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L-series and Hurwitz zeta functions associated
with the universal formal group
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Abstract. The properties of the universal Bernoulli polynomials are illustrated
and a new class of related L-functions is constructed. A generalization of the
Riemann-Hurwitz zeta function is also proposed.
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1. Introduction

The aim of this article is to establish a connection between the theory of formal
groups on one side and a class of generalized Bernoulli polynomials and Dirichlet
series on the other side. Some of the results of this paper were announced in the
communication [26].

We will prove that the correspondence between the Bernoulli polynomials and
the Riemann zeta function can be extended to a larger class of polynomials, by
introducing the universal Bernoulli polynomials and the associated Dirichlet series.
Also, in the same spirit, generalized Hurwitz zeta functions are defined.

Let R be a commutative ring with identity, and R {x1, x2, . . .} be the ring of
formal power series in x1, x2, . . . with coefficients in R. We recall that a commuta-
tive one-dimensional formal group law over R is a formal power series � (x, y) ∈
R {x, y} such that

1) � (x, 0) = � (0, x) = x

2) � (� (x, y) , z) = � (x, � (y, z)) .

When � (x, y) = � (y, x), the formal group law is said to be commutative. The
existence of an inverse formal series ϕ (x) ∈ R {x} such that � (x, ϕ (x)) = 0
follows from the previous definition.

As is well known, formal groups are relevant in many branches of mathematics,
especially in the theory of elliptic curves [25], in algebraic topology [5, 21], in
analytic number theory [15] and in combinatorics [3].
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Bernoulli polynomials are useful in many contexts, as in the theory of distribu-
tions in p-adic analysis, in the theory of modular forms, in the study of polynomial
expansions of analytic functions, in interpolation theory, etc. Consequently, they
have been generalized in many ways. Leopold and Iwasawa proposed a generaliza-
tion, motivated by the theory of p -adic L-functions [18]. Several new applications
in mathematical physics, in connection with the theory of the Korteweg-de Vries
equation [13] and in the study of vertex algebras [11], also appeared recently.

The Bernoulli numbers are relevant in number theory, e.g. to compute ratio-
nal values of the Riemann zeta function [8], in the theory of cyclotomic fields and,
since Kummer’s work, in connection with Fermat’s last Theorem [17]. Standard
applications in algebraic topology are found in the computation of Todd character-
istic classes and in the Hirzebruch signature theorem. In the last years the theory of
Bernoulli number identities has been connected with Quantum Field Theory [12]
and has been useful in the computation of Gromov-Witten invariants [14].

In this paper, we will study a generalization of the Bernoulli polynomials,
that we call the Universal Bernoulli polynomials (see Definition 2.1). They are
indeed related to the Lazard universal formal group. The corresponding numbers
by construction coincide with the universal Bernoulli numbers, introduced in [9].
They turn out to have an important role in complex cobordism theory (see e.g. [3],
and [23]), where the coefficients cn are identified with the cobordism classes of
CPn . They also obey generalizations of the celebrated Kummer and Clausen-von
Staudt congruences [1]. In [19], they have been used to generate classes of hyper-
functions via suitable generalizations of the Lipschitz summation formula.

As noticed in [5], “all fundamental facts of the theory of unitary cobordisms,
both modern and classical, can be expressed by means of Lazard’s formal group”.
This observation motivates the present construction, which associates polynomial
structures of Appell type, i.e. the universal Bernoulli polynomials to the Lazard
formal group.

The main result of this work is the following: a new class of L-functions will
be attached to the universal Bernoulli numbers, exactly in the same was as the
Riemann zeta function is connected to the standard ones. A family of Riemann-
Hurwitz series is also defined, in such a way that it corresponds to the generalized
Bernoulli polynomials we propose is the same as the Hurwitz zeta function is related
to the Bernoulli polynomials. We also clarify the relation between the formal group
structure used in this paper and the finite operator calculus, as has been formulated
by G. C. Rota [24].

The future research plans include the study of higher-order polynomial struc-
tures (case a �= 1) and p-adic extensions of the theory of L- series and Hurwitz zeta
functions analyzed in this paper. Also, the case of multidimensional polynomials
will be considered.
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2. Universal Bernoulli polynomials and numbers

2.1. First algebraic properties

We recall the definition of universal Bernoulli polynomials, introduced in [26].

