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Regularizing and self-avoidance effects
of integral Menger curvature

PAWE�L STRZELECKI, MARTA SZUMAŃSKA AND HEIKO VON DER MOSEL

Abstract. We investigate geometric curvature energies on closed curves involv-
ing integral versions of the Menger curvature. In particular, we prove geometric
variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may
be viewed as counterparts to respective results on one-dimensional sets in the
context of harmonic analysis.
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(secondary).

1. Introduction

Let γ : S1 → R3 be a continuous, closed and rectifiable curve, with an arc-
length parametrization � : SL ∼= R/LZ → R3, defined on the circle of length
L . For three different arclength parameters s, t, σ ∈ SL we look at the radius
R(�(s), �(t), �(σ )) of the smallest circle containing the curve points �(s), �(t),
and �(σ), which in general is simply the circumcircle of these points. Now we ask
the question:

How much information about the shape of γ and about its arclength param-
etrization � can be extracted from suitable evaluations of R on all triples of
distinct curve points?

The answer is: quite a lot, that is, sufficient control on R along γ both allows us to
control local curvature and gives us information about how the curve is embedded
in the ambient space R3. In fact, the function R gives rise to a whole range of what
we call geometric curvature energies with regularizing and self-avoidance effects.

It was the idea of Gonzalez and Maddocks [14] to successively search for the
smallest such radii while varying one or several of the three curve points. In this
way, one obtains for fixed arclength parameters s, t ∈ SL the intermediate radius

�[γ ](s, t) := inf
σ∈SL\{s,t} R(�(s), �(t), �(σ )), (1.1)
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or for fixed s ∈ SL the so-called global radius of curvature

ρG[γ ](s) := inf
t∈SL\{s} �[γ ](s, t), (1.2)

and finally,
�[γ ] := inf

s∈SL
ρG[γ ](s). (1.3)

Motivated by analytical and computational issues arising in the natural sciences
such as microbiology, Gonzalez and Maddocks were on the search for an analyti-
cally tractable notion of thickness for curves that does not rely on additional smooth-
ness assumptions as, e.g., the normal injectivity radius in differential geometry re-
quires. Indeed, a positive thickness �[γ ] leads to embedded curves with bounded
curvature, which is reflected in the following theorem proved in [15, Lemma 2], [29,
Theorem 1]:

�[γ ] is positive if and only if the arclength parametrization is injective and
of class C1,1 ∼= W 2,∞.

The latter means that � is not only continuously differentiable but has also a Lip-
schitz continuous tangent, which is equivalent to having bounded second weak
derivatives of � in the sense of Sobolev. This result was the starting point for a
number of variational applications involving curves or elastic rods with positive
thickness and under topological constraints [15, 5, 13, 11, 12]. However, the thick-
ness �[·] depends not only highly nonlinearly but also in a nonsmooth fashion on
the curve γ , a fact which turned out to be a challenge for regularity investigations
[30, 31, 4], and for numerical treatment [1, 6, 7].

Replacing the minimization in (1.3) by an integration one obtains a relaxed
variant of a geometric curvature energy, namely

Up(γ ) :=
(∫

SL

ds

ρG[γ ](s)p

)1/p

, p ∈ [1, ∞], (1.4)

where we notice that U∞(γ ) = 1/�[γ ]. In [35, Theorem 1] we could prove
the following generalization of the above mentioned characterization of embedded
Sobolev curves:

Up is finite if and only if the arclength parametrization � is injective and of

class W 2,p for p ∈ (1, ∞].
Moreover, quantitative estimates allow for variational applications in the class of
embeddings involving topological constraints analogous to those treated in [15].
For instance, we could show the existence of Up-minimizing curves in given knot
classes; see [35, Theorem 5].

Substituting the remaining minimizations in (1.2) and (1.1) by integrations (as
already suggested in [14] and [2]) we establish in the present paper the following
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results which may be viewed as “geometric Morrey-Sobolev imbedding theorems”.
In fact, one may view the integrands as p-th powers of (a kind of) curvature, i.e. as
counterparts of |�′′|p, and one should notice the dimension of the respective domain
of integration.

Theorem 1.1 (Geometric Morrey-Sobolev imbedding in two dimensions). If the
curve γ : S1 → R3 satisfies

Ip(γ ) :=
∫

SL

∫
SL

dsdt

�[γ ](s, t)p
< ∞ for some p ∈ (2, ∞], (1.5)

then the arclength parametrization � : SL → R3 is injective and of class

C1,1− 2
p (SL , R3).

Theorem 1.2 (Geometric Morrey-Sobolev imbedding in three dimensions). If
γ : S1 → R3 satisfies

Mp(γ ) :=
∫

SL

∫
SL

∫
SL

dsdtdσ

R p(�(s), �(t), �(σ ))
< ∞ for some p ∈ (3, ∞], (1.6)

and if � : SL → R3 is a local homeomorphism, then:
(i) � ∈ C1,1− 3

p (SL , R3);
(ii) The image �(SL) is C1-diffeomorphic to the circle, and the mapping � : SL →

�(SL) is a k-fold covering for k = L/d, where

d := inf{|t − s| : t, s ∈ SL , t �= s and �(t) = �(s)} > 0. (1.7)

Moreover, if there exists, in addition, at least one simple point of �, then � is
injective.

The considerably more complicated statement of Theorem 1.2 reflects the fact that
the pure integral geometric curvature energy Mp(·) controls merely the image of γ ,
which can be only transferred to regularity statements about the arclength paramet-
rization � under the mild additional assumption of a local homeomorphism. The
more restrictive energy Ip(·) inflicts direct control over the arclength parametriza-
tion due to the one minimization procedure left in the definition of �[γ ](·, ·) in (1.1).
This distinction between Mp and Ip can be illustrated by choosing a “bad” arc-

length parametrization �̃ : [0, 4π ] → S1 of the unit circle S1 oscillating back and
forth about one image point: �̃ has a discontinuous tangent with countably many
discontinuities, and Ip(�̃) is infinite because of the double points (cf. examples in

Section 3.2). The energy Mp(�̃), however, is finite, since the integrand is constant

and �̃ has finite length; see Section 3 for the details.
Both Theorem 1.1 and Theorem 1.2 follow via Hölder’s inequality from the

following more general result using only a local squared curvature condition, which
can be interpreted as a “geometric Morrey-space imbedding”:
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Theorem 1.3 (Geometric Morrey-space imbeddings). Assume that therearecon-
stants β ∈ (0, 1], r0 > 0, and M0 ≥ 0 such that γ : S1 → R3 satisfies one of the
following two conditions (where we denote Br (x) := (x − r, x + r) ⊂ SL) :

(i)
∫

Br (τ1)

∫
Br (τ2)

dsdt

�[γ ](s, t)2
≤ M0r2β

(1.8)

for all r ∈ (0, r0], and τ1, τ2 ∈ SL;

(ii)
∫

Br (τ1)

∫
Br (τ2)

∫
Br (τ3)

dsdtdσ

R2(�(s), �(t), �(σ ))
≤ M0r1+2β

(1.9)

for all r ∈ (0, r0], τ1, τ2, τ3 ∈ SL ,

and, in addition, the arclength parametrization � : SL → R3 is a local homeo-
morphism.

Then � ∈ C1,β(SL , R3) and statement (ii) of Theorem 1.2 holds true as well.

The assumption that � be a local homeomorphism is necessary to control the
behaviour of the parametrization. Even without this assumption we can say more
about the image �(SL).

Theorem 1.4. Assume that there are constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0
such that the curve γ satisfies (1.9). Then �(SL) is an embedded 1-dimensional
submanifold of R3 (possibly with boundary) of class C1,β .

Theorems 1.2, 1.3, and 1.4 have interesting counterparts in the framework of
harmonic analysis. Here, it was Melnikov’s and Verdera’s [24, 25] discovery that
the geometric curvature energy Mp for p = 2 – called the total Menger curva-

ture1 – evaluated on one-dimensional Borel sets in the complex plane served as
a crucial quantity to characterize removable sets for bounded analytic functions;
consult also the surveys [22, 23, 27, 37]. It follows from the work of Jones, and
David and Semmes [9] (see [27, Theorem 39]) in that context that Ahlfors regular
one-dimensional Borel sets E ⊂ C with∫∫∫

(E∩Br (ξ))3

dH 1(x)dH 1(y)dH 1(z)

R2(x, y, z)
≤ M0r for all r ∈(0, r0], ξ ∈C, (1.10)

are uniformly rectifiable, i.e., are contained in the graph of a bi-Lipschitz map
f : R → C. This resembles our geometric Morrey-space imbedding, Theorem 1.3,
and also Theorem 1.4, on the level of (generally disconnected) one-dimensional

1 Coined after the Austrian mathematician Karl Menger who considered the circumcircle radius
formula purely in terms of distances to generalize differential geometric concepts such as curva-
ture to general metric spaces; see [26, 3].
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sets. The Morrey-Sobolev imbedding, Theorem 1.2, on the other hand, can be
compared to Léger’s remarkable result [18] stating that one-dimensional Borel sets
E ⊂ Rn with finite total Menger curvature M2(E) < ∞ are in fact 1-rectifiable in
the sense of geometric measure theory. That is, such sets E are essentially contained
in a countable union of Lipschitz graphs2. These relations to deep results of har-
monic analysis generate a set of new questions such as: What regularity does the
arclength parametrization of curves with finite Mp-energy possess if p ∈ [2, 3]?
Under what circumstances do one-dimensional Borel sets E with Mp(E) < ∞,
p > 3, enjoy higher regularity? What about higher-dimensional analogues? Let us
point out that a generalization of thickness �[·] to two-dimensional surfaces with
arbitrary co-dimension was introduced and investigated in [33,34]. A generalization
of total Menger curvature M2(·) to higher-dimensional sets was recently initiated
in [19,20]. In an ongoing research project we are investigating geometric curvature
energies Mp(·) for hypersurfaces; see the upcoming paper [36].

The central tool to prove Theorem 1.3 will be a “Uniform cone flatness the-
orem”, Theorem 2.3 stated in Section 2 and proven in Section 5. It says that a
curve with a local curvature condition (1.9) is locally contained in arbitrarily narrow
cones, which can be interpreted as a “geometric differentiability”, since it implies
the existence of a tangent line at every point of γ . This opens up the pathway to
proving uniform control of local injectivity of � (see Proposition 2.7 and Corollary
2.8) as well as to prove differentiability of � everywhere with a uniform estimate
on the Hölder norm of �′; see Theorem 2.10. Moreover, one can use Theorem
2.3 to obtain compactness results for families of curves with uniformly bounded
Mp-energy for some p > 3. This opens the door to variational applications on
embedded curves with topological constraints; see Section 4.

Section 3 is devoted to the self-avoidance effects that the local curvature con-
ditions (1.8) and (1.9) imply. Assuming (1.9) and using the uniform cone flat-
ness and its consequences, we prove there that �(SL) is a 1-dimensional embed-
ded topological manifold in R3 (Theorem 3.1) and the embedding has to be tame
(cf. Remark 3.2). Under the additional assumption that � is a local homeomor-
phism, two things can happen. Either � has at least one simple point; then, we prove
in Theorem 3.7 that � is in fact injective. Otherwise, if there are no simple points
of �, then � is a covering map. We establish this fact in Theorem 3.8. Finally,
we show that assumption (1.8) is stronger than (1.9) and implies that � must be
injective.

