain.
Under the assumption that the extra stress tensor S possesses a g-structure with

q > nz%, we are able to construct a weak solution u € L7(0, T; Wol’q(Q)) N

Cy ([0, T]; LZ(Q)) with divu = 0. Our approach is based on the Lipschitz trun-
cation method, which is new in this context.

Mathematics Subject Classification (2000): 76D03 (primary);35D05,46,34A34
(secondary).

1. Introduction. Statement of the main result

Let @ € R", n > 2, be a bounded domain. For 0 < T < oo we set Q7 =
Q2 x (0, T). The isothermal motion of a homogeneous, incompressible fluid through
Q is governed by the balance equations for linear momentum and mass, which read’

pou+ pdivla®u) —divS+Vp=pf in Qr, (1.1)
divau=0 in OQr, (1.2)

1

where u = (u', ..., u"") is the velocity, p the pressure, S = (S,-j);?’j:1 the extra

stress tensor, f = (f!, ..., f™) the external body force and p the constant density.
In the following we divide the equation (1.1) by the constant density p and relabel
S/p and p/p again as S and p, respectively. Moreover, for mathematical simplicity
we assume that f = divF, where F = (F; j)ﬁ j=1 is a given tensor. The above system
(1.1), (1.2) has to be completed by boundary and initial conditions and by consti-
tutive assumptions for the extra stress tensor. Concerning the former we assume at

! Here, divv := > Bxivi,where Oy, = %(i =1,...,n).
1
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the initial time ¢t = 0
u0) =uy in Q, (1.3)

where ug denotes the initial velocity, which is a given vector field with divuay = 0.
On the boundary 92 we assume the following condition of adherence

u=0 on 02 x(0,7). (1.4)

If one assumes a linear dependence of the extra stress tensor S on the symmetric
part of the velocity gradient D = D(u) := %(Vu + Vu'), then system (1.1)-
(1.2) is just the classical Navier—Stokes equations. However, there exists many
homogeneous, incompressible fluids that cannot be adequately described by such
a simple constitutive relation. Such fluids are usually called non-Newtonian fluids.
There are many ways in which a non—Newtonian behaviour can manifest itself and
we refer the reader to [4] and [26] for a general continuum mechanical background
and to [3,6,23,44,50], and [35] for a detailed discussion of non-Newtonian fluids.
There is a large class of non-Newtonian fluids for which the dominant departure
from a Newtonian behaviour is that in a simple shear flow the viscosity and the
shear rate are not proportional. Such fluids are called fluids with shear-dependent
viscosity or generalized Newtonian fluids and are often modeled by the constitutive
law

S = uD)D, (1.5)

where D;; = D : D is the second invariant? of D and  is the generalized viscosity
function. The model (1.5) includes all power-law and Carreau-type models, which
are quite popular among rheologists. Such models are used in many areas of en-
gineering sciences such as chemical engineering, colloidal mechanics, glaciology,
geology, and blood rheology (cf: [36] for a discussion of such models and further
references). Typical examples for the constitutive relation (1.5) are

S = 1o(8 + [DI)? D, 0

q-=2

S = wo(8* + IDI?) Z D,

with1 < g < 00,6 > 0and po > 0.
Motivated by the above discussion we impose the following conditions on S.
We say that the extra stress tensor S possesses a g-structure if there exist
q € (1,00) and § > 0, such that

D S: 07y xM* _ — M” is a Carathéodory function;

sym sym

2 For two matrices A, B € R" by A : B we denote the sum Zij A;jjBij.

?,j:l‘ We equip MY,

3 M is the vector space of all symmetric n x n matrices § = (& i) ym

Sym
with the scalar product & :  and the norm |&| := (§ : 5)1/2. By a - b we denote the usual scalar
product in R” and by |a| we denote the Euclidean norm.
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Growth condition:

() |S(x, 2, 8)] < co (8 + |ENT 21 + k1 (x, 1) forall & e ML, almostall
(x,1) € Qr (co > 0,x1 € LI (Q7), k1 > 0);

Coercivity:

(L) S(x,7,€) : & = vo(8 + [EN? €[> —ka(x, 1) forall & e My, almostall
(x.1) € Q1 (vo > 0,k2 € L'(Q7). k2 > 0);

Strict monotonicity:

(S(x,7,8) —=S(x,t,m) : (§ —n) >0
V& neM! (& #mn), almostall (x,t) € Or.

sym

av)

Before we introduce the notion of a weak solution of the system (1.1)-(1.4) let
us provide some notation and function spaces which will be used throughout the
paper. As usual let C;°(£2) denote the space of all smooth functions having compact
support in Q2. By wka(Q), k e N, 1 < g < oo, we denote the usual Sobolev
spaces. We define Wé‘ 9(Q) as the closure of CSO(Q) in Wk4(). We will not
distinguish between scalar-valued, vector-valued or tension-valued versions of these
function spaces. The Lebesgue measure in R"*! will be denoted by £,,11(-). For
A C R with0 < £,41(A) <ooand g € L}OC(R”“) we denote by g4 the mean
value of g over the set A, i.e.

1
vy = vdX=7/vdX.
][A Lny1(A) Ja

Let (X, ] - |lx) be a normed space. By L9(0, T; X) we denote the space of all
Bochner measurable functions ¢ : (0, T) — X, such that

T q
lella,T:x) == (/ lo @)% df) < 400 if 1<gq<+o0,
0

l@ll L, 7;x) :=esssup [lp(t)]lx < +00 if g =+o0.
1€(0,T)

We set

Hq = Hq(Q) ={p € CSO(Q) | dive = O}H'HLQ(Q)’

Vy = Vy(@) =10 e Co@ divg =0} ",
where

lellv, == IID(@)ze(@)-
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In the case that ¢ = 2 we omit the subscript ¢ and denote H := Hp and V := V,. It

immediately follows from our definition of W(; “1(Q) and [39, 18] that there exists a
positive constant yg, such that the following Korn’s inequality holds

1,
IVVliLa) < o IDMW) L) vve W, Q). (L.7)

Definition 1.1. Assume that S satisfies (I) and (II) with ¢ € [n > o0). Let F €

L'(Q7) anduy € H. A vector-valued function u € L4(0, T; Vy) NL®(0,T; H)
is called a weak solution to (1.1)-(1.4) if the following identity

—/ u - ;¢ dx dr +/ S(x, t,D(u)) : D(e) dx dt
or or

— (u®u) : D(p) dx dr (1.8)
Or

:/ F:V(pdxdt—l—/uo-(p(O)dx
or Q

holds for all ¢ € C*°(Q7) with dive = 0 and supp(¢) CC 2 x [0, )4,

Remark 1.2. By virtue of Sobolev’s embedding theorem and Holder’s inequality
one easily verifies

L9(0, T; V,) N L¥(0, T: H) = L1"+ (Qr). (1.9)

The aim of the present paper is to prove the existence of a weak solution to the
system (1.1)-(1.4) for such ¢ that div(u ® u) merely belongs to the space LY, T;

(W, (£2))*). Our main result is the following:

Theorem 1.3 (Main theorem). Ler Q@ C R", n > 2, be a bounded open set, and
0 < T < oo. Assume that S satisfies (1), (II), (III), and (IV) for some g with

2n
n+2

<qg < o0 (1.10)

and § > 0. Suppose thatug € H and F € Lq/(QT) are given. Then there exists a
weak solutionu € L9(0, T; V4) N Cy ([0, T]; H) to (1.1)-(1.4).

Remark 1.4.

1. The mathematical analysis of the the system (1.1)-(1.3) was initiated by La-
dyzhenskaya (cf. [25,27,28]). She proved the existence of weak solutions in the
case of Dirichlet boundary conditions (1.4) for g >
operator theory combined with compactness arguments ThlS weak solution is
unique if ¢ > ”*2 and ugp € H. The same results have been proved in [30] for
the extra stress tensor S depending on the full velocity gradient Vu rather than
on D(u) only.

4 Here A CC B means A, B are open subsets of R”, A is bounded and A CB.
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2. The special case g = 2, for which (1.1)-(1.2) are just the classical Navier-Stokes
equations, cannot be treated with the theory of monotone operators if n > 3.
However, the existence of weak solutions in the case of Dirichlet boundary con-
ditions (1.4) is well known (cf. [29, 22]).

3. The existence of measure-valued solutions for the system (1.1)-(1.3) with Dirich-
let boundary conditions (1.4) was proved for g > nz% in [41, 21] (cf. [33, 32)])
using Ball’s theorem on Young measures. The existence of solutions satisfying a
variational inequality instead of (1.8) was proved for the system (1.1)-(1.3) with
Dirichlet boundary conditions (1.4) forg > 2, n > 2 in [8].

4. The lower bound for the existence of weak solutions of the system (1.1)-(1.3)
with space periodic boundary conditions was extended to g > f% by Necas and
his collaborators (cf. [33, 5, 32]). The results have been obtained by using —Au
as a test function and deriving higher fractional differentiability in space. At the
same time this technique gives the existence of a more regular solution, namely
u e L%(0, T' W22(Q)) N L0, T5 Vg) N LY(O, T; Var ), dpu € L*(Qr) for

g=>1+3 +2 This solution is unique in the class of weak solutions, provided
uyg € V,. The question of the uniqueness of weak solutions for values of p
below 1+ =5 2" 5 1s still an open problem, which is not adressed in the paper. Note
that the extra stress tensor S must satisfy slightly more restrictive assumptions
than (I)-(IV), namely instead of (IV) one needs that S is uniformly monotone,
ie. BS@) :n®n > c(1+1£)7 %[y holds for all £, 5 € ML (cf [45,46]). The
method was extended in [34] to Dirichlet boundary condition proving for 2 <
qg < 3, n = 3, the existence of weak solutions and some additional regularity
properties for % < g < 3,n = 3 (cf [10, 11] for some improvements). The
special case ¢ = 3, n = 2, 3, which corresponds to the Smagorinsky model in
turbulence, was treated in [42], proving the existence of a unique weak solution
which additionally satisfies d;u € L2%(0, T; V2) N L™(0, T; H), provided ug €
HNW?22(). The existence of local in time strong solutions of the system (1.1)-
(1.3) with space periodic boundary conditions was proved in [32] for ¢ > %
n = 3. This result was improved in [14] to g > %, n = 3, also providing better
regularity properties of the solution. The case of Dirichlet boundary conditions
was considered in [7]. In that paper S is assumed to be uniformly monotone
with ¢ > 1. The case of small data and global in time strong solutions has been
treated in [2].

