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A geometric study of Wasserstein spaces:
Euclidean spaces
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Abstract. In this article we consider Wasserstein spaces (with quadratic trans-
portation cost) as intrinsic metric spaces. We are interested in usual geometric
properties: curvature, rank and isometry group, mostly in the case of Euclidean
spaces. Our most striking result is that the Wasserstein space of the line admits
“exotic” isometries, which do not preserve the shape of measures.
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1. Introduction

The concept of optimal transportation recently raised a growing interest in links
with the geometry of metric spaces. In particular the L? Wasserstein space W, (X)
have been used by Von Renesse and Sturm [15], Sturm [17] and Lott and Vil-
lani [12] to define certain curvature conditions on a metric space X. Many useful
properties are inherited from X by #,(X) (separability, completeness, geodesic-
ness, some non-negative curvature conditions) while some other are not, like local
compacity.

In this paper, we study the geometry of Wasserstein spaces as intrinsic spaces.
We are interested, for example, in the isometry group of #,(X), in its curvature
and in its rank (the greatest possible dimension of a Euclidean space that embeds
in it). In the case of the Wasserstein space of a Riemannian manifold, itself seen
as an infinite-dimensional Riemannian manifold, the Riemannian connection and
curvature have been computed by Lott [13]. See also [18] where Takatsu studies
the subspace of Gaussian measures in %(R”), [19] where with Jokota he studies
its cone structure, and [1] where Ambrosio and Gigli are interested in the second
order analysis on %, (IR"), in particular its parallel transport.

The Wasserstein space #,(X) contains a copy of X, the image of the isometric
embedding

E:X — W,(X)

X = Oy
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where §, is the Dirac mass at x. Moreover, given an isometry ¢ of X one defines
an isometry @y of %(X) by px(u)(A) = ;,L((D_l (A)). We thus get an embedding

# : Isom X — Isom %, (X).

These two elementary facts connect the geometry of #,(X) to that of X.

One could expect that # is onto, i.e. that all isometries of V/Z(X ) are induced
by those of X itself. Elements of #(Isom X) are called trivial isometries. Let us
introduce a weaker property: a self-map ® of #,(X) is said to preserve shapes if
for all u € %(X ), there is an isometry ¢ of X (that depends upon ) such that
D (u) = (). Anisometry that does not preserve shapes is said to be exotic.

Our main result is the surprising fact that %, (R) admits exotic isometries.
More precisely we prove the following:

Theorem 1.1. The isometry group of #5(R) is a semidirect product
IsomR x IsomR. (1.1)

Both factors decompose: IsomR = 7Z/27 x R and the action defining the semidi-
rect product (1.1) is simply given by the usual action of the left 7./27 factor on the
right R factor, that is (¢, v) - (n, t) = (n, et) where 7,/27. is identified with {£1}.

In (1.1), the left factor is the image of # and the right factor consist in all isome-
tries that fix pointwise the set of Dirac masses. In the decomposition of the latter, the
727 factor is generated by a non-trivial involution that preserves shapes, while
the R factor is a flow of exotic isometries.

The main tool we use is the explicit description of the geodesic between two
points wo, ni of %(R) that follows from the fact that the unique optimal trans-
portation plan between o and w| is the non-decreasing rearrangement. It implies
that most of the geodesics in #,(IR) are not complete, and we rely on this fact to
give a metric characterization of Dirac masses and of linear combinations of two
Dirac masses, among all points of %(R). We also use the fact that %(R) has
vanishing curvature in the sense of Alexandrov.

Let us describe roughly the non-trivial isometries that fix pointwise the set of
Dirac masses. On the one hand, the non-trivial isometry generating the Z /27 factor
is defined as follows: a measure p is mapped to its symmetric with respect to its
center of mass. On the other hand, the exotic isometric flow tends to put all the
mass on one side of the center of gravity (that must be preserved), close to it, and to
send a small bit of mass far away on the other side (so that the Wasserstein distance
to the center of mass is preserved). In particular, under this flow any measure u
converges weakly (but of course not in %(R)) to 8, (where x is the center of mass
of ), see Proposition 5.4.

The case of the line seems very special. For example, #,(R") admits non-
trivial isometries but all of them preserve shapes.
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Theorem 1.2. If n > 2, the isometry group of #5(R") is a semidirect product
Isom(R") x O(n) (1.2)

where the action of an element € Isom(IR") on O(n) is the conjugacy by its linear
part .

The left factor is the image of # and each element in the right factor fixes all
Dirac masses and preserves shapes.

The proof relies on Theorem 1.1, some elementary properties of L optimal
transportation in R” and Radon’s Theorem [14].

We see that the quotient Isom #,(R")/IsomR" is compact if and only
if n > 1. The higher-dimensional Euclidean spaces are more rigid than the line
for this problem, and we expect most of the other metric spaces to be even more
rigid in the sense that # is onto.

Another consequence of the study of complete geodesics concerns the rank of

W, (RM).
Theorem 1.3. There is no isometric embedding of R"*! into Wo(R").

It is simple to prove that despite Theorem 1.3, large pieces of R” can be em-
bedded into #,(RR), which has consequently infinite weak rank in a sense to be
precised. As a consequence, we get for example:

Proposition 1.4. If X is any Polish geodesic metric space that contains a complete
geodesic, then W, (X) is not 8-hyperbolic.

This is not surprising, since it is well-known that the negative curvature as-
sumptions tend not to be inherited from X by its Wasserstein space. An explicit
example is computed in [2, Example 7.3.3]; more generaly, if X contains a thom-
bus (four distinct points x1, X3, X3, x4 so that d(x;, x;41) is independent of the cyclic
index i) then V/Z(X ) is not uniquely geodesic, and in particular not CAT(0), even if
X itself is strongly negatively curved.

Organization of the paper

Sections 2 to 4 collect some properties needed in the sequel. Theorem 1.1 is proved
in Section 5, Theorem 1.2 in Section 6. Section 7 is devoted to the ranks of WZ(]R)
and #,(R"), and we end in Section 8 with some open questions.

ACKNOWLEDGEMENTS. I wish to thank all speakers of the workshop on optimal
transportation held in the Institut Fourier in Grenoble, especially Nicolas Juillet
with whom I had numerous discussion on Wasserstein spaces, and its organizer
Hervé Pajot. I am also indebted to Yann Ollivier for advises and pointing out some
inaccuracies and mistakes in preliminary versions of this paper.
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2. The Wasserstein space

In this preliminary section we recall well-known general facts on %, (X). One can
refer to [20, 21] for further details and much more. Note that the denomination
“Wasserstein space” is debated and historically inaccurate. However, it is now the
most common denomination and thus an occurrence of the self-applying theorem
of Arnol’d according to which a mathematical result or object is usually attributed
to someone that had little to do with it.