The more technical proof of the Uniform cone flatness theorem is carried out
in Section 5, whereas Section 6 contains subtle measure-theoretic and iterative ar-
guments to improve the Hölder exponent of the derivative �′ to reach the full state-
ment of Theorem 1.3. Combining higher smoothness of � with the fact that �(SL)

is a topological manifold leads quickly to the proof of Theorem 1.4. Finally, in
Section 7 we show that it is possible to state and prove all the main results of the

2 Generalizations of this result to metric spaces were proved by Hahlomaa [16,17]; see also recent
work of Schul [28]. For Borel sets of fractal dimensions p/2, 0 < p < 2, we refer to the work of
Lin and Mattila [21].
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paper assuming only that
∫

Br

∫
Br

∫
Br

1
R ≤ K0r2+β (which, by virtue of the Hölder

inequality, is weaker than (1.9)).
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2. Uniform cone flatness and differentiability

2.1. Notation

We introduce here some notation and additional conventions which will be used
throughout the whole paper.

The curve and its parametrization(s). As already mentioned in the introduction,
γ : S1 → R3 always is a continuous, closed and rectifiable curve; we use capital-
ization to denote its arclength parametrization � : SL ∼= R/LZ → R3, defined on
the circle SL of length L . We make no other a priori assumptions on γ .

To fix the terminology, we adopt the following:

Definition 2.1. We say � : SL ∼= R/LZ → R3 is arclength iff � is Lipschitz and
|�′| = 1 almost everywhere on SL .

Note that we do not require � to be 1-1. Sometimes it will be convenient to
slightly abuse the notation and to identify γ with the image �(SL) ⊂ R3. It will
turn out later on that γ = �(SL) is a manifold so that one can always use another
(injective) arclength parametrization of γ .

Cones, strips and diamonds. For x �= y ∈ R3 and ε ∈ (0, π
2 ) we denote by

Cε(x; y) :=
{

z ∈ R
3 : ∃ t �= 0 such that <)(t (z − x), y − x) <

ε

2

}
the double cone whose vertex is at the point x , with cone axis passing through y,
and with opening angle ε.

For a �= b ∈ R3 we introduce the open infinite “strip”

U (a, b) = {v ∈ R
3 : 〈v − a, b − a〉 > 0, 〈v − b, a − b〉 > 0}
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and the closed half space

H+(a, b) = {v ∈ R
3 : 〈v − a, b − a〉 ≥ 0}.

For technical reasons it is convenient to use cones with specific opening angles ε

depending on a, b and the curve γ , given by

ε(a, b, γ ) := (
c(β)M0

) 1
6−4β |a − b| 2β

6−4β . (2.1)

Here, β ∈ (0, 1] and c(β) denotes the constant from Theorem 2.3 (see (5.20) for its
exact value). For this value of ε we shall use the abbreviation

D(a, b) := Cε(a,b,γ )(a, b) ∩ Cε(a,b,γ )(b, a). (2.2)

Finally, we set
DU (a, b) := D(a, b) ∩ U (a, b), (2.3)

which is a diamond shaped region with tips a and b on the two parallel planes
bounding the strip U (a, b). We shall be using the sets (2.2) and (2.3) only for
points a, b ∈ γ that are sufficiently close to guarantee that ε(a, b, γ ) < π/2.

Lenses and doughnuts. For a �= b ∈ R3 and r > 0, we write

�(a, b; r) : =
⋂

{Br : a, b ∈ ∂ Br } (2.4)

to denote the “lens-shaped” region which is formed by the intersection of all open
balls Br of radius r that contain both points a, b on their boundary ∂ Br . We also
write

V (a, b; r) : =
⋃

{Br : a, b ∈ ∂ Br } (2.5)

to denote the “thick (degenerate) doughnut” formed by the union of all such balls.

Finally, let us note two simple facts which are used very often in the estimates.

Lemma 2.2 (Angle bounds). The following estimates hold:

(i) If x, y ∈ DU (a, b), then∣∣∣∣ x − a

|x − a| − y − a

|y − a|
∣∣∣∣ ≤ ε(a, b, γ ). (2.6)

(ii) If x ∈ �(a, b; r), then

<)

(
x − a

|x − a| ,
b − a

|b − a|
)

≤ arc sin
|a − b|

2r
. (2.7)
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2.2. Uniform cone flatness

Numerous properties of classes of rectifiable curves γ satisfying the local curvature
condition (2.8) – like the differentiability of their arclength parametrizations �,
Hölder continuity of �′, but also the fact that under a mild additional assumption
each such arclength parametrization � must be either injective or a k-fold covering
– are based on the following crucial result.

Theorem 2.3 (Uniform cone flatness). Assume that there are constants β ∈(0, 1],
r0 > 0, and M0 ≥0, such that∫

Br (τ1)

∫
Br (τ2)

∫
Br (τ3)

ds dt dσ

R2(�(s), �(t), �(σ ))
≤ M0r1+2β

for all 0 < r ≤ r0, and τ1, τ2, τ3 ∈ SL .

(2.8)

Then there exists a constant c = c(β) > 1 depending only on β such that if two
numbers, ε ∈ (0, π/2) and η > 0, satisfy the relation

ε6−4β ≥ c(β)M0η
2β and η ≤ min

{
1
2 diam �(SL), r0

}
, (2.9)

then for every s, t ∈ SL such that |�(s) − �(t)| = η we have

�(SL) ∩ B2η(�(s)) ⊂ Cε(�(s); �(t)).

Remark 2.4. When

Mp(γ ) =
∫

SL

∫
SL

∫
SL

dx dy dz

R p(�(x), �(y), �(z))
< ∞

for some p > 3, then assumption (2.8) is satisfied with β = 1 − 3
p and M0 =

23(1− 2
p )

M
2
p
p (γ ). This follows easily from the Hölder inequality for exponents p/2

and p/(p − 2), since∫
Br (τ1)

∫
Br (τ2)

∫
Br (τ3)

dx dy dz

R2(�(x), �(y), �(z))

≤ (
2r

)3(1− 2
p )

(∫
Br (τ1)

∫
Br (τ2)

∫
Br (τ3)

dx dy dz

R p(�(x), �(y), �(z))

)2/p

and 3(1 − 2
p ) = 1 + 2(1 − 3

p ). Similarly, if Ip(γ ) < ∞ for some p ∈ (2, ∞] then
(2.8) holds true as well.

Remark 2.5. It seems that our technique of proof of the Uniform cone flatness
theorem does not allow a weakening of condition (2.8) with respect to the centers
τ1, τ2, and τ3. We do need three different centers for the balls in the domain of
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integration, in contrast to the corresponding result of Jones, David and Semmes
mentioned in the introduction; see (1.10). However, once we have shown initial
Hölder regularity of the tangent �′ with some Hölder exponent α ∈ (0, β) we can
improve the Hölder exponent up to β using a growth condition weaker than (2.8),
namely growth on balls with coinciding centers; see (6.2).

Note also that for M0 = 0 the theorem is trivial since in that case γ must be a
segment of a straight line.

We postpone the proof of Theorem 2.3 for a while and discuss its conse-
quences.

Since the statement of Theorem 2.3 is symmetric in the parameters s and t , we
immediately infer:

Corollary 2.6 (Diamond property I). Assuming (2.8) for β ∈ (0, 1], r0 > 0, and
M0 ≥ 0, we obtain for all x, y ∈ SL with

δ := |�(x) − �(y)| ≤ min

{
diam γ /2, r0, (c(β)M0 + 1)−1/2β

(π

2

) 6−4β
2β

}
(2.10)

the inclusion
�(SL) ∩ B2δ(�(x)) ⊂ D(�(x), �(y)),

for

ε = (c(β)M0)
1

6−4β |�(x) − �(y)| 2β
6−4β .

In order to prove that �′ exists everywhere, and to establish the global injectivity
of �, we need to impose an extra assumption on � (cf. the examples in Section 3).
The following statement shall be useful.

Proposition 2.7 (Uniform local injectivity I). Assume that (2.8) holds for some
constants β ∈ (0, 1], r0 > 0, and M0 ≥ 0, and suppose that an arclength para-
metrization � of γ is a local homeomorphism. There exists a δ0 = δ0(β, M0) > 0
such that if a closed interval I = [x1, x2] ⊂ SL satisfies

diam �(I ) ≤ δ0,

then � |[x1,x2] is injective.

Since the arclength parametrization is Lipschitz with constant 1, this proposi-
tion implies the following:

Corollary 2.8 (Uniform local injectivity II). If (2.8) holds for some constants β ∈
(0, 1], r0 > 0, and M0 ≥ 0, and if � is a local homeomorphism, then � is injective
on each interval I ⊂ SL with L 1(I ) = δ0(β, M0) > 0.
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Proof of Proposition 2.7. Fix

δ0 = δ0(β, M0) := 1

8
min

{
diam γ, r0, (c(β)M0 + 1)−1/2β

(π

4

) 6−4β
2β

}
, (2.11)

so that

ε0 : = (c(β)M0)
1

6−4β δ

2β
6−4β

0 <
π

4
. (2.12)

Choose any I = [x1, x2] ⊂ SL with diam �(I ) ≤ δ0. Without loss of generality we
suppose that x1 = 0 ∈ SL and �(x1) = 0 ∈ R3. To establish injectivity of � on I ,
we shall prove that f (t) := |�(t) − �(0)| is strictly increasing on [0, x2].

Assume the contrary. Then f must have a local maximum (not necessarily
strict) at some t0 ∈ (0, x2). We can assume f (t0) > 0 since otherwise f ≡ 0
on an interval which is not possible since � is a local homeomorphism. Note that
f (t0) ≤ diam �(I ) ≤ δ0.

In every neighbourhood of t0 we can find t1 �= t2 such that

�(t1), �(t2) ∈ ∂ Bδ(0) ∩ H+(0, �(t0)),

for some 0 < δ = |�(ti ) − �(0)| ≤ f (t0) ≤ δ0 (i = 1, 2). By Corollary 2.6, we
have

�(SL) ∩ B2δ(0) ⊂ D(0, �(t1)).

Recall from (2.2) that D(0, �(t1)) = Cε(0,�(t1),γ )(0, �(t1)) ∩ Cε(0,�(t1),γ )(�(t1), 0)

with ε(0, �(t1), γ ) ≤ ε0 defined in (2.12).
Hence, again by Corollary 2.6,

�(t2) ∈ �(SL) ∩ ∂ Bδ(0) ∩ H+(0, �(t0))

⊂ D(0, �(t1)) ∩ ∂ Bδ(0) ∩ H+(0, �(t0))

= {�(t1)}.
Thus in every neighbourhood of t0 there exist different points t1, t2 such that �(t1)=
�(t2). This contradicts the assumption that � is a local homeomorphism.

Combining Corollary 2.6 and 2.8 we obtain another:

Corollary 2.9 (Diamond property II). Under the assumptions of Corollary 2.8,
we have

�
(
(x, x + t)

) ⊂ DU
(
�(x), �(x + t)

)
for each x ∈ SL and each t ∈ (0, δ0(β, M0)).

Now we are ready to prove the existence and continuity of the derivative of
every arclength parametrization of any curve satisfying the local curvature condition
(2.8).
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Theorem 2.10. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0,

and M0 ≥ 0, and that the arclength parametrization � : SL → R3 of the curve
γ : S1 → R3 is a local homeomorphism. Then �′ is defined everywhere on SL , and
there is a constant C� depending on diam γ, r0, β, and M0, such that

|�′(s) − �′(t)| ≤ C�|s − t | 2β
6−4β for all s, t ∈ SL . (2.13)

Moreover, for |s−t | ≤ δ0(β, M0) inequality (2.13) holds with C� = (c(β)M0)
1

6−4β .