5. The lower bound for the existence of weak solutions of the system (1.1)-(1.3)
with space periodic boundary conditions was further extended to g > Antl)
in [16] using L°°-test functions. The same result was obtained in [52] in the case
of Dirichlet boundary conditions using L°°-test functions and the local pressure
method.

6. The result in Theorem 1.3 is optimal in the following sense: For ¢ < +2 the
term

w®u):D(p) dxdr, @ L®0, T; Wy ™ ()
or
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is not well defined using the parabolic embedding (1.9) since q”ni2 < 2. Nev-
ertheless it is still possible to give sense to the above integral using the informa-
tionu € L>(0, T; L%()) coming from the time derivative only. Moreover, for

q < % the space Wé "4(Q2) does not embed into L2(2). Thus we have that

L10,T; Wol’q (RQ)) & L10, T, (Wol’q(Q))*). Consequently, there are prob-
lems to give sense to the distributional time derivative.

The paper is organized as follows. In Section 2 we use the local pressure method
to introduce the pressure for the problem (1.1), (1.2) and decompose it similar to
the procedure in [52]. However, here we use only standard results for the Stokes
system and the divergence equation. In Section 3 we establish the Lipschitz trunca-
tion method for unsteady problems. For that we use a Whitney type decomposition
to extend a function in which irregular regions have been cut off before. We also
prove that this extension belongs to the space L*°(0, T'; W2°(Q)) and that a cer-
tain partial integration formula with respect to time holds true. Similar results have
been proved in [24]. Here it is to the knowledge of the authors the first time that the
Lipschitz truncation method is used to prove an existence result for unsteady prob-
lems. For steady problems the Lipschitz truncation method was introduced in [1].
In Section 4 we approximate the problem (1.1), (1.2) appropriately. The approxi-
mate problem possesses weak solutions (cf. [52]) for which we justify the limiting
process using essentially the properties of the Lipschitz truncation established be-
fore. This gives a proof of the main Theorem 1.3. The steady version of the problem
(1.1), (1.2) was treated in [17, 13] with the help of the Lipschitz truncation method.

2. Pressure representation

The aim of this section is to introduce the pressure for the problem (1.1)-(1.2).
We decompose the pressure corresponding to the respective terms appearing in the
equation. This forms the basis for studying the local behaviour of the velocity and
the pressure.

Throughout this section let G C R”" be a bounded domain with §G € C2.

Lemma2.l. Let | < s < oo. Let v¥ € (W, (G))* with (v*,v) = 0 for all
v € V5(G). Then there exists a unique p € L*(G) with pg = 0O, such that

v*, v) =/ pdivvdx Vve W, (G).
G
Furthermore there holds
”P”L‘(G) =< C”V*”(WOLS(G))*' (21)

Proof. [19, Theorems I11.3.1 and II1.5.2]. ]

Arguing similar as in [52] we will introduce the pressure.
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Theorem 2.2. Let u € Cy,([0,T]; H(G)) and let H; € L% (0,T; L (G)),
1 <s; <o00,i=1,2. Suppose that

T T
—/ fu-&,(pdxdt:/ /(H]—I—Hz):V(pdxdt 2.2)
0 G 0 G

holds for all ¢ € C3°(G x (0, T)) with div ¢ = 0. Then there exist unique functions
pi € L%(0,T; L5(G)), i = 1,2, and py € Cy,([0, T1; WH2(G)), such that

T T
—/ /u-at(odxdt:/ /(H1+H2):V(odxdt
0 JG 0o JG

T T
+/ /(P1+P2) diV(0+/ / Vpn-dedxdr (2.3)
0o Jo e

+f u(0) - ¢(0) dx
G

forall ¢ € C*®°(G x (0, T)) with supp(p) CC G x [0, T). In addition, we have
—App =0, p,(0) = 0 and the apriori estimates

lpillLsi o x©,1y) < i IHillLsi (Gx 0,1 i=1,2, (2.4)
lPrOlwi2y < cn llu@) —aO)ll 2, t€10,T], (2.5)
with constants c; depending only on n, G, and s;, i = 1,2, and a constant cj,

depending only on n and G.

Proof. Arguing as in the proof of [52, Theorem 2.6] one gets the existence of a
pressure p € Cy ([0, T]; L'(G)), such that

/ (u(r) —u(0))¥ dx = / (H, (1) + Hy (1)) : Vi dx
G G
(2.6)
+/ P divgdr, Ve W, X6,
G

forallO <t < T, where
t
H,-(t):/H[('c)dr, O<t<T, i=1,2.
0

Without loss of generality we may assume that p(#)g = O forall 0 <t < T. Note
that in this case the pressure p is unique.

Next, let v;(t) € V;;,(G), 0 <t < T, denote the unique solution to the Stokes
problem

—AV;(t) + V(1) = —divH;(t) in G,

divv; () =0 in G, 2.7
vi(t) =0 on 0G,
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fori = 1,2. According to Lemma 2.1 we have m;(t) € L% (G) with (7;(¢))g = 0.
Replacing in (2.7) t byt + h, 0 < h < T — h, and taking the difference of both
equations we get in view of Lemma 2.1 the estimate

ll77; (¢ +h)—7; (D) 5 6y < e (IV (Vi (0 +h)—vi ()| s (G)+||ﬁi (t4+h)—H; (1)]| 1 )
From [20, Theorem 2.1], and [19, Theorem IV.6.1] we obtain
IVt + h) = Vi) s 6y < clHi(t +h) — i (1)l 15 6

which leads to

Si

t+h
/ H;(r)dr
t

Dividing both sides by 4%, integrating over the interval (0, T —h), applying Holder’s
inequality and Fubini’s theorem yields

17+ ) = () ) < € |
L% (G)

D a4 < c|H; |1,

(Gx(0,T))"

T=h ||z (t + h) — 7 (DI}
This shows that 7; € W15 (0, T; L% (G)). Set p; := 9,7;. In the estimate above
passing to the limit as # — 0 implies (2.4)
Next, let v, (1) € Vo(G) N W>2(G), 0 <t < T, denote the unique solution to
the Stokes problem
—Av,(t) + Vpu(t) = —u(t) +u(0) in G,
divvy,(t) =0, in G, (2.8)
vp(t) =0 on 0G.

Appealing to [19, Theorem IV.6.1] one finds py, (1) € W'2(G) with (p;(t))g = 0.
Moreover, we have

IlPrOllwi2y < cllu@) —u(O)ll2g)-

Whence, (2.5).
Define v(¢) := v{(t) 4+ v2(t) + v;(¢). From (2.6) follows

—divHy (1) — divH,(¢) — u(?) + u(0) = V().
Thus, taking the sum of (2.7) and (2.8) leads to

—AV(@) + V(i (1) + m2@) + pp() — p(t)) =0  in G,
divv(r) =0, in G, 2.9)
v(it) =0 on dG,
which implies v = 0 and p(t) = 71 (¢t) + 72(¢t) + pp(t). Thus, inserting ¥ (-, 1) =

o@(-, 1), t € (0,T), into (2.6), integrating this identity over (0, T'), and applying
integration by parts yields (2.3). O
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3. Parabolic Lipschitz truncation

In this section we will establish a Lipschitz truncation method for unsteady prob-
lems. The idea is to regularize a given function by cutting off regions of irregularity
and then to extend this restricted function by a Whitney type extension to the whole
domain again. In a different context this method has been used in [24]. The ba-
sis of this approach is a covering lemma of Whitney type, which is well-known
(cf- [48, Chapter 6], [12, Chapterl], [9, Theorem 3.2]). Here we use these general
results for the Euclidean space R”*! with an anisotropic parabolic metric. The typ-
ical points (x, 7) and (y, s) of R"*! are shortly denoted by X and Y, respectively.
Given a > 0 we equip R"*! with the following anisotropic (scaled parabolic) met-
ric
dy(X,Y) :=max{jx — y|, la" (s = )|"?}, X,Y e R"L

For Xo e R"*! and r > 0 we define balls 0%(Xy) := {X € R"*!|d, (X, Xo) < r},
which are equal to the cylindrical sets B, (xg) X (fg — ar? to + ar?). One easily
checks that for all X € R**!, 0 < r < co and @ > 0 holds

La1(Q7(X) = 2" L 1(QF(X).

This implies that (R"*!, d,) satisfies the following homogeneity property:

There exists a number N € N, depending only on n, such that, each cylinder
0, (Xo) contains no more than N points {X;} with do(X;, X ;) > %fori #“ J.

Thus we have (cf. [48, Chapter 6], [12, Chapter 1], [9, 47, Theorem 3.2]) the fol-
lowing result:

Lemma 3.1 (Whitney type covering). Let E be a non-empty, open, bounded set
of R" ! equipped with the metric dy, a > 0. Then there exists a covering {07} =

{Q‘ng (X))} of E, such that®

W) U307 = E,

(W2) foralli € N we have 8Q% C E and 160% N (R"T1\ E) # ¢,
(W3) if QF N Q% # @ then 3r% <r¥ <279,

(W4) each X € E belongs to at most 120"2 of the sets 407.

We have denoted by y Qf (y > 0) the ball Q(;X/r?* (X{). Note that this scaling de-
pends on «.

For the readers convenience an elementary proof can be found in the Appendix
C of this paper.

5 By y OF (v > 0) we denote the ball Qgr;’ (X7).
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Remark 3.2.
1. The covering {Q7} of E has the following additional properties:

(W5) D Lup1(40%) < 120M2L, 41 (E).
J

Property (W4) of the above lemma can be written as ) _; Xoo = 120"*2, which
implies

Y L1409 = Z/EMQ? dX < 120M2L, 1 (E).
j j

2. Define 4; = {j € N|30% N30 # @} = 1,2,...). Note that from
Lemma C.1 follows that #4; < 120"12. Moreover, we have

(W6) Q0 C40f CE forall j € A;.