2.1. Geodesic spaces

Let X be a Polish (i.e. complete and separable metric) space, and assume that X
is geodesic, that is: between two points there is a rectifiable curve whose length is
the distance between the considered points. Note that we only consider globally
minimizing geodesics, and that a geodesic is always assumed to be parametrized
proportionally to arc length.

One defines the Wasserstein space of X as the set #,(X) of Borel probability
measures ¢ on X that satisfy

/ dz(xo,x),u(dx) < 400
X

for some (hence all) point xg € X, equipped by the distance dy  defined by:

dy (o, p) = inf f d*(x, y)T1(dxdy)
XxX

where the infimum is taken over all couplings IT of 1, ®1. A coupling realizing
this infimum is said to be optimal, and there always exists an optimal coupling.

The idea behind this distance is linked to the Monge-Kantorovitch problem:
given a unit quantity of goods distributed in X according to (o, what is the most
economical way to displace them so that they end up distributed according to i1,
when the cost to move a unit of good from x to y is given by d?(x, y)? The minimal
cost is d;(uo, 1) and a transportation plan achieving this minimum is an optimal
coupling.

An optimal coupling is said to be deterministic if it can be written under the
form [1(dxdy) = pu(dx)1[y = Tx] where T : X — X is a measurable map and
I[A] is 1 if A is satisfied and O otherwise. This means that the coupling does not
split mass: all the mass at point x is moved to the point 7x. One usually write
IT = (Id x T)gw. Of course, for I1 to be a coupling between p and v, the relation
v = Ty must hold.

Under the assumptions we put on X, the metric space #,(X) is itself Pol-
ish and geodesic. If moreover X is uniquely geodesic, then to each optimal cou-
pling IT between jo and p is associated a unique geodesic in #,(X) in the fol-
lowing way. Let C([0, 1], X) be the set of continuous curves [0, 1] — X, let
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g: X x X — C([0, 1], X) be the application that maps (x, y) to the constant speed
geodesic between these points, and for each ¢ € [0, 1] lete(?) : C([0, 1], X) — X
be the map y +— y(¢). Then t +— e(t)#gs#Il is a geodesic between o and pg.
Informally, this means that we choose randomly a couple (x, y) according to the
joint law TIT, then take the time ¢ of the geodesic g(x, y). This gives a random point
in X, whose law is u,, the time ¢ of the geodesic in %(X ) associated to the optimal
coupling I1. Moreover, all geodesics are obtained that way.

Note that for most spaces X, the optimal coupling is not unique for all pairs of
probability measures, and #,(X) is therefore not uniquely geodesic even if X is.

One of our goal is to determine whether the Dirac measures can be detected
inside %, (X) by purely geometric properties, so that we can link the isometries of
#,(X) to those of X.

2.2. The line
Given the distribution function
F:x— p(—o00,x])
of a probability measure u, one defines its left-continuous inverse:

F7':10,1 - R
m — sup{x € R; F(x) < m}

that is a non-decreasing, left-continuous function; limg F —1 is the infimum of the
support of i and lim; F~! its supremum. A discontinuity of F~! happens for each
interval that does not intersect the support of x, and F~! is constant on an interval
for each atom of .

Figure 2.1. Inverse distribution function of a combination of three Dirac masses.

Let ¢ and 1 be two points of %(R), and let Fy, F be their distribution functions.
Then the distance between 1o and 11 is given by

2 R -1 2
(o, 1) = /O (F5'om) = F o))" dm @.1)
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and there is a unique constant speed geodesic (141);<[0,1], Where u; has a distribution
function F; defined by

Fl=0-0F ' +1F" 2.2)

This means that the best way to go from g to 1 is simply to rearrange increasingly
the mass, a consequence of the convexity of the cost function. For example, if g
and p are uniform measures on [0, 1] and [¢, 1 + ¢], then the optimal coupling is
deterministic given by the translation x — x + ¢. That is: the best way to go from
1o to w1 is to shift every bit of mass by ¢. If the cost function where linear, it would
be equivalent to leave the mass on [¢, 1] where it is and move the remainder from
[0, e] to [1, 1+ &]. If the cost function where concave, then the latter solution would
be better than the former.

P

It
I m

8

Figure 2.2. A geodesic between two atomic measures: the mass moves with speed
proportional to the length of the arrows.

2.3. Higher dimensional Euclidean spaces

The Monge-Kantorovich problem is far more intricate in R” (n > 2) than in R. The
major contributions of Knott and Smith [11, 16] and Brenier [3,4] give a quite sat-
isfactory characterization of optimal couplings and their unicity when the two con-
sidered measures  and v are absolutely continuous (with respect to the Lebesgue
measure). We shall not give details of these works, for which we refer to [20, 21]
again. Let us however consider some toy cases, which will prove useful later on.
Missing proofs can be found in [10, Section 2.1.2].

We consider R” endowed with its canonical inner product and norm, denoted
by ||

2.3.1. Translations
Let T, be the translation of vector v and assume that v = (7;)#u. Then the unique

optimal coupling between p and v is deterministic, equal to (Id x T)#u, and there-
fore dy(u, v) = |v|. This means that the only most economic way to move the
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mass from p to v is to translate each bit of mass by the vector v. This is a quite in-
tuitive consequence of the convexity of the cost. In particular, the geodesic between
w and v can be extended for all times r € R. This happens only in this case as we
shall see later on.

2.3.2. Dilations

Let D’ be the dilation of center x and ratio A and assume that v = (D*)4u. Then
the unique optimal coupling between p and v is deterministic, equal to (Id x ng)# “w.
In particular,

1
dy (. v) = 1= 222dy (1, 82).
As a consequence, the geodesic between p and v is unique and made of homothetic

of u, and can be extended only to a semi-infinite interval: it cannot be extended
beyond §, (unless u is a Dirac mass itself).

2.3.3. Orthogonal measures

Assume that u and v are supported on orthogonal affine subspaces V and W of R”.
Then if II is any coupling, assuming 0 € V N W, we have

/ x — y2I(dxdy) =[ (52 + [y T (dxdy)
nxRn R2 xR"

_ f ) + / yIPu(dy)
\% w

therefore the cost is the same whatever the coupling.

2.3.4. Balanced combinations of two Dirac masses

Assume that . = 1/28,, + 1/28y, and v = 1/28,, + 1/28y,. A coupling between
w and v is entirely determined by the amount m € [0, 1/2] of mass sent from xg to
x1. The cost of the coupling is

1 2 1 2
Elm — yol” + §|x0 —y1l” = 2m(yo — x0) - (y1 — x1)

thus the optimal coupling is unique and deterministic if (yop — xg) - (y1 — x1) # O,
given by the map (xg, yo) — (x1, y1) if (yo — x0) - (y1 — x1) > O and by the
map (xg, o) — (y1, x1) if (yo — x0) - (y1 — x1) < 0 (Figure 2.3). Of course if
(yo — x0) - (y1 — x1) = 0, then all coupling have the same cost and are therefore
optimal.