Proof. First we chose x ∈ SL and 0 < t < δ0 = δ0(β, M0) (where δ0 is the number
from Proposition 2.7 and Corollary 2.8) such that �′(x), �′(x + t) exist and have
length 1. By Corollary 2.9 we have

�((x, x + t)) ⊂ DU (�(x), �(x + t)).

Hence, for any two points x1, x2 such that x < x1 < x2 < x + t the difference
quotients

�(x1) − �(x)

x1 − x
and

�(x2) − �(x + t)

x2 − (x + t)

belong to the same one-sided cone with opening angle ε(�(x), �(x + t), γ ) ≤ ε0
defined by (2.12). This observation implies that �′(x) and �′(x + t) (which are unit
vectors!) differ at most by ε(�(x), �(x + t), γ ); see Lemma 2.2.

Therefore,

|�′(x) − �′(y)| ≤ (
c(β)M0

) 1
6−4β |x − y| 2β

6−4β , (2.14)

for all x, y ∈ SL such that |x − y| ≤ δ0 and �′(x), �′(y) exist and have length 1.
Next, a standard calculation shows that

|�′(x) − �′(y)| ≤ C̃(β, M0)|x − y| 2β
6−4β .

also for pairs of parameters x, y ∈ SL with |x − y| > δ0, where the derivatives
exist and have length 1. Hence, �′ has a unique Hölder continuous extension to the
whole parameter circle SL satisfying the same Hölder estimate, i.e. (2.13) for

C� := max{(c(β)M0)
1

6−4β , 2δ0(β, M0)
− 2β

6−4β }. (2.15)

As � is Lipschitz, we have �(t) − �(s) = ∫ t
s �′(τ ) dτ for all parameters s, t ∈ SL .

Therefore, it is a routine matter to check that this extension yields the derivative of
� at each point of SL .
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3. The image of �, self-avoidance, injectivity

3.1. The image of � and its topological properties

In this section we prove that every curve � which satisfies the assumptions of the
Uniform cone flatness theorem (Theorem 2.3) is an embedded topological subman-
ifold of R3 and, if � is injective in addition, it is tame (cf. Remark 3.2 below).
In particular, by Remark 2.4, simple curves with finite Mp-energy, p > 3, are
tame. This fact is comparable with the corresponding result of Freedman, He, and
Wang [10, Section 4] for the Möbius energy, only that their proof is more involved
due to lack of regularity.

Theorem 3.1. Assume that � : SL → R3 satisfies the assumptions of Theorem 2.3.
Then, γ = �(SL) is a 1-dimensional topological submanifold of R3 (possibly with
boundary), i.e., γ is homeomorphic to a circle or a closed segment.

Proof. It suffices to show that for each point P ∈ γ there exists an open neighbour-
hood � ⊂ R3 containing P such that � ∩ γ is homeomorphic to the open interval
(−1, 1) where 0 ∈ (−1, 1) corresponds to P , or such that � ∩ γ is homeomorphic
to the interval [0, 1) again with 0 ∈ [0, 1) corresponding to the (boundary point)
P. The proof of this fact is based on the Uniform Cone Flatness theorem and its
immediate consequences.

We fix P ∈ γ . Let δ0 ≡ δ0(β, M0) > 0 be defined by (2.11), and let B :=
Bδ0(P).

Invoking connectivity of γ and applying Corollary 2.6 for ε = π/4, we see that
there exists a point Q ∈ γ ∩ ∂ B such that Q is connected to P by an arc γP Q ⊂ B
of γ ; we have

γ ∩ B ⊂ Cπ/4(P, Q) ∩ Cπ/4(Q, P)

and
γP Q ⊂ H+(P, Q).

For sake of brevity, let H+ := H+(P, Q) and H− := R3 \ int H+. Theorem 2.3
guarantees that

(i) For each r ∈ (0, δ0), the intersection γ ∩ H+ ∩ ∂ Br (P) contains precisely one
point of γ .

(ii) For each r ∈ (0, δ0), the intersection γ ∩ H− ∩ ∂ Br (P) contains at most one
point of γ .

Indeed, since r < δ0, (2.9) is satisfied for η := r and ε := π/4. Suppose (say) that

Q1, Q2 ∈ γ ∩ H+ ∩ ∂ Br (P);
then, by Corollary 2.6,

{Q2} ⊂ Cπ/4(P, Q1) ∩ Cπ/4(Q1, P) ∩ Cπ/4(P, Q).
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Thus, we necessarily have Q2 = Q1. Moreover, (i) holds since the arc γP Q joins
P to Q ∈ ∂ B and is contained in H+. Now, two cases may happen.

Case 1. There exists a number δ ∈ (0, δ0] such that

γ ∩ H− ∩ ∂ Br (P) �= ∅ for each r ∈ (0, δ]. (3.1)

Case 2. For every number δ ∈ (0, δ0] we have

γ ∩ H− ∩ ∂ Br (P) = ∅ for some r ∈ (0, δ]. (3.2)

If Case 2 holds, then – since γ is connected – we have in fact

γ ∩ H− ∩ ∂ Br (P) = ∅ for each r ∈ (0, r1], (3.3)

where r1 is some positive number in (0, δ0).
It is now straightforward to check that if (3.1) holds, then γ ∩ Bδ(P) is homeo-

morphic to the interval (−δ, δ), and if (3.3) holds, then γ ∩ int Br1(P) is homeo-
morphic to the interval [0, r1) and P is one of the boundary points of γ . To verify
the details, take the obvious mapping

f (Q) =
{

r for Q ∈ ∂ Br (P) ∩ H+,

−r for Q ∈ ∂ Br (P) ∩ H−.

It is clear that f is well defined and continuous. If the inverse f −1 =: g were
discontinuous, one could obtain a sequence r j → r such that all points Q j = g(r j )

were at least at some positive distance from Q = g(r). A contradiction follows
from Corollary 2.6 (Diamond property I): Q would not belong to the diamonds
with vertices at Q j and P for j sufficiently large, but this is impossible.

Remark 3.2. Recall that a simple closed curve � : SL ↪→ R3 is tame if the em-
bedding � : SL = SL × {0} ↪→ R3 extends to an embedding of SL × B2

r (0) �

SL × R2 ↪→ R3. Equivalently, the embedding � : SL ↪→ R3 is tame if an ambi-
ent isotopy deforms the curve into some polygonal (embedded) curve in R3. Let
us note that every simple closed curve � : SL ↪→ R3 which satisfies (2.8) is tame
since � ∈ C1 according to Theorem 2.10. (See the book of Crowell and Fox, [8,
pages 147-152] who prove that every simple arclength parametrized C1 curve is
ambient isotopic to a regular embedded polygon.) It is an easy exercise to give an-
other simple proof of tameness of � by constructing directly the desired extension
of the embedding, where one can use the fact that � is C1 and, like [10] do, refer to
a result of Bing stating that every locally tame arc is tame.

The assumption that � be simple (or closed) is of course not a serious restric-
tion here. It follows from Theorem 3.1 that each curve � : SL → R3 which satisfies
(2.8) has an injective arclength parametrization, and for this new parametrization an
argument based on [8] works again: the arc �(SL) is tame.
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3.2. Examples of “bad” parametrizations

It is clear that if � : SL → R3 is an arclength mapping, then (2.8) depends in fact
only on the shape of the image of �. This is why without some extra assumption �

might be nondifferentiable at some points.
Let

F(s) = (cos s, sin s, 0) for s ∈ [0, 2π ].
Example 3.3. If ϕ(t) = π −|π − t | for t ∈ [0, 2π ], then � := F ◦ϕ : S2π → R3 is
arclength. Obviously, Mp[�] is finite for every p > 0, (2.8) is satisfied for β = 1,
and γ = �(SL) is a smooth 1-dimensional manifold with boundary (simply: a
doubly covered semicircle), but � is not differentiable at t = π , since � is not a
local homeomorphism.

Example 3.4. Assume that A ⊂ [0, 4π ] is an H 1-measurable subset such that
H 1(A) = 3π and moreover

H 1(A ∩ [0, x]) ≥ x

2
for all x ∈ [0, 4π ]. (3.4)

Set gA(x) := 2χ
A(x) − 1 (i.e. gA ≡ 1 on A and gA ≡ −1 off A), and

�A(t) : =
∫ t

0
gA(x) dx (3.5)

(see Figure 3.1; here, A is simply a union of several disjoint intervals). It is easy to
see that �A maps [0, 4π ] onto [0, 2π ], �A(0) = 0, �A(4π) = 2π and �′

A(t) = ±1
for almost every t ∈ [0, 4π ]. The map � := F ◦ �A is arclength, γ = �(S4π) is
a circle, Mp[�] is finite for every p > 0, and (2.8) holds with β = 1. However,
� is not differentiable everywhere (again, the reason is that � is not a local homeo-
morphism).

2π

π

π 2π 3π 4π

φA

Figure 3.1.
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3.3. Locally homeomorphic parametrizations

A parameter s ∈ SL is called a simple point of � if �(t) �= �(s) for every t ∈
SL , t �= s. If s ∈ SL is not a simple point, we call it a multiple point; we say that
s ∈ SL is a point of multiplicity k if the cardinality of the set {t ∈ SL : �(t) = �(s)}
is equal to k.

It is easy to see that if � is a local homeomorphism, then all points s ∈ SL have
finite multiplicity.

Lemma 3.5. If � is a local homeomorphism then the set of all multiple points of �

is compact.

Proof. Since SL is compact, it is enough to show that the set of all multiple points
of � is closed.

Let {xn}∞n=1be a convergent sequence of multiple points and let x = limn→∞ xn .
We will show that x is also a multiple point.

For every n there exists a point yn �= xn such that �(xn) = �(yn). By continu-
ity of � we have

�(xn) −−−→
n→∞ �(x) and �(yn) −−−→

n→∞ �(x).

Compactness of SL provides existence of a convergent subsequence ynk . Let y =
limk→∞ ynk ; by continuity of �, we have �(ynk ) → �(y). Of course �(x) = �(y).
In order to prove the lemma it suffices to show that x �= y.

Suppose that x = y. Then sequences xnk , ynk tend to x , thus for every δ > 0
we can find k such that xnk , ynk ∈ [x − δ, x + δ] and �(xnk ) = �(ynk ). Therefore
� is not injective in any neighbourhood of x . That contradicts the assumption that
� is a local homeomorphism.

Lemma 3.6. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0, and
M0 ≥ 0, and suppose that � is a local homeomorphism. If 0 ≤ y < x < L are
such that |x − y| < δ0, where δ0 is given by (2.11), then

�(SL) ∩ DU (�(x), �(y)) ⊆ �([y, x]).
Remark. This lemma simply means that locally, in every set DU (�(x), �(y)),
there are no points of γ besides those that belong to the arc �([y, x]).
Proof. Let t ∈ SL \ [y, x] be a point whose image belongs to DU (�(x), �(y)). Set
δ := |�(x) − �(t)|. Corollary 2.9 applied to �((y, x)) guarantees that

A : = �([y, x]) ∩ ∂ Bδ(�(x)) ∩ DU (�(x), �(y)) �= ∅.

Let s ∈ [y, x] be a parameter such that �(s) belongs to the set A defined above.
Then |�(t) − �(x)| = |�(s) − �(x)| = δ and Corollary 2.9 applied to �((s, x))
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implies that

�(t) ∈ �(SL) ∩ ∂ Bδ(�(x)) ∩ DU (�(y), �(x))

⊂ �(SL) ∩ DU (�(x), �(s)) ∩ ∂ Bδ(�(x))

= {�(s)}.
Thus �(t) = �(s) ∈ �([y, x]).
Theorem 3.7. Assume that (2.8) holds for some constants β ∈ (0, 1], r0 > 0,

and M0 ≥ 0, and suppose that the arclength parametrization � : SL → R3 of
γ : S1 → R3 is a local homeomorphism. If there exists at least one simple point of
� then � is injective.