Indeed, if %Q‘; n %Q‘;‘ # (), then we have r‘/?‘ < 2r{ due to (W3). For Y € Q‘;‘
we estimate ‘ ‘

(X2 Y) < do (X X) + do (X, XY) + (X9, Y)
2 4
< grl“ + grl‘" +2rf =4rf.
Consequently, Y € 40¢.
Next, let us introduce the notion of Lipschitz continuous functions with respect to
the metric d,,.

Definition 3.3. For a given Lebesgue measurable set A C R**! by Cg(;l (A) we
denote the space of all essentially bounded functions u : A — R, satisfying

Lipda;A(u) < 00,

where

Lip, () = sup lu(X) — u(Y)]
dor: A x.yea do(X,Y)
X£Y

Partition of unity. Let E be a non-empty, bounded, open subset of R"*! equipped
with the metric dy. Let { Q7 } denote a Whitney type covering of E from Lemma 3.1.
Letn; € CSO(R"H) denote cut-off functions with 0 < n; < 1 in R+ n; = 0in
R+1y %Q;", ni = 1 on 5 Q%, such that

Lipy, () + ledmil? < ¢, &) in R (G e ), (3.1)
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Recalling the definition of A; (¢f. Remark 3.2) we have

Y nj=>Y_n; in QY
J

JEA;
and )" ; n; € C®(R"*1). Next, we set
ni (X)

> onix)’
J

which is well defined, since by (W1) there holds ) inji = 1 in E. Clearly, we have
that ; € C®(R"T!) satisfy y; = 0 in R**1\ %Qf‘ . Moreover, we have

D= vj=1 inQ¥ (3.2)
j

JEA

Ui(X) = XeE (ieN,

Properties (W1), (W2), (W3), (W4), and (3.1) yield
(i (X) — ¥ (V)] < [mi(X) — (V)| + Z 17;(X) —n;(Y)]

JEA;

< ((r;")“ +y (r;‘r‘) do (X, Y) (3.3)

JEA;
< cn(142- 120" (") 1 dy (X, V).
Similarly, one proves that

0yl < 10l + Y 1oim;l < cp (1+4- 120" a7 P72 in R
JEA;

Thus,
Lipdu('(pi)+|0‘at"//i|% < (1 +4-120) ¢~ in R (3.4)

Definition of the truncation operator. Let G C R”" be a non-empty, open, bounded
setand 0 < T < oo. For a non-empty, open set E C G x (0, T') let {QY} be the
corresponding Whitney covering from Lemma 3.1 for the metric d,, and {;} the

associated partition of unity. For u € Llloc(G x (0, T)) we define

u(X) if Xe(Gx(O,T)\E,
(Tgu)(X) = { &
> Ui uge if X e€E.
i=1
From the construction of 7gu it is clear that the restriction of 77 u upon E is
smooth.

Next, we prove several properties of the operator 72« , which will be used in
what follows.
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Lemma 34. Letu € L}

(G x (0, T)). Then there holds
1T2u| < 102 M*(lu]) ae in G x (0,T),

where ¢ = const > 0.

(3.5)

Proof. If X € (G x (0,T)) \ E, then |[TFu(X)| = [u(X)| < M*(Ju])(X) by the
properties of M™* (¢f. Appendix A). Now, let X € E. Then by (W1) we have

X € QY for some i. By the definition of 77 u and of the set A; it follows that

(TEwX) = ) uger;(X).

JEA;

Taking into account (W6) and (W3) implies

TEu01 = 3 oty (0 <824 ulay,
jeA; 407

Since 40% C Qg’? (X) we obtain
|Tgu(X)| < 10"+2][ luldY < 10"72 M*(Ju))(X).
050 (0
The proof of the lemma is completed.
Lemma 3.5. For every 1 < p < oo there exists a constant ¢ such that
I7gullLrGx©.1) < clullLrGxo.1) Yu € LP(G x (0,T)),

where ¢ depends only n.

(3.6)

(3.7

Proof. By the definition of Tg and the properties (W1), (W6), and (W5) of the

Whitney covering we have
f I(Tgw)(X)|dX =/ IM(X)IdX+/ |(Tpu)(X)|dX
Gx(0,T) Gx(0,T\E E

= Wl + 3 [ 1TE0001dx
i i

< llulliGx@.1) +Z/Qa (Z][Q |u(Y)|dY) dx
i i J

JEA;

<Wluigom +27 T [ wotax

i jeA
< (14 240"2) lull 11 (G 0,7 -
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From the definition of 7 follows

I 7¢ ullLo(Gx0.1)) < llullLoGx0.7))-
The assertion thus follows from interpolation also for 1 < p < oo. O

Lemma 3.6. Letu € LlloC

(G x (0, T)). Then we have forall Y, Z € Q%,i € N
TEu(Y) = TEu(@)| < ¢ (k) du (Y, Z)][4Qa U —usgeldX,  (3.8)

where c depends only on n.

Proof. By the definition of 72 one easily calculates forall Y, Z € QY
Tu(¥) = TEuw(Z) = ) uge(W;(Y) = ¥;(2))
JEA;
= D (uge —ug)W;(Y) = ¥;(2)),
JEA;

where we used (3.2). Using Jensen’s inequality along with property (W6) one gets

luge —ugel 54"“-2][ u —ugoe|dX VYV j € A;. (3.9)

40¢

The last two estimates together with the Lipschitz bound (3.4) and the properties
(W3) and (W4) of the Whitney covering imply (3.8). O]

1
Lemma 3.7. Letu € L,

(G x(0,T)). Then forallY € QF,i € N

1 TZu(Y) — u(Y)| §c][ lu(X) — u(Y)|dX, (3.10)
40¢%

1

where ¢ depends only on n.

Proof. LetY € Q%,i € N. The definition of 7 and (W6) yield
ITEu() —u)| < Y ¥;(Nluge —u(¥)| < c][ u(X) — u(Y)|dX.
— J 40¢%
_]EA, i
Whence (3.10). ]
Note that from Lemma 3.7 one obtains the following estimate for i € N

][ |T§‘u—u|dY§c][ lu — uygpe|dy, (3.11)
o 40¢ '

1

where ¢ depends only on n.
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Lemma 3.8. Letu € L}

(G x(0,T)). Then forallY € QF,i € N

18, T2u(¥)| <ca™! (rf‘)_z][ lu — ugge] dX, (3.12)
409

1

where ¢ depends only on n.

Proof. LetY € QF,i € N. By the definition of 7 and (3.2) one gets

O TEuY) = Y 0¥ (Nugs —ugpe) = Y (V) (uge — uge).

JjeAi JeAi
Using (3.4), (3.9), (W3) and (W6) one estimates
|3tT£‘u(Y)| < Co[_l(rlf)‘)—2 Z |uQ¢jx — uQ7| < Co[_l(rl.“)—z][ } lu — M4Q§?‘| dX.
JEA; 4 i
This completes the proof of the lemma. O

Now, we present the main result of this section, where we establish a formula
of integration by parts with respect to the time derivative. This result plays an
essential role in the proof of the main result given in Section 4.

Theorem 3.9. Leru € L0, T; L>(G)) N L4(0, T; WH4(G)) (1 < g < 00) and
HeL°,T; L°(G)) (1 <o < o0) be such that

—/ u~8,godX=/ H:VedX (3.13)
Gx(0,T) Gx(0,T)

forall ¢ € C3°(G x (0, T)). We define

On == |X e R™M*(IVu(X) + « M*(H)(X) > A}, A >0,
Uy = {X e R"" | M*(lu))(X) > 1}.

Let A > 0 and the open set E C R with L,,11(E) < oo be such that
(G x(0,T))N(OpAUlUh) CECGx(0,T). (3.14)
Let K C G x (0, T) be a compact set. Then we have:

(i) The Lipschitz truncation T u belongs to CS{;I(K ) with a norm depending on

n, K, A a, ullpig), ”u”L‘(IZx(O,T))’ where the K cC K cC G. In particu-
lar, we have Tgu, VIZu € L*(K).
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(ii) The Lipschitz truncation T 2 satisfies the estimates

IVTullok) < c(A+e™ 8 Ml ). (3.15)
1Tl Lok < c(1+e™" 87 ull g ) (3.16)
where §q k = do(K, 0(G x (0, T))) and where the constants ¢ depend only

on n.
(iii) The function (3, 7gw) - (72u — u) belongs to LY(K N E) and we have

| @ Tgw - (Tgu - w1 k) (3.17)

— Ne—n— 2
<ca ' Lo (E)(A+a™'8 5 ullpigy) s

where the constant ¢ depends only on n.
(iv) Forall ¢ € C3°(G x (0, T)) holds the identity

T 1
/ <a,u(r),(Tgu(z))g(z)> dr = 5/ (172wl ~2u - Tgu)o,¢ dx
0 Gx(0,T)

(3.18)
+/ (7gw) - (Tgu —uw)¢ dX,
E

where (-, -) denotes the usual duality pairing with respect to G.

Remark 3.10.

1. We have extended the functions u and H in the previous theorem by zero out-
side of G x (0, T).
2. If the open set E C R"*! with £, (E) < oo satisfies for some A > 0

(Gx(0,T)NOx CECGx(0,T),
then all assertions of Theorem 3.9 remain valid with the exception of (3.16).
Before we prove Theorem 3.9 we need some preparatory results.

Lemma 3.11. Under the assumptions of Theorem 3.9 we have for all QY belonging
to the Whitney covering of E such that Qf N K # ()

][4Qa lu—wyge] dX < crf (A +o ' 5 ull L g, (3.19)

where the constant c depends only on n.