If the combinations are not balanced (the mass is not equally split between
the two point of the support), then the optimal coupling is easy to deduce from the
preceding computation. For example if (yp — x¢) - (y; —x1) > 0O then as much mass
as possible must be sent from xg to x1, and this determines the optimal coupling.

This example has a much more general impact than it might seem: it can be
generalized to the following (very) special case of the cyclical monotonicity (see for
example [21, Chapter 5]) which will prove useful in the sequel.
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Figure 2.3. Optimal coupling between balanced combinations of two Dirac masses.
Continuous arrows represent the vectors yp — xo and y; — x; while dashed arrows
represent the optimal coupling.

Lemma 2.1. IfT1 is an optimal coupling between any two probability measures on
R” then

(yo—x0)-(y1—x1) =20

holds whenever (xqo, x1) and (yo, y1) are in the support of T1.

2.4. Spaces of nonpositive curvature

In this paper we shall consider two curvature conditions. The first one is a negative
curvature condition, the é-hyperbolicity introduced by Gromov (see for example
[5]). A geodesic space is said to be 6-hyperbolic (where § is a non-negative number)
if in any triangle, any point of any of the sides is at distance at most § from one of
the other two sides. For example, the real hyperbolic space is §-hyperbolic (the
value of § depending on the value of the curvature), a tree is O-hyperbolic and the
euclidean spaces of dimension at least 2 are not §-hyperbolic for any §.

The second condition is the classical non-positive sectional curvature condition
CAT(0), detailed in Section 4, that roughly means that triangles are thinner in X
than in the euclidean plane. Euclidean spaces, any Riemannian manifold having
non-positive sectional curvature are examples of locally CAT(0) spaces.

A geodesic CAT(0) Polish space X is also called a Hadamard space.

A Hadamard space is uniquely geodesic, and admits a natural boundary at infin-
ity. The feature that interests us most is the following classical result: if X is a
Hadamard space, given u € #,(X) there is a unique point xo € X, called the
center of mass of w, that minimizes the quantity f X d?(xo, x)u(dx). If X is R"?
endowed with the canonical scalar product, then the center of mass is of course
fRn xu(dx) but in the general case, the lack of an affine structure on X prevents the
use of such a formula.

We thus get amap P : #,(X) — X that maps any L? probability measure
to its center of mass. Obviously, P is a left inverse to £ and one can hope to
use this map to link closer the geometry of #,(X) to that of X. That’s why our
questions, unlike most of the classical ones in optimal transportation, might behave
more nicely when the curvature is non-positive than when it is non-negative.
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3. Geodesics

The content of this section, although difficult to locate in the bibliography, is part
of the folklore and does not pretend to originality. We give proofs for the sake of
completeness.

3.1. Case of the line

We now consider the geodesics of #,(R). Our first goal is to determine on which
maximal interval they can be extended.

3.1.1. Maximal extension

Let ©o, 11 be two points of %(R) and Fy, F) their distribution functions. Let
(Mt)re0,17 be the geodesic between g and pq. Since %(R) is uniquely geodesic,
there is a unique maximal interval on which y can be extended into a geodesic,
denoted by I (uo, t1).

Lemma 3.1. One has
I(o, 1) ={t e R; F,_l is non-decreasing}

where Ffl is defined by the formula (2.2). It is a closed interval. If one of its bound
to is finite, then g, does not have bounded density with respect to the Lebesgue
measure.

Proof. Any non-decreasing left continuous function is the inverse distribution func-
tion of some probability measure. If such a function is obtained by an affine com-
bination of probabilities belonging to #;(IR), then its probability measure belongs
to #,(R) too.
Moreover, an affine combination of two left continuous function is left contin-
uous, so that
I(g, 1) ={t e R; Ft_1 is non-decreasing}.

The fact that I (g, £1) is closed follows from the stability of non-decreasing func-
tions under pointwise convergence.

If the minimal slope
Flm) — ' om)

m—m’

inf

0<m<m <1

is positive for some 7, then it stays positive in a neighborhood of ¢. Thus, a finite
bound of 7(ug, 1) must have zero minimal slope, and cannot have a bounded
density. O

A geodesic is said to be complete if it is defined for all times. We also consider
geodesic rays, defined on an interval [0, T'] or [0, +oo[ (in the latter case we say
that the ray is complete), and geodesic segments, defined on a closed interval.

It is easy to deduce a number of consequences from Lemma 3.1.
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Proposition 3.2. In #,(R) :

[a——

. any geodesic ray issued from a Dirac mass can be extended to a complete ray,

2. no geodesic ray issued from a Dirac mass can be extended for negative times,
except if all of its points are Dirac masses,

3. up to normalizing the speed, the only complete geodesics are those obtained by

translating a point of W, (R):

wi(A) = jo(A —1).

Proof. The inverse distribution function of a Dirac mass J is the constant function
Fy ! with value x. Since it slopes

Fyl(m) — Fy ' (m")

m—m’

O<m<m <1

are all zero, for all positive times ¢ the functions Ffl defined by formula (2.2) for
any non-decreasing F| are non-decreasing. However, for ¢+ < 0 the F,_1 are not
non-decreasing if F|~ Uis not constant, we thus get 1 and 2.

Consider a point po of %(R) defined by an inverse distribution function F;~ 1,

and consider a complete geodesic (u;) issued from pp. Let Ffl be the inverse
distribution function of w;. Then, since u; is defined for all times # > 0, the slopes
of F|” ! must be greater than those of F; L.

Fy'lm) — Fy''om'y < F7Nm) — F7Nm') Ym <

otherwise, when ¢ increases, some slope of F,_1 will decrease linearly in ¢, thus
becoming negative in finite time.
But since u; is also defined for all ¢ < 0, the slopes of F 1_1 must be lesser than

those of F, I They are therefore equal, and the two inverse distribution function
are equal up to an additive constant. The geodesic pu; is the translation of g and
we proved 3. O

3.1.2. Convex hulls of totally atomic measures

Define in %(R) the following sets:
A = {ox;x € R}
A, = Zaiéxi;xiER,Zaizl
i=1

ALy = D1\ A

Recall that if X is a Polish geodesic space and C is a subset of X, one says that C
is convex if every geodesic segment whose endpoints are in C lies entirely in C.
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The convex hull of a subset Y is the least convex set C(Y) that contains Y. It
is well defined since the intersection of two convex sets is a convex set, and is equal
to U,enY, where Yy = Y and Y, 4 is obtained by adding to Y, all points lying on
a geodesic whose endpoints are in Y.