Definition 2.1. Let us consider the formal group logarithm, over the polynomial
ring Q[c1, c2, . . .]

F (s) = s + c1
s2

2
+ c2

s3

3
+ . . . (2.1)

Let G (t) be the associated formal group exponential:

G (t) = t − c1
t2

2
+

(
3c2

1 − 2c2

) t3

6
+ . . . (2.2)

so that F (G (t)) = t .
The universal higher-order Bernoulli polynomialsBG

k,a(x, c1, . . . ,cn)≡ BG
k,a(x)

are defined by

(
t

G (t)

)a

ext =
∑
k≥0

BG
k,a (x)

tk

k! , x, a ∈ R. (2.3)

When a = 1, ci = (−1)i , then F (s) = log (1 + s) , G (t) = et − 1, and the
universal Bernoulli polynomials and numbers reduce to the standard ones. For sake
of simplicity, we will put BG

k,1 (x) ≡ BG
k (x) and BG

k (0) ≡ BG
k .

The numbers BG
k,1 (0) ∈ Q [c1, c2, . . .] coincide with Clarke’s universal Ber-

noulli numbers [9]. The power series � (s1, s2) = G (F (s1) + F (s2)) defines
the Lazard universal formal group [15]. It is defined over the Lazard ring L ,
i.e. the subring of Q [c1, c2, . . .] generated by the coefficients of the power series
G (F (s1) + F (s2)). In cobordism theory, the coefficients cn are identified with the
cobordism classes of CPn

The universal Bernoulli polynomials (2.3) possess many remarkable proper-
ties. By construction, for any choice of the sequence {cn}n∈N they represent a class
of Appell polynomials. In the paper ([26]), several examples of Bernoulli-type poly-
nomials of first and second kind, as well as related Euler polynomial sequences are
studied.

We easily deduce the following results. The Appell property is expressed by
the identity:

BG
n,a (x + y) =

n∑
k=0

(
n

k

)
BG

k,a (x) yn−k . (2.4)

In particular, for x = 0 we obtain a useful characterization of BG
n,a (x).
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Lemma 2.2. The higher-order universal Bernoulli polynomials are expressed in
terms of the higher-order universal Bernoulli numbers by the relation

BG
n,a (x) =

n∑
k=0

(
n

k

)
BG

k,a (0) xn−k . (2.5)

From relation (2.4), we get

BG
n,a+b (x + y) =

n∑
k=0

(
n

k

)
BG

k,a (x) BG
n−k,b (y) . (2.6)

and for (a + b) = 0

(x + y)n =
n∑

k=0

(
n

k

)
BG

k,a (x) BG
n−k,−a (y) . (2.7)

In [27], it is shown that interesting realizations of the class of polynomials (2.3)
can also be constructed using the finite operator theory, introduced by G. C. Rota
[24]. Indeed, the formal exponential G (t) is chosen to be the representative of a
difference delta operator, as will be explained in Section 3.

2.2. Periodic structures

In several applications, it is useful to consider periodic polynomial structures. Here
we consider a periodic version of our polynomials.
Definition 2.3. The periodic (higher-order) generalized Bernoulli polynomials re-
lated to the formal group G are defined by

BG
n,a (x) = BG

n,a (x − [x]) , (2.8)

where [x] is the integer part of x.
Clearly, these polynomials coincide with those in Definition 2.1 in the funda-

mental domain [0, 1[. It is easy to observe that the functions BG
1,a (x) admit dis-

continuities at the integral values of x . Using the Appell property we immediately
obtain, for k ≤ n − 2,

BG
n,a

(k)
(x) = n (n − 1) . . . (n − k + 1) BG

n−k,a (x) .

The derivative of order n − 1 has a jump for every integral value of x . Finally, by
deriving again we get

dn

dxn
BG

n,a (x) = n!
(

1 −
∑
k∈Z

δ (x − k)

)
,

where δ denotes the Dirac delta distribution. In [19, 20], these periodic structures
have been connected with the theory of hyperfunctions in one variable. Indeed, the
coefficients of the Fourier expansion of these polynomials can be used to define
generalized polylogarithms and Lipschitz-type summation formulae.