Proof. Let O C E belonging to the Whitney covering be such that QY N K # {.
From property (W2) of the Whitney covering and (3.14) follows that (i) 16Q¢ N

(((’)A)C N (U])C) # (@ or (ii) 1607 N (G x (0, T))“ # @, where the superscript ¢
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denotes the complement in R"*!. In the case (i) we can use the Poincaré-type
inequality (B.2) (¢f. Appendix B) to estimate

][ u—uype|dX Scrf‘][ |Vu| + «|H| dX,
40f ‘ 40
where we used that 4Q¥ C E C G x (0, T). Since 16Q¢ N (((’)A)C N (Z/ll)c) # 0
there exists X € 160 N (Oy)°. Consequently, we have 4Q0% C Q20re (X). From

the above inequality and the definition of the maximal operator M™ and of the set
O, we obtain

][ |u—u4Qq|dX§crf‘][ _|[Vul+a/H|dx <crf A,
407 ’ Q2. (X)

which proves the assertion in the case (i). Let us now consider the case (ii). Since
Q% N K # ¢ there exists X € QY N K and thus we derive

Sk < dy(X, (G x (0, T))°)
< dy(X, X¥) +dy (X2, (G x (0, T))) (3.20)
<17rf.

This, property (W2) of the Whitney covering, and £,11(40QY) = w, (4rlf")"+2,
where ), is the surface measure of the (n — 1)-dimensional unit sphere, imply

][ [ —uype|dX < 2][ [u] dX
40f ’ 40f

< ca™! (r2) 713 rf‘/ juldx ©.21)
E
—1 ¢—n-3 «
< ca (Sa’K r ”u”Ll(E)
This proves the assertion in the case (ii), which finishes the proof. L]

Corollary 3.12. Under the assumptions of Theorem 3.9 we have for all Q% with
QY N K # () that

][Qa 1TEu—ul dX <crf (A+a '8l g), (3.22)

where the constant c depends only on n.

Proof. This follows immediately from (3.11) and Lemma 3.11. [
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Lemma 3.13. Let the assumptions of Theorem 3.9 be satisfied and let Q} belong-
ing to the Whitney covering of E be such that Qf N K # (). Then we have for all
XeQfNK

ITEuX)| < c(1+e™ 8% ullL1g). (3.23)
where the constant ¢ depends only on n.

Proof. We proceed as in the proof of Lemma 3.11. Let QY N K # (. Again we
have that (i) 16Q0% N ((OA)C N (Lll)c) # Por (i) 1607 N (G x (0, T))“ # @, where
the superscript ¢ denotes the complement in R”*!. In the case (i) we use that since
1607 N ((OA)C N (Lﬁ)c) # () there exists X e 1607 N (U1)¢, and consequently
we have 40% C Q%{Or%" (}A( ). From (3.6), the definition of the maximal operator M*
and of the set U] we (;btain

1 T2u(X)| < 8”+2][ luldX < 40”*2][ |uldX < 40"

40 05,0 (%)

which proves the assertion in the case (i). In the second case we obtain as in (3.21)

|T2u(X)| < c][ lu| dX
40¢
< cal(rﬁ)“/ lu| dX
E
<ca”! 3;’}(_2 lall gy

which proves the assertion in the case (ii). This finishes the proof. O

For the next lemma we need a geometric property of an open set U C R"*!,
One says that the set U is of type A with respect to the metric d, (cf. [43]), if there
exists a constant A > 0 such that for all 0 < r < diam,(U) and all X € U there
holds

L1 (QF (X)) NU) = ALy11(Q7(X)). (3.24)

In the next lemma we show that the set Q7 (Xo) is of type A with respect to d, with
aconstant A = A(n).

Lemma 3.14. If for some X € R* r > 0 and some QY belonging to the Whitney
covering of E holds %Q?‘ N OX(X) # W and QX (X) ¢ Qf, then we have rj* < 67
and there is a constant ¢ depending only on n such that

cLpt1(07) = Lnt1(QF N QX)) = L1 ().
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Proof. From the the assumptions follows that there exist X e %Qf‘ N Q%(X) and
Y e OF(X) \ QF. One easily sees that Q‘)fra (}A() C QF, which implies
37

r% A A ~ o
é <do(X,Y) <do(X, X)+do(X,Y) <2,
which implies the first assertion. Moreover, we deduce from the fact that Q% (X) is
of type A with respect to d,, and Qofra (X) C Qf = Q% (X{) that

3% i

Las1(QF N Q70 = Lag1 (0. (0 0 QF(X))
= cLnt1 (05, (%)
> cLas1(09).
The upper bound is clear. O
Now we are ready to prove Theorem 3.9.

Proof of Theorem 3.9.

Step 1 (Proof of (1)). We first prove assertion (i) for special compact sets K9, where
Kg = Qﬂ‘O(Xo) with r chosen such that Qs rO(XO) C G x (0, T). Then we will
cover a general compact set K C G x (0, T) by finitely many sets of that type
and obtain the general assertion. Note that the set K is of fype A with respect
to the metric d, (cf. (3.24)). For open sets of type A the well-known theorem of
DaPrato (cf. [43, Theorem 3.1]) states that assertion (i) is equivalent to the state-

L1+ . .
ment that 72u € Lg e (Kgy). Thus we have to estimate 7£u in the norm of
1 1+n+2

L, (K§), which is given by | - || 11+L2 = - ||L1(Ka)+| | 11+_2

+ (Kg) n+ (Ka)
The seminorm | - | |, 1 is deﬁned through

Ly "T(KY)

- 1

vl ), = sup Lo (KENQX (X)) U Hm) / lv—vgex)nkgl dX.
Le ”+2(K°‘) XeKg,r>0 0% (X)NKY
Fix some X € K§ = O 7o (X0). We have K§ C erO(X)- Thus we obtain for
r > 2rg
_ntd
Lun(K§ 0 0200 [ 78w — (TEw guconxs | dy

04(X)NKY

_nt3
< 2Ly 1 (KY) nt2 f | 7guldX < c(Kg. mlullLikg).

Ky
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where we used a version of Lemma 3.5 for p = 1 on the set K. In order to estimate

VELT 1,853 it is thus sufficient to take the supremum over radii 0 < r < 2ry.
Lo "7 (KG)

Let us abbrevi(z)ite Q7 == Q7 (X) with X € K. Then there exists either (a) some

i € Nsuch that Q% C Qf, with Q¥ belonging to the Whitney covering of E or (b)

foralli € N we have QY ¢ Q%,i.e. Q% \ QY # . Let us first consider the case

(a). Since K is of type A with respect to dy, (cf. (3.24)) we have

f o TR Twgglax sconf ITEu (Tfwerlax.
Q¢NKy oy

Using Q¢ C QF, Lemma 3.6, and Lemma 3.11, which is possible since K§ N QY D
K(‘;‘ N Q¥ # ¥, we obtain

][ 1 T¢u — (T2u) ga|dY 5][ ][ 1 Teu(Y) — TEu(Z)|dY dZ.
oy o) of

§c(rf‘)_1r][ lu —ugpe|dY
a0 o; (3.25)

-1 ¢—n-3
<cr(A+a laa”}{g lullzigy)

= c(a, n, Kg, A, a1 gy) T

Thus it remains to treat the second case (b). First observe that in this situation we
have that

0%, N ((G x (0, )\ E) # 0. (3.26)

If this would not be the case, then we would have 0%, = 0%,,.(X) C E. Con-

sequently there exists some i € N such that X € %Qf‘ due to property (W1)
of the Whitney covering. Property (W2) and Q5,. C E immediately imply that
34r < 17r}, from which we deduce that for all ¥ € QY holds

o

I
da(Y,X;X) Sda(Y:X)_’_da(X:X:X) <r+é Srla

This means that QY C QF, which is a contradiction and (3.26) is proved.
We have

f |TEall— (Tgu)ngKgMY
0eNK¢

IA

2][ [ 7gu —uldY +][ lu —ugangg|dY (3.27)
0¢NKY QNKY

=20+ .
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Since K is of type A with respect to d, we get

b < c][ [u —ugpe|dY.

r

From (3.26) follows the existence of a point Z € 0%, (X) N ((G x (0, 7)) \ E).
Thus Q¥ (X) C 055,(Z), which yields Q5s,.(Z) C Q?OS,O(XO) C G x (0,7,
due to our assumptions on rg. The above inequality and the Poincaré-type inequality
(B.2) imply

I < Cf |ll—llQ§tSr(Z)|dY
%.(2)
< cr][ |Vul + o [H| dY (3.28)
3502(2)
<crA,

where we also used that Z € (G x (0, T)) \ E C (G x (0,T)) \ O,. In order to
estimate the term /; we use that the {% Q?} cover E and Lemma 3.14 to obtain

I < c][ |Tgu(Y) —u(¥)|xexxy dY
o

1
<c Z — | T2u(Y) —u()| xgg dY
-2 005 49 Ln1(08) Joen2 oo
£n+1(Q3‘ﬂQ‘-”)][
- Yi) Tou(Y) —u(Y)| xxe dY.
<c Y Lrmr (0% Q?| Fu¥) —u(¥)| xxg

i:300N0¢ A0

For each i € N with %Q’l" N Q% # (¢ we have using Corollary 3.12 together with
Lemma 3.14

][ ” | TEu) —u)| kg dY <erf(A+o™' 8 Nl )

1

<6er(A+a 8 L)
<clo,n, Kg, A, llallpig) 7.

Property (W4) of the Whitney decomposition implies that ), xoe(Y) = 1202,
Thus we have

L 2N Q% 1
Yy L@ N0 xor Y xordy 12072,
L, - Ln11(0%) Ln1(Q%) Jruwe1 757 4 o
i:507NOY#D i:507NOY#D
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The last three estimates imply
I] 5 C(C{, n, K(())[, A, ||ll||L1(E)) r,

which finishes the estimate of the seminorm [7gu| |, 1 . Since Tgu €

Lq n+2 (Ka)
L! (K§) due to Lemma 3.5, we proved 7gu € C0 1(KO‘)

In particular we have due to the deﬁnltlon o% the metric d,, that for each i =
1,...,nand |h| <hgy < rg the difference quotient in spatial directions &~ ! (Tgu(x+
he;, t)—Tgu(x,t1)) is bounded in L*°(Kp,), where K, ={X € K§ ]diste(X,BKg) >
ho} with dist, being the Euclidean distance in R"*!. This implies that Vifua €
L%°(K§). That 7Z2u belongs to L°(K{) is obvious, since K is bounded and
Teue CYHKY).