Since A is the image of the isometric embedding £ : R — %(R), itis a
convex set. This is not the case of A, is n > 1. In fact, we have the following:

Proposition 3.3. If n > 1, any point u of A+ lies on a geodesic segment with
endpoints in A,. Moreover, the endpoints can be chosen with the same center of
mass than that of |t.

Proof. If u € A, the result is obvious. Assume ;& = ) a;8y, is in A;H. We can
assume further that x; < x3 < --- < x,41. Consider the measures

M—1 = Z ai(sxi + (an—1 +an)5xn,1 +an+15x,,+|
i<n—1

Z ai8xi + an—laxn,l + (an + an—i—l)ax,,H .

i<n—1

M1

Then u lies on the geodesic segment from w_1 to ;1. To get a constant center of
mass, one considers the geodesic

M = Z ai8xi +an8xn+t +an+15x,,+|—at

i<n—1

where @ = a,/a, 1. Itis defined for all ¢ in [xn,l — Xp, (X1 — x0)/ (1 + a)], we
have 1o = u, and the choice of @ makes the center of mass constant. ]

In particular, we get the following noteworthy fact that will prove useful latter on:
Proposition 3.4. The convex hull of A, is dense in #5(R) if n > 1.

Proof. Follows from Proposition 3.3 since the set of totally atomic measures _J,, A,
is dense in 7, (R). O
3.2. Complete geodesics in higher dimension

In R”, the optimal coupling and thus the geodesics are not as explicit as in the case
of the line.

It is however possible to determine which geodesic can be extended to all times
in R.

Lemma 3.5. Let i = (us)req be a geodesic in %(R") associated to an optimal
coupling T1 between o and (1. Then for all times r and s in I and all pair of
points (xo, x1), (Yo, y1) in the support of 1, the following hold:

ul® + (r + s)u-v+rsjv)* =0

where u = yg — xg and v = y; — x1 — (Yo — X0)-
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Proof. Let us introduce the following notations: for all pair of points ag, a; € R",
a; = (1 —t)ap + tay and I1,; is the law of the random variable (X,, X;) where
(X0, X1) is any random variable of law IT. As we already said, I1, s is an optimal
coupling of u,, s whose corresponding geodesic is the restriction of (u;) to [r, s].

Since I1, ; is optimal, according to the cyclical monotonicity (see Lemma 2.1)
one has (y, — x,) - (ys — x5) 2 0.

But with the above notations, one has y, —x, = u +rv and y; — x; = u + sv,
and we get the desired inequality. O

Let us show why this Lemma implies that the only complete geodesics are
those obtained by translation. There are immediate consequences on the rank of
V/Z(R"), see Theorem 1.3 and Section 7.

Proposition 3.6. Let i = (s)er be a geodesic in %(R“) defined for all times.
Then there is a vector u such that p; = (Ty,)# /0.

This result holds even if n = 1, as stated in Proposition 3.2.

Proof. 1t is sufficient to find a u such that u; = (7,)#uo, since then there is only
one geodesic from po to ©1.

Consider any pair of points (xg, x1), (yo, y1) in the support of the coupling I1
between pg and p; that defines the restriction of wu to [0, 1]. Define u = yg — xg
and v = y; — x1 — (yo — Xo)-

If v # 0, then there are real numbers r < s such that |u|> + (r + s)u - v +
rs|v|?> < 0. Then the coupling I1, s between w, and L, that defines the restriction
of 1 to [r, 5], defined as above, cannot be optimal. This is a contradiction with the
assumption that p is a geodesic.

Therefore, for all (xg, x1), (yo, ¥1) in the support of IT one has yp — xo =
y1 — x1. This amounts to say that IT is deterministic, given by a translation of
vector 4 = yg — Xo. L]

4. Curvature

Once again, this section mainly collects some facts that are already well-known but
shall be used on the sequel.

More details on the (sectional) curvature of metric spaces are available for
example in [6] or [9]. We shall consider the curvature of ”//Z(R), in the sense of
Alexandrov. Given any three points x, y, z in a geodesic metric space X, there is
up to congruence a unique comparison triangle x’, y’, z’ in R?, that is a triangle that
satisfies d(x, y) =d(x',y"),d(y,z) =d(y', 7)), and d(z, x) = d(Z, x').

One says that X has non-positive curvature (in the sense of Alexandrov), or
is CAT(0), if for all x, y, z the distances between two points on sides of this trian-
gle is lesser than or equal to the distance between the corresponding points in the
comparison triangle, see Figure 4.1.
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Equivalently, X is CAT(0) if for any triangle x, y, z, any geodesic y such that
y(0) =xand y(1) = y, and any ¢ € [0, 1], the following inequality holds:

d*(y,y(0) < A = 0)d*(y, y(0) + td*(y, y (1)) —t(1 — Del(y)>  (4.1)

where £(y) denotes the length of y, that is d(x, z).

V(1)

y

Figure 4.1. The CAT(0) inequality: the dashed segment is shorter in the triangle xyz
than in the comparison triangle on the right.

One says that X has vanishing curvature if equality holds for all x, y, z, y, t:

A2,y (1) = A —0d*(y, y0) + td2(y, y(1)) — t(1 — Ote(y)2. (4.2

This is equivalent to the condition that for any triangle x, y, z in X and any point
y (t) on any geodesic segment between x and z, the distance between y and y (¢) is
equal to the corresponding distance in the comparison triangle.

Proposition 4.1. The space %, (R) has vanishing Alexandrov curvature.

Proof. Tt follows from the expression (2.1) of the distance in %(R): if we denote
by A, B, C the inverse distribution functions of the three considered points x, y, z €

7,(R), we get:
Py, y () = fol (B = (1= DA - 1C)?
= /01 (1 =028 - a2+ 2B - )
£2t(1 — 1)(B — A)(B — C)]
and using that (1 —1)> = (1 —¢t) —t(1 —f)and 1> =1 — 1(1 — 1),
d*(y.y®) = (1= 0d*(y.x) +1d*(y.2) = 1(1 = 1) /01 (B -4

+(B—C)?—2(B — A)(B — C)]
= (1 =0)d*(y,x)+td*(y,z) — t(1 — d*(x, 2). O
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We shall use the vanishing curvature of %, (R) by means of the following result,
where all subsets of X are assumed to be endowed with the induced metric (that
need therefore not be inner).

Proposition 4.2. Let X be a Polish uniquely geodesic space with vanishing curva-
ture. If Y is a subset of X and C(Y) is the convex hull of Y, then any isometry of Y
can be extended into an isometry of C(Y).