FORMAL GROUPS AND ZETA FUNCTIONS 137

2.3. Congruences

The values BG
n,1 (0) := B̂n correspond to the well-known universal Bernoulli num-

bers. Here we mention only two of their most relevant properties.

(i) The universal Von Staudt’s congruence [9].
If n is even,

B̂n ≡ −
∑

p−1|n
p prime

cn/(p−1)

p−1

p
mod Z [c1, c2, . . .] ; (2.9)

If n is odd and greater than 1,

B̂n ≡ cn
1 + cn−3

1 c3

2
mod Z [c1, c2, . . .] . (2.10)

When cn = (−1)n , the celebrated Clausen-Von Staudt congruence for Bernoul-
li numbers is obtained.

(ii) The universal Kummer congruences [1]. The numerators of the classical Ber-
noulli numbers play a special role, due to the Kummer congruences and to the
notion of regular prime numbers, introduced in connection with the Last Fermat
Theorem (see, for instance, [17]). The relevance of Kummer’s congruences in
algebraic geometry has been enlightened in [4]. More general versions of these
congruences for the classical Bernoulli numbers are known in the literature
[28]. As shown by Adelberg, the numbers B̂n satisfy a universal congruence.
Suppose that n �= 0, 1 (mod p − 1). Then

B̂n+p−1

n + p − 1
≡ B̂n

n
cp−1 mod pZp [c1, c2, . . .] . (2.11)

3. Umbral calculus and formal groups

There is a close connection between formal group exponentials and the finite oper-
ator theory. We recall some basic definitions.

Definition 3.1. The shift operator, denoted by T , is the operator whose action on a
function is T f (x) = f (x + σ), with σ ∈ R. An operator S commuting with T is
said to be shift-invariant.

Definition 3.2. A delta operator Q is a shift-invariant operator such that Qx =
const �= 0.
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As has been proved in [24], there is an isomorphism between the ring of formal
power series in a variable t and the ring of shift-invariant operators, carrying

f (t) =
∞∑

k=0

aktk

k! →
∞∑

k=0

ak Qk

k! . (3.1)

Every delta operator has a unique sequence of associated basic polynomials, i.e.
polynomials satisfying the following conditions:

1) p0 (x) = 1;
2) pn (0) = 0 for all n > 0;
3) pn (x) = npn−1 (x) .

Any shift invariant operator S can also be expanded into a formal power series in
terms of a delta operator Q. By using the isomorphism (3.1), a formal power series
s (t) is defined, which is called the indicator of S.

The main point of the correspondence between the two theories is that a shift
invariant operator is a delta operator if and only if it corresponds, under the isomor-
phism (3.1), to a formal power series g (t) such that g (0) = 0 and g′ (0) �= 0. This
series admits a unique compositional inverse.

In this paper we are interested in realizations of delta operators in terms of
finite difference operators. Therefore G (t) is chosen to be a Laurent polynomial in
et (that we choose to have rational coefficients),

G(t) =
m∑

k=l

akekt , l, m ∈ Z, l < m

obeying two more constraints:

m∑
k=l

ak = 0,

q+r∑
k=l

kak = 1. (3.2)

with am �= 0, al �= 0.

4. Dirichlet series and formal groups

In this section, we will associate new L-series with the polynomials (2.3). The Rie-
mann zeta function is the most elementary example of the construction we propose.
Let � (s) = ∫ ∞

0 e−t t s−1dt be the Euler �-function. As is well known, if Re s > 1,
ζ (s) = 1

�(s)

∫ ∞
0

1
et −1 t s−1dt . More generally, by imposing a suitable analytic con-

straint on the class of formal groups, we can attach to them an L-function. Precisely
the following result holds.
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Theorem 4.1. Let G(t) be a formal group exponential of the form (2.2), such that
1/G(t) is a C∞ function over R+, rapidly decreasing at infinity.