Thus we proved assertion (i) for the special compact sets K_g.

In order to treat a general compact set K C G x (0, T')) we cover K by finitely
many sets K := s (Yi),i =1,..., N satisfying leosi(Yi) C G x(0,T). Let
s = min{si|i =1,...,N}. If dy(X,Y) < spand X € Kf‘ for some i, then we
have Y € Q%‘si(Y,-). Since for Q%‘Si(Y[) we have already proved assertion (i) we
obtain

[7%a(X) — T%u(Y)|
2 X, YE) < c(K, Aoy, lull gy Il iz 0.y) < OO

Ifd,(X,Y) > sop we have

[Tgu(X) — TguY)| < supTgu—inggu <c(K) <c(K,s0)de(X,Y),
K

since 7/ u is continuous on K. Thus we proved 75u € Cg;l (K). That 72u and
V7 2u belong to L*(K) follows in the same way as for the special sets K.
This finishes the proof of assertion (i).

Step 2 (Proof of (3.15)). Since u € L4(0, T; W4(G)) and Tfu, VIgu e L*(K)
we obtain from an obvious modification of [37, Corollary 1.1.43] that almost ev-
erywhere on K holds

VTg‘u = XE V’Tgu + X(Gx (0, T)\E VTEU

(3.29)
= xe VIgu+ xGx0.m)\E VU.

From our assumption (3.14) on the set E and the properties of the maximal operator
M* we getforae. X € KN((Gx (0,T)\E) CKN((Gx(0,7)\On)

[Vu(X)| < M*(IVu])(X) < A. (3.30)

On the other hand for each X € K N E there exists some i € N, such that X € Q7.
Using an obvious modification of [37, Theorem 1.1.41] we get that the weak deriva-
tive and the classical derivative of 7Ju in the x-directions coincide on Q%, and
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consequently we have, using the properties of the partition of unity v;, properties
(W6), (W3) and (W5) of the Whitney covering, |Vi;| < c(r;?‘)_l, and Lemma
3.11, that

IVTZu(X)| = |V (Z wj(X)uQ_[;)

JEA;

= |v (Z ¥ (X0 (uge — ugy))i

JEA;

= [ 2 (VU)X (uge —uge)

JEA;

<cm) Y ™! ][W lu(Y) —ugpe| dY

JEA;

< c(m) (1202 (i) ™! ][W [u(¥) —uage| a¥

i

<) (A+a™ 8 L)

which together with (3.30) proves (3.15).

From our assumption on the set E and the properties of the maximal operator
M* we getforae. X € KN ((Gx (0, T)\E) C KN((Gx (0, T)\U)

I TFu)| = [u(X)| = M*(Ju)(X) < 1.

On the other hand for each X € K N E there exists some i € N, such that X € Q7.
Lemma 3.13 yields forall X € K N QF

ITEuX)| < e (1+a7' 55 2 ull i gy )

The last two estimates prove (3.16).

Step 3 (Proof of (3.17)). Due to the definition of 72u we have 72u = u on
(G x (0, T)) \ E and that the Lipschitz truncation 72w is smooth in E. In particular
the classical derivative 9,7 u exists in E. Using the definition of 7zu, Lemma
3.8, estimate (3.11), Lemma 3.11, and property (W5) of the Whitney covering one
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estimates

/K i |0, T2u(X) - (TEu(X) —u(X))|dX
N

< / |0 T2u(X) || T2 u(X) — u(X)| dX
J: Q“HK#Q)
<cal Y (r;x)z][ |u—u4Q¢;|dY-/ | T2u(X) —u(X)|dX
J104NK Y 405 05

2
<ca”' ) (r;‘rzz:nH(Qi)(]eQa |u—u4Q?|dY>
J

J104NK )

< ca™! Z Ly11(05) (A a 18, ||“||L1(E)>2

J:OUNK#D

2
< o Lo (B) (A + a8, 5 Ml )

This proves the estimate (3.17).

Step 4 (Proof of (3.18)). Let0 < h < T. Given f € LY(G x (0, T)) the Steklov
average fp of f is defined by

1 t+h
fr(x,t) = E/ flx,s)ds, ((x,t) e G x(0,7T), (3.31)
t
where f has been extended by zero outside of (0, 7). Then we have

3 fulx, 1) =N (f(x,t +h) — f(x,0)). (3.32)

From the assumptions on H and u follows that H;, € Whe(, T: L°(G)) and uy, €
w0, T; L2(G) N Wh4(0, T; Wh4(G)). Let ¢ € C3°(G x (0, T)) be fixed.
Then there exists a compact set K such that supp(¢) CcC int K cC G x (0, T).
Set

dg = do(supp(¢), 0K).

Let0 < h < %min {dg , o (dg)z}. From (3.13) follows by density arguments
that the weak derivative d,u belongs to L (0, T'; (WOI’U/(G))*). From assertion (i)

of Theorem 3.9 follows that ((Tg‘ wy ¢ )_ n is an admissible test function for d,u.
Using the properties of the Steklov average, Lemma 3.5, and 7gu € L*°(K) one
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easily justifies the following calculations

T
/O (o), (TEwaz ), )ds
T
= fo (o), (w0 0)) dr

= / oruy - uyl dX +/ oy - (Tgu—w),¢ dX
Gx(0,T) Gx(0,T)

1 1
= —/ dlupl*¢ dX — —/ 3 |(T&u —wy, ¢ dX
2 JGx,T) 2 JGx©,1)

+ / O (TEw)y, - (TEu — )¢ dX
Gx(0,T)

1
= —5/ (1ual? = 17w = wal? )i dX
Gx(0,T)

+/E (a,(Tgu)h;)_h (T8 — u) dX,

where we used as the last step that Tg‘u =uin (G x (0,T)) \ E. Next, by the
well-known properties of the Steklov average one finds for & — 0

duy, — du in L%, T; (W' (G)*),
(Tgwut — (TEw¢ i L7, T; W7 (G)),
w, > u in L*(K),

(TEu);, — (TEu) in L*(K).

Therefore,

T 1
[ oo @wwew)ar =3 [ uP - (Tra - uPacax
0 Gx(0,T)
+}}§})/E (8,(TE u)h;)_h - (Tfu — ) dX.
Thus, it only remains to verify that
lim/ (a,(Tgu)h;) .(Tgu—u)dxzf o T (Tou —wiedX. (3.33)
h—0 JE —h E

We define for almost all (x,?) € E

Opcr.n) s = (9(Tgwag)  x.n)

_/1 (TEuw)(x, t+(1—7)h)—(TFu)(x, 1 —7h)
=/ -

(3.34)

C(x,t—th)dr
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and set

a2
A {(xt-i—s)‘(x t)esupp(§)0<s<o¢(2) } (3.35)

Since h < « we have supp(#}) C A* C K C G x (0,T). Using these
notations and the property of the partition of unity {1;} one gets

d$)?
2

/E (a,(Tgu)h;)_h (T%u—u)dX = Zwai 6% . (T%u — u) dX.

We split the sum on the right-hand side of this equation into two parts by defining
the following set of indices

Sy :={'

With this notation we have

/ (a,(Tgu)h;) - (Tfu—wdx = / V0% - (T¢u — u) dX
E - esa

¢ <2h2, 07N K # @}.

/ Y09 - (Tu —u)dX

16(8"‘)0
= Ih + IIh .

Due to the properties of ¢, (3.34), and 7Zu € Lipg, (K) we geta.e.in E
0% < ch™2.

Fori € ;' we have due to (3.22) and r{* < 203

/Q KW:|TO[“—11| dX < cri Lo1(Qf )(A+01713 ||u||L1(E))
N

< Ch2£11+1(Q (A +a™'8 5l gy )

The last two estimates yield

I < ¢ ) Lap1(QF) < cLupi(E) < oo,
ieSy
where we also used property (W5) of the Whitney decomposition and £, (E) <
oo. Since S)f — ¥ for h — 0 it follows

lim I} = 0. (3.36)
h—0t
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Since 7 is smooth on E one immediately finds from (3.34) and the definition of
S), that

Z V0, - (Tgu—u) - &, 7gu- (Tgu—u); aeinE as h— 0.
ie(S))©

o2
Fori € (S}))° we getdue to (3.34) and 0 < i < a’T that

Y05 < max @ TEwX), (3.37)
YeQfNK

from which follows by (3.12) together with (3.19)
[Wibnl < c ()" X0 xk-
Thus, by the properties of the Whitney covering and Corollary 3.12 we get
/ ‘ > il (Tgu - u)( dx < c/ D e I TEu—u| xge dX
K iespye K
<c) Lo (0D
i
<cLyy1(E) < 0.

Now Lebesgue’s theorem of dominated convergence implies

lim 71} =/ 0 Tgu- (Tgu —u)¢ dX. (3.38)
h—0t E
This completes the proof of Theorem 3.9. O

4. Proof of the main theorem
Since for g > @ the proof of Theorem 1.3 has already been carried out in [52]
it will be enough to prove the theorem for the case ¢ < 2. Throughout this section
let 112% < g < 2 be fixed. Recall Qr = Q x (0, 7).

Let ® € C*([0, o0)) be a non-increasing function, such that 0 < ® < 1 in
[0,00),®=10n[0,1], ®=0in[2,00) and 0 < —®' < 2. Form € N we set

D, () == d(r/m), 1 €][0,00).

