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Shell theories arising as low energy �-limit
of 3d nonlinear elasticity

MARTA LEWICKA, MARIA GIOVANNA MORA

AND MOHAMMAD REZA PAKZAD

Abstract. We discuss the limiting behavior (using the notion of �-limit) of the
3d nonlinear elasticity for thin shells around an arbitrary smooth 2d surface. In
particular, under the assumption that the elastic energy of deformations scales
like h4, h being the thickness of a shell, we derive a limiting theory which is a
generalization of the von Kármán theory for plates.

Mathematics Subject Classification (2010): 74K20 (primary); 74B20 (sec-
ondary).

1. Introduction

The derivation of lower dimensional models for thin structures (such as membranes,
shells, or beams) from the three-dimensional theory has been one of the fundamen-
tal questions since the beginning of research in elasticity [19]. Recently, a novel
variational approach through �-convergence has lead to the derivation of a hierar-
chy of limiting theories. Among other features, it provides a rigorous justification
of convergence of three-dimensional minimizers to minimizers of suitable lower
dimensional limit energies.

In this paper we discuss shell theories arising as �-limits of higher scalings
of the nonlinear elastic energy. Given a 2-dimensional surface S, consider a shell
Sh of mid-surface S and thickness h, and associate to its deformation u the scaled
per unit thickness three dimensional nonlinear elastic energy Eelastic(u, Sh). We are
interested in the identification of the �-limit Iβ of the energies:

h−β Eelastic(·, Sh),
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as h → 0, for a given scaling β ≥ 0. As mentioned above, this implies convergence,
in a suitable sense, of minimizers uh of Eelastic(·, Sh) (subject to applied forces) to
minimizers of two-dimensional energy Iβ , provided Eelastic(uh, Sh) ≤ Chβ.

In the case when S is a subset of R2 (i.e., a plate), such �-convergence was
first established by LeDret and Raoult [15] for β = 0, then by Friesecke, James,
and Müller [9,10] for all β ≥ 2 (see also [24] for results for β = 2 under additional
conditions). In the case of 0 < β < 5/3 the convergence was recently obtained
by Conti and Maggi [5], see also [2]. The regime 5/3 ≤ β < 2 remains open
and is conjectured to be relevant for crumpling of elastic sheets. Other significant
results for plates concern derivation of limit theories for incompressible materials
[3, 4, 28], for heterogeneous materials [26], and through establishing convergence
of equilibria, rather than strict minimizers [20, 22].

Much less is known in the general case when S is an arbitrary surface. The first
result by LeDret and Raoult [16] relates to scaling β = 0 and models membrane
shells: the limit I0 depends only on the stretching and shearing produced by the
deformation on the mid-surface S. Another study is due to Friesecke, James, Mora,
and Müller [8], who analyzed the case β = 2. This scaling corresponds to a flexural
shell model, where the only admissible deformations are those preserving the metric
on S. The energy I2 depends then on the change of curvature produced by the
deformation.

All the above mentioned theories (as well as the subsequent results in this
paper) should be put in contrast with a large body of literature, devoted to deriva-
tions starting from three-dimensional linear elasticity (see Ciarlet [1] and references
therein). Indeed, since thin structures may undergo large rotations even under the
action of very small forces, one cannot assume the small strain condition, on which
the linear elasticity is based.

The objective of this work is to discuss the limit energies for scalings β ≥ 4,
for arbitrary surfaces S. We now give a heuristic overview of our results, whose
precise formulations will be presented in Section 2. If Eelastic(u, Sh) ≈ Chβ , for
any β > 2, one expects u to be close to a rigid motion R. This argument can
be made precise by means of the quantitative rigidity estimate due to Friesecke,
James, and Müller [9] (see also Lemma A.1). We further demonstrate that the first
term in the expansion of u − R, in terms of h, belongs to the space of infinitesimal
isometries V . That is, there is no first order change in the Riemannian metric of S
under the displacement V ∈ V . The corresponding bending energy, given in terms
of the first order change in the second fundamental form of S, is the �-limit Iβ
if β > 4 (Theorem 2.3). This limit energy coincides with the so-called linearly
elastic flexural shell model, derived in [1] from the linear elasticity theory. Our
result guarantees therefore that, without any a priori smallness assumption on the
strain, the use of the linearized flexural shell model is justified whenever the order
of magnitude of the per unit thickness three-dimensional energy is hβ with β > 4.