Proof. Let ¢ : Y — Y the isometry to be extended. Let x, y be any points lying
each on one geodesic segment y, T : [0, 1] — X whose endpoints are in Y. Con-
sider the unique geodesics y’, / that satisfy y'(0) = ¢(y(0)), y'(1) = @(y(1))
7/(0) = ¢(z(0)), /(1) = ¢(r(1)) and the points x’, y’ lying on them so that
d(x',y'(0)) = d(x,y(0)), d(x',y'(1)) = d(x, y(1)), and the same for y’. This
makes sense since, ¢ being an isometry on Y, ¥’ has the length of y and 7’ that of
7. We shall prove that d(x', y') = d(x, y).

The vanishing of curvature implies that d(x’, T/(0)) = d(x, t(0)): the tri-
angles y(0), y(1), 7(0) and y'(0), ¥'(1), 7/(0) have the same comparison trian-
gle. Similarly d(x’, T’(1)) = d(x, (1)). Now x, t(0), 7(1) and x’, 7/(0), /(1)
have the same comparison triangle, and the vanishing curvature assumption implies
d(-xla y/) =d(x, )’)

>y (1) ?7'(1)

7(0) !
7(0)
Figure 4.2. All triangles being flat, the distance is the same between x’ and y’ and
between x and y.

In particular, if x = y then x’ = y’. We can thus extend ¢ to the union of geodesic
segments whose endpoints are in ¥ by mapping any such x to the corresponding
x'. This is well-defined, and an isometry. Repeating this operation we can extend ¢
into an isometry of C(Y). But X being complete, the continuous extension of ¢ to
C(Y) is well-defined and an isometry. O]

Note that the same result holds with the same proof when the curvature is
constant but non-zero.

4.1.1. The higher dimensional case

Proposition 4.1 does not hold in %, (R"). In effect, there are pairs of geodesics that
meet at both endpoints (take measures whose support lie on orthogonal subspaces
of R"). Taking a third point in one of the two geodesics, one gets a triangle in
#,(R") whose comparison triangle has its three vertices on a line. This implies that
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#,(R") is not CAT(0). The situation is in fact worse than that: in any neighborhood
U of any point of #,(R") one can find two different geodesics that meet at their
endpoints. One can say that this space has positive sectional curvature at arbitrarily
small scales.

5. Isometries: the case of the line

5.1. Existence and unicity of the non-trivial isometric flow

In this section, we prove Theorem 1.1.
Let us start with the following consequence of Proposition 3.2:

Lemma 5.1. An isometry of #5(IR) must globally preserve the sets Ay and A».

Proof. We shall exhibit some geometric properties that characterize the points of
A1 and A; and must be preserved by isometries.

First, according to Proposition 3.2, the points ;& € A are the only ones to sat-
isfy: every maximal geodesic ray starting at x is complete. Since an isometry must
map a geodesic (ray, segment) to another, this property is preserved by isometries
of #,(R).

Second, let us prove that the point ;. € A, are the only ones that satisfy: any
geodesic u; such that w = pp and that can be extended to a maximal interval
[T, 400) with —oo < T < 0, has its endpoint p7 in Aj.

This property is obviously satisfied by points of Aj.

It is also satisfied by every points of A),. Indeed, denote by F; the distribution
function of u; and write u = ady + (1 — a)$y where x < y. Then if u; does not
write iy = ady, + (1 — a)dy, with x; < yi, either

e there are two reals b, c suchthata < b < ¢ < 1 and Fl_l(b) < Fl_l(c),

e there are two reals b, c suchthat 0 < b < ¢ < a and Ffl(b) < Ffl(c), or
e /i1 is a Dirac mass.

In the first two cases, i, is not defined for # < 0, and in the third one, it is not defined
forz > 1. If 1 does write iy = ady, + (1 —a)dy,, then either |y; — x;| = [y — x|
and p, is defined for all ¢, or |y; — x| < |y — x| and &, is only defined until a finite
positive time, or |y; — x1| > |y — x| and u; is defined from a finite negative time T
where ur € Ajy.

Now if u ¢ Aj, its inverse distribution function F —1 takes three different
values at some points m; < mo < m3. Consider the geodesic between u and
the measure x/ whose inverse distribution function F'~! coincide with F~! on
[m1, m3] but is defined by

F'"Ym) — F~ (my) = 2(F~ (m) — F~'(my))

on [my, 1) (see Figure 5.1). Then this geodesic is defined for all positive times, but
stops at some nonpositive time 7. Since F~! takes different values at m» and m3,
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Figure 5.1. The geodesic between these inverse distributions is defined for negative
times, more precisely until it reaches the dashed line.

one can extend the geodesic for small negative times and 7 < 0. But the inverse
distribution function of the endpoint ;7 must take the same values than that of y in
m1 and my, thus ur ¢ Aj. O

Now we consider isometries of A, to which all isometries of %(R) shall be
reduced.
Any point & € A}, writes under the form

e P e’
=ux,0,p) = ——8,— — -
m=pu( p) e P 1+ ep X Uel’+efp+ep x+oe=P
where x is its center of mass, o is the distance between u and its center of mass,
and p is any real number. In probabilistic terms, if u is the law of a random variable
then x is its expected value and o its variance.

Lemma 5.2. An isometry of #,(R) that fixes each point of Ay must restrict to A),
to a map of the form:

P (p) = plx, 0, p) = plx, o, 9(p))
for some ¢ € Isom(R). Any such map is an isometry of A».

Proof. Let ® be an isometry of %(R) that fixes each point of Aj.
A computation gives the following expression for the distance between two
measures in A

dyu(x, 0, p), (v, p, @) = (x — y)> + 0% + p* — 20pe? 4,

Since @ is an isometry, it preserves the center of mass and variance. The preceding
expression shows that it must preserve the euclidean distance between p and ¢
for any two measures u(x, o, e), u(y, p, f), and that this condition is sufficient to
make ® an isometry of Aj. O
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Lemma 5.3. Let  : x — ex +vand ¢ : p — np +t be isometries of R. Then

#()D(@)HW) N ((x, 0, p)) = u(x, o, np + et)

Proof. 1t follows from a direct computation:

#W) P @HY) (1 (x, 0, p)) = #Y) P (@) (u(ex — ev, 0, ep))
= #(Tﬂ)(ﬂ(sx — &V, 0, NeEp + t))
= p(x,o,np + &r). O

We are now able to prove our main result.

Proof of Theorem 1.1. First Lemma 5.1 says that any isometry of #,(R) acts on
A 1 and Az.

Let Zbe #(IsomR) and % be the subset of Isom V/Z(R) consisting of isome-
tries that fix A pointwise. Then Z is a normal subgroup of Isom %, (R).