Proof. Suppose that � is not injective. Let x̃ be a given simple point; choose a
multiple point y which is nearest to x̃ (the existence of y follows from Lemma 3.5).
Without any loss of generality we can assume that y, x̃ ∈ [0, L), y < x̃ , �(y) = 0,
and the interval (y, x̃] consists only of simple points of �. As y is a multiple point,
we have �(y) = �(z) = 0 for some z �= y.

We can select a simple point x ∈ (y, x̃] such that

|x − y| < δ0 = δ0(β, M0)

with δ0(β, M0) as in (2.11). Set r = |�(x)|, then r > 0 since x is a simple point.
Let δ1, δ2 be the largest positive numbers such that �((z − δ1, z)), �((z, z +

δ2)) ⊂ Br (0) ⊂ R3. By Corollary 2.6,

�((z − δ1, z + δ2)) ⊂ D(0, �(x)) ∩ Br (0).

Moreover �((z−δ1, z+δ2))\{0} has empty intersection with DU (0, �(x)). Indeed,
Lemma 3.6 implies that

�((z − δ1, z + δ2)) ∩ DU (0, �(x)) ⊂ �([y, x]),
but (y, x] consists only of simple points and therefore its image under � cannot
contain any images of parameters that are close to z. Thus

�((z, z + δ1)) ⊆ �(SL) ∩ Br (0) ∩ H+(0, �(z − δ2))

and by Corollary 2.6 we obtain

�((z, z + δ1)) ⊆ �(SL) ∩ DU (�(z − δ2), 0).

Now Lemma 3.6 gives �([z, z + δ1]) = �([z − δ2, z]). However this contradicts
the assumption that � is a local homeomorphism.
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Theorem 3.8. Assume that the curve γ : S1 → R3 satisfies (2.8) for some β ∈
(0, 1], r0, and M0 ≥ 0, and suppose that � : SL → R3 is a local homeomorphism
and (locally) an arclength parametrization of γ which has no simple points. Then
the following statements are true:
(i) �(SL) is C1-diffeomorphic to the circle;

(ii) � is d-periodic on SL , where

d : = inf{|t − s| : t, s ∈ SL , t �= s and �(t) = �(s)} > 0; (3.6)

moreover, � : SL → �(SL) is a k-fold covering for k = L/d.

We know from Remark 2.4 that finite Mp-energy of γ for some p > 3 implies
the validity of assumption (2.8) in Theorem 3.8. Consequently the two statements
above are true for any finite energy curve γ with a locally homeomorphic arclength
parametrization that has no simple points. In addition we can combine Fubini’s
theorem with the fact that � is a k-fold, d-periodic covering to show

Corollary 3.9. Assume that Mp(γ ) < ∞ for some p > 3 and that � : SL → R3

is a local homeomorphism and (locally) an arclength parametrization of γ which
has no simple points. Then

Mp[�, SL ] = k3 Mp[�1, SL1], (3.7)

where L1 := d = L/k and �1 : SL1 → R3 is defined by setting �1(x) := �(x) for
x ∈ [0, L1).

Proof of Theorem 3.8. For clarity, the whole proof is divided into several steps.

Step 0. Preparation. Consider the number d defined by (3.6). Hereafter, d will be
referred to as the minimal spacing (of multiple points of �).

It is an easy exercise to use compactness of SL and the fact that � is a local
homeomorphism to check that d indeed is positive and moreover d is achieved, i.e.,
there are two distinct points x1, x2 ∈ SL such that

x2 − x1 = dist(x1, x2) = d, �(x1) = �(x2) = P ∈ R
3 .

Without loss of generality, composing � with a rotation of SL and translation in the
image if necessary, we assume that P = 0 and

� −1(P) = {x1, x2, . . . , xk}, where 0 = x1 < x2 < . . . < xk < L . (3.8)

Our general aim will be to show that L = kd and that � is d-periodic on SL . This
readily implies the desired conclusion.
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Step 1. Two small arcs of � to the right of x1 and x2 coincide. We choose n > 1
such that

r : = d

n
<

1

2
δ0 ≡ 1

2
δ0(β, M0) (3.9)

with δ0 as in (2.11).
Let δi , θi for i ∈ {1, 2} be the largest positive numbers satisfying

�((xi − θi , xi + δi )) ⊂ Br (0) for i ∈ {1, 2}.
Let I j = [x j −θ j , x j +δ j ], j = 1, 2. Corollary 2.6, Lemma 3.6, and the assumption
that � is a local homeomorphism imply

�(I1) = �(I2).

Moreover, by Proposition 2.7, � is injective on each of the intervals I j , and one of
the following possibilities holds: either

�((x1−θ1, x1)) = �((x2−θ2, x2)) and �((x1, x1+δ1)) = �((x2, x2+δ2)) (3.10)

or

�((x1 −θ1, x1))=�((x2, x2 +δ2)) and �((x1, x1 +δ1))=�((x2 −θ2, x2)). (3.11)

But (3.11) cannot hold since it would imply that �(x1 + δ1) = �(x2 − θ2) which
is impossible since d is the minimal spacing of multiple points. (It is easy to use
injectivity of � on I j to see that in fact we have x1 < x1 + δ1 ≤ x2 − θ2 < x2; the
possibility x1+δ1 < x2−θ2 contradicts the definition of d, whereas x1+δ1 = x2−θ2
combined with the second equality of images in (3.11) shows that � cannot be a
homeomorphism in any neighbourhood of x1 + δ1.)

Thus, (3.10) must hold. Injectivity of � on I j combined with the fact that � is
an arclength parametrization, gives now δ1 = δ2.

Fix an arbitrary t ∈ (0, δ1) and consider the point �(x1 + t). It belongs to the
image of [x2, x2 + δ1], thus we have �(x1 + t) = �(x2 + t2) for some t2 ∈ (0, δ1).
Since �(x2 + ·) is injective on (0, δ1) and |�′| = 1, we must have t2 = t (the
measures of two coinciding arcs are equal).

Note now that we have δ1 = δ2 ≥ r . Thus, we have proved the following
claim.

Claim 1. If x1 < x2 ∈ SL belong to the preimage of the same point in �(SL) and
their distance |x2 − x1| is equal to the minimum spacing d, then

�(x1 + t) = �(x2 + t) for all t ∈ [0, r ],
where r is given by (3.9).

We are now ready to move step by step along the parameter domain to reach
the desired conclusion.
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Step 2. Induction, first part. We apply Claim 1 to x1 + r and x2 + r (this can be
done since these are again two points in SL that are mapped by � to the same point
in R3 and their distance is equal to the minimum spacing d). This yields

�(x1 + r + t) = �(x2 + r + t) for all t ∈ [0, r ].
Iterating this procedure finitely many times, we obtain

�(x1 + t) = �(x2 + t) for all t ∈ [0, d]. (3.12)

If k = 2, we are done. Otherwise, since x2 = x1 + d, we see that x2 + d is another
point in SL with �(x2 + d) = P = �(x3). Minimality of d gives now x2 + d = x3.

Step 3. Induction, second part. We repeat the whole Step 1 and Step 2 with x3
(respectively x2) replacing x2 (respectively x1) to obtain the following:

�(x1 + t) = �(x2 + t) = �(x3 + t) for all t ∈ [0, d].
Easy finite induction yields L = kd,

x j = x1 + ( j − 1)d for all j = 1, 2, . . . , k,

and
�(t) = �(t + d) for all t ∈ SL .

Obviously (again by minimality of d) � is injective on each of the intervals [x j , x j +
1) and each of them is mapped to the whole image of �. This completes the proof
of Theorem 3.8.

3.4. Self-avoidance for intermediate energies

In our earlier paper [32, Proposition 2.1] we have proved that closed curves γ which
satisfy Ip(γ ) < ∞ for some p ≥ 2 have to be simple (cf. (1.5) for the definition of
Ip). Here, for the sake of completeness, we prove a slightly stronger result which
shall be used later, in Section 5, to prove Theorem 1.3 under Assumption (i).

Proposition 3.10. Assume that there are constants β ∈ (0, 1], r0 > 0 and K0 ≥ 0
such that γ : S1 → R3 satisfies∫

Br (τ1)

∫
Br (τ2)

ds dt

�[γ ](s, t)
≤ K0r1+β for all r ∈(0, r0], and τ1, τ2 ∈ SL . (3.13)

Then γ is simple, i.e., its arclength parametrization � : SL → R3 is injective.

Remark 3.11. It is easy to check that, by Schwarz inequality, (1.8) implies (3.13)
with K0 = 2M0

1/2. If Ip(γ ) < ∞ for some p > 2, then (3.13) with β = 1 − 2
p

and K0 = 4(p−1)/p(Ip(γ ))1/p follows from Hölder inequality.
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Proof. We follow the proof from [32] and argue by contradiction. Assume that
�(0) = 0 = �(s1) for some s1 ∈ SL \ {0}. Let �1 : = �

([0, s1]
)

and �2 : =
�

([s1, L]). Since � is the arclength parametrization of γ , it has no intervals of
constancy. Thus,

d : = min(diam �1, diam �2) > 0.

We consider the portion of γ contained in Bd/4(0).Choose four parameters: σ1, σ2 ∈
(0, s1) and t1, t2 ∈ (s1, L) such that

σ1 < σ2, t1 < t2 and �(σ1), �(σ2), �(t1), �(t2) ∈ ∂ Bd/4(0).

Now, fix a number ε ∈ (0, d
12 ) which is smaller than the smallest gap between

0, σ1, σ2, s1, t1, t2, and L in the natural ordering on SL .
Take s ∈ (0, ε) ⊂ SL . If �(s) = 0, we set A(s) : = (0, s) ⊂ SL . In this case,

since �(s) = �(0) = 0, we have �(s, σ ) ≤ |�(σ)|/2 < s for all σ ∈ A(s), and

H 1(A(s))

�[γ ](s, σ )
> 1 for all σ ∈ A(s). (3.14)

Next, suppose that �(s) �= 0. Then we set

A(s) : = {σ ∈ (s1 − ε, s1 + ε) | �′(σ ) exists and �(σ) ∈ B|�(s)|(0)} . (3.15)

For each σ ∈ A(s) consider the open diameter ball DB(s, σ ) defined as follows:

DB(s, σ ) : = Br (a) for r : = |�(s) − �(σ)|
2

, a : = �(s) + �(σ)

2
.

Two cases are possible now.

Case 1. � intersects ∂ DB(s, σ ) transversally at �(σ). Then we can find a param-
eter t ∈ SL , t close to σ , such that the point �(t) ∈ DB(s, σ ). Since �(σ2), �(t1) ∈
∂ Bd/4(0) and since , by the choice of ε and σ , we have

DB(s, σ ) ⊂⊂ B3ε(0) ⊂⊂ Bd/4(0),

there exists a parameter τ ∈ [σ2, t1] which is different from σ and satisfies �(τ) ∈
∂ DB(s, σ ). Thus,

�[γ ](s, σ ) ≤ R
(
�(s), �(σ ), �(τ)

) = |�(s) − �(σ)|
2

≤ |�(s)| as �(σ) ∈ B|�(s)|(0).
(3.16)

(Notice that by definition of R one has �[γ ](s, σ ) ≥ |�(s)−�(σ)|/2 which together
with (3.16) implies �[γ ](s, σ ) = |�(s) − �(σ)|/2 in this case.)
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Case 2. � touches ∂ DB(s, σ ) at �(σ), i.e. �′(σ ) ⊥ (�(σ ) − �(s)). In this case,
take a ball B = Br ′ with radius r ′ slightly larger than that of DB(s, σ ) and such that
�(s), �(σ ) ∈ ∂ Br ′ . Any such sphere ∂ Br ′ is intersected transversally by � at �(σ).
Mimicking the reasoning for Case 1, one checks that �[γ ](s, σ ) ≤ r ′. Taking the
infimum over all r ′ > |�(s) − �(σ)|/2, we obtain

�[γ ](s, σ ) ≤ |�(s)|
also in this case.

