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Orbits of real forms in complex flag manifolds
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Abstract. We investigate the CR geometry of the orbits M of a real form G0 of a
complex semisimple Lie group G in a complex flag manifold X = G/Q. We are
mainly concerned with finite type and holomorphic nondegeneracy conditions,
canonical G0-equivariant and Mostow fibrations, and topological properties of
the orbits.
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Introduction

In this paper we study a large class of homogeneous CR manifolds, that come up
as orbits of real forms in complex flag manifolds. These objects, that we call here
parabolic CR manifolds, were first considered by J. A. Wolf (see [28] and also [12]
for a comprehensive introduction to this topic). He studied the action of a real form
G0 of a complex semisimple Lie group G on a flag manifold X of G. He showed
that G0 has finitely many orbits in X , so that the union of the open orbits is dense
in X , and that there is just one that is closed. He systematically investigated their
properties, especially for the open orbits and for the holomorphic arc components
of general orbits, outlining a framework that includes, as special cases, the bounded
symmetric domains.

We aim here to give a contribution to the study of the general G0-orbits in X ,
by considering and utilizing their natural CR structure.

In [2] we began this program by investigating the closed orbits. These can be
combinatorially described in terms of their cross-marked Satake diagrams. This ap-
proach was possible because their isotropy subgroup always contains a maximally
noncompact Cartan subgroup of G0. This is no longer the case for general orbits,
and therefore we need here to deal with general Cartan subgroups. This differ-
ent situation lead us to introduce the notions of adapted Cartan pairs and fit Weyl
chambers, that we utilized to extend to general G0-orbits, and even simplify, the cri-
teria of [2], that characterize finite type (see [7]) and holomorphic nondegeneracy
(see [5]).
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A deeper analysis of the equivariant G0-maps between G0-orbits of various
complex flag manifolds of G yields an accurate description of the smooth structure
of the orbits. We show here (Theorem 7.2) that each orbit M is G0-equivariantly
equivalent to a tower of fibrations over a canonically associated real flag manifold
Me, with fibers that are products of Euclidean complex spaces and open orbits in
complex flag manifolds. This result can be utilized to investigate some topological
properties of M . It turns out, for instance, that the fundamental group π1(M) of
M only depends on Me, and on the conjugacy class of the maximally noncompact
Cartan subgroups of the isotropy of the action of G0 on M (see Theorem 9.1). This
explains why the fundamental group of a closed orbit M is always isomorphic to
that of Me (see e.g. [2, Section 8]).

Let M be any G0-orbit in X . Fix a maximal compact subgroup K0 of G0,
containing a maximal compact subgroup of the isotropy subgroup I0 of M , and let
K ⊂ G be its complexification. The Matsuki-dual (see e.g. [9, 17]) complex K-
orbit M∗ intersects M into a K0-orbit N , that is the basis of a Mostow fibration
of M (see [22, 23]). We have N = M when M is closed, but otherwise N is a
K0-homogeneous CR manifold with the same CR-codimension of M , but with a
smaller CR-dimension. From the structure Theorem 7.2 we obtain that N is K0-
equivariantly a tower of fiber bundles, with basis Me, and fibers that are complex
flag manifolds. Since N is a deformation retract of M , the K0-equivariant fibration
N → Me yields information on the topology of M in terms of that of real and
complex flag manifolds. The latter has been investigated by several Authors, see
e.g. [6, 10, 13, 24, 25].

We stress the fact that our methods and results are effective and permit to ex-
plicitly describe the objects involved and actually compute some of their invariants.

Let us turn now to a more detailed description of the contents of this paper. In
the first section we collect some general definitions and results on CR manifolds M ,
homogeneous for the transitive action of a real Lie group G0 of CR automorphisms,
and on their corresponding CR-algebras. These objects were defined in [21]: they
are pairs (g0, q), where g0 is the real Lie algebra of G0, and q a complex Lie sub-
algebra of its complexification g = gC

0 . Having fixed a point x0 ∈ M , the elements
of q correspond to the left invariant elements of the lift to G0, by the principal
fibering G0 � g → g · x0 ∈ M , of the complex tangent vector fields of type (0, 1)

on M .
The notions of finite type and holomorphic degeneracy of CR geometry trans-

late, in the case of homogeneous CR manifolds, into fundamentality and weak de-
generacy of their CR algebras (see Definition 1.5 and Proposition 1.6). When M is
not of finite type, or is holomorphically degenerate, then it was shown in [21] that
there are nontrivial canonical G0-equivariant CR-fibrations M → M ′, called the
fundamental and the weakly nondegenerate reductions, respectively.

We need to make a remark to fill a gap between the results of [21] and the
statement of Proposition 1.6 of this article. G. Fels (see [11]) pointed out to us
that the notion of holomorphic degeneracy of [5], in the case of homogeneous CR
manifolds, coincides with our notion of weak degeneracy. This equivalence is used
in point (3) of Proposition 1.6.
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In this paper, since we consider orbits of real forms in complex flag manifolds,
we shall mostly restrict to CR algebras (g0, q) that consist of a real form g0 of a
complex semisimple Lie algebra g and of a complex parabolic Lie subalgebra q of
g. These were called parabolic CR algebras in [2, 21].

In Section 2 we collect some facts about complex flag manifolds, for which we
refer to [16, 28]. We describe the Chevalley decomposition of a complex parabolic
subgroup Q of a semisimple complex linear group G (Proposition 2.3), to prepare
for the description of the isotropy subgroup I0 of a G0-orbit M in Section 3. There
we obtain a suitable Chevalley decomposition of I0 (Proposition 3.4) from that of its
Lie algebra i0 (Proposition 3.2). Note that, in general, I0 is not a parabolic subgroup
of G0, while this is true in the standard case, corresponding to the semisimple Levi-
Tanaka algebras (see e.g. [18, 19]). This Chevalley decomposition is fundamental
to understanding the structure of the orbits. Our proof strongly relies on the semial-
gebraic nature of the objects under consideration, and on the properties of complex
parabolic subgroups. In Section 3 we also consider the Cartan decomposition of the
reductive factor of the Chevalley decomposition of I0, from which we derive infor-
mation about the group of connected components of I0, in terms of its maximally
noncompact Cartan subgroups (Theorem 3.6).

The G0-orbits of the complex flag manifold X of G are completely described
by their associated CR algebras (g0, q). Recall that a complex parabolic subalgebra
q of g contains a Borel subalgebra b of g, and hence a Cartan subalgebra h of g.
Then q is conveniently characterized in terms of the root system R defined by h.
In fact, b corresponds to a Weyl chamber C of R, and the parabolic q’s containing
b are in one-to-one correspondence with the subsets � of the basis B of C-positive
simple roots (see Formula (2.8)). Next, we observe that, for every real form g0 of g,
a complex parabolic subalgebra q of g always contains a Cartan subalgebra h0 of g0.
It is convenient to employ the root system R of g defined by the complexification h

of h0, and Weyl chambers C of R yielding a b ⊂ q. They are called fit for (g0, q)

(Definition 2.1). Then the conjugation rules for the set B of simple C-positive roots,
and the datum of the � ⊂ B corresponding to q, encode all relevant information for
the orbit M associated to (g0, q).

In [2] it was natural to restrict to maximally noncompact Cartan subalgebras
h0 of g0 and to fit Weyl chambers C yielding Satake diagrams of g0 (see [4]). Here
the consideration of general orbits leads us first to consider all Cartan subalgebras
h0 of g0, and then, after having fixed h0, to select, among the fit Weyl chambers C ,
those for which B enjoys the best conjugation properties (see Lemma 4.3). These
are called S-fit or V -fit, as they yield conjugation rules for B that are as close as
possible to those of a Satake or a Vogan diagram, respectively (see Definition 4.4).

An important feature of parabolic CR manifolds is the fact that to every g0-
equivariant morphism of parabolic CR algebras (see [21]) always corresponds a
smooth G0-equivariant fibration of the associated G0-orbits. We prove indeed that
the inclusions between the isotropy subgroups of the G0-orbits are equivalent to
those between their corresponding Lie subalgebras (Theorem 5.1). Besides provid-
ing the desired fibrations, this result also allows to consider changes of CR struc-
tures. This amounts to considering the given orbit M simply as a homogeneous
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G0-manifold, and looking for its possible realizations as a real submanifold of a
complex flag manifold of G. In particular, we can inquire about maximal and min-
imal G0-homogeneous parabolic CR structures on M . In fact, one of these, the
weakening of the CR structure (see Definition 5.4) will be one of the main ingredi-
ents in the proof of the structure Theorem 7.2. These G0-equivariant fibrations are
not, in general, CR maps. When they are CR, they are restrictions of G-equivariant
fibrations of flag manifolds, and their fibers F have special features. Indeed, F
consists of finitely many connected components, each being a copy of a Cartesian
product F ′ × F ′′, in which F ′ is the orbit of a real form in a suitable complex flag
manifold Y , and F ′′ a complex nilmanifold (Theorem 5.10).

The S-fit Weyl chambers are especially suited to discuss finite type (see Theo-
rem 6.2), while the V -fit Weyl chambers are the proper setting for weak degeneracy
(see Proposition 6.3 and Theorem 6.4). Thus the results of Section 6 give a com-
binatoric way of constructing, in the special case of the orbits of a real form in a
complex flag manifold, the basis of the fundamental and weakly nondegenerate
reductions of a CR algebra, that where discussed in general in [21, Section 5],
and for the minimal orbits in [2, Sections 9,10,11]. The basis of these reduc-
tions can indeed be obtained by first representing the parabolic q that character-
izes M by a subset � of C-positive simple roots for an S- or V -fit Weyl chamber
C , and then obtaining a new set � ⊂ � by dropping roots of � according to
some fairly easy rules, that are stated in Theorems 6.2, 6.4, respectively. These
� give then the parabolic q′ for which the (g0, q

′) are the basis of the desired
reductions.

The construction of the fibration in the structure Theorem 7.2 is obtained by
alternating weakenings of the CR structures, that produce weak degeneracy, and
the corresponding canonical weakly nondegenerate reductions, that have complex
fibers (see Theorem 6.4). This process ends by yielding a fibering over a real flag
manifold Me. An important feature is that, although the fibering M → Me may
not be CR, at each step the weakly nondegenerate reductions are CR fibration, and
therefore we obtain a better control of the fibers (by Theorem 5.10). Our approach
is a substitute for the use of holomorphic arc components in [28, Theorem 8.15].

If M ′ → M is a G0-equivariant CR fibering, with typical fiber F , the number
of connected components of F is proved to be equal to the quotient of the orders of
the analytic Weyl groups of the reductive and of the semisimple part of the isotropy
I0 of the basis, computed with respect to a maximally noncompact Cartan subgroup
H0 of the reductive part of the isotropy I′0 of the total space M ′ (Theorem 8.4).

The results of Section 7 and Section 8 are used, within Section 9 and the fol-
lowing Section 10, to study various topological properties of the G0-orbits M and of
the basis N of their Mostow fibrations. In particular, we compute the first homotopy
and homology groups of M and N (Theorem 9.1, Corollary 9.4 and Theorem 9.7).
In Section 10 we show that the basis N of the Mostow fibration M → N is a CR
manifold with the same CR codimension of M (Proposition 10.2), and then con-
struct a K0-equivariant map N → Me from N to the real flag manifold Me (the real
core of M of Section 7), as a tower of fibrations, with fibers that are diffeomorphic
to complex flag manifolds (Theorem 10.3). This allows, in Corollary 10.4, to re-



ORBITS OF REAL FORMS IN COMPLEX FLAG MANIFOLDS 73

late the Euler-Poincaré characteristics of X , Me and N (see [3] for related results
concerning the minimal orbits).

In the final section, Section 11, we compare our construction of the real core
Me of M with the space Ma of its algebraic arc components, introduced in [28].
In many cases, e.g. when M is a closed orbit, we have Ma = Me, but it may
happen for some M that Me and Ma are not diffeomorphic. We point out that the
G0-equivariant fibration M → Me has always simply connected fibers, while the
fibers of M → Ma may not be simply connected.

1. Homogeneous CR manifolds and CR algebras

Let M be a smooth manifold. A CR structure on M is the datum of a smooth
complex subbundle T 0,1 M of its complexified tangent bundle T C M , with T 0,1 M ∩
T 0,1 M = 0, that is formally integrable, i.e. satisfies:

[�(M, T 0,1 M), �(M, T 0,1 M)] ⊂ �(M, T 0,1 M). (1.1)

The complex rank n of T 0,1 M is called the CR-dimension, and k = dimR M − 2n
the CR-codimension of M . If n = 0, we say that M is totally real; if k = 0, M is a
complex manifold in view of the Newlander-Nirenberg theorem.

Let M be a real submanifold of a complex manifold X . For x ∈ M set
T 0,1

x M = T 0,1
x X ∩ T C

x M . When the dimension of T 0,1
x M is independent of x ∈ M ,

then T 0,1 M = ⋃
x∈M T 0,1

x M is a formally integrable complex subbundle of T C M ,
defining on M the structure of a CR submanifold of X . If the complex dimension
of X is the sum of the CR dimension and the CR codimension of M , we say that the
inclusion M ↪→ X is generic.

If M and M ′ are CR manifolds, a smooth map f : M ′ → M is CR if
d f C(T 0,1 M ′) ⊂ T 0,1 M . In an obvious way, we define the notions of CR immer-
sion, submersion and diffeomorphism. In particular a smooth bundle π : M ′ → M
for which π is a CR submersion (i.e. π is a CR map and dπC(T 0,1 M ′) = T 0,1 M)
is called a CR bundle or a CR fibration.