Letug € L?(Q) and let F € Lq,(QT). In [52, Theorem 3.119, it has been proved
that there exists a unique weak solution u,, € L9(0,T; V,) N C([0, T']; H) to the

6 Since € is a bounded open set, one easily verifies that the assumptions (I)-(IV) on S here imply
the assumptions (I)-(IV) on S in [52].
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system
diva, =0 in 0r, @&1)
Bty + div (um D Uy Dy (U ]) — SD(Wn)) + F) — —Vpm in QOr, (42)
“m|an<o,T) =0, (4.3)
u,,(0) = ug in , 4.4

i.e. the following identity

_ / W - Sy dr dr + / (SDW)) — Uy ® Wy Py (U ])) : D) d
or Or
(4.5)
:/ F:V¢dxdt+/uo~<p(0)dx
or Q2

holds for every ¢ € C*°(Qr) with dive = 0 and supp(¢) CC 2 x [0, T). Fur-
thermore, it has been proved there that forall0 < < T

1 t
Ellum(t)ni, +/ /S(D(um)):D(um)dx ds
0 JQ

1 t
=§Iluolli,+/ /F:Vumdxds.
0 JQ

In what follows let ¢ denote a positive constant, which may vary from line to line
but does not depend on the parameter m € N. Observing the coercivity condition
(IIT) from (4.6) we deduce

(4.6)

”umH%OO((),T;H) + ”D(um)H%q(QT) =<c. 4.7
By virtue Korn’s inequality and Sobolev’s embedding theorem we get
”um“LQ(O,T;WLQ(Q)) + ||um||Lq((),T;Lq*(Q)) <c, (4.8)

where ¢* = % is the embedding exponent. With help of Sobolev’s inequalities
along with the Holder’s inequality taking into account (4.7) and (4.8) we estimate

n <ec. .
Ml g2 =€ (4.9)

From the growth condition (II) of S and (4.7) follows

ISl e o,y = € (4.10)

By means of reflexivity we can pass to a subsequence (which we denote for simplic-
ity of notation still by u,, and S,,) and functionsu € L9(0, T; V,) N L*(0, T; H),
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Se Lq/(QT) and H € Lq%(QT) such that for m — oo

D(u,) — D(u) weaklyin L9(Q7),

u, > u weakly in Lq%(QT),
5 , “4.11)
S(¢,D(u,)) - S weakly in L7 (Qr),
Uy @ Uy P (Ju,|) — H weakly in Lq%(Qr).
Passing to the limit m — oo in (4.5) thus gives
—/ u-9¢dedi+ | (S—H):D(¢)dxdr
or or (4.12)

:/ F:V(bdxdt—i—/uo-qS(O)dx
or Q

for all ¢ € C®(Qr) with divg = 0 and supp(¢p) CC Q x [0, T). From this
identity one can show thatu € Cy, ([0, T']; H) (cf. [52, Section 4]). In particular we
have u(0) = uy.

Next, let G CC 2 be a fixed but arbitrary open bounded set. Clearly we may
assume there exists an open bounded set G’ CC Q with G CC G’ and 3G’ €
C?. Since g > nz—fz we can find o9 > 1 withg < 20¢ < q”niz. Using (4.9),
(4.10), g < 2, and the properties of og we get from (4.5) that the weak derivative
d,u,, belong to L (0, T; (Voé (G"))*). This, the compact embedding V,(G') ——
H,(G),1 < r < g*, the Aubin-Lions compactness lemma (cf. [30]) and a parabolic
interpolation result using (4.10), yield H = u®u and form — 0o (cf- [52, Section

4] for a different reasoning)

u, > u strongly in L?°°(0, T; L*(G')), (4.13)
u, @u,®,(u,|) > u®u stronglyin L0, T; L7(G")). (4.14)

From (4.13) and (4.7) follows again by parabolic interpolation
u, — u stronglyin L"(0, T; LZ(G/)), 1 <r<oc. 4.15)

Moreover, combining (4.5) and (4.12) yields

— | Wn—w-dpdxdi+ [ (SD@y)—S): Vodxds
or er (4.16)
= / (um Q Wy Dy (Juy|) —ll®ll) : Ve dx de
or
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for all ¢ € C*°(Q7) with dive = 0 and supp(¢) CC @ x [0, T). From Theo-
rem 2.2 in Section 2 one gets unique functions

pim € LY(0,T; LY (G")),
pam € L7(0, T; L7(G")),
prm € Cu (10, TT; WHA(G))

with App ,, = 0 and pp_,(0) = 0 and
T T .
—/ (U — 1) - 0,¢p dx dt +/ / (S(D(um)) - s) . Ve dx di
0 G’ 0 G’
T
:/ / (un @ Uy Py (luy)) —u®u) : Ve dxdr 4.17)
0 G’

T
+ / f (P + p2) iV + Vo - 3y d
0 G’

for all ¢ € Cgo (G’ x (0, T)). Moreover, by (2.4), (2.5), and u,,(0) — u(0) = 0 we
have

1P1mll o oy = €NSC D) =Sl o Grc 0.7 (4.18)
||P2,m ”LGO(G’X(O,T)) = C“um ® llmcbm(|llm|) —uQ® u“LUO(G/X(O,T))’ (419)
1phm @ lwr2y < clun@ —u@l2@y. 1€ O,T). (4.20)

Since pj.p is harmonic in G', it follows by the well-known local regularity theory
(cf- [21, Theorem 8.24]) and (4.20) that forallr € (0, T) andall 1 <r < o0

Il Prm O lw2r 6y < cllPrm Ol 126

4.21)
< cllun(®) = u®ll 261

where the constant depends on n, G’ and G. From (4.13) and (4.21) with r = 20y
it follows that

Phum|Gyo.ry = 0 strongly in L%0(0, T; W»0(G)) as m — oo. (4.22)
Moreover, we know from (4.21) with » = oo and (4.7) that
I Ph.mll o0, 1, w20 (Gy) = € (4.23)

By interpolation it follows from (4.22) and (4.23) that for all r € [1, c0)

||ph,m||Lr(0,T;W2.r(G)) -0 asm — oo. (4.24)



30 LARS DIENING, MICHAEL RUZICKA AND JORG WOLF

In order to use Theorem 3.9 we define
Vi = (um —u-+ VPh,m)XGx(o,T)-
This definition together with (4.13) and (4.22) implies
Vm — 0 stronglyin L?°(G x (0,T)) as m — oo. (4.25)

Moreover, the identity (4.17) can be written for every ¢ € C;°(G x (0, T)) as

T T 5
—f /V,n-8,¢dxdt+/ / (S(D(um))—S> . Ve dx dt
0 G 0 G

T
=/ /(um®umfbm(|um|)—u®u):V¢dxdt (4.26)
0 G
T
[ [ ot pam divaarar
0 G

Using (4.11), u,,u € L%90(G x (0, 7)), (4.14), (4.18), (4.19), and the proper-
ties of op we get from (4.26) that the weak derivative 9;v,, belongs to the space

L°0(0, T; (W(;’U0 (G))*). Therefore setting

Hi =S = SDy)) + p1ul,
H2,m = Uy Q@ Uy q)m(|um|) —u®u+ pZ,mL (427)
H, = Hl,m + H2,m

a.e. in G x (0, T) and extending to R"*! by zero, the identity (4.26) can be written
both as

—/ Vi - 0, dX =/ H,, : VodX (4.28)
Gx(0,T) Gx(0,T)

forall ¢ € C3°(G x (0, T)) and as

T
/ <8tvm, ¢> dr = / H,, : Vo dX (4.29)
0 Gx(0,T)

forall ¢ € L9%(0, T; WOI’GO(G)). Next, we set

1
—T

gm 1= M (V¥ ) + (M* (1))

where M™* is defined in Appendix A. Due to (4.8), (4.10), (4.11), (4.18), and
(4.21) for r = g we know that Vv, is uniformly bounded in L4 (R"*!) and Hi p is
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uniformly bounded in L4 (R"*1). Now, by the boundedness of M* from L4 (R"*1)
to L4 (R"*1), respectively L4 (R"*+1) to L9 (R"*1), (see Appendix A) we see that

lgm ||Lq(Rn+1 <c.

Thus we obtain for k € N

22k+1
¢z [ Ll > )
2kt
= 92k )L_l da 22k<)i/n<f22k+1 yq£n+1 ({lgm| = )/})
= 2In(2) inf " Y Luy1({lgml > ¥}

22 S},SzZ
Consequently there exists Ag , € [22k, 22’(+I ] such that
W La1({1gm] > ) < c? (In2)~' 27K, (4.30)
We define for k,m € N

Gk,m = {|gm| > )\k,m}»

and s
Oom 1= )”k,mq'
Then by (4.30) we have
Az’mﬁn—&—l (Gim) < Cz_k» (4.31)
and obtain

1
Gkm D {M*(|va|) > )\k,m} U {(M*(lHlml)) =t > )\k,m}
= {M*(VVl) > Ao} U [ME(Hil) > 2 (4.32)
= {M*(|va|) > )\k,m} U {ak,m M*(|Hlm|) > Ak,m}-
To treat the term with Hy ;,, we define for k, m € N
1
Fiem = {(M*(|H2,m|)) 1> )Lk,m}~
Using the weak type estimate for M* (cf. (A.5)) and oy > 1 we get
L1 (Fem) = Logt((M*(Haml) > 211
< a0 [ M (H ) | (4.33)

(1—g)o
= C)Mk,mq 0 ||H2,m||38-
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Since Ag g, > 22 and Hj ,, converges to 0 in L°°(G x (0, T')) due to (4.14) and
(4.19), we obtain that for each k € N there holds

limsup Ly,4+1(Frm) = 0. (4.34)

m— 00

Analogously to (4.32) we get
Fiem = {atiem M*(Homl) > Aiem }- (4.35)
Finally we define for k, m € N
Him = {M*(Ivm) > 1}.
Using the weak type estimate for M™* (cf. (A.5)) and o¢ > 1 we get

Lyt1(Him) = Ln-‘rl{M*(lva > 1})

< | M* (v 50 (4.36)
< cllvmll5.