Let W be an isometry of #,(R). It acts isometrically on Ay, thus there is an
isometry ¥ of R such that #(y)W € Z. In particular, Isom #,(R) = Z%. Since
LN A is reduced to the identity, we do have a semidirect product Isom #,(R) =
LXXR.

According to Proposition 4.2, each map ®(¢) : u(x, o, p) — ux, o, ¢(p))
extends into an isometry of C(A»), which is %(R) by Proposition 3.4. We still
denote by ®(¢) this extension. Proposition 3.4 also shows that an isometry of
#,(R) is entirely determined by its action on Aj. The description of % now follows
from Lemma 5.2.

If o denotes the symmetry around 0 € R, then ® (o) maps a measure pu €
#,(R) to its symmetric with respect to its center of mass, thus preserves shapes.
Any other ¢ € Isom(R) is a translation or the composition of o and a translation.

By the exotic isometry flow of Isom %(R) we mean the flow of isometries
@' = ®(¢') obtained when ¢’ : p — p + ¢ is a translation. This flow does not
preserve shapes as is seen from its expression in A.

Atlast, Lemma 5.3 gives the asserted description of the semidirect product. [

5.2. Behaviour of the exotic isometry flow

The definition of ®' is constructive, but not very explicit outside A,. On A,, the
flow tends to put most of the mass on the right of the center of mass, very close to
it, and send a smaller and smaller bit of mass far away on the left.

The flow ®’ preserves As as its elements are the only ones to lie on a geodesic
segment having both endpoints in A;. Similarly, elements of A, are the only ones to
lie on a geodesic segment having an endpoint in A, and another in A,,_1, therefore
®! preserves A, for all n.
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Figure 5.2. Image of a point of A, by @2 (dashed) and @3 (dotted).

Direct computations enable one to find formulas for ®’ on A,,, but the expressions
one gets are not so nice. For example, if u = %8 ¥ T+ %8 x, + %8 x; Where x1 < xp <
X3, then

1
t —
*w =150 8X1+%(1*1)(X3*x1)+%(1*f)(x2*xl)

3,
i
<1+ [2> 1+2t2 x1+%(1—t)(x3—x1)-‘r%(l-‘rt*l—kl)(xz—xl)

1,2
2 5
1—}—%1‘2 x1+§(1+2t‘1)(X3—x1)+%(l—t_])(xz—xl)'

In order to get some intuition about @, let us prove the following:

Proposition 5.4. Let j1 be any point of #,(R) and x its center of mass. If t goes to
+o00, then ®' (1) converges weakly to §,.

Proof. We shall only consider the case when + — 400 since the other one is sym-
metric. Let us start with a lemma.

Lemma 5.5. Ify' and V' are in %(R) and both converge weakly to 5, when t goes
to +00, and if ' is on the geodesic segment between y' and V' for all t, then |1
converges weakly to 5y when t goes to 4+00.

Proof. It is a direct consequence of the form of geodesics: if ! and v’ both charge
an interval [x —n, x +n] with a mass at least 1 — ¢, then ' must charge this interval
with a mass at least 1 — 2e. O

Now we are able to prove the proposition on larger and larger subsets of
%(]R). First, it is obvious on Aj. If it holds on A,, the preceding Lemma to-
gether with Proposition 3.3 implies that it holds on A, 1. To prove it on the whole
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of #,(R), the density of the subset of (_J, A, consisting of measures having center
of mass x, and a diagonal process are sufficient. O

6. Isometries: the higher-dimensional case
To show that the exotic isometry flow of #,(R) is exceptional, let us consider the

higher-dimensional case : there are isometries of %(R”) that fix pointwise the set
of Dirac masses, but there are not so many and they preserve shapes.

6.1. Existence of non-trivial isometries

We start with the existence of non-trivial isometries, that however preserves shapes.
Proposition 6.1. If ¢ is a linear isometry of R", then the map
Q(p) s> (e —g) + 8

where g denotes both the center of mass of | and the corresponding translation, is
an isometry of #,(R") (see Figure 6.1).

.~ \
'
'

! i
[ [
' '

' '

'

Figure 6.1. Example of a non-trivial isometry that preserves shapes.

Note that we need ¢ to be linear, thus we do not get as many non-trivial isometries
as in #,(IR). Moreover, all isometries constructed this way preserve shapes.

Proof. We only need to check the case of absolutely continuous measures j, v since
they form a dense subset of 7, (IR"). In that case, there is a unique optimal coupling
that is deterministic, given by amap 7 : R” — R" such that T4(u) = v. Denote by
g and h the centers of mass of i and v. Let us show that there is a good coupling
between ' = ®(¢)(n) and v/ = & (@) (v). Let T’ be the map defined by

T'(p(x —g) +8) =¢(Tx —h)+h.
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By construction T;(u") = v’. Moreover the cost of the coupling (Id x T")gu’ is
A= / lp(x — ) + 8 — ¢(Tx — h) — h|*pu(dx)
= / <|Tx—x|2+2|g—h|2+2(x—Tx)-(h—g)+2(p(x —Tx)-(g—h)

+20(h — g) - (g — ) ) p(dx)

=d(u,v)+2lg—h*+2(g—h)-(h—g) +20(g —h)- (g —h)
+2ph—g)-(g—h)
= d,(u,v).

This shows that i/ and V' are at distance at most dy(t,v). Applying the same rea-
soning to D(p)~!, we get that dy (u',v') =doy(1,v) and ® (@) is an isometry. [

6.2. Semidirect product decomposition

The Dirac masses are the only measures such that any geodesic issued from them
can be extended for all times (given any other measure, the geodesic pointing to
any Dirac mass cannot be extended past it, see in Section 2.3 the paragraph on
dilations). As a consequence, an isometry of %/, (R") must globally preserve the set
of Dirac masses

As in the case of the line, if we let .Z = #Isom(R") and Z be the set of
isometries of %(R") that fix each Dirac mass, then Isom V/Z(R") =% % We
proved above that & contains a copy of O(n), and is in particular non-trivial.

Moreover, if one conjugates a_®(p) by some #(3), where ¢ € O(n) and
¥ € IsomR”, one gets the map ® (Yo 1) (it is sufficient to check this on some
measure p in the easy cases when 1 is a translation or fixes the center of mass of
w). Therefore, the action of Zon O(n) C Z in the semidirect product is as asserted
in Theorem 1.2.

To deduce Theorem 1.2, we are thus left with proving that an isometry that
fixes pointwise all Dirac masses must be of the form ® (¢) for some ¢ € O(n).

6.3. Measures supported on subspaces

The following lemma will be used to prove that isometries of #, (R") must preserve
the property of being supported on a proper subspace.