Definition 1.1. Let G0 be a Lie group. A G0-homogeneous CR manifold is a G0-
homogeneous smooth manifold endowed with a G0-invariant CR structure.

Fix a point x0 of a G0-homogeneous CR manifold M , let I0 ⊂ G0 be the
isotropy subgroup of x0 and π : G0 → M the corresponding principal I0-bundle.
Denote by Z(G0) the space of smooth sections of the pullback by π of T 0,1 M to G0,
i.e. the set of complex valued vector fields Z in G0 such that dπC(Zg) ∈ T 0,1

π(g)M
for all g ∈ G0. By (1.1), also Z(G0) is formally integrable, i.e. [Z(G0),Z(G0)] ⊂
Z(G0). Moreover, Z(G0) is invariant by left translations in G0. Hence its left
invariant vector fields generate Z(G0) as a left C∞(G0, C)-module.
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Thus, denoting by g the complexification of the Lie algebra g0 of G0, by the
formal integrability condition (1.1), the subspace

q = (dπC)−1(T 0,1
x0

M) ⊂ g = T C
e G0 (1.2)

is a complex subalgebra of g, and is Adg(I0)-invariant. We can summarize these
observations by:

Lemma 1.2. Let i0 be the Lie algebra of the isotropy I0. Then (1.2) establishes a
one-to-one correspondence between the G0-homogeneous CR structures on M =
G0/I0 and the Adg(I0)-invariant complex Lie subalgebras q of g such that q∩g0= i0.

This was our motivation to introduce and discuss CR algebras in [21]. We
rehearse some definitions.

Definition 1.3. A CR algebra is a pair (g0, q), consisting of a real Lie algebra g0
and of a complex Lie subalgebra q of its complexification g, such that the quotient
g0/(q ∩ g0) is a finite dimensional real vector space.

If M is a G0-homogeneous CR manifold and q is defined by (1.2), we say that
the CR algebra (g0, q) is associated to M .

Remark 1.4. The CR-dimension and CR-codimension of M can be computed in
terms of its associated CR algebra (g0, q). We have indeed

C R-dim M = dimCq − dimC(q ∩ q̄), (1.3)

C R-codim M = dimCg − dimC(q + q̄). (1.4)

The CR algebra (g0, q) is said to be totally real when C R-dim M = 0, totally
complex when C R-codim M = 0.

Definition 1.5. A CR algebra (g0, q) is called:

• fundamental if there is no complex Lie subalgebra q′ of g with:

q + q̄ ⊂ q
′ � g; (1.5)

• strictly, or Levi-nondegenerate if

{Z ∈ q | ad(Z)(q̄) ⊂ q + q̄} = q ∩ q̄; (1.6)

• weakly degenerate if there is a complex Lie subalgebra q′ of g with:

q � q
′ ⊂ q + q̄. (1.7)
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We have:

Proposition 1.6. Let M be a G0-homogeneous CR manifold with associated CR
algebra (g0, q). Then:
(1) (g0, q) is fundamental if and only if M is of finite type in the sense of [7].

(2) (g0, q) is strictly nondegenerate if and only if the vector valued Levi form (see
e.g. [20]) on M is nondegenerate. Strict nondegeneracy implies weak nonde-
generacy.

(3) (g0, q) is weakly nondegenerate and fundamental if and only if the group of
germs of CR diffeomorphisms at x0 ∈ M that stabilize x0 is a finite dimensional
Lie group, i.e. M is holomorphically nondegenerate (see e.g. [5, 11]).

(4) (g0, q) is weakly degenerate if and only if there exists a local G0-equivariant
CR fibration M → M ′, with nontrivial complex fibers.

Proof. All the statements, except (3), were proved in [21, Proposition 13.3] and [2,
Proposition 4.1]. Item (3) follows from the observation in [11] that, for homoge-
neous CR manifolds, weak nondegeneracy is equivalent to the finite nondegeneracy
of [11], which is in turn equivalent to the holomorphic nondegeneracy of [5].

2. Complex flag manifolds

In this section we collect some notions on complex flag manifolds.
A complex flag manifold is the quotient X = G/Q of a connected complex

semisimple Lie group G by a parabolic subgroup Q. We recall that Q is parabolic
in G if and only if its Lie algebra q is a parabolic Lie subalgebra of the Lie algebra
g of G. This means that q contains a Borel subalgebra, i.e. a maximal solvable Lie
subalgebra of g. We also note that G is necessarily a linear group, and that Q is
connected, contains the center of G and equals the normalizer of q in G :

Q = {g ∈ G | Ad(g)(q) = q} . (2.1)

The isotropy subgroup of a point x = gQ of X is ad(g)(Q). Since Q is its own
normalizer in G, we can identify x with ad(g)(Q). Moreover, since Q is connected,
ad(g)(Q) is completely determined by its Lie algebra Ad(g)(q). Thus X can be
viewed as the space of parabolic subalgebras of g that are Ad(G)-conjugate to q.
Hence we obtain an isomorphic X by substituting IntC(g) to G.

In particular, a different choice of a connected G′ and of a parabolic Q′, with
Lie algebras g′ and q′ isomorphic to g and q, yields a complex flag manifold X ′ that
is complex-projectively isomorphic to X . Thus a flag manifold X is completely
described by the pair consisting of the Lie algebras g and q.

Fix a Cartan subalgebra h of g, contained in q, and let R = R(g, h) be
the corresponding root system. For each α ∈ R, let gα = {Z ∈ g | [H, Z ] =
α(H)Z , ∀H ∈ h} be the root subspace of α. Denote by hR the real subspace of h
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on which the roots are real valued. The choice of a Weyl chamber C ⊂ hR defines
a partial order ≺ in the dual space h∗

R
of hR. Since q contains h, it is the direct sum

of h and of the root spaces contained in q, i.e.

q = h +
∑
α∈Q

g
α, where Q = {α ∈ R | g

α ⊂ q}. (2.2)

Then the fact that q is parabolic means that one can choose C in such a way that:

α ∈ Q for all α � 0. (2.3)

The set Q is parabolic, i.e. is closed under root addition and Q ∪ (−Q) = R.

Definition 2.1. A Weyl chamber C for which (2.3) holds true is called fit for Q.
We denote by C(R) the set of all Weyl chambers for R and by C(R,Q) the subset
of those that are fit for Q.

Let C ∈ C(R) and B = B(C) be the corresponding system of C-positive
simple roots. All α ∈ R are linear combinations of elements of the basis B :

α =
∑
β∈B

kβ
αβ , kβ

α ∈ Z. (2.4)

Definition 2.2. We define the support supp(α) of α with respect to B as the set of
β ∈ B for which kβ

α 
= 0.

Having fixed C ∈ C(R,Q), we associate to q the subset � of B, consisting of
the simple C-positive roots α for which g−α 
⊂ q.

Then Q and q are completely determined by �. Indeed:

Q = Q� = {α�0} ∪ {α≺0 | supp(α)∩�=∅} = Qn
� ∪ Qr

�, with: (2.5)

Qn = Qn
� = {α ∈ R |α � 0 and supp(α) ∩ � 
= ∅}, (2.6)

Qr = Qr
� = {α ∈ R | supp(α) ∩ � = ∅}, (2.7)

and for the parabolic subalgebra q we have the decomposition:

q = q� = h +
∑

α∈Q�

g
α = q

r ⊕ q
n, where: (2.8)

q
n = q

n
� =

∑
α∈Qn

�

g
α is the nilradical of q and (2.9)

q
r = q

r
� = h +

∑
α∈Qr

�

g
α is a reductive complement of q

n
� in q�. (2.10)

We explicitly note that � is related to Q and C by

� = Qn ∩ B. (2.11)
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All Cartan subalgebras h of g are equivalent, modulo inner automorphisms. After
h, and hence R, have been fixed, all basis of simple roots of R are equivalent for the
transpose of inner automorphisms of g normalizing h. Thus, after picking a Weyl
chamber C , and having fixed in this way a system B of C-positive simple roots,
the correspondence � ↔ q� is one-to-one between subsets � of B and complex
parabolic Lie subalgebras of g, modulo inner automorphisms. In other words, the
subsets � of our fixed B parametrize all different flag manifolds X of a connected
semisimple complex Lie group G with Lie algebra g.

The choice of a Cartan subalgebra h of g contained in q yields a canonical
Chevalley decomposition of the parabolic subgroup Q:

Proposition 2.3. Let Q be a parabolic subgroup of G, corresponding to the com-
plex parabolic Lie subalgebra q of g. With the notation above, we have a Chevalley
decomposition:

Q = Qn � Qr (2.12)

where the unipotent radical Qn is the connected and simply connected Lie subgroup
of G with Lie algebra qn given by (2.9), and Qr is the reductive1 complement of Qn

in Q, whose Lie algebra qr is given by (2.10).
Let c ⊂ h be the center of qr :

c = z(qr ) = {
H ∈ h | ad(H)(qr ) = 0

}
. (2.13)

Then the reductive complement Qr is characterized by:

Qr = ZG (c) = {g ∈ G | Ad(g)(H) = H ∀H ∈ c} . (2.14)

Moreover, Qr is a subgroup of finite index in the normalizer NG(qr ) of qr in G, and
Q ∩ NG(qr ) = Qr .

Proof. A complex parabolic subgroup can also be considered as a real parabolic
subgroup. The Chevalley decomposition (2.12) reduces then to the Langlands de-
composition Q = MAN, with N = Qn and MA = Qr . Thus our statement is a
consequence of [16, Proposition 7.82(a)].

Note that qr is the centralizer of c in g and is its own normalizer. This yields
the inclusion Qr ⊂ NG(qr ). Since NG(qr ) is semi-algebraic, it has finitely many
connected components. Thus its intersection with Qn is discrete and finite, and thus
trivial because Qn is connected, simply connected and unipotent.

1 According to [16] we call reductive a linear Lie group G0, having finitely many connected
components, with a reductive Lie algebra g0, and such that, for the complexification g of g0, we
have Adg(G0) ⊂ IntC(g). While stating here the reductiveness of Qr , we consider the given
group G as a real linear group.
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3. G0-orbits and their isotropy subgroups

We keep the notation of Section 2. Let X = G/Q be a complex flag manifold, and
G0 a connected real form of G. Note that G0 is semi-algebraic, being a connected
component of an algebraic group for the Euclidean topology. We know from [28]
that there are finitely many G0-orbits in X . Fix any such orbit M and a point
x ∈ M . We can assume that Q ⊂ G is the stabilizer of x for the action of G in
X . Let I0 = Q ∩ G0 be the stabilizer of x in G0, so that M � G0/I0, as a smooth
manifold. The Lie algebra g0 of G0 is a real form of g and the Lie algebra of the
isotropy subgroup I0 is the intersection i0 = q∩g0, where q is the Lie algebra of Q.

Since I0 always contains the center of G0, the orbit M actually only depends
on the pair of Lie subalgebras g0 and q of g.

Definition 3.1. A pair (g0, q), consisting of a semisimple real Lie algebra g0 and
of a complex parabolic Lie subalgebra q of its complexification g is a parabolic CR
algebra. The corresponding G0-orbit M in X = G/Q is said to be a parabolic CR
manifold.

We summarize the results of [2, page 491] by stating the following:

Proposition 3.2 (Decomposition of the isotropy subalgebra). Let (g0,q) be a pa-
rabolic CR algebra, and i0 = q ∩ g0 the corresponding isotropy subalgebra. Then
i0 contains a Cartan subalgebra h0 of g0.

If h0 is any Cartan subalgebra of g0 contained in i0, there is a Cartan involu-
tion ϑ : g0 → g0, with ϑ(h0) = h0, yielding a decomposition

i0 = n0 ⊕ l0 = n0 ⊕ s0 ⊕ z0 (3.1)

such that :
(1) n0 is the nilpotent ideal of i0, consisting of the elements Y ∈ i0 for which

adg0(Y ) is nilpotent;
(2) l0 = s0 ⊕ z0 is reductive;
(3) z0 ⊂ h0 is the center of l0 and s0 = [l0, l0] its semisimple ideal;
(4) n0 = [z0, n0] = [z0, i0];
(5) l0 = i0 ∩ ϑ(i0) is a ϑ-invariant Lie subalgebra of g0, and also z0 and s0 are

ϑ-invariant;
(6) s0 and z0 are orthogonal for the Killing form of g0;
(7) the complexifications n of n0 and l of l0 are:

n = q
n ∩ q̄ + q̄

n ∩ q, l = q
r ∩ q̄

r . (3.2)

Definition 3.3. Let (g0, q) be a parabolic CR algebra. A pair (ϑ, h0), consisting of
a Cartan involution ϑ of g0 and of a ϑ-invariant Cartan subalgebra h0 of i0 will be
said to be a Cartan pair adapted to (g0, q).



ORBITS OF REAL FORMS IN COMPLEX FLAG MANIFOLDS 79

We have the following:

Proposition 3.4 (Chevalley decomposition of the isotropy). Keep thenotation in-
troduced above. The isotropy subgroup I0 is the closed real semi-algebraic sub-
group of G0:

I0 = NG0(q) = {g ∈ G0 | Adg(g)(q) = q}. (3.3)

The isotropy subgroup I0 admits a Chevalley decomposition

I0 = L0 � N0 (3.4)

where:
(1) N0 is a unipotent, closed, connected, and simply connected normal subgroup

of I0, with Lie algebra n0;
(2) L0 is a reductive Lie subgroup, with Lie algebra l0, and is the centralizer of z0

in G0:
L0 = ZG0(z0) = {g ∈ G0 | Adg0(g)(H) = H ∀H ∈ z0} . (3.5)

Proof. Formula (3.3) holds because Q is the normalizer of q in G.
Fix a Cartan pair (ϑ, h0) adapted to (g0, q). We consider the complexification

h of h0 and use the notation of (2.5)-(2.10). Let us construct a parabolic Q′ ⊂ Q
whose reductive part Q′r is a complexification of L0. To this aim we set

q
′ = q

n ⊕ (
q

r ∩ q̄
)
.