When β = 4, also the second order in h change in the metric on S (stretch-
ing) contributes to the limiting energy. This change is induced by V , and addi-
tionally, by an “approximate second order displacement” w. This last notion in-
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volves studying the finite strain space B. For a similar situation where this space
emerges see the discussion by Sanchez-Palencia [25] and Geymonat and Sanchez-
Palencia [11] under the title of ill-inhibited surfaces, in the context of linear elas-
ticity. In Theorems 2.1 and 2.2 we derive the energy functional I4, which can be
seen as a generalization of the von Kármán theory for plates [14], justified in terms
of �-convergence in [10]. Indeed, if S is a plate, then the normal component of
V and w are, respectively, the out-of-plane and the in-plane displacements (mod-
ulo a possible in-plane infinitesimal rigid motion). In the general case of shells,
the functional I4 has been, according to our knowledge, so far absent from the
literature.

A particular class of surfaces when I4 simplifies to the bending energy is the
hereby introduced class of approximately robust surfaces. We say that S is (approx-
imately) robust if any infinitesimal isometry V ∈ V can be completed by a second
order displacement to an (approximate) second order isometry. In other words, S
can always further adjust its deformation, to compensate for the change of metric
produced at second order. As a result, the total stretching of second order is in-
significant and the �-limit consists only of a bending term (Theorem 2.3). We show
three general examples of approximately robust surfaces: convex surfaces, surfaces
of revolution, and developable surfaces without flat parts. An example of a not
approximately robust surface is a plate.

We also address the issue of external forces, depending on the reference config-
uration, namely the dead loads (Theorem 2.5). Under a vanishing average condition
and a suitable scaling of the forces f h applied to Sh , Theorem 2.1 provides infor-
mation on the deformation of Sh assumed in response to the load. In addition, the
appropriate limit force f identifies the set of possible rotations the body will un-
dergo. This phenomenon is easily observed: if f h is “compressive”, then Sh prefers
to make a large rotation rather than undergoing a compression, and an alignment of
V with the force is energetically preferable.

As noted above, from the mechanical point of view, the class of approximately
robust surfaces exhibits a response to loads which is qualitatively different than that
of plates, and a better capacity to resist stretching under the same regime of forces.
In general, the most important factor in understanding a shell’s response to loads
is the relationship and properties of spaces V and B. From the technical point of
view these are also the crucial new ingredients of the present paper, improving the
analysis of [8–10].

The identification of �-limit for any scaling in the range β ∈ (2, 4) and non-
flat S is still open. In analogy with the analysis developed in [10] for plates, the
construction of a recovery sequence requires finding an exact isometry of S, co-
inciding with a given second order isometry. Another direction of study concerns
shells, whose mid-surface is inhibited (or infinitesimally rigid). Examples of such
are closed or partially clamped elliptic surfaces. In this case the limit functionals
that our theory yields are identically equal to zero. This suggests looking for higher
order terms in the development of the three-dimensional energy in the sense of �-
convergence. These are subtle issues and we plan to address them in a forthcoming
paper.
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2. An overview of the main results

Let S be a 2-dimensional surface embedded in R3. We assume that S is com-
pact, connected, oriented, and of class C1,1, and that its boundary ∂S is the union
of finitely many (possibly none) Lipschitz continuous curves. Consider a family
{Sh}h>0 of thin shells of thickness h around S:

Sh = {z = x + t �n(x); x ∈ S, − h/2 < t < h/2}, 0 < h < h0.

We will use the following notation: �n(x) for the unit normal, Tx S for the tangent
space, and �(x) = ∇�n(x) for the shape operator on S, at a given x ∈ S. The
projection onto S along �n will be denoted by π , so that:

π(z) = x ∀z = x + t �n(x) ∈ Sh .

We will assume that h < h0, with h0 > 0 sufficiently small to have π well defined
on each Sh , and so that: 1/2 < |Id + t�(x)| < 3/2 for all z as above.

For a W 1,2 deformation of a thin shell uh : Sh −→ R3, we assume that its
elastic energy (scaled per unit thickness) is given by the nonlinear functional:

Eelastic(uh, Sh) = 1

h

∫
Sh

W (∇uh).