Since v, converges to 0 in L°°(G x (0, T)) due to (4.25), we obtain that for each
k € N there holds

lim sup Ly41(Hym) = 0. (4.37)

m—00

Since M* is subadditive and H,,, = H; ,, + Hy j,, (4.35) and (4.32) imply

Gk,m ) Fk,m D) {M*(|va|) > )Vk,m} U {ak,m M*(|Hm|) > 2)\k,m}

* " (4.38)
D {AM* (VYD) + ko M*(Hp|) > 3 Ak}

Defining
Egm = (Gigm U Fim U Him) N(G % (0, T)) (4.39)

we see that Ey ,, satisfies the assumption (3.14) of Theorem 3.9 with A = 3 A; .
Let us fix a cut-off function ¢ € CSO(G x (0,T)) with 0 < ¢ < 1 in
G x (0, T). In view of (4.28), (4.38) and (4.39) we are able to apply Theorem 3.9
with K = supp(¢{),u =v, , H=H,, E = Exm, and ¢ = ok n. We denote
Tem =T, gk k‘:. Hence, inserting the admissible test function ¢ = ¢ 7y vy, into
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(4.29), using (4.27) and taking into account (3.18) yields
/ (SD@,)) = §) : DT v £ dX
Gx(0,T)
- / (S~ SOW@)) : (T ® V) aX
Gx(0,T)
+/ (u®u—u, ®@uy®y(unl) : V((Zimvm) ¢)dX
Gx(0,T)

+ Pl,mlﬂc,mvm -VedX
Gx(0,T)
+ / P1m div(Te,mvim) ¢ dX (4.40)
Gx(0,T)
+/ P2,m &V (T mVim) §) dX
Gx(0,T)

1

+ _/ (2 Vin * 77<,me - |77<,mvm|2) 0,¢dX
2 Joxo.1)

+/ (3t77<,mvm) (Vi — ﬂ,mvm) ¢dx
Ek,m

=itk vk vk vik e vik vk

m m:*

Next, for a fixed k € N we will carry out the passage to the limit m — oo in all
integrals 1,4‘1, e VI I,fq separately.

(i) lim sup,, . oo (15| + [T 11]) = 0.

Due to (4.10) and (4.11) we have that S(D(u,,)) and S are uniformly bounded
in Lq/(G x (0, T)). Using this, Holder’s inequality and (3.7) one obtains

1
Il < Ty @ Ve[ dx )" = elvallioxory.
Gx(0,T)

Thus lim sup,,_, o |1X| = 0 follows with the aid of (4.25) and 209 > g.
Arguing similarly one verifies limsup,,_, .. |11 I,’,‘1| = 0 . Hereby, we use that

D1.m is uniformly bounded in Lq'(G x (0, T)) due to (4.18), (4.10) and (4.11).
(ii) limsup,, oo (I1115]+ V) = 0.
We estimate

III,,]:l| = C”u Xu— Uy ® umcbm(|um|) ||LI(G><(O,T)) i|v(77c,mvm§) ||L°O(K)
It follows from (4.14), oy > 1, and G being bounded that

lim sup Hu Qu—u,; ® umd>m(|um|)HL1(GX(O’T)) =0. 4.41)

m— 00
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Thus we need to show that for fixed k € N the sequence V(7 ,, v, ¢) is uni-
formly bounded in L°° (supp(¢)) with respect to m. This and (4.41) then imply
limsup,,_, o, [11X| = 0. For fixed k the sequence A, lies in the interval

[22k, 22“1] and thus o, = Ai;j is uniformly bounded from above. This
implies that for fixed k holds

inf 8q,  x > 0. (4.42)
meN ’

So according to (3.15) and (3.16) we get for fixed k € Nand allm € N

|V (e O Lo(k) = |V T Vi ||Lo<>(1() + (V) | Tk Vim HLOO(K)
< c(Mem + @ 8" % ¥l Ly )

ol e, 8, T IVmllie))-
The uniform boundedness of v,, in L'(G x (0, T)) (cf. (4.25)), (4.42) and
Akm € [sz, 22k+1] yield that for fixed k € N the sequence V(Z¢ Vi )
is uniformly uniformly bounded in L°°(K) with respect to m. This proves
limsup,,_, o [11X] = 0.
Using (4.19) and (4.41) we can prove analogously lim sup,,_, ., |Vn'j| = 0.
limsup,,_, o |VIK] = 0.
Using Cauchy-Schwarz’s inequality and (3.7) shows that

VIl < Vil 265019

Since og > 1, the assertion follows from (4.25).

lim sup,,_, o [1 VK| < c27k/4.

Since divu,, = divu = Apy,_, = 0onthe set G’ x (0, T) we have divv,, =0
on this set. From this, the definition of 7 , and (3.29) applied to 7y ,, we
obtain that div 7 ,,v,, = divv, = 0 holds on the set (G x (0, T)) \ Ex.m.
Thus, we have

1vEk = / P1m div(Tg Vi) ¢ dX = / P1m div(Te mVim) ¢ dX.
Gx(0,T) ExmNK

Holder’s inequality implies
|Ian'<1| = ”pl,m||Lq/(G><(0,T))”v(,];c,mvm)”L‘?(Ek,mﬂK)-

From (4.18), (4.11) and (4.10) one finds

IPLmll L (Gx0.7y) = €ISDWm) =Sl 1y (G 0,1y = €
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Therefore we obtain with (3.15), (4.42), Axm € 122,227, 60 > 1, and (4.25)
that

limsup [7V,\| <climsup | V(T mVm)ll L (Ec k)

m—0o0 m—0oQ0
. Vil L1 (&,
=c lim sup £n+1 (Ek,m)l/q )\k,m + #
m— 00 O[k’m8(xk K
Vol ' (4.43)
\ 1
<climsup { L1 (Exm)’? | hem+ %:3(01))
m—oe ak’m8ak m> K
=c lim sup <£n+l (Ek,m)l/q)\k,m> .
m-—0Q
From the definition of Ey ,, follows
En-‘rl(Ek,m) < £n+1(Gk,m) + £n+1(Fk,m) + £n+1(Hk,m)~
This, (4.31), (4.34) and (4.37) imply
lim sup (,C,,H(Ek,m)l/q)»k,m) < c27%4, (4.44)

m—0oQ

From (4.43) and (4.44) follows the claim.
(v) limsup,, o |[VIIX| < 27k,
From the definition of ok, (3.17) and E¢ ,, C G x (0, T) follows

2
”Vm”Ll(Gx(O,T)))

+3
he.m 52k

-2
\VIIN| < ¢ Logi(Ecm) M, (Ak,m +
m K

Using Aem € [22°,227'], (4.42), 09 > 1, and (4.25) and (4.44) we get

lim sup |VII,’;| < ¢ limsup (ﬁn-i-l(Ek,m))\Z’m) <27k,

m—0o0 m—00
which proves the claim.

Altogether, we proved in (i)-(v) that for each fixed k € N

lim sup
m—0o0

f (S(D(um)) — s) D TimVm) ¢ dX| < c2789,  (4.45)
Gx(0,T)

where we used 1 < g.
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Arguing similarly as in (iv) one easily proves using (4.10), (4.11), (4.43) and
(4.44) that

lim sup
m— 00

< li ( S—SD / V(Tx ‘ )
= I DOl G x0,r IY TkmVm) L9 (Ey ) (4.46)

< climsup (Ak,m Lot1 (Ek,m)l/q>

m—0o0
<27k,

/ (SD@) = 8) : DT v ¢ dX'
Ek,m

Due to (3.29) on the set (G x (0, T)) \ Ek m holds D(Z¢ ;,vy) = D(v,,). Thus we
obtain from (4.45) and (4.46)

lim sup <c27ka (447

m—0o0

(S(D(um)) — s) D(v,y) ¢ dX

/(GX(O,T))\Ek.m
Recall that v, = u,;, —u — Vpy, . Using (4.10), (4.11), (4.24) and g < 20(p we

obtain

lim (S(D(um)) - S) DV ppm) £ dX = 0.
m=>20 J (G (0, )\ Ex

This and (4.47) yields for each fixed k € N

lim sup <27, (4.48)

m—00

/ (S(D(u,)) —S) : D(u,, —u) ¢ dX
(GX(O»T))\Ek,m

Due to (4.34), (4.37) and (4.48) we can find for each k € N a number m; € N, such
that

‘ f (S(D(umk)) - s) - D(uy, —w¢ dX| < 2744,
(GX(O0.T)\Etm, (4.49)
£n+l(Fk,mk) < Cz_k, .
L1 (Himy) < 275,
Setting & = ¢ X(Gx(0,TY\Egm, (k € N) one gets
&r—> ¢ ae.in Gx(0,T) as k — oo. (4.50)

Indeed, there holds

a(X)—>¢X) vXe [ MG xO.T)H\ Eem) as k— oo
k=1¢=k
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We have (JpZ M2 ((G x (0, 1)\ Eem,) = (G x (0, D))\ NiZ Uk Etm, -
Moreover, due to (4.31), Ar,, > 1 and (4.49) we get for all k € N

0 00
£n+l ( UEE,mg> =< Z <£n+l(G€,m5) +£n+l(F€,mg) +£n+l(H(Z,mg)> =< C2—k7
=k =k

which implies
oo o0
n+l (ﬂ U Em[> =0.

Whence, (4.50) holds.
From (4.50), (4.11) and the Lebesgue Theorem on dominated convergence we

get that S{k converges to S{ strongly in LY (G x (0, T)), and D(u)¢; converges to
D(u)¢ strongly in L9(G x (0, T')). Thus from (4.49) and (4.11) we deduce

lim S(D(u,,)) : D(uy,) & dX = / S:D(u) ¢ dX.
k=00 JGx(0,T) Gx(0,T)

With help of the local Minty trick (cf. [52, Lemma A.2]) we obtain
S¢ =S(-,D)¢ ae.in G x (0, 7).

This concludes the proof of the theorem.

Appendix
A. Maximal operators

In this appendix we recall some results regarding maximal operators.
For g € LIIOC(R”“) we define for (x, 1) € R"H!