We claim that q′ is a parabolic Lie subalgebra of g. It contains the Cartan subalgebra
h, because h ⊂ qr ∩ q̄r . Since q′ is clearly a complex Lie subalgebra of q, to show
that q′ is parabolic it suffices to verify that, for each α ∈ R (the root system of g with
respect to h) either gα or g−α is contained in q′. This is obvious if {α,−α}∩Qn 
= ∅.
We need only to consider roots α with ±α ∈ Qr , and then observe that either gα or
g−α is contained in q̄, because q̄ is parabolic and contains h. Moreover, one easily
verifies that

q
′ r = q̄

′ r and q
′ = q

n + (q ∩ q̄) .

Hence, the center c′ of q′ r coincides with the complexification z of z0.
If g ∈ I0, then Adg0(g)(l0) is a reductive complement of n0 in i0. Since all

reductive complements of n0 in i0 are conjugated by an inner automorphism from
Adi0(N0), we can find a gn ∈ N0 such that Adi0(g

−1
n g)(l0) = l0. Consider the

element gr = g−1
n g. We have:

Adg0(gr )(g0) = g0, Adg(gr )(q) = q,

Adg(gr )(q
n) = q

n, Adg(gr )(q̄) = q̄,

because gr ∈ Q ∩ Q̄. Thus Adg(gr )(q
′) = q′. Moreover, Adg(gr )(q

r ) = qr and
Adg(gr )(q̄

r ) = q̄r . Since q′ r = qr ∩ q̄r , we obtain that Adg(gr )(q
′ r

) = q′ r . Hence,
by Proposition 2.3, gr belongs to Q′r ∩ I0, and the statement follows. Note that in
fact we obtain L0 = Q′r ∩G0, so that (3.5) is a consequence of Proposition 2.3.
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Corollary 3.5. We keep the notation and the assumptions of Propositions 3.2 and
3.4. Let (ϑ, h0) be a Cartan pair adapted to (g0, q) and

g0 = k0 ⊕ p0 and G0 = K0 × exp(p0) (3.6)

the Cartan decompositions of g0 and G0, respectively, corresponding to ϑ . Then:
l0 = k00 ⊕ p00, with k00 = k0 ∩ l0, p00 = p0 ∩ l0, (3.7)

L0 = K00 × exp(p00), with K00 = K0 ∩ L0. (3.8)

Let S0 be the analytic Lie subgroup of G0 generated by s0 = [l0, l0]. Then S0 is a
closed Lie subgroup of L0 and has a finite center.

Proof. The fact that the Lie subgroup L0 is reductive in the sense of [16] and the
validity of the decompositions (3.7) and (3.8) are straightforward consequences
of [16, Proposition 7.25], because of the characterization of L0 given in (3.5) of
Proposition 3.4.

The last statement follows because S0 is an analytic subgroup of a linear group
and has a semisimple Lie algebra (see e.g. [16, Proposition 7.9]).

We conclude this section by proving a theorem about the set of connected
components of the isotropy.

Theorem 3.6. Let M be a G0-orbit, with corresponding parabolic CR algebra
(g0, q). Let (ϑ, h0) be an adapted Cartan pair. We keep the notation of Propo-
sitions 3.2, 3.4 and Corollary 3.5.

Then the Cartan subgroup

H0 = ZG0(h0) = {g ∈ G0 | Adg0(g)(H) = H, ∀H ∈ h0} (3.9)

of G0 is contained in L0.
Let h0 be maximally noncompact in i0 = q ∩ g0. Then the intersection t0 =

h0 ∩ s0 is a maximally noncompact Cartan subalgebra of s0. The corresponding
Cartan subgroup T0 of S0 is given by:

T0 = ZS0(t0) = ZS0(h0). (3.10)

Denoting by π0 the group of connected components, we obtain:

π0(I0) � π0(K00) � π0(L0) � π0

(
H0

T0

)
� H0

T0H0
0

, (3.11)

where H0
0 is the connected component of the identity of H0. In particular, π0(I0) is

an Abelian group.
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Proof. From z0 ⊂ h0, we have H0 = ZG0(h0) ⊂ ZG0(z0) = L0.
Assume that h0 is maximally noncompact in i0. We know, see e.g. [16, Propo-

sition 7.90(a)], that H0 intersects all connected components of L0 and hence of I0
and of K00. Take h0 ∈ H0 in the connected component I0

0 of the identity of I0. We
write h0 = k0 exp(X0) with k0 ∈ K00 and X0 ∈ p00. By [16, Lemma 7.22], both k0
and exp(X0) centralize h0, and hence belong to H0. In particular, exp(X0) belongs
to the connected component H0

0 of H0. We note now that k0 belongs to K0 ∩ I0
0,

that is the connected component K0
00 of the identity of K00. Since the exponential

exp : k00 → K0
00 is surjective, k0 = exp(Y ) for some Y ∈ k00. Since z0 is ϑ-

invariant, the orthogonal of k00 ∩ z0 in k00 for the Killing form of g0 is contained in
the orthogonal s0 of z0 in l0, i.e. k00 ∩ z⊥0 ⊂ s0, so that we have the decomposition:

k00 = (k00 ∩ s0) ⊕ (k00 ∩ z0) .

Let Y = S + Z , with S ∈ k00 ∩ s0 and Z ∈ k00 ∩ z0. Then k0 = exp(S) exp(Z).
Since exp(Z) ∈ H0

0, we obtain that exp(S) ∈ S0 ∩ H0 = T0 and hence:

h0 = exp(S) (exp(Z) exp(X0)) ,

with exp(S) ∈ T0, and (exp(Z) exp(X0)) ∈ H0
0.

Finally, we note that π0(I0) is Abelian, being a quotient of the Abelian group
H0. The proof is complete.

4. Adapted Weyl chambers

We keep the notation of Section 3. Let (ϑ, h0) be a Cartan pair adapted to the
parabolic CR algebra (g0, q), and g0 = k0 ⊕ p0 the Cartan decomposition corre-
sponding to ϑ . We still denote by ϑ its C-linear extension to g and by σ and τ the
conjugations of g with respect to its real form g0 and its compact form u = k0⊕ip0,
respectively. The C-linear map ϑ and the anti-C-linear maps σ and τ pairwise com-
mute and:

τ = ϑ ◦ σ = σ ◦ ϑ, σ = ϑ ◦ τ = τ ◦ ϑ, ϑ = σ ◦ τ = τ ◦ σ. (4.1)

Let R be the root system of g with respect to h = hC

0 . Set

h
+
0 = h0 ∩ k0, h

−
0 = h0 ∩ p0, hR = h

−
0 ⊕ ih+

0 . (4.2)

The root system R is a subset of the dual h∗
R

of hR. The subspace hR of g is ϑ ,
σ and τ -invariant. Hence the corresponding involutions of h∗

R
define involutions of

R, that are given by:

σ ∗(α) = ᾱ , τ ∗(α) = −α , ϑ∗(α) = −ᾱ. (4.3)
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Definition 4.1. We denote by Rre the set of real roots in R, i.e. those for which
ᾱ = α, by Rim the set of imaginary roots in R, i.e. those for which ᾱ = −α, and
by Rcpx the set of complex roots in R, i.e. those for which ᾱ 
= ±α.

Lemma 4.2. Let (g0, q) be a parabolic CR algebra and (ϑ, h0) a Cartan pair
adapted to (g0, q). Then the reductive factor qr in the decomposition (2.8) with
respect to the Cartan subalgebra h = C ⊗R h0 is

q
r = q ∩ τ(q). (4.4)

Proof. Indeed, if R is the root system of g corresponding to the Cartan subalgebra
h, then τ transforms the eigenspace gα of α ∈ R into g−α .

We have the following:

Lemma 4.3. Let (g0, q) be a parabolic CR algebra and (ϑ, h0) a Cartan pair
adapted to (g0, q). Then:
(1) There exists a fit Weyl chamber C ′ ∈ C(R,Q) such that, if ≺ is the partial

order in h∗
R

defined by C ′, B′ the basis of C ′-positive simple roots, and �′ =
Qn ∩ B′, the two following equivalent conditions are satisfied:

if α ∈ Rcpx, α � 0 and ᾱ ≺ 0, then α and −ᾱ both belong to Qn, (4.5)

ᾱ � 0 for all α ∈ B′ \ (
�′ ∪ Rim

)
. (4.6)

(2) There exists a fit Weyl chamber C ′′ ∈ C(R,Q) such that, if ≺ is the partial
order in h∗

R
defined by C ′′, B′′ the basis of C ′′-positive simple roots, and �′′ =

Qn ∩ B′′, the two following equivalent conditions are satisfied:
if α ∈ Rcpx, α � 0 and ᾱ � 0, then α and ᾱ both belong to Qn, (4.7)

ᾱ ≺ 0 for all α ∈ B′′ \ (
�′′ ∪ Rre

)
. (4.8)

Proof. For C ∈ C(R), we denote by ν(C) the number of C-positive roots α for
which also ᾱ is C-positive. Choose C ′ ∈ C(R,Q) in such a way that:

ν(C ′) = max
C∈C(R,Q)

ν(C). (4.9)

If there was a complex C ′-positive root α ∈ B′ \ �′ with a C ′-negative ᾱ, the
symmetry sα would transform C ′ into a C∗ that still belongs to C(R,Q). Since
the set R+(C∗) of C∗-positive roots is

(
R+(C ′) \ {α}) ∪ {−α}, we should have

ν(C∗) = ν(C ′) + 1 and hence a contradiction. This shows that (4.6) is valid for C ′.
Next we observe that obviously (4.5) implies (4.6). Vice versa, assume that

(4.6) is true and let α = ∑
β∈B′ kβ

αβ be a complex C ′-positive root with a C ′-
negative ᾱ. Then β̄ should be C ′-negative for some complex β in supp(α), and
hence supp(α) ∩ �′ 
= ∅ by (4.6), implying that α ∈ Qn . The same argument,
applied to the complex C ′-positive root (−ᾱ), shows then that also (−ᾱ) ∈ Qn .

Similarly, by taking a C ′′ ∈ C(R,Q) that minimizes ν(C) in C(R,Q) we
obtain a fit Weyl chamber that satisfies the conditions (4.7) and (4.8).
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Definition 4.4. Let (ϑ, h0) be a Cartan pair adapted to a parabolic CR algebra
(g0, q), R the root system of g with respect to the complexification h of h0, Q
the parabolic set of q in R. A fit Weyl chamber C for Q is:

S-fit for (g0, q) if C satisfies the equivalent conditions (4.5), (4.6);
V -fit for (g0, q) if C satisfies the equivalent conditions (4.7), (4.8).

5. G0-equivariant fibrations

In this section we shall discuss G0-equivariant fibrations of G0-orbits. We begin by
proving that their structures of G0-homogeneous space is completely determined
by the Lie algebras of their isotropy subgroups.

Theorem 5.1. Let M, M ′ be G0-orbits, corresponding to CR algebras (g0, q),
(g0, q

′), where q, q′ are two complex parabolic subalgebras of g. Let i0 = q ∩ g0
and i′0 = q′ ∩ g0 be the Lie subalgebras of the isotropy subgroups I0 and I′0 of M
and M ′, respectively. Then:

i
′
0 ⊂ i0 =⇒ I′0 ⊂ I0, (5.1)

and therefore, if i′0 ⊂ i0, there is a canonical G0-equivariant fibration:

M ′ φ−−−−→ M. (5.2)

Assume that i′0 ⊂ i0. We have:
(1) If i′0 contains a Cartan subalgebra h0 that is maximally noncompact as a Car-

tan subalgebra of i0, then the fiber F of (5.2) is connected.
(2) The projection φ is a CR map if and only if q′ ⊂ q.
(3) The projection φ is a CR submersion, and hence (5.2) is a CR fibration, if and

only if q = q′ + (q ∩ q̄).

Proof. Assume that i′0 ⊂ i0. To prove that I′0 ⊂ I0, it suffices to prove that each
connected component of I′0 intersects I0.

Fix a Cartan pair (ϑ, h0) adapted to both (g0, q
′), and (g0, q). This can be

obtained by first taking the Cartan involution ϑ associated to a maximal compact
subalgebra k0 of g0, with k′00 = k0 ∩ i′0 and k00 = k0 ∩ i0 maximal compact in i′0 and
i0, respectively, and then choosing any ϑ-invariant Cartan subalgebra h0 of i′0.

Consider the centers z′0 of l′0 = i′0 ∩ ϑ(i′0) and z0 of l0 = i0 ∩ ϑ(i0). Since
z0 ⊂ l′0, we have z′0 ⊃ z0. Thus, by (3.5), L′

0 = ZG0(z
′
0) ⊂ ZG0(z0) = L0.

By (3.4), L′
0 is a deformation retract of I′0. Then each connected component of I′0

intersects L′
0 and thus also I0. This proves (5.1).