Now, for each s ∈ (0, ε) ⊂ SL with �(s) �= 0 we have

H 1(A(s)) ≥ min{2|�(s)|, 2ε} = 2|�(s)| > |�(s)|
since � is differentiable a.e. and �(s1) = 0. Thus, condition (3.14) holds also when
|�(s)| �= 0, i.e. when A(s) is defined as in (3.15). Therefore,

K0ε
1+β

(3.13)≥
∫

Bε(0)

∫
Bε(s1)

dσ ds

�[γ ](s, σ )
≥

∫ ε

0

∫
A(s)

dσ ds

�[γ ](s, σ )

(3.14)≥
∫ ε

0
1 ds = ε.

This yields K0ε
β ≥ 1, a contradiction when ε ∈ (0, d

12 ) is sufficiently small. The
proof of Proposition 3.10 is complete now.

4. Families of curves with equibounded energy

In this section we show that families of simple closed curves which have equi-
bounded Mp-energy for some p > 3 are compact in the C1-topology. This is
another consequence of Theorem 2.3. We begin with an explicit translation of this
theorem to the setting of curves with finite Mp-energy.

Corollary 4.1 (Uniform cone flatness II). Assume that p > 3 and that � : SL →
R3 satisfies Mp(γ ) < K . There exists a constant c = c(p, K ) > 1 depending only
on p and K such that if two numbers, ε ∈ (0, π/2) and η > 0, satisfy the relation

ε p+6 ≥ c(p, K )ηp−3 and η ≤ 1

2
diam �(SL), (4.1)

then for every s, t ∈ SL such that |�(s) − �(t)| = η we have

�(SL) ∩ B2η(�(s)) ⊂ Cε(�(s); �(t)). (4.2)

Proof. It follows from the Hölder inequality, cf. also Remark 2.4, that a curve γ

with Mp(γ ) ≤ K satisfies the assumptions of Theorem 2.3 with β = 1 − 3
p ,

r0 = L/2 and

M0 = 23(1− 2
p )

Mp(γ )2/p ≤ 8(K + 1) .

Therefore, one can easily check that for β = 1 − 3
p inequality (2.9) in Theorem 2.3

is equivalent to (4.1). Corollary 4.1 follows.
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To prove that families of curves with equibounded energy are precompact in
the C1 topology, we need two auxiliary results. The first one ascertains that an upper
bound for the Mp-energy of a curve γ implies a lower bound for the diameter of γ .

Lemma 4.2. Assume that p > 3. For each 0 < K < ∞ there exists a constant
� = �[p, K ] > 0, depending only on p and K , such that whenever � : SL → R3

satisfies Mp[�] ≤ K , then we have

diam �(SL) ≥ �[p, K ].
Proof. Fix � with Mp[�] ≤ K . Set ε1 := π

8 and

�[p, K ] := 2ε
(p+6)/(p−3)

1 c(p, K )1/(3−p). (4.3)

From now on argue we by contradiction. Assume that diam �(SL)=: d < �[p, K ].
Let η1 := d/2. Then ε1 and η1 satisfy

ε
p+6
1 ≥ c(p, K )η

p−3
1 and η1 ≤ 1

2
diam �(SL),

so that we are allowed to use (4.2) for appropriate pairs of points of the curve.
Now, fix two points s, σ ∈ SL such that |�(s)−�(σ)| = d = diam �(SL). Ob-

viously, �(SL) must be then contained in the closure of the strip U:=U(�(s),�(σ )).
Pick t ∈ SL such that �(t) ∈ U ∩ ∂ Bη1(�(s)) and use (4.2) for the points �(s) and
�(t), replacing ε, η by ε1, η1, to see that �(σ) must belong to the closure of the
cone Cε1(�(s); �(t)).

Thus, the angle between �(t) − �(s) and �(σ) − �(s) must be smaller than
ε1/2. However, the tangent �′(s) is perpendicular to �(σ) − �(s) since otherwise
�(SL) would contain points at some positive distance from U , and its diameter
would be too large. Hence, an arc of �(SL) close to �(s) cannot be contained
in the cone Cε1(�(s); �(t)), which is a contradiction to the Uniform cone flatness
theorem, Corollary 4.1.

Theorem 4.3. Assume that p > 3 and � : SL → R3 is a simple curve with
Mp(γ ) ≤ K . There exists a constant C0 = C0(p, K ), depending only on p and K ,
such that

|�′(s) − �′(t)| ≤ C0(p, K )|s − t |α for all s, t ∈ SL ,

where α = (p − 3)/(p + 6) ∈ (0, 1).

Proof. This follows from a careful inspection of the proof of Theorem 2.10. We
know, cf. the proof of Corollary 4.1, that � satisfies the assumptions of the Uniform
cone flatness theorem with

M0 := 8(K + 1), β := 1 − 3

p
, r0 := L/2.
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As � is 1–1, Theorem 2.10 yields existence and Hölder continuity of �′: we have

|�′(s) − �′(t)| ≤ C�|s − t |α for all s, t ∈ SL ,

where α = 2β
6−4β

= (p − 3)/(p + 6) and the constant C� , cf. (2.15), is given by

C� := max{(c(β)M0)
1

6−4β , 2δ0(β, M0)
− 2β

6−4β }
with δ0(β, M0), cf. (2.11), defined as

δ0 = δ0(β, M0) := 1

8
min

{
diam γ, r0, (c(β)M0 + 1)−1/2β

(π

4

) 6−4β
2β

}
.

Since c(β), the constant from Theorem 2.3, depends only on β = 1 − 3
p , and

diam γ ≥ �[p, K ] > 0 by Lemma 4.2, we have δ0 ≥ d0(p, K ) for some positive
constant d0(p, K ) which depends only on p and K . Thus, we have C� ≤ C0(p, K ),
where C0(p, K ) depends only on p and K .

Corollary 4.4. Assume that K , L > 0 and p > 3. Let Q be a fixed point in R3. If
a family of rectifiable simple closed curves γ j : S1 → R3 satisfies

Q ∈ γ j (S1) and H 1(γ j ) = L for all j , and sup
j=1,2,...

Mp(γ j ) ≤ K , (4.4)

then there exists ν0 = ν0(p, K ) > 0 such that the arclength parametrizations � j of
γ j satisfy

|� j (s) − � j (t)| ≥ min

(
ν0,

|s − t |
2

)
for all j and all s, t ∈ SL . (4.5)

Moreover, the family of functions �′
j : SL → S2 ⊂ R3 is equicontinuous and {� j }

contains a subsequence {� jk } which for jk → ∞ converges in the C1-topology
to a simple arclength parametrized closed curve � ∈ C1,(p−3)/(p+6)(SL , R3) with
Q ∈ �(SL).

Proof. The proof is very similar to the proof of Corollary 3.3 in [32]; we provide
the details for the sake of completeness. Since the γ j are simple, their arclength
parametrizations are injective. The existence of a convergent subsequence of � j
follows easily from Theorem 4.3 and the Arzela-Ascoli compactness theorem. Once
(4.5) is established, injectivity of the limit curve � follows from (4.5) upon passing
to the limit jk → ∞.

Thus it is enough to prove (4.5). Consider g j ∈ C1(SL × SL) given by

g j (s, t) : = |� j (s) − � j (t)|2 .
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Since the � j are uniformly bounded in C1,α , α = (p − 3)/(p + 6), it is easy to
show that there is a constant ν1 = ν1(p, K ) > 0 such that

g j (s, t) ≥ |s − t |2
4

for all j and all s, t such that |s − t | ≤ ν1(p, K ); (4.6)

see, e.g., Lemma 6.2 for details. Since � = SL × SL \ {(s, t) : |s − t | < ν1(p, K )}
is compact, we find for each j a pair (s j , t j ) ∈ � such that

g j (s j , t j ) ≤ g j (s, t) for all (s, t) ∈ �.

Now, we either have |s j − t j | = ν1(p, K ) in which case (4.6) implies

g j (s, t) ≥ ν1(p, K )2

4
for all s, t ∈ �, (4.7)

or we have ∇g j (s j , t j ) = 0, which is equivalent to

�′
j (s j ) ⊥ (

� j (s j ) − � j (t j )
)

and �′
j (t j ) ⊥ (

� j (s j ) − � j (t j )
)
. (4.8)

For each j , this implies that � j (SL) ∩ [Bη j (� j (s j )) ∩ Bη j (� j (t j ))] is not con-
tained in the intersection Cπ/4(� j (s j );� j (t j ))∩, Cπ/4(� j (t j );� j (s j )), where η j :=
|� j (s j ) − � j (t j )|. (The reason is that an arc of γ j is tangent to the line which is
perpendicular to to the common axis of the two cones.) By virtue of Corollary 4.1
for ε := π/4 in combination with Lemma 4.2 this means, however, that

g j (s, t) ≥ |� j (s j ) − � j (t j )|2 = η2
j

> min




1

4
(diam � j (SL))2,


 (π/4)

p+6
p−3

(c(p, K ))
1

p−3




2



≥ min




1

4
�(p, K )2,


 (π/4)

p+6
p−3

(c(p, K ))
1

p−3




2



=: ν2(p, K ) > 0 for all j ∈ N, (s, t) ∈ �.

(4.9)

Summarizing (4.9), (4.7), and (4.6), we obtain (4.5) with ν0 : = min
{
ν1(p, K )/2,√

ν2(p, K )
}
.

Remark 4.5. It turns out that in Corollary 4.4 we haveMp(�)≤ lim inf jk Mp(� jk )≤
K . This follows from the continuity of R(·, ·, ·) at triples of pairwise distinct non-
collinear points in R3 and from Fatou’s lemma.



INTEGRAL MENGER CURVATURE 169

Remark 4.6. As a possible variational application we mention a counterpart of
[32, Theorem 3.4]: the minima of Mp-energy are achieved in prescribed knot (or
isotopy) classes. Set

CL ,k := {γ ∈ C0(S1, R
3) : length (γ ) = L , γ isotopic to k},

where k is a given representative of a particular tame knot or isotopy class. Mim-
icking the proof from [32], one shows that CL ,k contains an arclength parametrized
curve � ∈ C1,α(SL , R3) ∩ CL ,k , α = (p − 3)/(p + 6), such that Mp(�) =
infCL ,k Mp(·). (The key point is that Corollary 4.4 may be combined with the sta-

bility of isotopy classes under C1 convergence.)
It is also clear that the inequality Mp(γ ) ≤ K might be used as a side condition

for other one-dimensional variational problems for curves or rods (similar to those
treated in [15] using the global curvature constraint �[γ ]−1 ≤ K instead), also
when one needs to fix the knot class.

5. Proof of the uniform cone flatness theorem

This section is devoted to the proof of Theorem 2.3.