(i) The function

L (G, s) = 1

� (s)

∫ ∞

0

1

G (t)
t s−1dt, (4.1)

defined for Re s > 1 admits a holomorphic continuation to the whole C and,
for every n ∈ N, we have

L (G, −n) = (−1)n BG
n+1

n + 1
. (4.2)

(ii) Assume that G(t) is also of the form (3.2). For Re s > 1 the function L (G, s)
has a representation in terms of a Dirichlet series

LG =
∞∑

n=1

an

ns
, (4.3)

where the coefficients an are obtained as the coefficients of the formal expan-
sion

1

G (t)
=

∞∑
n=1

ane−nt . (4.4)

Assuming that G(t) ≥ et − 1, the series for LG is absolutely and uniformly
convergent for Re s > 1, and∣∣∣∣∣ ∞∑

n=1

an

ns

∣∣∣∣∣ ≤
∞∑

n=1

1

nRe s
. (4.5)

Remark 4.2. The condition (3.2) is not necessary for the existence of the series
(4.3), but it is relevant for the actual computation of the numbers an .

Proof. Point (i) is in fact an adaptation of a standard result. For sake of clarity, here
we sketch a proof, closely following an argument of P. Colmez, in [7], Chapter II.

Let g (t) = 1
G(t) be a C∞ function over R+, rapidly decreasing at infinity, and

γ (t) be a C∞ function over R+, taking the value 1 on [0,1] and 0 on [2,+∞[. It
follows that g (t) = γ g + (1 − γ ) g and L (g, s) = L (γ g, s) + L ((1 − γ ) g, s).
The integral ∫ +∞

0
g (t) t s dt

t

defines a holomorphic function on C , since (1 − γ ) g vanishes in a neighborhood
of 0 and rapidly decreases at infinity. We can always assume that g has compact
support, up to the replacement g →(1 − γ )g since L ((1 − γ ) g, −n) = 0 ∀n ∈ N .
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An integration by parts show that the functional relation L(G, s) =−L(G ′, s +1)

holds for Re s > 1, allowing a holomorphic continuation of g. Now, we also have

L (g, −n) = (−1)n+1 L
(

g(n+1), 1
)

= (−1)n+1 g(n) (0) .

(ii) Observe that∣∣∣∣∣ ∞∑
n=1

an

ns

∣∣∣∣∣ =
∣∣∣∣ 1

� (s)

∫ ∞

0

1

G (t)
t s−1dt

∣∣∣∣ ≤
∣∣∣∣ 1

� (s)

∣∣∣∣ ∣∣∣∣∫ ∞

0

1

G (t)
t s−1dt

∣∣∣∣
≤

∣∣∣∣ 1

� (s)

∣∣∣∣ ∣∣∣∣∫ ∞

0

1

et − 1
t s−1dt

∣∣∣∣
=

∣∣∣∣ 1

� (s)

∣∣∣∣
∣∣∣∣∣ ∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑

n=1

1

nRes
.

A simple consequence of the previous theorem is that the coefficients of the series
LG satisfy the condition an = O (nc) for some c > 0.

Remark 4.3. A construction of Dirichlet series based on formal group laws is
known in the literature [15]. In ( [16]), zeta functions of group varieties are re-
lated to formal group laws. One of the advantages of the construction proposed
here is that the associated L-functions are related to the universal Bernoulli num-
bers, whose algebraic and combinatorial properties are particularly rich.

5. Generalized Hurwitz zeta functions

The previous ideas can be used to generalize the Hurwitz zeta function and its con-
nection with the classical Bernoulli polynomials. The Hurwitz zeta function is de-
fined by the series

ζ (s, a) =
∞∑

n=0

(n + a)−s , (5.1)

for a > 0. As is well known, this series converges absolutely for Re s > 1 and it
extends to a meromorphic function in C represented as a Mellin transform

ζ (s, a) = 1

� (s)

∫ ∞

0

e−ax

1 − e−x
xs−1dx = 1

� (s)

∫ ∞

0

ex(1−a)

ex − 1
xs−1dx

with the obvious properties
ζ (s) = ζ (s, 1)
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and
ζ (s, a + 1) = ζ (s, a) − a−s .