(1) Assume that h0 is a Cartan subalgebra of i′0 that is maximally noncompact
both in i′0 and in i0, and consider the corresponding Cartan subgroup H0 = ZG0(h0).
By [16, Proposition 7.90], each connected component of L0 and of L′

0, and, because
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of (3.4), of I′0 and of I0, intersects H0. Being H0 ⊂ L′
0 ⊂ L0, this shows that each

connected component of I0 contains points of I′0, and hence fore I0/I′0 is connected.
(2) Let I′0 and I0 be the isotropy subgroups of M ′ and M at the points x ′

0 and
x0 = φ(x ′

0), respectively. Denote by dπ ′ : g → T C

x ′
0
M ′ and by dπ : g → T C

x0
M the

complexification of the differential at the identity of the action of G0 on M ′ and M ,
with base points x ′

0 and x0. By (1.2) q′ = dπ ′−1
(T 0,1

x ′
0

M ′) and q = dπ−1(T 0,1
x0 M).

Let dφC

x ′
0

be the complexification of the differential of φ at x ′
0. When φ is a CR map,

we have:

dπ(q′) = dφC

x ′
0
(dπ ′(q′)) = dφC

x ′
0
(T 0,1

x ′
0

M ′) ⊂ T 0,1
x0

M = dπ(q) .

Since q = (dπ)−1(dπ(q)), this implies that q′ ⊂ q. Vice versa, when q′ ⊂ q, the
map φ : M ′ → M is CR, being the restriction of the G-equivariant holomorphic
projection X ′ = G/Q′ → G/Q = X .

Finally, (3) is a consequence of [21, Lemma 4.5].

Remark 5.2. By Theorem 5.1, orbits M and M ′, corresponding to parabolic CR al-
gebras (g0, q) and (g0, q

′) with q′ ∩ q̄′ = q∩ q̄, are G0-equivariantly diffeomorphic.
Thus, having fixed the real subalgebra i0, we can regard the complex parabolic q’s
with q ∩ g0 = i0 as defining different G0-invariant CR structures on a same G0-
homogeneous smooth manifold M , each corresponding to a different CR-generic
embedding of M into a complex flag manifold.

In the next theorem we construct a somehow minimal CR structure on a G0-
orbit M . Note that the subalgebra qw of the theorem below is equal to the q′ used
in the proof of Proposition 3.4.

Theorem 5.3. Let (g0, q) be a parabolic CR algebra. Then:
qw = q

n + q ∩ q̄ (5.3)

is a complex parabolic subalgebra of g, contained in q. It is the minimal complex
parabolic subalgebra of g with the properties that:

qw ∩ q̄w = q ∩ q̄ and qw ⊂ q. (5.4)

Any Cartan pair (ϑ, h0) adapted to (g0, q) is also adapted to (g0, qw). Fix a Cartan
pair (ϑ, h0) adapted to (g0, q) and hence also to (g0, qw). Let τ be the conjugation
with respect to the ϑ-invariant compact form of g (see (3.1)), and set

q
r = q ∩ τ(q), q

r
w = qw ∩ τ(qw). (5.5)

Then we have:
qw = q

n + q
r ∩ q̄, (5.6)

q
n
w = q

n + q
r ∩ q̄

n, (5.7)

q
r
w = q̄

r
w = q

r
w ∩ q̄

r
w = q

r ∩ q̄
r . (5.8)
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Let Mw be the G0-orbit corresponding to (g0, qw). Then the canonical G0-equiv-
ariant fibration Mw → M is a CR map and a smooth diffeomorphism.

Proof. Let (ϑ, h0) be any Cartan pair adapted to (g, q). Let R be the root system of
g, with respect to the complexification h of h0. We fix an A ∈ hR that defines the
parabolic set Q of q, i.e. such that (cf. e.g. [8, VIII Section 4]: A is any element of
the interior of the facet associated to q and h):

Q = {α ∈ R |α(A) ≥ 0}.
If ε > 0 is so small that α(A) > ε|ᾱ(A)| for all α ∈ Qn , then qw is the complex
parabolic Lie subalgebra of g that corresponds to the parabolic set:

Qw = {α ∈ R |α(A + ε Ā) ≥ 0}.
This observation easily yields (5.4), (5.6), (5.7), (5.8). The last statement follows
from (5.4), Theorem 5.1, and Remark 5.2. The fact that qw is minimal with the
properties of (5.4) follows from (5.8): in fact any parabolic subalgebra containing
q ∩ q̄ must contain the reductive subalgebra qr ∩ q̄r .

Definition 5.4. The parabolic CR algebra (g0, qw), and the corresponding G0-orbit
Mw, are called the CR-weakening of (g0, q), and of M , respectively.

Remark 5.5. In [28, Section 9.1] the orbits M corresponding to parabolic CR al-
gebras (g0, q) with qr = q̄r are called polarized. Thus the CR weakening of M is
polarized, and, vice versa, if M is polarized, M coincides with its CR weakening
Mw.

We have:

Lemma 5.6. Let (g0, q) be a polarized parabolic CR algebra, i.e. assume that q

contains a maximal reductive subalgebra qr with qr = q̄r . Then (g0, q) is either
totally real, or weakly degenerate.

Proof. Let (ϑ, h0) be a Cartan pair adapted to (g0, q) and R the root system of
g with respect to the complexification h of h0. We fix an S-fit Weyl chamber for
(g0, q). By the assumption, the parabolic set Q of q has the property that Qr = Q̄r .
This is equivalent to the fact that

supp(ᾱ) ∩ � 
= ∅ ∀α ∈ Qn,

where � is the set of C-positive simple roots in Q. If ᾱ � 0 for all α ∈ �, then
Q̄n = Qn , and q is totally real. Assume that there is α ∈ � with ᾱ ≺ 0 and consider
the parabolic q′ = q� , with � = � \ {α}. Then

Q� ⊃ Q and Q� \ Q = {β ∈ R | β ≺ 0, supp(β) ∩ � = {α}}.
If β ∈ (Q� \ Q), then β̄ � 0. Indeed, supp(ᾱ) ∩ � 
= ∅, and supp(γ̄ ) ∩ � = ∅
if γ is a C-positive simple root not belonging to �. Thus, the decomposition of β̄
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into a linear combination of C-positive simple roots contains some element of �

with a positive coefficient and hence is positive. This shows that (Q� \ Q) ⊂ Q̄.
Therefore Q� ⊂ Q ∪ Q̄. Thus we obtained q � q� ⊂ q + q̄, showing that (g0, q)

is weakly degenerate.

From Remark 5.5 and Lemma 5.6, and the characterization of the CR-weaken-
ing in the proof of Theorem 5.3, we obtain:

Proposition 5.7. Let (g0, q) be a parabolic CR algebra, and (g0, qw) its CR-weak-
ening. Then (g0, qw) is either totally real, or weakly degenerate.

Let (ϑ, h0) be an adapted Cartan pair for (g0, q), and hence also for (g0, qw).
Denote by R the root system of g with respect to the complexification h of h0, and
by Q, Qw the parabolic sets of q, qw, respectively. Then:
(1) C ∈ C(R,Q) is S-fit for (g0, q) if and only if it is S-fit for (g0, qw).
(2) Let B be the basis of C-positive simple roots for an S-fit C ∈ C(R,Q), and

� = B ∩ Qn, so that q = q�. Then qw = q�w with

�w = � ∪ {α ∈ B | ᾱ � 0, supp(ᾱ) ∩ � 
= ∅}. (5.9)

We introduce the following:

Definition 5.8. Let M be a G0-homogeneous CR manifold with associated CR al-
gebra (g0, q). A strengthening of the CR structure of M is the datum of a complex
Lie subalgebra q′ with:

q
′ ∩ q̄

′ = q ∩ q̄ and g ⊃ q
′ ⊃ q. (5.10)

We say that the G0-homogeneous CR structure defined by (g0, q) is maximal if
q′ = q for all complex Lie subalgebras q′ of g satisfying (5.10).

If (g0, q) is a parabolic CR algebra and Ms is the G0-orbit associated to a
strengthening (g0, qs) of (g0, q), then the G0-equivariant map M → Ms is a dif-
feomorphism and a CR map. We have:

Proposition 5.9. Let M be the G0-orbit associated to the parabolic CR algebra
(g0, q). Fix an adapted Cartan pair (ϑ, h0) and let q = q� for a system � of
C-positive simple roots of an S-fit Weyl chamber C. Then:
(1) The necessary and sufficient condition for the CR structure defined by (g0, q�)

to be maximal is that:

α ∈ � and ᾱ � 0 =⇒ supp(ᾱ) ∩ � ⊂ {α}. (5.11)

(2) There are maximal G0-homogeneous CR structures (g0, q
′) on M, and for each

of them q′ = q� for some system of simple roots � ⊂ �.
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Proof. Let α ∈ � and set � = � \ {α}. If ᾱ ≺ 0, then −α ∈ (Q� ∩ Q̄�) \ (Q� ∩
Q̄�), and hence q� does not satisfy (5.10). If ᾱ � 0 and supp(ᾱ) ∩ � ⊂ {α}, again
−α ∈ (Q� ∩ Q̄�) \ (Q� ∩ Q̄�), showing that also in this case q� does not satisfy
(5.10). Since all complex subalgebras q′ that satisfy (5.10) are of the form q′ = q�

for some � ⊂ �, this proves that (5.11) is a necessary condition.
Vice versa, if there is α ∈ � with ᾱ � 0 and supp(ᾱ) ∩ � 
⊂ {α}, then, for

� = � \ {α}, the complex subalgebra q� satisfies (5.10), and hence (g0, q�) is not
maximal. This proves (1).

To prove (2), it suffices to take any maximal element of the set of all complex
Lie subalgebras q′ with q ⊂ q′ ⊂ g and q′ ∩ q̄′ = q ∩ q̄.

We conclude this section by proving a theorem that describes the structure of
the fiber F of a G0-equivariant CR fibration.

Theorem 5.10. Let M, M ′ be G0-orbits, corresponding to the parabolic CR alge-
bras (g0, q), (g0, q

′). Assume that q′ ⊂ q, so that I0 ⊃ I′0 for the isotropy subgroups
with Lie algebras i0 = q ∩ g0 and i′0 = q′ ∩ g0.

Fix a Cartan pair (ϑ, h0), adapted to (g0, q
′), and hence also to (g0, q).

Consider the canonical G0-equivariant fibration M ′ → M, with typical fiber
F = I0/I′0. We use the notation of Propositions 3.2 and 3.4.

The fiber F is an I0-homogeneous CR manifold. Its associated CR algebra
(i0, q̄∩ q′) is the semidirect product of the CR algebras (l0, q

′ ∩ l) and (n0, q
′ ∩ n),

where:
(1) (l0, q

′ ∩ l) is a parabolic CR algebra;
(2) (n0, q

′ ∩ n) is nilpotent and totally complex, i.e. n = n0 + (q′ ∩ n).

The fiber F is CR diffeomorphic to a Cartesian product:
F = F ′ × F ′′, (5.12)

where:
(1′) F ′ has finitely many connected components, each isomorphic to the L0

0-orbit
in the flag manifold X ′ = L/

(
Q′ ∩ L

)
, corresponding to the parabolic CR

algebra (l0, q
′ ∩ l). Here we denoted by L0

0 the connected component of the
identity of L0.

(2′) F ′′ is a Euclidean complex N0-nilmanifold, with associated CRalgebra (n0,q
′∩

n).

If q ⊂ q′ + q̄′, then the fibers of the G0-equivariant fibration M ′ → M are complex
and simply connected (but not necessarily connected).

Proof. The CR structure of the fiber F is defined by the embedding into the complex
flag manifold X ′′ = Q/Q′. However, the embedding F ↪→ X ′′ is, in general, not
CR-generic. Thus we begin by considering a natural generic embedding of F .

The algebraic subgroup Q ∩ Q̄ decomposes into the semidirect product

Q ∩ Q̄ = L � N, (5.13)

where N is its unipotent radical and L = Qr ∩ Q̄r is reductive.
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The intersection Q ∩ Q̄ contains a Cartan subgroup of G, and therefore is
connected. Thus also the groups L and N are connected. Their Lie algebras are
l and n, respectively. Moreover, N is also simply connected, being conjugate, in
the linear group G, to a group of unipotent upper triangular matrices (see e.g. [15,
Section 17.5]).

The connected component L0
0 of the identity of L0 is a real form of L. The

parabolic subalgebra q′ of g, containing a Cartan subalgebra of l, intersects l into the
complex parabolic subalgebra q′∩l of l. The intersection Q′∩L is the parabolic sub-
group of L corresponding to q′∩l. The quotient F ′ = L0/

(
Q′ ∩ L0

)
is therefore the

union of finitely many copies of an L0
0-orbit in the flag manifold X ′ = L/

(
Q′ ∩ L

)
.

Next we note that the intersection of Q′ with the unipotent subgroup N is a
subgroup of its unipotent radical Q′ n . Thus it is connected and simply connected
and the quotient Y = N/(Q′ ∩ N) is a connected and simply connected complex
nilmanifold. Since both Q′ ∩G0 and Q′ ∩N are closed and connected, and we have
a Lie algebras semidirect sum decomposition:

q
′ ∩ q̄ = (q′ ∩ l) � (q′ ∩ n), (5.14)

we also obtain a semidirect product decomposition:

Q′ ∩ Q̄ = (Q′ ∩ L) � (Q′ ∩ N). (5.15)

Hence the fiber F = I0/I′0 is CR diffeomorphic to the Cartesian product F =
F ′ × F ′′, with the F ′ described above, and where F ′′ is the orbit of N0 in Y . Since
q′ ∩ n ⊃ q′ n ∩ qn ∩ q̄ = qn ∩ q̄, we have

n0 + (q′ ∩ n) ⊃ (q′ ∩ n) + (q′ ∩ n) ⊃ (qn ∩ q̄) + (q̄n ∩ q) = n.