We may assume that s = 0 and �(0) = 0. Fix 0 < ε < π/2 and η > 0
satisfying (2.9), and set

ηN := η

2N−1
and rN := 100N 2

ε
ηN for N = 1, 2, . . . (5.1)

Since η ≤ diam γ /2 we can pick points pN = �(tN ) ∈ ∂ BηN (0) where we set
t1 := t so that p1 = �(t). To investigate the location of �(SL) close to 0 ∈ R3, for
each of the points pN we consider three sets:

�N : = �(0, pN ; rN ), VN : = V (0, pN ; rN ), (5.2)

(cf. Subsection 2.1 for the definition of lenses and doughnuts), and finally

KN : = B2ηN (0) \ VN . (5.3)

Before proceeding further, let us explain the rough idea of the proof. We will show
first that for each N = 1, 2, . . . the portion of γ contained in the ball B2ηN (0) lies
in the union of KN and �N with two small balls centered at 0 and pN , respectively;
thus, the situation depicted in Figure 1 below (where the curve bends too much be-
tween pN and 0) cannot happen. Otherwise, we could find three distinct subarcs
A1, A2, A3 of γ such that every triangle with its three vertices on A1, A2, and A3,
has interior angles well separated from 0 and π . A tedious but in fact elementary
computation shows these arcs would contribute too much to the energy, contradict-
ing (2.8).
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Having confined the curve γ to the narrow sets for each N ∈ N allows us to send N
to ∞ and to show that the curve indeed flattens at 0; this proves the desired result.

B(0,hN) B(pN,hN)

∂VN

γ

Figure 5.1. (This cannot happen). If γ leaves the lens �N but contains some points of
VN \ �N sufficiently far away from 0 and pN , then the local energy is too large, due to
the behaviour of R(·, ·, ·) for triples of points that belong to the pieces of γ contained
in the interior of the three tiny dark balls.

To make all this precise let αN denote the opening angle of the smallest cone with
vertex at 0 containing the lenticular region �N . In particular, one has

sin
αN

2
= ηN

2rN
, (5.4)

and moreover, we set

hN : = dist

(
pN + �(0)

2
, ∂�N

)
= rN

(
1 − cos

αN

2

)
, (5.5)

ϕN : = arc tan
2hN

ηN
, h̃N : = hN sin ϕN . (5.6)

Finally, let δN be the smallest angle such that the cone CδN (0; pN ) contains the
union �N ∪ KN , i.e. , δN = αN + 2α′

N , where

α′
N = arc sin

ηN

rN
= arc sin

ε

100N 2
.

Thus, since arc sin x ≤ πx/2 on [0, 1], we have

δN = αN + 2α′
N and

∞∑
N=1

δN ≤ 3π

2

∞∑
N=1

ε

100N 2
<

ε

2
. (5.7)

(See also Figures 5.2-5.4 below.)
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rN rN

rN rN

δN

2ηN

ηN
Figure 5.3

Figure 5.2. A plane passing through two points 0 = �(0) and pN = �(tN ), located
at the centers of two tiny shaded balls of radius hN in the middle part of the picture.
Big arcs represent the boundaries of two of the balls of radius rN whose union is equal
to the doughnut VN . (Note: for ε small and N large, the ratio rN /ηN is in fact much
larger than the figure shows.) Later on, see Claim 1 below and the details of its proof,
we show that γ ∩ B2ηN (0) must in fact be contained in

�N ∪ BhN (pN ) ∪ BhN (0) ∪ KN

that is, in that portion of the ball B2ηN (0) which is formed by rotation of the shaded
region in Figure 5.2 around the axis passing through 0 and pN .

hN

ϕN

Figure 5.4

hN

hN

pN0

1
2

ηN
1
2

αN

hN
ϕN0

hN
∼

1
2

ηNhN

Figures 5.3 and 5.4. Enlarged parts of Figure 5.2, showing the location of 0 and pN ,
the distances ηN , hN , h̃N , and the angles αN , ϕN that are defined by (5.4)-(5.6).
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The main tool in the proof of Theorem 2.3 is the following:

Claim 5.1. For each N = 1, 2, . . . the following is true:

γ ∩ B2ηN ⊂ CδN (0; pN ) ∪ BhN , (5.8)

where the two balls B2ηN and BhN are centered at 0.

(Later on, applying (5.8) iteratively, one can easily conclude the whole proof
of Theorem 2.3.)

To prove Claim 5.1, we need the following elementary relations between the
distances hN , h̃N , ηN and rN , which can be easily derived from Taylor expansions
of trigonometric functions; see [32, Lemma 3.6] for details.

Lemma 5.2 (Relations between distances on Figures 5.2-5.4). For all N=1,2,...

we have

η2
N

4πrN
≤ hN ≤ η2

N

3rN
, (5.9)

h2
N

ηN
≤ h̃N ≤ 2h2

N

ηN
, (5.10)

hN

ηN
≥ ε

400π N 2
. (5.11)

The following two lemmas provide the key-estimates that will allow us to infer a
large contribution to the energy once there is a point not contained in the shaded
narrow zone depicted in Figure 5.2.

Lemma 5.3 (Estimate of R(·, ·, ·) when � bends a lot). Fix N =1, 2,. . . and sup-
pose that for some τ0 ∈ SL the point �(τ0) ∈ B2ηN (0) but

�(τ0) �∈ �N ∪ BhN (pN ) ∪ BhN (0) ∪ KN .

Then for all parameters s ∈ Ã1 and σ ∈ Ã2, where

Ã1 = {s ∈ SL : �(s) ∈ Bh̃N /10(pN )},
Ã2 = {σ ∈ SL : �(σ) ∈ Bh̃N /10(0)},

we have
R(�(s), �(σ ), �(τ0)) ≤ 4rN . (5.12)

In fact, we simply have R
(
q1, q2, �(τ0)

) ≤ 4rN whenever q1 ∈ Bh̃N /10(pN ) and
q2 ∈ Bh̃N /10(0).
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Proof. If τ0 satisfies the assumptions of Lemma 5.3, then there exists a unique point
q ∈ R3 determined by the following three conditions

(i) |q − pN | = |q| = rN ,
(ii) �(τ0) ∈ BrN (q) \ �N ,

(iii) the four points �(τ0), q, pN and 0 are co-planar.

By elementary geometry,

αN

2
≤ β0 : = <)

(
pN − �(τ0), �(0) − �(τ0)

) ≤ π − αN

2
. (5.13)

(This is easy to see: draw two circles c1, c2 of radius rN , containing pN and 0 =
�(0) and lying in the plane determined by pN , 0 and �(τ0). Then, β0 = π − αN /2
when �(τ0) lies on the short arc of c1 connecting pN to 0, and β0 = αN /2 when
�(τ0) lies on the long arc of c1 connecting pN to 0. When �(τ0) is between these
two arcs, β0 takes some intermediate value.)

For s ∈ Ã1 and σ ∈ Ã2, let β(s, σ ) denote the angle at �(τ0) in the triangle
with vertices �(s), �(σ ) and �(τ0). We then have

|β(s, σ ) − β0| ≤ β1 + β2, (5.14)

where

β1 : = <)
(

pN −�(τ0), �(s)−�(τ0)
)
, β2 : = <)

(
�(0)−�(τ0), �(σ )−�(τ0)

)
.

Since the distances of �(τ0) to pN and to 0 = �(0) exceed hN , and because s ∈ Ã1
and σ ∈ Ã2, we have

βi ≤ βmax, i = 1, 2,

where sin βmax = h̃N /10hN . Hence, using the basic estimate 2x/π ≤ sin x ≤ x ,

βmax≤π

2
sin βmax = π h̃N

20hN

(5.10)≤ πhN

10ηN

(5.9)≤ πηN

30rN

(5.4)= π

15
sin

αN

2
<

αN

8
.

Therefore, by (5.13) and (5.14), we obtain αN
4 ≤ β(s, σ ) ≤ π − αN

4 and

sin β(s, σ ) ≥ sin
αN

4
. (5.15)

Thus,

R(�(s), �(σ ), �(τ0)) = |�(s) − �(σ)|
2 sin β(s, σ )

≤ 2ηN

2 sin(αN /4)

= 2ηN

sin(αN /2)
cos

αN

4
≤ 2ηN

sin(αN /2)

(5.4)= 4rN .
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Lemma 5.4. If τ0 ∈ SL satisfies the assumptions of Lemma 5.3, then

R(�(s), �(σ ), �(τ)) ≤ 4rN (5.16)

for all parameters

s ∈ A1 : = {s ∈ SL : �(s) ∈ Bh̃N /20(pN )},
σ ∈ A2 : = {σ ∈ SL : �(σ) ∈ Bh̃N /20(0)},
τ ∈ A3 : = {τ ∈ SL : �(τ) ∈ Bh̃N /20(�(τ0))}.

Proof. Note that for s ∈ A1, σ ∈ A2 and τ ∈ A3 we can shift the triangle with ver-
tices �(s), �(σ ) and �(τ) by �(τ0)−�(τ), to obtain an adjacent triangle congruent
to the original one with vertices q1, q2 and �(τ0), where

q1 ∈ Bh̃N /10(pN ) and q2 ∈ Bh̃N /10(0)

by the triangle inequality. Now, we just invoke Lemma 5.3 to obtain

R(�(s), �(σ ), �(τ)) = R(q1, q2, �(τ0)) ≤ 4rN .

We are now ready for the crucial local energy estimate which proves Claim 1 by
contradiction. Assume that Claim 1 were false. Fix N ∈ N. Since

CδN (0; pN ) ∪ BhN (0) ⊃ �N ∪ BhN (pN ) ∪ BhN (0) ∪ KN , (5.17)

we would then find a parameter τ0 satisfying the assumptions of Lemma 5.4. More-
over, Lemma 5.2 implies

h̃N ≤
(5.10)

2h2
N

ηN
≤ 2η4

N

9ηN r2
N

= 2

9
· ε2ηN

1002 N 4

<
2

3
ηN ≤

(2.9)

2

3
r0.

Since by definition each Ai , i = 1, 2, 3, contains a ball Bi ⊂ SL of radius ρN :=
h̃N /20, we may apply Assumption (2.8) to estimate

h2+4β
N

(10ηN )1+2β
≥

(5.10)

(
h̃N

20

)1+2β

=ρ
1+2β
N ≥

(2.8)

1

M0

∫
B1

∫
B2

∫
B3

dτdσds

R2(�(s),�(σ ),�(τ))

≥
(5.16)

1

M0
· (4rN )−2H 1(B1)H

1(B2)H
1(B3)

= (2ρN )3

42 M0r2
N

≥
(5.10)

1

2M0r2
N

· h6
N

203η3
N

≥
(5.9)

h8
N

2 · 103 M0η
7
N

.

(5.18)
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This implies

200M0 ≥ h6−4β
N

η
6−2β
N

=
(

hN

ηN

)6−2β

· 1

h2β
N

≥
(5.9)

1

(4π)6−2β

(
ηN

rN

)6−2β

32β

(
rN

η2
N

)2β

=
(5.1)

32β

(4π)6−2β

( ε

100N 2

)6−2β
(

100N 2

εηN

)2β

=
(5.1)

3002β

(400π)6−2β
· ε6−4β N 8β−12

(
2N−1

η

)2β

,

or

200M0 · (400π)6−2β

3002β
· N 12−8β

22β(N−1)
≥ ε6−4β

η2β
. (5.19)

Thus, for

c(β) := 4007π6 · max
N∈N

N 12

22β(N−1)
≥ 1 (5.20)

we have

1

2
c(β)M0 = 200M0 · (400π)6 · max

N∈N

N 12

22β(N−1)

≥ 200M0 · (400π)6−2β

3002β
· max

N∈N

N 12−8β

22β(N−1)
as β ∈ (0, 1]

(5.19)≥ ε6−4β

η2β
,

so that by Assumption (2.9) we obtain the desired contradiction

1

2
c(β)M0 ≥ ε6−4β

η2β
≥ c(β)M0. (5.21)

(Since η, ε > 0, the first inequality in (5.21) implies that M0 > 0; note that (2.8)
holds with M0 = 0 iff R ≡ ∞ for all triple of distinct nearby points of γ , i.e. when
γ is a piece of a straight line – and then Theorem 2.3 is obvious, anyway.)