Lemma 6.2. Let u,v € %(R"), denote by g, h their centers of mass and let o =
dy (i, 8g) and p = dy(v, 81,). The equality

dy(u,v) =d*(g, h) + o> + p* (6.1)

holds if and only if there are two orthogonal affine subspaces L and M such that
w e W5(L)and v € Wy(M).
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Proof. Let us first prove that d>(g, h) + o + p? is the cost B of the independent
coupling IT = pu ® v:

B = / d?(x, y)T1(dxdy)
R xR"?

= / |(x — g) — (v — h) + (g — )| TI(dxdy)
R xR

= o2+ p*+d*(g. h) -2 (/R (x — g)u(dx)> . (/R v — h)v(dy))

+2(g —h) - (/Rn(x - g)u(dX)) —2(g—h)- (/Rn(y - h)v(dy)>
= o2+ ,02 + dz(g, h)

since by definition g = [ xu(dx) and h = [ yu(dy).

As a consequence, (6.1) holds if and only if the independent coupling is opti-
mal.

If 1 has two point x, y in its support and v has two points z, ¢ in its support
such that (xy) is not orthogonal to (z¢), then either (x — y) - (z —¢) < O or (x —
y) - (t —z) < 0. Then by cyclical monotonicity (see Lemma 2.1) the support of
an optimal coupling cannot contain (x, z) and (y, ¢) (in the first case) or (z, x) and
(y, t) (in the second case) and thus cannot be the independent coupling.

As a consequence, (6.1) holds if and only if  and v are supported on two
orthogonal affine subspaces. O

Lemma 6.3. Isometries of #,(R") send hyperplane supported-measures on hy-
perplane supported measures. Moreover, if two measures are supported on parallel
hyperplanes, then their images by any isometry are supported by parallel hyper-
planes.

Proof. Let u € #,(R") be supported by some hyperplane H and ® be an isometry
of #,(R"). Let v be any measure that is supported on a line orthogonal to H, and
that is not a Dirac mass. Then (6.1) holds (whith the same notation as above).

Let 1’ and v’ denote the images of u and v by ®. We know that ® must map
dg and J; to Dirac masses o/ and §;/. Since the center of mass of an element of
#,(R") is uniquely defined as its projection on the set of Dirac masses, g’ is the
center of mass of ' and 4’ is that of v'. We get, denoting by ¢ and p’ the distances
of 1’ and V' to their centers of mass,

dy (W', V') = dy(u, v)
= d*(g,h) + o2 + p?
— (jZ(g/7 h/)+o_/2+p/2

which implies that i’ and v’ are supported on orthogonal subspaces L and M of
R". Since v is not a Dirac mass, M is not a point and L is contained in some
hyperplane H'.
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Moreover, if @ is another measure supported on a hyperplane parallel to H,
then its image w1/ is supported on some subspace orthogonal to M. It follows that
we can find a hyperplane parallel to H' that contains the support of 1. O

We are know equipped to end the proof of Theorem 1.2 by induction on the
dimension.

6.4. Non-existence of exotic isometries: case of the plane

Given a line L C RR?, denote by #,(L) the subset of #,(R?) consisting of all
measures whose support is a subset of L. An optimal coupling between two points
of %(L) must have its supportin L x L, thus %(L) endowed with the restriction of
the distance of %(Rz) is isometric to #,(R). More precisely, given any isometry
¥ R — L, we get an isometry yy : %(R) — “//Z(L).

Lemma 6.3 ensures that any isometry ® maps a line-supported measure to
a line-supported measure, and that the various measures in %, (L) are mapped to
measures supported on parallel lines.

We assume from now on that ® fixes each Dirac mass and, up to composing
it with some ® (¢), that it preserves globally %(L) for some L (the axis R x {0}
say). We can moreover assume that its restriction to V/Z(L) is a ®' for some .

Lemma 6.4. Let ® be an isometry of %(RZ) that fixes Dirac masses, preserves
globally W, (L) and such that its restriction to this subspace is the time t of the
exotic isometric flow.

Then t must be 0 and up to composing with some ® (@), we can assume that ©
preserves %(M) for all line M.

Proof. We identify a measure 1 € #,(R) with its image by the usual embedding
that identifies R with the axis L. We denote by 0L the rotate of L by an angle 0
around the origin.

Denote by u(x, o, p, 6) the combination of two Dirac masses that is the image
of u(x, o, p) if & = 0, and its rotate around x by an angle 6 otherwise. If 6 < 7/2,
one gets

dy(n(0, 1, p, 0), u(0, 1,q,0)) =2 — 2P~ cos 6. (6.2)

This shows in particular that the measures supported on 6L and with center of
mass 0 must be mapped to measures supported on =6 L. Up to composing with
@ (¢) where ¢ is the orthogonal symmetry with respect to L, we can assume that
the measures supported on %L and with center of mass 0 are mapped to measures
supported on % L.

Then the measures supported on 6 L and with center of mass 0 must be mapped
to measures supported on a line that crosses L and 5 L with angles -6 and £(6 —
7). They are therefore mapped to measures supported on 6 L.

Using the same argument and Lemma 6.3, we get that ® must preserve %, (M)
for all lines M.
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Moreover, from equation (6.2) we deduce that if the restriction of ® to %(L)
is the time ¢ of the exotic isometric flow, then for all § < /2 its restriction to 6 L
also is. But applying the same reasoning to %L and %”L, then to %”L andnL =L
we see that the restriction of @ to %(L) with the reversed orientation must be the
time ¢ of the exotic isometric flow. This implies t = —¢ thus t = 0. O

The case n = 2 of Theorem 1.2 is now reduced to the following:

Lemma 6.5. If an isometry ® of %(Rz) fixes pointwise the set of line-supported
measures, then it must be the identity.

Proof. This is a consequence of Radon’s theorem, which asserts that a function
(compactly supported and smooth, say) in R” is characterized by its integrals along
all hyperplanes [14] (also see [8]).

Given u € %(RZ), one can determine by purely metric means its orthogo-
nal projection on any fixed line L: it is its metric projection, that is the unique v
supported on L that minimizes the distance dy (i, v).

Now if u has smooth density and is compactly supported, then the integral of
its density along any line L is exactly the density at point M N L of its projection
onto any line M orthogonal to L.

Therefore, ® must fix every measure u € %(Rz) that has a smooth density
and is compactly supported. They form a dense set of %(Rz) thus ® must be the
identity. O

6.5. Non-existence of exotic isometries: general case

We end the proof of Theorem 1.2 by an induction on the dimension. There is
nothing new compared to the case of the plane, so we stay sketchy.