The Hurwitz zeta function takes the special values

ζ (−k, a) = − Bk+1 (a)

k + 1
, (5.2)

where Bk (x) are the classical Bernoulli polynomials. It seems natural to propose
the following generalization of ζ (s, a).

Definition 5.1. Let G(t) be a formal group exponential, such that 1/G(t) is a
C∞ function over R+, rapidly decreasing at infinity. The generalized Hurwitz zeta
function associated with G is the function ζ G (G, s, a), defined for Re s > 1 and
a > 0 by

ζ G (s, a) = 1

� (s)

∫ ∞

0

e−ax

G (x)
xs−1dx . (5.3)

Assuming that G(t) has the form (3.2), we can easily give to ζ G (s, a) a formal
series representation. Indeed

ζ G (s, a) = 1

� (s)

∫ ∞

0

∞∑
n=0

ane−nx e−ax xs−1dx

= 1

� (s)

∞∑
n=0

an

∫ ∞

0
e−nx e−ax xs−1dx

=
∞∑

n=0

an

(n + a)s .

Corollary 5.2. The following property holds:

ζ G (−k, a) = − BG
k+1 (a)

k + 1
, (5.4)

where BG
k (x) is the k-th Bernoulli-type polynomial associated to the considered

formal group.

Introduce the notation

L (G, a) =
∞∑

n=0

an

(n + a)s .

Again, if we restrict to the case (3.2), and assuming G(x) ≥ ex − 1, the series
L (G, a) is absolutely convergent for Re s > 1, and∣∣∣∣∣ ∞∑

n=1

an

(n + a)s

∣∣∣∣∣ ≤
∞∑

n=1

1

(n + a)Re s
. (5.5)



142 PIERGIULIO TEMPESTA

Observe that
∂

∂a
ζ G (s, a) = −sζ G (s + 1, a)

and

ζ G (s, x + y) =
∞∑

k=0

yk

k!
∂k

∂xk
ζ G (s, x) =

∞∑
k=0

(
s + k − 1

s − 1

) (
−yk

)
ζ G (s + k, x) .

Let us consider the Dirichlet L-series of the form

L (G, θ, s) =
∞∑

n=1

θ (n) an

ns
, (5.6)

where {θ (n)} is a sequence of numbers, periodic of period f :

θ (n + f ) = θ (n) , ∀n ∈ Z.

The structures (5.6) can be easily related to the generalized Hurwitz function:

∞∑
n=1

θ (n) an

ns
=

f∑
k=1

∞∑
m=0

θ (k + m f ) (k + m f )−s ak+m f

=
f∑

k=1

θ (k)

∞∑
m=0

(k + m f )−s ak+m f

=
f∑

k=1

θ (k) f −s
∞∑

m=0

ak+m f

(
m + k

f

)−s

,

so that we infer

L (G, θ, s) = f −s
f∑

k=1

θ (k) ζ G
(

s,
k

f

)
. (5.7)

Consequently, we get

L (G, θ, −m) = − f m

m + 1

f∑
k=1

θ (k) BG
m+1

(
a

f

)
. (5.8)

More relevant is the case when we deal with Dirichlet characters. We have the
following definition.

Definition 5.3. Let χ be a nontrivial Dirichlet character of conductor f . The uni-
versal Bernoulli χ -numbers BG

n,χ associated with the formal group exponential G
are defined by

BG
n,χ := f n−1

f∑
a=1

χ (a) BG
n

(
a

f

)
. (5.9)
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Taking into account the summation formula for the universal Bernoulli polynomi-
als, i.e.

BG
n (x) =

n∑
k=0

(
n

k

)
BG

n−k xk,

valid since they represent an Appell sequence for any choice of G, we obtain an-
other equivalent representation for the numbers BG

n,χ :

BG
n,χ =

f∑
a=1

χ (a)

n∑
k=0

(
n
k

)
BG

k an−k f k−1. (5.10)

The connection between our generalized Hurwitz functions and the corresponding
zeta functions is straightforward:

L (G, χ, s) = 1

f s

f∑
n=1

χ (n) ζ G
(

s,
n

f

)
. (5.11)
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