Thus (n0, q
′ ∩ n) is totally complex. The orbit F ′′ of N0 in Y , being an open

Euclidean complex submanifold of Y , coincides with it, because N0 is nilpotent.
Finally, if q ⊂ q′ ⊂ q+ q̄, the factor F ′ in the decomposition (5.12) is an open

orbit in X ′ and hence simply connected by [28, Theorem 5.4].

6. G0-equivariant CR fibrations and fit Weyl chambers

In this section we describe the fundamental and the weakly nondegenerate reduc-
tions (see [21]) of a parabolic CR manifold M , with associated CR algebra (g0, q).
This description will be obtained in terms of representations q = q� of the parabolic
subalgebra q with respect to systems � of C-positive simple roots for S-fit and V -
fit Weyl chambers C . Since its fundamental and weakly nondegenerate reductions
share with (g0, q) the same adapted Cartan pairs, we can fix throughout this section
a Cartan pair (ϑ, h0), adapted to the parabolic CR algebra (g0, q).
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Lemma 6.1. Let (g0, q�) be a parabolic CR algebra, with � ⊂ B, where B is the
set of C-positive simple roots for an S-fit Weyl chamber C. Set

�− = {α ∈ � | ᾱ ≺ 0}. (6.1)

Let α0 ∈ B. A necessary and sufficient condition in order that:
q� + q̄� ⊂ q{α0} (6.2)

is that

α0 ∈ � ∩ Q̄n
� and α0 
∈

⋃
β∈(B\�)∪�−

supp(β̄). (6.3)

Proof. First we show that (6.3) implies (6.2). If α0 ∈ �∩Q̄n
�, then ᾱ0 � 0, because

all roots in Qn
� are C-positive, and hence, in particular, α0 /∈ Rim.

We have q� ⊂ q{α0}, because {α0} ⊂ �. To prove that also q̄� ⊂ q{α0}, it
suffices to show that qn{α0} ⊂ q̄n

�. Assume by contradiction that this inclusion is

false. Then there is a root α with α � α0 and α /∈ Q̄n
�, i.e. with ᾱ /∈ Qn

�. If ᾱ � 0,
then supp(ᾱ) ∩ � = ∅. Being:

α0 ∈ supp(α) ⊂
⋃

β∈supp(ᾱ)

supp(β̄), (6.4)

this would imply that α0 ∈ supp(β̄) for some β ∈ B \ �. Hence, by (6.3), ᾱ ≺ 0,
and, from (6.4), we obtain that α0 belongs to supp(β̄) for some β ∈ (B \ Rim) with
β̄ ≺ 0. But then, because C is S-fit, β ∈ �−, yielding, by (6.3), a contradiction.
This completes the proof that (6.3) implies (6.2).

Let us prove the opposite implication. From q� ⊂ q{α0}, we have that α0 ∈
�. Condition (6.2) is equivalent to the inclusion qn{α} ⊂ qn

� ∩ q̄n
�. In particular,

α0 ∈ Q̄n
�, and, as we already have α0 ∈ �, this brings the first half of (6.3). Let

β ∈ B and assume that α0 ∈ supp(β̄). If β̄ � 0, then β̄ ∈ Qn{α0} ⊂ Qn ∩ Q̄n

yields β ∈ Qn and hence, being simple, β ∈ (� \ �−). Otherwise, β̄ ≺ 0, and
−β̄ ∈ Qn{α0} ⊂ Qn

� ∩ Q̄n
�. This would imply that −β ∈ Qn

�, but this is impossible
because Qn

� consists of C-positive roots.

We recall that the basis of the fundamental reduction of a CR algebra (g0, q) is
the CR algebra (g0, q

′), where q′ is the smallest complex Lie subalgebra of g with
q + q̄ ⊂ q′ (see [21, Section 5B]).

Theorem 6.2 (Fundamental reduction). Let (g0, q�) be a parabolic CR algebra,
with � ⊂ B, where B is the set of C-positive simple roots for an S-fit Weyl
chamber C. Let:

�− = {α ∈ � | ᾱ ≺ 0}, (6.5)

� = � ∩ Q̄n
�

∖(⋃
α∈(B\�)∪�− supp(ᾱ)

)
. (6.6)
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Then:
(1) (g0, q�) is the basis of the fundamental reduction of (g0, q�).
(2) A necessary and sufficient condition for (g0, q�) to be fundamental is that

� = ∅, i.e. that:
� ∩ Q̄n

� ⊂
⋃

α∈(B\�)∪�−
supp(ᾱ). (6.7)

Let M� and M� be the G0-orbits associated to (g0, q�), (g0, q�), respectively.
Then the G0-equivariant fibration M�

π−→ M� is CR and all connected compo-
nents of its fibers are parabolic CR manifolds (cf. Definition 3.1) of finite type. In
particular, M� is of finite type if and only if (6.7) holds true.

Proof. The complex subalgebra q′ yielding the fundamental reduction (g0, q
′) of

(g0, q�) is a complex subalgebra of g that contains q�, and hence is parabolic and
of the form q′ = q�′ for some �′ ⊂ �. Thus q′ is the intersection of all q{α0}, with
α0 ∈ �, for which q� + q̄� ⊂ q{α0}. By Lemma 6.1, we have �′ = �. This proves
(1) and (2).

The last statement is a consequence of [21, Theorem 5.3].

Next we turn our consideration to weak nondegeneracy. First we prove:

Proposition 6.3. Let (g0, q�) and (g0, q�) be parabolic CR algebras, with � ⊂
� ⊂ B, where B is the set of C-positive simple roots for a V -fit Weyl chamber C.
Let M�, M� be the corresponding G0-orbits. Then the G0-equivariant fibration:

M�
π−−−−→ M�

(6.8)

is a CR fibration with complex fibers if and only if:

ᾱ ≺ 0 ∀α ∈ � \ �. (6.9)

Proof. The necessary and sufficient condition for (6.8) being a CR fibration with
complex fiber is that:

q� ⊂ q� ⊂ q� + q̄� (6.10)

(see [21, Corollary 5.6]). We need to show that this condition is equivalent to (6.9).
It suffices to discuss the situation where � \ � consists of a single simple root. So
we assume that α0 ∈ � and � = � \ {α0}.

Assume that (6.10) holds true. Then −α0 ∈ Q̄�, i.e. −ᾱ0 ∈ Q�. In particular,
since −α0 /∈ Q�, α0 is not real. Thus, if ᾱ0 ∈ Qr

�, then ᾱ0 ≺ 0, because C is V -fit
for (g0, q�). Otherwise, −ᾱ0 ∈ Qn

� implies that ᾱ0 ≺ 0, because Qn
� consists of

C-positive roots.
Vice versa, let us show that, if ᾱ0 ≺ 0, then the parabolic set Q� of q� is

contained in Q� ∪ Q̄�. This is equivalent to Qn
� ⊃ Qn

� ∩ Q̄n
�. Assume by

contradiction that there is some α ∈ (Qn
� ∩ Q̄n

�) \Qn
� . Then supp(α) ∩ � = {α0},

but this yields ᾱ ≺ 0. Indeed, β̄ ≺ 0 for all non real roots β in the support of
α, because C is V -fit for (g0, q�), and we assumed that ᾱ0 ≺ 0. This gives a
contradiction, since ᾱ ∈ Qn

�, that consists of C-positive roots.
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We recall (see [21, Lemma 5.7]) that, given any CR algebra (g0, q), there is a
unique maximal complex subalgebra q′ of g with q ⊂ q′ ⊂ (q+ q̄). The CR algebra
(g0, q

′) is (see [21, Section 5C]) the basis of the weakly nondegenerate reduction of
(g0, q).

We obtain:

Theorem 6.4 (Weakly nondegenerate reduction). Let (g0,q�) be a parabolic CR
algebra, with � ⊂ B, where B is the set of C-positive simple roots for a V -fit Weyl
chamber C. Set:

� = {α ∈ � | ᾱ � 0}. (6.11)

Then the parabolic CR algebra (g0, q�) is the basis of the weakly nondegenerate
reduction of (g0, q�).

Let M�, M� be the G0-orbits corresponding to (g0, q�), (g0, q�), respec-
tively. Then the G0-orbit M� is holomorphically nondegenerate and the G0-equiv-
ariant fibration M�

π−→ M� is a CR fibration with simply connected (but not nec-
essarily connected) complex fibers.

In particular, M� is holomorphically nondegenerate if and only if:
ᾱ � 0 ∀α ∈ �. (6.12)

Proof. All complex subalgebras q′ containing q� are parabolic and of the form
q′ = q� for some � ⊂ �. Thus, by Proposition 6.3, condition (6.12) is necessary
and sufficient for M� to be holomorphically nondegenerate.

In general, we observe that, if C is V -fit for (g0, q), with q = q�, and �

is defined by (6.11), then the chamber C is V -fit also for (g0, q�), and therefore
M� is holomorphically nondegenerate by the argument above. Proposition 6.3 tells
us that M�

π−→ M� is a CR fibration with a holomorphically nondegenerate basis
and a complex fiber. Then the statement follows by the uniqueness of the weakly
nondegenerate reduction (see [21, Lemma 5.7]) and from the last statement in The-
orem 5.10.

7. A structure theorem for G0-orbits

Let M be any G0-orbit, with associated parabolic CR algebra (g0, q). It is easy to
construct a smooth G0-equivariant fibration, with complex fibers, of M onto a real
flag manifold M ′ of G0. Fix indeed a Cartan pair (ϑ, h0) adapted to (g0, q), and
let R be the roots of g with respect to the complexification h of h0. Choose any
element A of the facet in hR corresponding to q (cf. [8, VIII Section 4]). Then the
facet of B = A + Ā defines a parabolic q′ with q∩ q̄ ⊂ q′ = q̄′ ⊂ (q+ q̄). The G0-
equivariant fibration M → M ′ of M onto the parabolic CR manifold corresponding
to (g0, q

′) has all the required properties. A different canonical construction is given
by Wolf (cf. Section 11). The construction below is also canonical, and allows a
better control of the structure of the complex fibers.
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Starting from a parabolic CR algebra (g0, q), we construct recursively a se-
quence of parabolic CR algebras (g0, q

(h)) by setting, for all h ≥ 0 :{(
g0, q

(0)
) = the weakly nondegenerate reduction of (g0, q)(

g0, q
(h+1)

) = the weakly nondegenerate reduction of (g0, q
(h)
w ).

(7.1)

We recall that (g0, q
(h)
w ) is the CR-weakening of (g0, q

(h)), defined in Theorem 5.3.
The weakly nondegenerate reduction was described in Theorem 6.4. Denote by
M (h)and by M (h)

w the G0-orbits associated to the CR algebras (g0,q
(h)) and (g0,q

(h)
w ),

respectively. We know that there is a G0-equivariant diffeomorphism fh : M (h)
w →

M (h), which is also a CR map, but in general not a CR diffeomorphism. Let
ψh : M (h) → M (h+1) the composition of the weakly nondegenerate reduction
πh : M (h)

w → M (h+1) and of the inverse of fh . We have a commutative diagram:

M (h)
w

fh−−−−→ M (h)

πh

� �ψh

M (h+1) M (h+1).

Denoting by π : M → M (0) the weakly nondegenerate reduction, we obtain a
sequence of smooth G0-equivariant maps:

M
π−−−−→ M (0) ψ0−−−−→ M (1) ψ1−−−−→ M (2) −−−−→ · · · (7.2)

In general, the maps ψh are not CR. Since

dim M (h) ≤ dim M (h+1) ∀h ≥ 0, (7.3)

and, by Proposition 5.7, equality in (7.3) holds if and only if (g0, q
(h)
w ) is totally

real, the sequence {q(h)} stabilizes and we have, for some integer m ≥ 0,

q
(h) = q

(h)
w = q

(m) = e, ∀h ≥ m. (7.4)

Definition 7.1. The limit manifold Me of (7.2), which is the G0-orbit associated to
the CR algebra (g0, e), is called the real core of M .

Theorem 7.2 (Structure theorem). Let (g0, q) be a parabolic CR algebra, M the
corresponding G0-orbit, and Me, with CR algebra (g0, e), its real core. Then:
(1) (g0, e) is totally real, i.e. ē = e;
(2) Me is a real flag manifold and the G0-equivariant projection:

M
ψ−−−−→ Me

(7.5)

has complex fibers, with finitely many connected components, that are simply
connected;
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(3) each connected component F0 of a fiber F of (7.5) is a tower of holomorphic
fibrations, in which each fiber is the Cartesian product of a Euclidean complex
space and an open orbit of a real form in a complex flag manifold.

Proof. We already established (1) and the first statement of (2). The weakly non-
degenerate reduction M (h)

w → M (h+1) is a CR fibration for which we know, by
Theorem 5.10 and Theorem 6.4, that the fiber has finitely many components and
each connected component is a Cartesian product of a Euclidean complex space
and an open orbit of a real form in a complex flag manifold, hence we have also (2)
and (3).

8. Connected components of the fibers

We keep the notation of Section 3. Let (ϑ, h0) be a Cartan pair, adapted to the
parabolic CR algebra (g0, q) of the G0-orbit M . Denote by H0 = ZG0(h0) the
Cartan subgroup of G0 corresponding to the Cartan subalgebra h0.