Proof of Theorem 2.3 continued. Noting that hN < ηN and applying Claim 5.1
inductively, we obtain

�(SL) ∩ B2η(0) ⊂ Cδ1+δ2/2+···+δN /2(0; p1) ∪ BhN (0), N = 2, 3, . . . (5.22)

since the axis of each of the successive cones lies in the preceding cone in the
iteration.
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As the series
∑

δN converges and its sum is smaller than ε by (5.7), this yields

�(SL) ∩ B2η(0) ⊂ Cε(0; p1) ∪ BhN (0), N = 2, 3, . . .

Since hN → 0 for N → ∞, the intersection of all the sets Cε(0; p1) ∪ BhN (0) is
equal to the cone Cε(0, p1). This completes the whole proof of Theorem 2.3.

6. From the local curvature conditions to higher regularity of �′

In this section we prove that rectifiable curves with local Menger energy decaying
at least as fast as r1+2β are of class C1,β .

From now on, we assume that � ∈ Lip([0, L], R3) is an injective arclength
parametrization of a rectifiable curve γ in R3 satisfying

|�′(s) − �′(t)| ≤ C�|t − s|α for all s, t ∈ [0, L] (6.1)

for some α < β.
(Note that if � is an arclength parametrization and the decay assumption (2.8)

is satisfied, then �(SL) is in fact, up to a homeomorphism, a circle or a segment.
We simply reparametrize the curve in a 1-1 way; (2.8) is obviously still satisfied
and, due to the results of Section 2, the new parametrization – possibly defined on
a shorter interval, if the former � was badly chosen – is of class C1,α for α =
2β/(6 − 4β) ≤ β. It does not really matter in this Section whether �(0) = �(L) or
not.)

Instead of the local curvature condition (2.8) where one integrates over equally
sized balls with three different centers we are going to use the following weaker
condition3: there exists an r0 > 0 and a constant M0 such that

sup
0<r≤r0
τ∈SL

r−(1+2β)

∫
Br (τ )

∫
Br (τ )

∫
Br (τ )

dx dy dz

R2(�(x), �(y), �(z))
≤ M0. (6.2)

Our aim will be to show that whenever � satisfies both (6.1) and (6.2), then �′ is of
class Cβ(SL , R3).

To carry out the proof of this fact, we introduce some notation. For an interval
J ⊂ SL , we write

osc
J

�′ := max
x,y∈J

|�′(x) − �′(y)|
and set

�(t) := sup
J⊂SL

H 1
(J )≤t

(
osc

J
�′

)
for t ∈ [0, L]. (6.3)

The whole reasoning rests on the following key lemma.

3 Our method of proof for the Uniform cone flatness theorem, Theorem 2.3 (see Section 5 for
the proof) does not seem to work under this weaker condition, we really do need three different
centers in (2.8), compare with Remark 2.5.
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Lemma 6.1. Assume that (6.1) and (6.2) hold. Then there exist two numbers, δ1 =
δ1(M0, C�, α, β) > 0, and N = N (α) > 4 with 6N−α < 1

2 , such that we have

|�′(u) − �′(v)| ≤ 6�

( |u − v|
N

)
+ c0|u − v|β (6.4)

whenever u, v ∈ [0, L] and |u−v| ≤ δ1. One can choose here c0 = const(α)·M1/2
0 .

Remark. It is easy to note that this lemma implies �′ ∈ Cβ . Indeed, taking the
supremum of both sides of (6.4) with respect to t ∈ [|u − v|, δ1], leads to

�(t) ≤ 6�(t/N ) + c0tβ for t ∈ [0, δ1].
Iterating this inequality and using 6N−β < 6N−α < 1/2, we easily obtain

�(t) ≤ 6k�(t/N k) + c0tβ
∞∑
j=0

(
6N−β

) j ≤ 6k�(t/N k) + 2c0tβ

for each k = 1, 2, . . .. Since we have assumed earlier that �′ ∈ Cα , we have
�(t) ≤ C�tα , and 6N−α < 1

2 by Lemma 6.1. This yields

�(t) ≤ 6kC�

tα

N kα
+ 2c0tβ ≤ C�

tα

2k
+ 2c0tβ

for each k = 1, 2, . . .. Upon passing to the limit k → ∞, we conclude that

�(t) ≤ 2c0tβ for all t ∈ [0, δ1].
The rest of this section is divided into two parts. First, we prove Lemma 6.1. Next,
we show how to assemble the proofs of all the theorems stated in the introduction,
using Lemma 6.1 and the results of Sections 2-3.

6.1. Proof of Lemma 6.1

We begin with a simple observation.

Lemma 6.2. Assume that

|�′(t) − �′(s)| ≤ C�|t − s|α, t, s ∈ SL .

Then for every λ ∈ (0, 1) there exists δ2 = δ2(λ, C�, α) > 0 such that

|�(t) − �(s)| ≥ λ|t − s| (6.5)

for all t, s ∈ SL with |t − s| < δ2.
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Proof. Fix s ∈ SL and without loss of generality assume that �′(s) = (1, 0, 0). We
then have

�′
1(t) ≥ �′

1(s) − |�′
1(s) − �′

1(t)| ≥ 1 − C�|t − s|α ≥ λ

for all t satisfying

|t − s| < δ2 : =
(

1 − λ

C�

)1/α

.

Thus, for such t ,

|�(t) − �(s)| ≥ |�1(t) − �1(s)| =
∣∣∣∣
∫ t

s
�′

1(τ ) dτ

∣∣∣∣ ≥ λ|t − s| ,

which completes the proof of Lemma 6.2.

We fix N = N (α) > 4 such that 6N−α < 1
2 . Next, we choose several other

constants as follows:

λ ≡ λ(N ) := 1 − 1

N 2
(6.6)

c1 := 1

3N

(
1

2
− 2

N

)
∈ (0, 1), c2 := 1

2

(
c5

1

100M0

)1/2

,

δ1 := min(δ2, c1/β

2 , 1) > 0,

(6.7)

where δ2 is the constant from Lemma 6.2. Fix u, v ∈ SL , u < v, |u − v| ≤ δ1. Note
that, by Lemma 6.2 and the definition of δ1, we have

|�(s) − �(t)| ≥ λ|s − t | for all s, t ∈ [u, v]. (6.8)

Roughly speaking, the strategy of the proof is to find other parameters x, y ∈ [u, v]
which are very close to the endpoints of that interval and, due to energy bounds, are
chosen so that |�′(x) − �′(y)| is much smaller than one would presume knowing
only that �′ ∈ Cα .

Let x, y ∈ [u, v] and let

Ix,y :=
{

[x, y] if x < y
[y, x] otherwise.

We define the following sets of bad parameters:

Zx,y : = {z ∈ Ix,y : R(�(x), �(y), �(z)) ≤ c2|�(x) − �(y)|1−β}, (6.9)

Yx : = {y ∈ [u, v] : H 1(Zx,y) ≥ c1|�(x) − �(y)|} , (6.10)

X : = {x ∈ [u, v] : H 1(Yx ) ≥ c1|u − v|}. (6.11)
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Now, we estimate the measure of X using Assumption (6.2) on Menger curvature
of � and two inequalities,

|�(x) − �(y)|−1 ≥ |x − y|−1 ≥ |u − v|−1 for all x, y ∈ [u, v], (6.12)

|�(x) − �(y)|2β ≥ λ2β |x − y|2β ≥ 1

4
|x − y|2β for all x, y ∈ [u, v]. (6.13)

(The second one follows from (6.8), as we have λ ∈ (1/2, 1) and 2β ≤ 2.) Using
condition (6.2), we write

M0|u − v|1+2β ≥
∫ v

u

∫ v

u

∫ v

u

dx dy dz

R2(�(x), �(y), �(z))

≥
∫

X

∫
Yx

∫
Zx,y

dz dy dx

R2(�(x), �(y), �(z))

≥ c1

c2
2

∫
X

∫
Yx

|�(x) − �(y)|2β−1 dy dx (6.14)

(6.12), (6.13)≥ c1

4c2
2

|u − v|−1
∫

X

∫
Yx

|x − y|2β dy dx .

To deal with the integral over Yx , we split it as∫
Yx

|x − y|2β dy =
∫

Yx ∩{y>x}
(y − x)2β dy +

∫
Yx ∩{y≤x}

|y − x |2β dy

and invoke the following simple fact for each of the two integrals.
If g : R+ → R+ is monotone increasing and Y ⊂ R+ is a bounded measurable

set, then ∫
Y

g(y) dy ≥
∫ H 1

(Y )

0
g(t) dt.

Therefore, applying the inequality a2β+1 + b2β+1 ≥ 1
8 (a + b)2β+1 which is valid

for a, b ≥ 0 and β ∈ (0, 1], we obtain∫
Yx

|x − y|2β dy ≥ 1

8
· 1

2β + 1
H 1(Yx )

2β+1 ≥ 1

24
(c1|u − v|)2β+1

for every x ∈ X . Inserting this into the earlier estimates (6.14), we check that

M0|u − v|1+2β ≥ c1

4c2
2

|u − v|−1
∫

X

∫
Yx

|x − y|2β dy dx ≥ c4
1

100c2
2

|u − v|2βH 1(X).
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Hence,

H 1(X) ≤ 100c2
2 M0

c4
1

· |u − v|
(6.7)= 1

4
c1|u − v|.

(6.15)

For the sake of geometric considerations later on, we also note that

|�(x) − �(y)| ≤ c2|�(x) − �(y)|1−β for all x, y ∈ [u, v], (6.16)

since for x, y ∈ [u, v] we have

|�(x) − �(y)| ≤ |x − y| ≤ |u − v| ≤ δ1 ≤ c1/β

2 .

By (6.15), there exists a point x ∈ [u, v] \ X such that |x − u| ≤ c1|u − v| ≤
1

6N |u−v|. We fix such a point x . By (6.11), H 1(Yx ) < c1|u−v|, since x �∈ X . Thus
we can select another point y ∈ [u, v]\Yx such that |y−v| ≤ c1|u−v| ≤ 1

6N |u−v|.
Now, set r := c2|�(x) − �(y)|1−β and let

U := U (�(x), �(y)), V := V (�(x), �(y); r), �x,y := �(�(x), �(y); r).

We consider the following set of good parameters:

S := {s ∈ (x, y) : s �∈ Zx,y, s �∈ Yx , �(s) ∈ U }. (6.17)

To estimate the difference |�′(x) − �′(y)|, we need to show first that the image
�(S) is contained in �x,y and that S occupies a large portion of [x, y].
Claim 6.3. We have �(S) ⊂ V ∩ U .

Indeed, suppose there is a point s ∈ S with �(s) ∈ U \ V . Then, the arc
�

(
(x, y)

)
passes through �(s) and therefore

|x − y| = H 1(�((x, y))
) ≥ |�(x) − �(s)| + |�(s) − �(y)|

≥ 2r
(6.16)≥ 2|�(x) − �(y)|
(6.8)≥ 2λ|x − y| > |x − y|,

a contradiction. Thus, Claim 6.3 is established.

Claim 6.4. �(S) ⊂ �x,y .

This follows directly from Claim 6.3 and the definition of Zx,y .

Claim 6.5. We have
H 1(S) ≥ |x − y|(λ − 3c1). (6.18)
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Indeed, by definition of S,

H 1(S) ≥ |�(x) − �(y)| − H 1(Zx,y) − H 1(Yx )

> λ|x − y| − c1|�(x) − �(y)| − c1|u − v|
≥ (λ − c1)|x − y| − c1|u − v|.