Let @ be an isometry of #,(R") that fixes pointwise the Dirac masses. It
must map every hyperplane-supported measure to a hyperplane-supported measure.
Using a non-trivial isometry, we can assume that for some hyperplane L, ® globally
preserves the set #, (L) of measures supported on L.

Thanks to the induction hypothesis, we can compose ® with another non-trivial
isometry to ensure that ® fixes %(L) pointwise.

Let i be a measure supported on some hyperplane M # L. Let M’ be a hyper-
plane supporting ® (12). Then as in the case of the plane, it is easy to show that the
dihedral angle of (L, M) equals that of (L, M’). Moreover, all measures supported
on L N' M are fixed by ®, and we conclude that M’ = M (up to composition with
@ (¢) where ¢ is the orthogonal symmetry with respect to L).

The same argument shows that ® preserves %, (M) for all hyperplanes M.

A measure supported on M is determined, if its dihedral angle with L different
from /2, by its orthogonal projection onto L. Since ® fixes #,(L) pointwise, it
must fix %(M ) pointwise as well. When M is orthogonal to L, the use of a third
hyperplane not orthogonal to M nor L yields the same conclusion.

Now that we know that ® fixes every hyperplane-supported measure, we can
use the Radon Theorem to conclude that it is the identity.
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7. Ranks

One usually defines the rank of a metric space X as the supremum of the set of
positive integers k such that there is an isometric embedding of R¥ into X.

As a consequence of Proposition 3.6, we get the following result announced in
the introduction:

Theorem 7.1. The space %(R") has rank n.

Proof. An isometric embedding e : R"+! — #,(R") must map a geodesic to a
geodesic, since they are precisely those curves y satisfying

d(y (1), y(s)) = v|t —s|

for some constant v. The union of complete geodesics through any point w in the
image of e would contain a copy of R"*!, but Proposition 3.6 shows that this union
is isometric to R", ]

However, one can define less restrictive notions of rank as follows:

Definition 7.2. Let X be a Polish space. The semi-global rank of X is defined as
the supremum of the set of positive integers k such that for all » € R, there is an
isometric embedding of the ball of radius r of R¥ into X.

The loose rank of X is defined as the supremum of the set of positive integers
k such that there is a quasi-isometric embedding of Z¥ into X.

Let us recall that amap f : ¥ — X is said to be a quasi-isometric embedding
if there are constants C > 1, D > 0 such that for all y, z € Y the following holds :

Cld(y,z) — D <d(f(y), f(2)) < Cd(y,z) + D.

The notion of loose rank is relevant in a large class of metric spaces, including
discrete spaces (the Gordian space [7], or the Cayley graph of a finitely presented
group for example). We chose not to call it “coarse rank” due to the previous use of
this term by Kapovich, Kleiner and Leeb.

The semi-global rank is motivated by the following simple result:

Proposition 7.3. A geodesic space X that has semi-global rank at least 2 is not
8-hyperbolic.

Proof. Since X contains euclidean disks of arbitrary radius, it also contains eu-
clidean equilateral triangles of arbitrary diameter. In such a triangle, the maximal
distance between a point of an edge and the other edges is proportional to the diam-
eter, thus is unbounded in X. O

Proposition 7.4. The semi-global rank and the loose rank of #,(R) are infinite.
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Proof. Consider the subset Rk\ ={(x1, .. x0);x1 < x2 < oo < xp) of RR Tt s
a closed, convex cone.
Moreover the map

R’; — #,(R)
1
R

is an isometric embedding.

Since ]Rk< contains arbitrarily large balls, # (R) must have infinite semi-global
rank. h

Moreover, since Rk< is a convex cone of non-empty interior, it contains a circu-
lar cone. Such a circular cone is conjugate by a linear (and thus bi-Lipschitz) map

to the cone
€= {xlz = lez} .

i>2
Now the vertical projection from {x; = 0} to € is bi-Lipschitz. There is there-
fore a bi-Lipschitz embedding of R~ in #,(R) and, a fortiori, a quasi-isometric
embedding of Z*~!. Therefore #,(R) has infinite loose rank. O

7.1. Ranks of other spaces

The ranks of %, (IR) have an influence on those of many spaces due to the following
lemma:

Lemma 7.5. If X and Y are Polish geodesic spaces, any isometric embedding ¢ :
X — Y induces an isometric embedding oy : V/Z(X ) — V/Z(Y ).

As usual, gy is defined by: g (A) = ,u(qfl (A)) for all measurable A C Y.

Proof. Since ¢ is isometric, for any u € #,(X), ggp is in V/Z(Y ). Moreover
any optimal transportation plan in X is mapped to an optimal transportation plan
in Y (note that a coupling between two measures with support in ¢(X) must have
its support contained in ¢(X) x ¢(X)). Integrating the equality d(¢(x), ¢(y)) =
d(x, y) yields the desired result. O

Corollary 7.6. If X is a Polish geodesic space that contains a complete geodesic,
then W,(X) has infinite semi-global rank and infinite loose rank. As a consequence,
W, (X) is not 5-hyperbolic.

Proof. Follows from the preceding lemma, Proposition 7.4 and Proposition 7.3. [

This obviously applies to 7, (R").
One could hope that in Hadamard spaces, the projection to the center of mass

P HyX) > X
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could give a higher bound on the rank of %, (X) by means of that of X. However,
P need not map a geodesic on a geodesic. For example, if one consider on the real
hyperbolic plane RH? the measures p; = 1/28 p+1/28, () where p is a fixed point
and y(¢) is a geodesic (see Figure 7.1), then u; is a geodesic of %(RHZ) that is
mapped by P to a curve with the same endpoints than y, but is different from it.
Therefore, this curve cannot be a geodesic.

P

__JP(y,

~

Figure 7.1. The projection P maps a geodesic of %(RHZ) to a non-geodesic curve
(dashed) in RH2.

8. Open problems

Since the higher-dimensional Euclidean spaces are more rigid (has fewer non-trivial
isometries) than the line, we expect other spaces to be even more rigid.

Question 8.1. Does it exists a Polish (or Hadamard) space X # R such that %(X )
admits exotic isometries?

Does it exists a Polish (or Hadamard) space X # R” such that %(X ) admits
non-trivial isometries?

In any Hadamard space X, isometries of %, (X) must preserve the set of Dirac
masses (the proof is the same than in R), and this fact could help get a grip on the
problem in this case.

For general spaces, even the following seems not obvious.

Question 8.2. Does it exists a Polish space X whose Wasserstein space #,(X)
possess an isometry that does not preserve the set of Dirac masses ?

Last, when X is Hadamard, one could hope to use the projection P to link the
rank of %(X ) to the loose rank of X.

Question 8.3. If X is a Hadamard space, is the loose rank of X an upper bound for
the rank of %, (X) ?
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