Definition 8.1. The analytic, or real, Weyl group W(G0, h0) is the quotient by H0
of the normalizer of h0 in G0:

W(G0, h0) = NG0(h0)/ZG0(h0). (8.1)

Since we took G0 connected, the analytic Weyl group W(G0, h0) only depends,
modulo isomorphisms, upon the pair (g0, h0), and not on the particular choice of
G0. We also have (see e.g. [16, page 489])

W(G0, h0) = NK0(h0)/ZK0(h0), (8.2)

where K0 is the compact analytic subgroup of G0 with Lie algebra k0 = {X ∈ g0 |
ϑ(X) = X}. Since, by complexification, NG0(h0) acts on hR = h

−
0 ⊕ ih+

0 , and
then, by duality, on h∗

R
and, by restriction, on the root system R = R(g, h), we

obtain a homomorphism, that in fact is an inclusion:

W(G0, h0) ↪→ W(R), (8.3)

of the analytic Weyl group W(G0, h0) into the Weyl group W(R) of the root
system R.

We shall also consider the Weyl group:

W(L0, h0) = NL0(h0)/ZL0(h0) (8.4)

of the reductive subgroup L0. Since ZL0(h0) = H0, this can be viewed as a sub-
group of the analytic Weyl group W(G0, h0).

Let S0 be the analytic semisimple subgroup of L0 with Lie algebra s0 = [l0, l0]
(see Corollary 3.5). The elements of S0 centralize z0. Thus, for the Cartan subalge-
bra t0 = h0 ∩ s0 of s0, since h0 = t0 ⊕ z0, we get:

NS0(t0) = NS0(h0) ⊂ NL0(h0). (8.5)
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The Cartan subgroup T0 of S0 corresponding to t0 is:

T0 = ZS0(t0) = ZS0(h0) = H0 ∩ S0. (8.6)

Thus the inclusion (8.5) yields, by passing to the quotients, an inclusion of the Weyl
groups:

W(S0, t0) = NS0(t0)

ZS0(t0)
� NS0(t0) ZL0(h0)

ZL0(h0)
⊂ W(L0, h0). (8.7)

Proposition 8.2. Let Mbe a G0-orbit,with associated parabolic CR algebra(g0,q).
Let (ϑ, h0) be a Cartan pair adapted to (g0, q), L0 the ϑ-invariant reductive Levi
factor of the isotropy I0 of M, and S0 the maximal analytic semisimple Lie subgroup
of L0. Then:
(1) NS0(h0) is a closed normal subgroup of NL0(h0) and the natural inclusion

NL0(h0) ↪→ I0 yields a group isomorphism:

π0(NL0(h0)/NS0(h0))
∼−→ π0(I0). (8.8)

(2) We have the exact sequences:

111 −−−−→ H0
T0

−−−−→ NL0 (h0)

NS0 (t0)
−−−−→ W(L0,h0)

W(S0,t0)
−−−−→ 111, (8.9)

111 −−−−→ π0
(H0

T0

) −−−−→ π0(I0) −−−−→ W(L0,h0)
W(S0,t0)

−−−−→ 111. (8.10)

Proof. By (3.4), we have π0(L0) � π0(I0).
Let g0 = k0 ⊕ p0 be the ϑ-invariant Cartan decomposition of g0, and let a0

be any maximal Abelian subalgebra of p0 that contains h
−
0 = h0 ∩ p0. Its cen-

tralizer ZK00(a0) in the maximal compact subgroup K00 of L0 intersects all con-
nected components of L0 (see e.g. [16, Proposition 7.33]). Thus a fortiori ZK00(h

−
0 ),

containing ZK00(a0), intersects all connected components of L0. The toroidal part
h
+
0 = h0 ∩ k0 of h0 is a Cartan subalgebra of the compact Lie algebra Zk00(h

−
0 ). Let

g0 ∈ ZK00(h
−
0 ). Then Ad(g0)(h

+
0 ) is also a Cartan subalgebra of Zk00(h

−
0 ). Since

all Cartan subalgebras of a compact Lie algebra are conjugate by an inner automor-
phism, we can find an element g1, in the connected component K0

00 of the identity of
K00, such that Ad(g1g0)(h

+
0 ) = h

+
0 . The element g1g0 ∈ ZL0(h

−
0 ) ∩ NL0(h

+
0 ) is in

the same connected component of g0 in K00. This shows that ZL0(h
−
0 ) ∩ NL0(h

+
0 ),

and therefore also NL0(h0), intersect all connected components of L0.
Let Z0

0 be the analytic subgroup of L0 with Lie algebra z0. Then the connected
component L0

0 of the identity in L0 is the direct product S0 �� Z0
0. It follows that

the intersection NL0(h0) ∩ L0
0 is NS0(h0) �� Z0

0, and this yields (8.8).
The exactness of (8.10) is a consequence of that of (8.9) and of the isomor-

phism (8.8). It will suffice then to prove the exactness of (8.9).
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By the definition of the Weyl group W(L0, h0), we have an exact sequence:

111 −−−−→ H0 −−−−→ NL0(h0) −−−−→ W(L0, h0) −−−−→ 111. (8.11)

The image in W(L0, h0) of the subgroup NS0(t0) of NL0(h0), under the projection
into the quotient, using the identification (8.7), is W(S0, t0). Finally, the Cartan
subgroup T0 of S0 is the intersection H0 ∩ NS0(h0). Then (8.9) follows from (8.11)
by the elementary group homomorphism theorems.

Remark 8.3. Note that the number of connected components of the isotropy sub-
group I0 depends on the choice of G0. The exact sequence (8.10) exhibits this
number as a product of a term, |π0(H0/T0)|, that genuinely depends on G0, and
another term, |(W(L0, h0)/W(S0, t0))|, which is the same for all possible choices
of the connected linear Lie group G0 with Lie algebra g0. Indeed, modulo isomor-
phisms, the groups W(L0, h0) and W(S0, t0) only depend on the Lie algebras g0,
l0 and h0 (see e.g. [16, page 489]).

Our main application of Proposition 8.2 is counting the number of connected
components of the fibers of a G0-equivariant fibration (5.2). We have:

Theorem 8.4. Let M, M ′ be G0-orbits, with associated parabolic CR algebras
(g0, q), (g0, q

′), and isotropy subalgebras i0 ⊃ i′0, respectively. Let (ϑ, h0) be a
Cartan pair adapted to (g0, q

′), with h0 a maximally noncompact Cartan subal-
gebra of i′0. Then the group of connected components of the typical fiber F of the
G0-equivariant fibration φ : M ′ → M is

π0(F) � W(L0, h0)/W(S0, t0), (8.12)

where L0 is the reductive ϑ-invariant Levi factor of I0, having maximal semisimple
analytic subgroup S0, with Lie algebra s0, and t0 = h0 ∩ s0.

Proof. Since h0 is a maximally noncompact Cartan subalgebra of i′0, by Theo-
rem 3.6 we have the isomorphism π0(H0/T′

0) � π0(I′0), where T′
0 is the centralizer

of H0 in S′
0, yielding a commutative diagram

π0(H0/T′
0)

�−−−−→ π0(I′0)� �
1 −−−−→ π0(H0/T0) −−−−→ π(I0).

Since the map π0(H0/T′
0) → π0(H0/T0) is surjective, from (8.10) we obtain the

exact sequence:

π0(I′0) −−−−→ π0(I0) −−−−→ W(L0, h0)

W(S0, t0)
−−−−→ 111, (8.13)

yielding (8.12).
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9. The fundamental group

We use Theorem 7.2 and the results of Section 8 to compute the fundamental group
of the G0-orbits, extending the results of [2, Section 8]. We have:

Theorem 9.1. Let M be a G0-orbit, (g0, q) its associated parabolic CR algebra,
and Me its real core (see Definition 7.1), with CR algebra (g0, e).

Let (ϑ, h0) be a Cartan pair adapted to (g0, q), with h0 maximally noncompact
in i0. Set Le

0, Se
0 for the reductive Levi factor of the isotropy Ie

0 of Me and for its
maximal analytic semisimple subgroup, respectively.

Then we have an exact sequence:

111 −−−−→ π1(M) −−−−→ π1(Me) −−−−→ W(Le
0,h0)

W(Se
0,h0∩se

0)
−−−−→ 111. (9.1)

In particular, the image of the map π1(M) → π1(Me) in (9.1) is a normal subgroup
of π1(Me), with a finite index.

The map H1(M, Q) → H1(Me, Q) of the rational homologies, induced by the
G0-equivariant projection M → Me, is an isomorphism.

Proof. By (3) of Theorem 7.2, the fundamental group of the typical fiber F of (7.5)
is trivial. Thus, since M is connected, the exact homotopy sequence of a locally
trivial fiber bundle yields the short exact sequence:

111 −−−−→ π1(M) −−−−→ π1(Me) −−−−→ π0(F) −−−−→ 111. (9.2)

The exactness of (9.1) follows then from the isomorphism (8.12) established in
Theorem 8.4.

Since F = Ie
0/I0, we have the exact sequence:

π0(I0) −−−−→ π0(Ie
0) −−−−→ π0(F) −−−−→ 111. (9.3)

By Theorem 3.6, the groups π0(I0) and π0(Ie
0) are Abelian. Hence π0(F), being in

a one-to-one correspondence with a quotient of finite Abelian groups, may be given
the structure of a finite Abelian group, for which the maps π0(Ie

0) → π0(F) and
π1(Me) → π0(F) are group epimorphisms. Thus the image of π1(M) → π1(Me)

in (9.1) is a normal subgroup of π1(Me), being the kernel of a group homomor-
phism. The last assertion follows from the fact that the kernel of the homomorphism
π1(M) → π1(Me) is a torsion subgroup.

Remark 9.2. We see from (9.1) that the fundamental group π1(M) only depends
on the totally real parabolic CR algebra (g0, e) and from the maximally noncompact
Cartan subalgebra h0 of i0.

We show by the following proposition that, vice versa, for each real flag man-
ifold Me of G0, and every Cartan pair (ϑ, h0) adapted to (g0, e), we can find a
G0-orbit whose fundamental group is given by (9.1). We have indeed:
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Proposition 9.3. Let (ϑ, h0) be an adapted Cartan pair for a totally real parabolic
CR algebra (g0, y). Then we can find a parabolic subalgebra q such that:

q ⊂ y = q + q̄, (9.4)

h0 is a maximally noncompact Cartan subalgebra of i0 = q ∩ g0. (9.5)

Denote by M the G0-orbit with CR algebra (g0, q). Then we have the exact se-
quence

111 −−−−→ π1(M) −−−−→ π1(My) −−−−→ W(Ly

0 ,h0)

W(Sy

0 ,h0∩s
y

0 )
−−−−→ 111, (9.6)

where My, the G0-orbit associated to (g0, y), is a real flag manifold, with isotropy
subgroup Iy

0, Ly

0 is the reductive part of Iy

0, and Sy

0 the maximal analytic semisimple
subgroup of Ly

0, with Lie algebra s
y

0.

Note that My does not necessarily coincide with the real core Me of M .

Proof. Let R be the root system of g with respect to the complexification h of h0
and let C be a V -fit Weyl chamber of R for (g0, y). Let y = q� for a subset � of
the set B of the C-positive simple roots. Set

� = � ∪ {α ∈ B | ᾱ ≺ 0} (9.7)

and take q = q� . If α � 0 is imaginary, then supp(α) contains some β0 with
β̄0 ≺ 0. Thus, by (9.7), β0 ∈ �, and therefore α ∈ Qn

� , showing that Qr
� does not

contain any imaginary root. This implies that h0 is maximally noncompact in i0.
Moreover, the equality in (9.4) is valid because of (6.9) of Proposition 6.3. Hence
both (9.4) and (9.5) are satisfied.

The exactness of (9.6) follows because the G0-equivariant CR map M → My

is the weakly nondegenerate reduction, and hence the fibers are simply connected
by Theorem 6.2, so that the argument in the proof of Theorem 9.1 applies.

In the last part of this section, we shall give an explicit description of the fun-
damental group π1(M) of the G0 orbit M .

Fix a Cartan pair (ϑ, h0) adapted to the parabolic CR algebra (g0, q) of M . Let
Me, with CR algebra (g0, e), be the real core of M . Keeping the Cartan involution
ϑ and the corresponding Cartan decomposition g0 = k0 ⊕ p0 fixed, we denote by
he

0 a ϑ-invariant maximally noncompact Cartan subalgebra of ie0. We choose, as we
can, he

0 in such a way that he
0 ∩ k0 ⊂ h

+
0 and he

0 ∩ p0 ⊃ h
−
0 .

Let Re be the root system of g with respect to the complexification he of he
0,

and E the parabolic set of e in Re. We recall that, for a real root α ∈ Re, the real
eigenspace:

g
α
0 = {X ∈ g0 | [H, X ] = α(H) X, ∀H ∈ h

e
0 ∩ p0} (9.8)

is not trivial. Its real dimension is called the multiplicity of α.
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Let C ∈ C(Re, E) be an S-fit Weyl chamber for (g0, e), denote by B the basis
of C-positive simple roots in Re, and �e = B ∩ En . The roots of B correspond to
the nodes of a Satake diagram and, in particular, ᾱ � 0 for all non imaginary α � 0.

We utilize [27] to describe the fundamental group π1(Me) in terms of a set �

of generators, given by (9.9), and by the relations (9.10) below:

� = {ξα |α ∈ B ∩ Re
re has multiplicity 1} (9.9)

ξα = 1 if α /∈ �e, ξαξβ = ξβξ (−1)(α|β∨)

α ∀ξα, ξβ ∈ �. (9.10)

In (9.10) we use the standard notation β∨ = 2β/‖β‖2.
From Theorem 9.1 and this description of π1(Me), we get:

Corollary 9.4. Let M be a G0-orbit, with associated parabolic CR algebra (g0, q),
and Me its real core. If g0 is a real semisimple Lie algebra such that all its simple
ideals are2

either of the complex type, or compact, or of one of the real types

AII, AIIIa, AIV, BII, CII, DII, DIIIb, EIII, EIV, FII,
(a)

then all G0-orbits are simply connected.
If we allow the simple ideals to be either of the types listed in (a) or of the real

types:
AIIIb and DIIIa, (b)

then the map π1(M) → π1(Me) of (9.2) is an isomorphism.