(6.19)

(Note that the second inequality above is strict since x �∈ X .) The choice of con-
stants guarantees that c1 ∈ (0, 1

N ). Therefore, |x − y| ≥ (1 − 2
N )|u − v|, and

c1|u − v| ≤ 2c1|x − y|, as N > 4. Inequality (6.18) follows.
Set ω := |�(x) − �(y)|/2N . We now select two auxiliary good parameters

z1, z2 ∈ S.

Claim 6.6. There exist two points z1, z2 ∈ S such that

�(z1) ∈ Bω(�(x)) ∩ �x,y, �(z2) ∈ Bω(�(y)) ∩ �x,y, (6.20)

max
(|x − z1|, |y − z2|

) ≤ |x − y|
N

. (6.21)

Again, we argue by contradiction. Let B := Bω(�(x)). Suppose that �(S) ∩ B is
empty. Then, by Claim 6.4, we have �(S) ⊂ �x,y \ B. Choose u0 ∈ (x, y) such that
such that �(u0) ∈ ∂ B and �((x, u0)) ⊂ B. We then necessarily have S ⊂ [u0, y]
and

|x − u0| ≥ |�(x) − �(u0)| = ω = 1

2N
|�(x) − �(y)| ≥ λ

2N
|x − y|.

Thus,

H 1(S) ≤ |u0 − y| ≤
(

1 − λ

2N

)
|x − y|. (6.22)

However, this inequality contradicts the previous estimate (6.18) (one can check
that the choice of c1 and λ guarantees λ − 3c1 > 1 − λ/2N ). Hence, there exists a
point z1 ∈ S such that �(z1) ∈ B ∩ �x,y . (Recall that �(S) ⊂ �x,y by Claim 6.4.)

Moreover, we have

λ|x − z1| ≤ |�(x) − �(z1)| ≤ ω = 1

2N
|�(x) − �(y)| ≤ |x − y|

2N
.

Thus, |x − z1| ≤ |x − y|/N . To prove the existence of z2 ∈ S, we proceed
analogously; Claim 6.6 follows.

We are now ready to estimate |�′(u) − �′(v)|. Let

S(τ, σ ) := �(τ) − �(σ)

|�(τ) − �(σ)| , τ �= σ ∈ SL ,

Q(τ, σ ) := �(τ) − �(σ)

τ − σ
τ �= σ ∈ SL .
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Applying the triangle inequality, we write

|�′(u) − �′(v)| ≤ |�′(u) − �′(x)| + |�′(y) − �′(v)| + |�′(x) − �′(y)|
≤ 2�

( |u − v|
N

)
+ |�′(x) − �′(y)|. (6.23)

Next,

|�′(x) − �′(y)| ≤ |�′(x) − S(z1, x)| + |S(z1, x) − S(y, z2)|
+ |S(y, z2) − �′(y)|. (6.24)

We estimate each term separately.
Approximation of �′(x) by secant S(z1, x). Here we just use the information

that �′ ∈ Cα and z1 is very close to x . We write

|�′(x)−S(z1, x)|≤|�′(x)−Q(z1, x)|+|Q(z1, x)−S(z1, x)|≤2|�′(x)−Q(z1, x)|.
This holds since S(z1,x) is the projection of Q(z1,x) onto the unit sphere S2 and
therefore the closest point to Q(z1, x) on S2, and �′(x) is just another point in S2.
Thus, by the fundamental theorem of calculus,

|�′(x) − S(z1, x)| ≤ 2
∫

[x,z1]
|�′(x) − �′(s)| ds ≤ 2�(|x − z1|)

≤ 2�(|x − y|/N ) ≤ 2�(|u − v|/N )

(6.25)

as |x − z1| ≤ |x − y|/N < |u − v|/N .
In a similar way, we obtain

|�′(y) − S(y, z2)| ≤ 2�(|u − v|/N ). (6.26)

The difference between two secants. Here we use the fact that �(zi ) ∈ �x,y for
i = 1, 2. We apply the triangle inequality again to write

|S(z1, x) − S(y, z2)| ≤ |S(z1, x) − S(y, x)| + |S(y, x) − S(y, z2)|,
and invoke Lemma 2.2 to estimate each term. This gives

|S(z1, x) − S(y, z2)| ≤ 2

c2
|�(x) − �(y)|β

≤ c0|x − y|β,

(6.27)

where c0 = 2/c2 = const(α) · M0
1/2. Combining the estimates (6.25), (6.26) and

(6.27) with (6.24), we finally obtain

|�′(x) − �′(y)| ≤ 4�(|u − v|/N ) + c0|x − y|β. (6.28)

The conclusion of Lemma 6.1 follows immediately from (6.23) and (6.28). �
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6.2. Conclusion: proofs of the main results

In this subsection, we simply collect all facts that have been proved earlier and show
how to assemble them to obtain full proofs of Theorems 1.1-1.4.

Proof of Theorem 1.3 (ii). Since � is a local homeomorphism, we can use Theo-
rem 3.8 to conclude that � is a k-fold covering and to reparametrize γ . The new (in-
jective) parametrization �1 : SL/k → R3 is of class C1,α for α = 2β/(6 − 4β) ≤ β

(cf. Section 2). Thus, Lemma 6.1 can be applied, and we obtain �1 ∈ C1,β . This
regularity statement carries over to the original k-fold covering �, as � is periodic
and the choice of 0 on the original circle SL is arbitrary.

Proof of Theorem 1.3 (i). Note that by definition of the intermediate radius �[γ ] we
have

�[γ ](s, t) ≤ R(�(s), �(t), �(σ )) for all σ ∈ SL .

Thus, for any triple of balls Bi = Br (τi ) ⊂ SL , i = 1, 2, 3, we obtain∫
B1

∫
B2

ds dt

�[γ ](s, t)2
≥

∫
B1

∫
B2

ds dt

R(�(s), �(t), �(σ ))2
for all σ ∈ B3,

and integration over B3 yields

2r
∫

B1

∫
B2

ds dt

�[γ ](s, t)2
≥

∫
B1

∫
B2

∫
B3

ds dt dσ

R(�(s), �(t), �(σ ))2
.

It is now clear that (1.8) implies the decay assumption (1.9); one just has to replace
M0 by 2M0 in (1.9). Moreover, see Section 3.4, we know that (1.8) guarantees that
� is injective. Thus, Theorem 1.3 (ii) ascertains that � ∈ C1,β .

Proof of Theorem 1.4. By Theorem 3.1, we know that �(SL) is a one-dimensional
topological submanifold in R3. Besides that, γ is a continuous rectifiable curve.
Thus, we can reparametrize �(SL); the new arclength parametrization

�1 : [0, L1] onto−→ �(SL) ⊂ R
3

will be injective. Moreover, we have �′
1 ∈ Cα by the results of Section 2, as (1.9)

holds for �1. Therefore, we may apply Lemma 6.1 to obtain �1 ∈ C1,β .

Proofs of Theorem 1.1 and 1.2. Assume first that p > 2 and set β = 1 − 2
p . For

any couple of balls Bi = Br (τi ) ⊂ SL , i = 1, 2, the Hölder inequality gives∫
B1

∫
B2

ds dt

�[γ ](s, t)2
≤ (2r)2β

(∫
B1

∫
B2

ds dt

�[γ ](s, t)p

)2/p

≤ (2r)2βIp(γ )2/p.

Thus, (1.5) implies (1.8) with M0 := 22βIp(γ )2/p, and Theorem 1.1 follows from
Proposition 3.10 and Theorem 1.3 (i).

Similarly, we have already noted earlier that (1.6) implies (1.9) for β = 1 − 3
p

and M0 � Mp(γ )2/p. Thus, Theorem 1.2 follows from Theorem 1.3 (ii).
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7. Variants of the main results

It turns out that all the main results of the paper do hold under slightly weaker
assumptions. Namely, it suffices to assume that the integrals of 1/R – and not of
1/R2 – decay to zero with an appropriate speed. This observation follows from
careful analysis of the proofs in Sections 5 and 6. Below, we briefly indicate the
most important changes, leaving all other details to the interested reader.

Remark 7.1. It is an exercise to see that in the proof of Lemma 6.1 one might
replace assumption (6.2) by a weaker one,

sup
0<r≤r0
τ∈SL

r−(2+β)

∫
Br (τ )

∫
Br (τ )

∫
Br (τ )

dx dy dz

R(�(x), �(y), �(z))
≤ K0. (7.1)

In fact, it is possible to work with the same sets (6.9)-(6.11) of ‘bad’ parameters,
leaving λ, c1, δ2 and δ1 in (6.6), (6.7) unchanged, and replacing the old c2 defined in
(6.7) by a new constant c2 := 2−7K −1

0 c4
1. After minor technical adjustments in the

estimate (6.14), we can replace the old estimate of the set X of ‘bad’ parameters,
i.e. (6.15), by

H 1(X) ≤ 25c2K0

c3
1

|u − v| = 1

4
c1|u − v| .

From that point on, the proof of Lemma 6.1 goes without changes.

Remark 7.2. One can also check that it is possible to replace (2.8) in the Uniform
cone flatness theorem (and therefore also (1.9) in Assumption (ii) of Theorem 1.3)
by an analogous assumption,

∫
Br (τ1)

∫
Br (τ2)

∫
Br (τ3)

ds dt dσ

R(�(s), �(t), �(σ ))
≤ K0 r2+β (7.2)

for all 0 < r ≤ r0 and all τ1, τ2, τ3 ∈ SL .
Again, the proof is very similar to the proof of Theorem 2.3. The whole idea

and a substantial (geometric) part of the proof stays unchanged; adjusting minor
technical details (i.e., the constants and exponents) in the computations (5.18)-
(5.21) we obtain the following:

Theorem 7.3 (Uniform cone flatness III). Assume that there are constants β ∈
(0, 1], r0 > 0, and M0 ≥ 0, such that � satisfies (7.2) for all 0 < r ≤ r0 and all
τ1, τ2, τ3 ∈ SL . Then there exists a constant c̃ = c̃(β) > 1 depending only on β

such that if two numbers, ε ∈ (0, π/2) and η > 0, satisfy the relation

ε3−2β ≥ c̃(β)K0η
β and η ≤ min

{
1
2 diam �(SL), r0

}
, (7.3)



INTEGRAL MENGER CURVATURE 185

then for every s, t ∈ SL such that |�(s) − �(t)| = η we have

�(SL) ∩ B2η(�(s)) ⊂ Cε(�(s); �(t)).

It is clear that this result might serve as a replacement of Theorem 2.3 in numerous
proofs that were presented in Sections 2 and 3. This would require a few more
changes of notation; in particular, the definitions (2.2) and (2.3) of the diamond-
like sets D(a, b) and DU (a, b) are based on (2.1) and were designed to work well
in various applications of Theorem 2.3, but this is a minor point. However, Proposi-
tion 2.7 and Corollary 2.8 (uniform local injectivity) do hold when one replaces the
decay assumption (2.8) by (7.2); one just has to adjust the constant δ0. Similarly, a
counterpart of Theorem 2.10 holds:

If the arclength parametrization � : SL → R3 of a curve γ : S1 → R3

satisfies (7.2) for all 0 < r ≤ r0 and all τ1, τ2, τ3 ∈ SL , and � is a local homeo-
morphism, then �′ exists everywhere on SL , and there is a constant C� depending
on diam γ, r0, β, and K0, such that

|�′(s) − �′(t)| ≤ C�|s − t | β
3−2β for all s, t ∈ SL . (7.4)
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