My (g)(x,t) ;== sup ][ lg(y, D)l dy,
B, (x)

O<r<oo

Mi(@)(x, 1) == sup][ g (x, s)| ds,
Ip(0)

O<p<oo

where [,(t) denotes the interval (t — p,t + p). Clearly, for g € L? (R"+1,
1 < p < o0, there exists N C R with £;(N) = 0, such that g(-, ) € LP(R") for
allt € R\ N. The properties of the maximal operator (cf. [48]) yield M, (g)(-, 1) €
LP(R™),1 < p < oo, forallt € R\ N and

/(Mx(g)(x,t))”dec/ lg(x, P dx Y1 eR\N.
R” R~
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Hence, it follows that M, (g) € L?(R"*!) and we have
M@l p ety < cllgllLpgntty- (A.1)
By an analogous reasoning one obtains M, (g) € L? (R"*+1) and there holds

IM(p@nsty < lgllpgass- (A2)
Next, we define
M (g) = Mi(M.(g)), g€ LPR"™). (A3)
With help of (A.1) and (A.2) we verify the strong type estimate
IM* (@ Lpntty < cllgllpr@ntiys (A4)
which implies the weak type estimate

L1 (fM*(@) > ) = AP gl (AS5)

Moreover, we have for all (x,7) € R** ! andr, p > 0
][ ][ lg(y, )| dyds < M*(g)(x,1). (A.6)
I,()J Br(x)

Indeed, for (x, 1) € R™**! one estimates using the definition of M, (M, respec-
tively)

][ ][ g(y,s)dyds < M (g)(x,s)ds
L, B () 1)

< MM (@)(x, 1) = M*(g)(x, 1).

B. Poincaré-type inequality

For reader’s convenience we will present a short proof of the Poincaré-type inequal-
ity we have used in the sequel of the paper.

Theorem B.1. Let for some Xo € R" and 0 < r < co beu € Ll(Qf‘ (X)) with
Vu € LI(Q‘;‘(XO)) and H € Ll(Q‘,"(Xo)) , where 0 < o < 00, such that

—/ u-dedxds =/ H:Vodxdr Yo eCP(0%(Xo). (B.1)
07 (Xo) 07 (Xo)
Then
/ lu — uge|dxds §cor/ |Vu| + o|H| dx dt, (B.2)
0¢(Xo) 0¢ (Xo)

where co = const > 0 depends on n only.
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Proof. This theorem can be found in [51, Lemma B.3] and is based on [38] and [49].
For the convenience of the reader we sketch the proof here. First we prove the
assertion for Xo = 0, « = 1 and r = 1. For notational simplicity we write Q1
instead of Q%(O) and B instead of B1(0). For a given function ¢ € C(C)’O(Bl) with

0 <¢ < 1in By and ¢ # 0 we define the functional F € L'(B;)* by means of

(F,v) = cvdx, velL'(B).

fB] C dJC B
As it is readily seen there holds
(F,1) =1,

which implies

(Fv—(Fw)=0 vveL'®O).
Thus (cf. [40, Theorem 7.1])
VI = IVl gy 4 (F, V)
defines an equivalent norm on WL1(By). Thus there exists a constant c,,, such that
IV = (F. 0)llp1(g,) < calVVIlL1Ry VVeEWH (B, (B.3)
Now letu € L'(Q) fulfill the assunptions of the theorem. One easily calculates

u(x, 1) —ug, = (ux, 1) — (F,u(®)) + ((F,u(®)) —ug,)

— (u(x.1) — (F.u(®) + ][ (. 0(0) ~ Gy, 9) dyds
1

for almost all (x, r) € Q1. Furthermore, one finds
][Q ((F,u()) —u(y,s))dyds
1

1 f 12 / /
= ¢ (w(y', 1) —u(y,s))dy dyds
fBl ¢dyJ o, /s ( )

1
=1/ (F,u(t) —u(s))ds
2 )

1 1
+ — / ’s) — ’ 4 dvds.
2[5, ¢ dy /_1][31 /BIC()’)(M(}/ s) —u(y,s))dy dyds
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The last two equalities yield

1

1
luCx, 1) —ug,| < |, 1) — (F,u®)| + 3 /1 |(F,u(t) —u(s))| ds

1 1
+W/_1/z;1 lu(y,s) —u(s)p, |dyds

for almost all (x,?) € Q1. Integrating both sides of the last inequality over Q1,
estimating the first integral with the aid of (B.3), and estimating the last integral by
the usual Poincaré inequality implies

/ lu(x, 1) —ugp, | dxdt
. (BA4)

Bl ('[!
5c/ |Vu|dxdt+—/ / [(F.,u(t) —u(s))|ds dr.
0 2 JaJa

Using in (B.1) the test function @ (x,?) = ¢(x) y—,(¢), where y € Cgo(—l, 1),
0 <y <1 and yj, is the Steklov average (cf. (3.31)) we obtain

/ ouy - ¢dxdr = H; : V¢ dxde,
01 0

from which one derives by standard arguments that for almost all # € (—1, 1) holds
forall ¢ € C°(By)

/8tuh(t)-§dx=/ H,(t) : V¢ dx.
B B

This and the definition of F implies for almost all 7, s € (—1, 1)

t
ﬁ/[lgatuh(x,r)-ax)dxdr
By s 1

1 t
W/S N Hy(x,7): V¢(x)dxdr

The properties of the Steklov average imply for 2 — 0

[(F, w, (1) —wy(s)) | =

(Fou) —uen| ¢ [ Hidvar
01
for almost all s, ¢t € (—1, 1). This and (B.4) yield (B.2) in the special case, i.e.

/ |u(x,t)—uQ1|dxdt§cf |Vu| + [H| dx dr. (B.5)
01 01

The general case easily follows from this inequality by means of an appropriate
transformation of coordinates. O
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C. Whitney covering

Lemma C.1 (covering lemma). Let E be a non-empty, open, bounded subset of
R™*1 equipped with the metric dy. Then there exists a family of balls with respect
to the metric dy {qu (X?)}ien such that

@ E = U, 0% (X = U, 0% (X0

(b) 8ry < d(Xf‘,zaE) < l6r? VieN with 0 <rf <1;
(©) r§ >2r} = Q‘:;; X5n Q‘rxlq (Xi) =9,

(d) Q‘f;(X?)ﬂQ‘f;(Xff) =0 Vi, jeN, i#];

(@) #{j € N|Q§.«(X9) N 05« (X{) # ¥} < (120)"** Vi eN.

Proof. For notational simplicity we skip the subscripts and superscripts «. Since
E is bounded there exists a smallest number kg € Z such that the set {X €
E | dy(X,dE) > 27%+4} is non-empty. For that number we define

Dy, :={X € E|do(X,dE) > 27504},
Clearly, there exists a mostly countable set of points {X 1;0} jedi, C Dy, fulfilling

dX, x5 =000 vije Ty £ | 0w X 5 Dy,
J€Tky

We define ~ .
Dy, = | Qpte(X}).

jejko
From the construction it is immediately clear that

Dko C Dk() CE.

Next, for k € Z (k > ko) we define the Dy, {X’]‘. }7. and Dy recursively. Assume
that Dy, {Xﬁ}‘_’]@ and Dy has already been defined for £ = 1, ..., k — 1. Then we set

k—1
Dy = {X €E\ UDZ |d(X, IE) > 2"+4} .
=1

There exists {X];}je T C Dy such that

dXf. x=2% vijeZ i#p). |JoXHoD (€D
Jeh
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Then we set .
Dy = | 0re(Xh).
J €Tk
Obviously,
Dy C Dk C E.

Now, we define
rej o= Pl teN, jeli.

From the construction above it follows that
o0
U Uew&hH=E.
=1jeg °

This proves the first part of (a).
Moreover, it is readily seen that

d(X5,0E) =27 =8ry; VeeN, Vje. (C.2)
Furthermore, as X§ ¢ l~)g_1 for £ € N (¢ > ko) we deduce

d(X$,9E) < 27" =16r,; VjeTi. (C.3)

Hence, the property (b) follows from (C.2) and (C.3).
If r;?‘ > 2r{ then there exists j € Jy and i € J; with k > £+ 2. We claim
that
Qr (XN Qr (X)) =0 (C4)

Indeed, assuming there exists X € Or; (Xﬁ) N O (Xl’.‘), since Xlk ¢ Dyy1, we
have d(X¥, 9E) < 273, Thus,

d(X,0E) <d(X, X +d(XF, 0E) < 27K 4 o768 < o1 4 p=t+3,
On the other hand, we estimate
d(X,0E) > d(X%,0E) —d(X, X}) = 27T — 2741,
However, the latter inequality contradicts to the former by means of

2—E—1 + 2—E+3 < 2—€+4 _ 2—@-‘1-1‘

Whence, (¢).
To prove (d) let £ € N and j € J; be fixed. Assume for some k € N and
i € Ji there exists X € E with

X € 0y (X§) N Qs (X).
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According to (c) this is only possible either fork =€ — 1,k =fork = £ + 1. Let
us begin with the case k = £. By the triangular inequality

re,j rei _
dx, X)) < =L+ =L =27t
XpXid = 5+

which can only be true if i = j due to (C.1). In case k = £+ 1 again using triangular
inequality one finds

rej o resli 3.y
dxt, xty < el el 2y
Xp X)) < = =3

But since Xl“] ¢ 135 we must have d(Xﬁ, XI.HI) > 2% which is a contradic-
tion. By an analogous reasoning one gets a contradiction in the case k = ¢ — 1.
Consequently, k = £ and i = j . This completes the proof of (d).

In order to prove (e) let us denote for some fixed i, k € N

By = { (. 0) € N*|j € Tu, Qar, ;(X5) N Qupy  (X) # fo}.
Due to property (d) we have for all (j, £), (m, g) € Bx,; with (j, £) # (m, g) that
Ore,j (Xf) N Qmg (Xg') = . Forall (j, £) € By,; we estimate using (b)
= 1
8rii < do(X},0E) < do(X}, X) + du(X|, 0E)
< do(X[, X) + do (X", X) + 1670 j < 4rpi + 207 .

Hence, r¢,j < 5ry,;. From this follows that QrL,-(Xf-) - Q3orki(Xf.‘). These two
- ,

properties and r¢ j > % rk,; imply

Lap1(Q30r, (XN = Y Lys1(Qres (X))

. 3
(J,O€By,i

k
> 100 +2 #(Bk,i)£n+1 (Q30r,; (X7))
where we also used the properties of the Lebesgue measure and the metric d,,. This
immediately yields (e).
An appropriate relabeling of the points X lk and the radii ¢ ; proves the lemma.
O
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