Proof. Every G0-orbit splits into the Cartesian product of G0i -orbits, each corre-
sponding to a simple ideal g0i of g0 (see e.g. [2, page 490]). Thus we can reduce to
the case where g0 is simple. Consider a maximally noncompact Cartan subalgebra
he

0 of g0. Let Re be the root system of g with respect to the complexification he

of he
0. The first assertion follows from the fact that, in the cases listed in (a), if C

is any S-fit chamber for (g0, e), then B does not contain any simple real root with
multiplicity one. Hence we have π1(Me) = 111 and thus also M is simply connected.

The last statement is a consequence of the fact that in the cases listed in (b),
the quotient H0/Z(G0) of a Cartan subgroup H0 of G0 by its center Z(G0) is al-
ways connected. Then, by the exact sequence (9.3), the fiber F is connected, and
therefore (9.2) yields an isomorphism of the fundamental groups of M and Me.

Remark 9.5. We note that Proposition 5.7 and Theorem 6.4 provide an effective
construction of e, and hence of Me, starting from a representation q = q� in terms
of the root system associated to a Cartan pair (ϑ, h0) adapted to (g0, q).

2 Here we follow, for labeling the simple real Lie algebras [14, Table VI, Chapter X].
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Fix a Chevalley basis {Xα}α∈Re ∪ {Hα}α∈B of g (see [8]), with:

Xα ∈ g
α, τ (Xα) = X−α, [Hα, X±α] = ±2Xα, [Xα, X−α] = −Hα.

When α ∈ Re
re, we choose, as we can, Xα ∈ g0.

Let ξα ∈ �. The element exp(iπ Hα) belongs to the normalizer of h0 in
Le

0, and the map in (9.1) transforms ξα into the equivalence class of exp(iπ Hα)

in W(Le
0, h0)/W(Se

0, h0 ∩ se
0).

The Cartan subalgebra h0 is obtained from he
0 by the Cayley transform with

respect to a set α1, . . . , αm of pairwise strongly orthogonal real roots in Er . With
he

R
= (he

0 ∩ p0) + i(he
0 ∩ k0) and hR = h

−
0 ⊕ i h

+
0 , the Cayley transform maps he

R

onto hR by:

λ : h
e
R

� H −→ H + i
2

m∑
j=1

α j (H) (i Hα j + Xα j + X−α j ) ∈ hR. (9.11)

Since α(H) = 0 for all H ∈ ze
0 and α ∈ Er = Ēr , the Cayley transform is the

identity on ze
0 ⊂ he

0 ∩ h0.
For a real β ∈ �e, the action of exp(iπ Hβ) on hR is described by

Ad(exp(iπ Hβ))

(
H + i

2

m∑
j=1

α j (H)(i Hα j + Xα j + X−α j )

)

= H + i
2

m∑
j=1

α j (H)
(

i Hα j + eiπ(α j |β∨)(Xα j + X−α j )
)
.

(9.12)

By duality, the Cayley transform defines a map λ∗ : h∗
R

→ (he
R
)∗, that gives by

restriction a bijection R → Re of the two root systems. Set:

[λ∗]−1 : Re � α −→ αλ ∈ R. (9.13)

Then we obtain:

Lemma 9.6. Let β be any real root in �e. Then Ad(exp(iπ Hβ)) defines in the Weyl
group of R the element:

s(α1|β∨)

αλ
1

◦ · · · ◦ s(αm |β∨)

αλ
m

∈ W(R), (9.14)

where sαλ
j

is the symmetry with respect to αλ
j ∈ R.

Let se
0 ( j), for j = 1, . . . , p, be the simple ideals of se

0. For each j = 1, . . . , p,

denote by R( j) the set of roots γ ∈ R = R(g, h) that are of the form γ = αλ for
some α ∈ Re for which the eigenspace gα is contained in the complexification se

( j)
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of se
0 ( j). The R( j)’s are disjoint. Let Se

0 ( j) be the analytic Lie subgroup of Se
0 with

Lie algebra se
0 ( j).

For each j = 1, . . . , p, let A( j) be the subset of the set {α1, . . . , αm} of roots
of Re, used to define the Cayley transform (9.11), consisting of those for which
αλ

j ∈ R( j). Since:

Se
0 = Se

0 (1) �� · · · �� Se
0 (p) and

W(Se
0, h0 ∩ s

e
0) = W(Se

0 (1), h0 ∩ s
e
0 (1)) �� · · · �� W(Se

0 (p), h0 ∩ s
e
0 (p))

(9.15)

we obtain:

Theorem 9.7. With the notation above: π1(M) is the subgroup of π1(Me) consist-
ing of the elements of the form:

ξ = ξ
k1
β1

· · · ξ k�

β�
, (9.16)

where � is a positive integer, and k1, . . . , k� ∈ Z, ξβ1, . . . , ξβ�
∈ � satisfy one of

the two equivalent conditions:

s
∑�

j=1 k j (α1|β∨
j )

α1 ◦ · · · ◦ s
∑�

j=1 k j (αm |β∨
j )

αm ∈ W(Se
0, h0 ∩ s

e
0), or (9.17)




s

∑�
j=1 k j (α

h
i1

|β∨
j )

αi1
◦ · · · ◦ s

∑�
j=1 k j (α

h
irh

|β∨
j )

αir
∈ W(Se

0 (h), h0 ∩ se
0 (h))

where A(h) = {αh
i1
, . . . , αh

irh
}, for h = 1, . . . , p.

(9.18)

Remark 9.8. When L0 is a reductive real linear group, and h0 a Cartan subalgebra
of its Lie algebra l0, the analytic Weyl group W(L0, h0) has been explicitly com-
puted (see e.g. [1, 26]). Thus Theorem 9.7 yields an effective way to compute the
fundamental group of a G0-orbit M .

For the convenience of the reader, we give below a description of that part of
the Weyl group W(Se

0, h0∩se
0), that is needed to understand (9.17), (9.18). We take,

as we can, G simply connected. Then also the complexification Se of Se
0 is simply

connected, because Se is the semisimple Levi factor of a parabolic subgroup of G.
Indeed, each integral character of se lifts to an integral character of g and therefore
defines a linear representation of G, giving, by restriction, a linear representation of
Se. It is well known that this property characterizes simple connectivity. This is the
situation where we can apply the results of [1, 26].

Let h be the complexification of h0, and S the root system of se with respect to
the Cartan subalgebra t = h∩ se. Denote by Sim,c and by Sim,n the sets of compact
and noncompact imaginary roots of S , respectively. For a Weyl chamber C ∈ C(S),
set ρ0 = 1

2

∑{β ∈ Sim,c|β � 0}. Let E be the subset of Sim,n of the C-positive
noncompact imaginary roots that are orthogonal to ρ0. The elements of E are pair-
wise strongly orthogonal, thus the subgroup W(E) generated by the symmetries sα ,
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for α ∈ E , is isomorphic to Zp
2 , where p ≥ 0 is the number of elements of E . Let

� be the co-root lattice, generated by the elements α∨ = 2α/‖α‖2 for α ∈ S , and
�∗ the sublattice generated by the α∨ for α ∈ Sim. Let t∗

R
be the linear span of S

and � the orthogonal projection of t∗
R

onto the linear span of Sim.
Let W∗ be the subgroup of the Weyl group W(S) generated by the symmetries

sα for α ∈ Rim,n. Then we have:

W∗ ∩ W(Se
0, h0 ∩ s

e
0) = ker

(
f : W(E) → �∗/2�(�)

)
(9.19)

where f is the homomorphism that maps sα to α∨.
We note that the elements (9.16), having been constructed from real roots of

the root system Re, belong to the subgroup of W(R) generated by the symmetries
with respect to noncompact imaginary roots that are orthogonal to ρ0, and therefore
to W∗.

10. The Mostow fibration

Let M = G0/I0 be a homogeneous space of a Lie group G0, with I0 a closed
subgroup of G0. We assume that both G0 and I0 have finitely many connected
components. We fix maximal compact subgroups K0 and K00 of G0 and of I0,
respectively, with K00 ⊂ K0. In [22] and [23] G. D. Mostow proved that there exist
closed Euclidean subspaces F and E in G0 such that:

K0 × F × E � (k, f, e) → k · f · e ∈ G0

and K00 × E � (k, e) → k · e ∈ I0

}
are diffeomorphisms onto,

ad(k)(F) = F ∀k ∈ K00.

In particular, M is isomorphic, as a K0-space, to the manifold K0 ×K00 F , i.e. to the
quotient of the Cartesian product K0 × F with respect to the equivalence relation
that identifies (k, f ) and (k · k−1

0 , ad(k0)( f )) if k ∈ K0, f ∈ F , and k0 ∈ K00. Let
N be the homogeneous space K0/K00.

Definition 10.1. The K0-equivariant fibration M → N defined by the commutative
diagram

K0 × F −−−−→ K0� �
M� K0 ×K00 F −−−−→ N

(10.1)

is called the Mostow fibration of M .

We come back now to the situation where M is a G0-orbit in a complex flag
manifold X , with associated parabolic CR algebra (g0, q). We keep the notation
of the previous sections. In particular, we denote by K the complexification of
K0, and by k0, k the Lie algebras of K0, K, respectively. Then the basis N of the
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Mostow fibration is the intersection of M with the complex K-orbit M∗ in X =
G/Q, that corresponds to M in the Matsuki duality (see [9, 17]). Note that N is
a K0-homogeneous generic CR-submanifold of M∗, with associated CR algebra
(k0, q ∩ k).

Proposition 10.2. The CR manifold M and the basis N of its Mostow fibration
M → N have the same CR-codimension. In particular, the fibers of the Mostow
fibration M → N have an even dimension.

Proof. The CR codimensions of M and N are (cf. Remark 1.4)

C R-codim M = dimCg − dimC(q + q̄) and

C R-codim N = dimCk − dimC([q ∩ k] + [q̄ ∩ k]).
Thus, we need to prove that

dimCg = dimC(q + q̄) + dimCk − dimC([q ∩ k] + [q̄ ∩ k]). (10.2)

First we show that
(q + q̄) ∩ k = (q ∩ k) + (q̄ ∩ k). (10.3)

Fix any ϑ-invariant Cartan subalgebra h0 of i0. Let h be the complexification of h0
and R = R(g, h) be the root system of g with respect to its Cartan subalgebra h.
Recall that k = {X + ϑ(X) | X ∈ g} and that, if Xα ∈ gα , then ϑ(Xα) ∈ g−ᾱ . To
prove (10.3), it suffices to show that, if Xα 
= 0 and (Xα + ϑ(Xα)) ∈ (q + q̄), then
α and −ᾱ both together belong either to Q, or to Q̄. The assertion is trivially true
when ᾱ = −α. When ᾱ 
= −α, the fact that (Xα + ϑ(Xα)) ∈ (q + q̄) implies that
{α,−ᾱ} ⊂ Q ∪ Q̄. If α ∈ Q \ Q̄ and −ᾱ ∈ Q̄ \ Q, then neither ᾱ, nor −ᾱ would
belong to Q, contradicting the fact that Q is a parabolic set. Analogously, we rule
out the case where α ∈ Q̄ \ Q and −ᾱ ∈ Q \ Q̄. This proves (10.3). Since

dimC(q + q̄) + dimCk − dimC([q + q̄] ∩ k) = dimC(q + q̄ + k),

to complete the proof that M and N have the same CR codimension it suffices to
verify that:

q + q̄ + k = g, (10.4)

and, to this aim, that all root spaces gα are contained in the left hand side of (10.4).
If gα 
⊂ q + q̄, then α is either real or complex, and g−ᾱ ⊂ q ∩ q̄. With Xα ∈ gα ,
we have ϑ(Xα) ∈ g−ᾱ ⊂ q∩ q̄ and (Xα +ϑ(Xα)) ∈ k. Thus Xα belongs to the left
hand side of (10.4). This completes the proof.

Theorem 10.3. Let M be a G0-orbit, with associated parabolic CR algebra(g0,q),
and M → N its Mostow fibration. Let Me be the real core of M (see Definition 7.1).
Then there is a sequence of K0-equivariant fibrations:

N = N (0) → N (1) → · · · → N (m−1) → N (m) = Me, (10.5)

in which, for each h ≥ 1, the fiber L(h) of the K0-equivariant fibration N (h−1) →
N (h) is diffeomorphic to a disjoint union of a finite number of copies of a complex
flag manifold.
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Proof. We consider the sequence (7.2). For each h = 0, 1, . . . , m we take N (h) to
be the basis of the Mostow fibration of the G0-orbit M (h). Let I(h)

0 be the isotropy

subgroup of M (h) and K(h)
00 its maximal ϑ-invariant compact subgroup. Being com-

plex, by Theorem 5.10 each connected component of the fiber Fh = F ′
h × F ′′

h of the

G0-equivariant fibration of M (h−1)
w → M (h) is CR-diffeomorphic to the product of

a complex Euclidean space F ′′
h and of the disjoint union F ′

h of finitely many copies
of an open orbit �(h) in a complex flag manifold Xh . Then L(h) is the basis of the
Mostow fibration F ′

h → L(h). Thus L(h) has finitely many connected components,
each diffeomorphic to a complex flag manifold, being equal to the Matsuki-dual of
an open orbit.

Thus we have:

Corollary 10.4. With the notation of Theorem 10.3:

χ(N ) = 0 ⇐⇒ χ(Me) = 0, (10.6)

where χ is the Euler-Poincaré characteristic.
Let {M j | j ∈ J } be the set of all G0-orbits in the complex flag manifold X =

G/Q. Then:
χ(X) =

∑
j∈J

χ(N j ), (10.7)

where N j is the basis of the Mostow fibration M j → N j .

Proof. We keep the notation of Theorem 10.3. The Euler-Poincaré characteristic
χ(N ) is the product χ(N ) = χ(Me) · χ(L(1)) · · ·χ(L(m)) and χ(L(h)) > 0 for
h = 1, . . . , m, because each L(h) is a complex flag manifold.

The last assertion follows by considering a cell decomposition C of X in which
every cell is contained in some G0-orbit M j . Since the fibers of the Mostow fi-
bration are Euclidean, we may obtain a cell decomposition of M j from a cell de-
composition of the basis N j of its Mostow fibration. Since the dimension of the
fibers is even, the contribution of the cells of M j to the alternated sum χ(X) =∑

c∈C(−1)dim(c) of the cells contained in χ(X) is exactly χ(N j ).

11. Real core and algebraic arc components

In this section we compare our construction of Section 7 with the algebraic arc
components of [28, Section 8]. They were defined in the following way.
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Definition 11.1. Let M be a G0-orbit, with associated parabolic CR algebra (g0,q).
Let (ϑ, h0) be an adapted Cartan pair and R = R(g, h). Define

δ =
∑

α∈Qn∩Q̄n

α, (11.1)

Qa = {
α ∈ R | (δ|α) ≥ 0

}
, (11.2)

qa = h ⊕
∑

α∈Qa

g
α. (11.3)

The G0-orbit Ma , corresponding to the parabolic CR algebra (g0, qa), is called the
space of algebraic arc components of M .

Lemma 11.2. If (g0, q) and (g0, q
′) are parabolic CR algebras with q+q̄ = q′+q̄′,

then qa = q′
a. This holds in particular when (g0, q

′) is the weakly nondegenerate
reduction of (g0, q).

Proof. Indeed Qn ∩Q̄n = R\ (−Q∪−Q̄) = R\ (−Q′ ∪−Q̄′) = Q′n ∩Q̄′n .

Lemma 11.3. Let (g0, q) be a parabolic CR algebra. Fix an adapted Cartan pair
(ϑ, h0). Let R be the root system of g with respect to the complexification h of h0
and Q ⊂ R the parabolic set of q. Consider the complement of q ∩ q̄ in q given by

x =
∑

α∈Q\Q̄
g

α. (11.4)

If (g0, q) is weakly nondegenerate, then

{Z ∈ x | [Z , q̄] ⊂ (q + q̄)} ⊂ q
n. (11.5)

Proof. Set Q−n = R \Q = {−α | α ∈ Qn} and Q̄−n = {ᾱ | α ∈ Q−n}. We apply
an argument similar to that of the proof of [2, Proposition 12.3]. The left hand side
of (11.5) decomposes into a direct sum of root spaces gα . Since

(Q \ Q̄) = (Qr ∩ Q̄−n) ∪ (Qn ∩ Q̄−n),

it suffices to show that the left hand side of (11.5) does not contain gα if α ∈ Qr ∩
Q̄−n . By the assumption that (g0, q) is weakly nondegenerate, by [21, Theorem
6.2] there exist roots β1, . . . , βk ∈ Q̄ such that:

(i) γi = α + ∑i
j=1 βi ∈ R for j = 1, . . . , k,

(ii) γk /∈ Q ∪ Q̄.

If we take a sequence (β1, . . . , βk) satisfying (i) and (ii) with k minimal, then (i)
and (ii) hold true for all sequences (βs1, . . . , βsk ) obtained by a permutation of the
βi ’s. At least one of the βi ’s does not belong to Q, so we can assume that β1 ∈ Q−n .
Then γ1 ∈ Q−n , because α ∈ Qr , and Qr ∪ Q−n is a parabolic set. We also have
γ1 ∈ Q̄−n , because β2, . . . , βk ∈ Q̄ and γk = γ1 + ∑k

j=2 βk ∈ Q̄−n . This shows
that k = 1 and hence gα is not contained in the left hand side of (11.5).
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Lemma 11.4. If (g0, q) is weakly nondegenerate, then

qw ∩ q̄w ⊂ qa ⊂ qw + q̄w. (11.6)

Proof. We keep the notation introduced in the proof of the previous lemma.
Let us consider the normalizer of qn ∩ q̄n in g:

Ng(q
n ∩ q̄

n) = {Z ∈ g | [Z , qn ∩ q̄
n] ⊂ q

n ∩ q̄
n}. (11.7)

The first inclusion in (11.6) is obvious, because qw ∩ q̄w = q ∩ q̄, and qa contains
Ng(q

n ∩ q̄n) ⊃ q ∩ q̄. Since Ng(q
n ∩ q̄n) is the direct sum of h and of root spaces,

we can decompose Ng(q
n ∩ q̄n) into the direct sum of its nilradical Nn

g(q
n ∩ q̄n)

and of a τ -invariant reductive complement Nr
g(q

n ∩ q̄n) (recall that τ = σ ◦ ϑ is
the conjugation with respect to the compact form u0 = k0 + ip0 of g). Wolf proved
(see [28, Theorem 8.5(2)]) that

Nn
g(q

n ∩ q̄
n) ⊂ q

n
a, Nr

g(q
n ∩ q̄

n) ⊂ q
r
a, (11.8)

so that in particular

Nn
g(q

n ∩ q̄
n) = Ng(q

n ∩ q̄
n) ∩ q

n
a, Nr

g(q
n ∩ q̄

n) = Ng(q
n ∩ q̄

n) ∩ q
r
a . (11.9)

To complete the proof of (11.6), it suffices to show that Qa ⊂ (Qw ∪ Q̄w). Since
(see [28, Theorem 8.5(2)]) qa is contained in q + q̄ and is invariant by conjuga-
tion, we can assume, by substituting, if needed, ᾱ to α, that α ∈ Q. Assume by
contradiction that α /∈ Qw ∪ Q̄w. Since we have the partition

R \ (
Qw ∪ Q̄w

) = (
Qr ∩ Q̄−n) ∪ (

Q̄r ∩ Q−n) ∪ (
Q−n ∩ Q̄−n),

we obtain that α ∈ Q\(
Qw ∪Q̄w

) = Qr ∩Q̄−n . This implies that g−α is contained
in Ng(q

n ∩ q̄n) ⊂ qa . Then g±α ⊂ qr
a , and hence, by (11.9), g±α ⊂ Nr

g(q
n ∩ q̄n).

But Nr
g(q

n ∩ q̄n) also normalizes (q−n ∩ q̄−n), and hence (q + q̄). By Lemma 11.3
this implies that α ∈ Qn ⊂ Qw, yielding a contradiction.

Example 11.5. Denote by F7
d1,d2,...,dr

the complex manifold consisting of the flags

(�1, �2, . . . , �r ) where � j is a d j -dimensional linear complex subspace of C7 and
�1 � �2 � · · · � �r .

Let (e1, . . . , e7) be a basis of the real form R7 of C7, and (ε1, . . . , ε7) the basis
of C7 given by

ε1 = e1 + ie7, ε2 = e2, ε3 = e3 + ie6, ε4 = e4,

ε5 = e5, ε6 = e3 − ie6, ε7 = e1 − ie7.

Let Q be the Borel subgroup of G = SL(7, C) that stabilizes the complete flag

ε = (〈ε1〉, 〈ε1, ε2〉, . . . , 〈ε1, . . . , ε6〉
) ∈ F7

1,2,3,4,5,6.
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Set G0 = SL(7, R), and consider the orbit M = G0 · ε ⊂ F7
1,2,3,4,5,6, with asso-

ciated CR algebra (g0, q), where g0 = sl(7, R) and q is the Lie algebra of Q. The
weakly nondegenerate reduction of M is the G0-orbit M (0) ⊂ F7

2,4 through the flag

ε(0) = (〈ε1, ε2〉, 〈ε1, ε2, ε3, ε4〉
) ∈ F7

2,4.

Continuing with the construction of Section 7 we obtain that M (1) ⊂ F7
1,3,5,6 is the

G0-orbit through the flag

ε(1) = (〈ε2〉, 〈ε2, ε1, ε4〉, 〈ε2, ε1, ε4, ε3, ε7〉, 〈ε2, ε1, ε4, ε3, ε7, ε6〉
) ∈ F7

1,3,5,6,

and M (2) ⊂ F7
1,2,4,6 is the G0-orbit through the flag

ε(2) = (〈ε2〉, 〈ε2, ε4〉, 〈ε2, ε4, ε1, ε7〉, 〈ε2, ε4, ε1, ε7, ε3, ε6〉
) ∈ F7

1,2,4,6.

Being totally real, M (2) coincides with Me.
Denote by λ∗ : R → Re the Cayley transform with respect to the roots ε1 − ε7

and ε3−ε6. According to (9.9), (9.10), the fundamental group of Me is generated by
ξ1 = ξλ∗(ε2−ε4), ξ2 = ξλ∗(ε4−ε1), ξ4 = ξλ∗(ε7−ε3) and ξ6 = ξλ∗(ε6−ε5), with relations
ξ2

i = 1 and ξiξ j = ξ jξi for i, j = 1, 2, 4, 6.
The semisimple part se

0 of the isotropy subgroup of Me is the subgroup corre-
sponding to the root subsystem {±(ε1−ε7),±(ε3−ε6)}, the subset E in Remark 9.8
is {ε1 − ε7, ε3 − ε6} and the map f : W(E) → �∗/2�(�) is a bijection. By Theo-
rem 9.7 the fundamental group of M is generated by ξ1 and ξ2ξ4ξ6 and is isomorphic
to Z2

2.
The space of algebraic arc components of M is the G0-orbit Ma ⊂ F7

1,4,6
through the flag

ε(a) = (〈ε2〉, 〈ε2, ε4, ε1, ε7〉, 〈ε2, ε4, ε1, ε7, ε3, ε6〉
) ∈ F7

1,4,6,

showing that in this case e � qa . Furthermore, the algebraic arc components are
not simply connected, and their fundamental group is isomorphic to Z2.

Example 11.6. We keep the notation of the previous example. We consider now
the basis (w1, . . . , w7) of C7 given by

w1 = e1 + ie7, w2 = e2, w3 = e3, w4 = e4

w5 = e5, w6 = e6, w7 = e1 − ie7.

With G0 = SL(7, R), we consider the G0-orbit M ⊂ F7
2,3 through the flag

ω = (〈w1, w2〉, 〈w1, w2, w3〉
) ∈ F7

2,3.

Then Me = M (1) ⊂ F7
1,4 is the G0-orbit through the flag

ω(1) = (〈w2〉, 〈w1, w2, w3, w7〉
) ∈ F7

1,4.
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On the other hand, the space Ma of the algebraic arc components of M is the G0-
orbit Ma ⊂ F7

1,2,4 through the flag

ω(a) = (〈w2〉, 〈w2, w3〉, 〈w1, w2, w3, w7〉
) ∈ F7

1,2,4.

Thus we obtain in this case that qa � e.

Proposition 11.7. Let (g0, q) be a parabolic CR algebra, (ϑ, h0) an adapted Car-
tan pair, R the root system of g with respect to the complexification of h0, and Q
the parabolic set of q. Assume that there is an S-fit Weyl chamber in C(R,Q) with

ᾱ � 0 if α ∈ Rcpx and α � 0. (11.10)

Then:

qa = e, (11.11)

qw + q̄w is a Lie subalgebra of g, (11.12)

if moreover (g0, q) is weakly nondegenerate, then e = qw + q̄w. (11.13)

In particular (11.11) holds true when (g0, q) is the parabolic CR algebra corre-
sponding to a closed G0-orbit.

Proof. Fix an adapted Cartan pair (ϑ, h0) and choose an S-fit Weyl chamber C for
(g0, q), such that (11.10) is satisfied. We have qw + q̄w = qn + q̄n + (q∩ q̄). Hence,
to prove (11.12), we only need to show that, if a root γ is the sum γ = α + β of a
root α ∈ Qn and a root β ∈ Q̄n \ Q, then γ ∈ Qw ∪ Q̄w. Because of (11.10), β

is a negative imaginary root. If also α is imaginary, then γ is imaginary and hence
belongs to Qw ∪ Q̄w. If α is not imaginary, then γ is positive and not imaginary,
and thus belongs to Q ∩ Q̄.

Statement (11.13) follows from (11.12).
While proving (11.11), by Lemma 11.2 we can assume that (g0, q) = (g0, q

(0))

is weakly nondegenerate. Since by (11.13) we have in this case qw+q̄w = q(1) = e,
the inclusion qa ⊂ e follows by Lemma 11.4.

We claim that e ⊂ Ng(q
n ∩ q̄n) + ∑

α∈Rim
gα . Indeed let α ∈ R be a root for

which gα ⊂ e but gα 
⊂ Ng(q
n ∩ q̄n). Since e = qn + q̄n + (q ∩ q̄), then either

α ∈ Qn \ Q̄, or α ∈ Q̄n \ Q. By (11.10), in both cases we have α ∈ Rim. Since
Ng(q

n ∩ q̄n) ⊂ qa by [28, Theorem 8.5(2)], and
∑

α∈Rim
gα ⊂ qa because qa is the

complexification of a real parabolic subalgebra of g0, we obtain that e ⊂ qa .
The last statement is a consequence of the fact (see e.g. [3]) that for a closed

orbit there are S-fit Weyl chambers for which (11.10) holds true.
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