The stored-energy density function W : R3×3 −→ [0, ∞] is C2 in some open
neighborhood of SO(3), in the space R3×3 of 3 × 3 real matrices. Moreover, W is
assumed to satisfy the conditions of normalization, frame indifference and nonde-
generacy:

∀F ∈ R
3×3 ∀R ∈ SO(3) W (R) = 0, W (RF) = W (F),

W (F) ≥ Cdist2(F, SO(3)),

with a uniform constant C > 0. Here SO(3) denotes the group of proper rota-
tions. Recall that the tangent space to SO(3) at Id is the space of skew-symmetric
matrices:

so(3) =
{

F ∈ R
3×3; F = −FT

}
.

It is convenient to view uh through their rescalings yh ∈ W 1,2(Sh0, R3), defined on
a common domain Sh0 :

yh(x + t �n(x)) = uh (x + th/h0�n(x)) ∀x ∈ S ∀t ∈ (−h0/2, h0/2).
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Given the rescaled deformation yh ∈ W 1,2(Sh0, R3), its scaled average displace-
ment is given by:

(V h[yh])(x) = h√
eh

∫ h0/2

−h0/2
yh(x + t �n) − x dt.

Since we will frequently deal with such vector fields V ∈ W 1,2(S, R3) on the
surface, we introduce the following notation. By sym ∇V (x) we mean a bilinear
form on Tx S given by: (sym ∇V (x)τ )η = 1

2 [(∂τ V (x))η + (∂ηV (x))τ ], for all
τ, η ∈ Tx S. Given a matrix field A ∈ L2(S, R3×3), by Atan(x) we denote the
tangential minor of A at x ∈ S, that is [(A(x)τ )η]τ,η∈Tx S .

We are concerned with the limiting behavior, relative to low energy deforma-
tions, of the energies:

I h(yh) = 1

h

∫
Sh

W (∇uh).

That is, we want to discuss the limit, as h → 0, of the functionals I h/eh , for a given
sequence of positive numbers eh , which we assume to satisfy:

lim
h→0

eh/h4 = κ2 < ∞. (2.1)

We will prove that the limit under consideration is described (in the sense of �-
convergence [6]) by the generalized von Kármán functional I (V, Btan) in (2.3),
defined for infinitesimal isometries V ∈ V and strains Btan ∈ B. The crucial space
V consists of infinitesimal isometries [27] V ∈ W 2,2(S, R3), that is these vector
fields V for whom there exists a matrix field A ∈ W 1,2(S, R3×3) so that:

∂τ V (x) = A(x)τ and A(x) ∈ so(3) for a.e. x ∈ S, ∀τ ∈ Tx S. (2.2)

Another crucial space is the finite strain space B, consisting of the following sym-
metric matrix fields:

B =
{

L2 − lim
h→0

sym∇wh; wh ∈ W 1,2(S, R
3)

}
,

(clearly, both the weak and the strong convergences yield the same B).
Our first main result is the following:

Theorem 2.1. Assume (2.1) and let uh ∈ W 1,2(Sh, R3) be a sequence of defor-
mations such that the sequence of scaled energies { 1

eh I h(yh)} is bounded. Then

there exist rigid motions of R3, given through proper rotations Qh ∈ SO(3) and
translations ch ∈ R3, such that for the normalized deformations:

ỹh(x + t �n) = (Qh)T yh(x + t �n) − ch

the following holds.
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(i) ỹh converge in W 1,2(Sh0) to π .
(ii) V h[ỹh] converge (up to a subsequence) in W 1,2(S) to some V ∈ V .

(iii) 1
h sym∇V h[ỹh] converge (up to a subsequence) weakly in L2(S) to some sym-
metric matrix field Btan on S.

(iv) There holds:

lim inf
h→0

1

eh
I h(yh) ≥ I (V, Btan),

where:

I (V, Btan) = 1

2

∫
S
Q2

(
x, Btan − κ

2
(A2)tan

)

+ 1

24

∫
S
Q2 (x, (∇(A�n) − A�)tan) .

(2.3)

The following quadratic, nondegenerate forms are of relevance here:

Q3(F) = D2W (Id)(F, F),

Q2(x, Ftan) = min{Q3(F̃); (F̃ − F)tan = 0}. (2.4)

The form Q3 is defined for F ∈ R3×3, while Q2(x, ·), for a given x ∈ S is defined
on tangential minors Ftan of such matrices. Both forms Q3 and all Q2(x, ·) are
positive definite and depend only on the symmetric parts of their arguments [9].

Theorem 2.1 will be proved in Sections 3 and 4. One of the crucial ingredients
is a result on approximating large deformations [9]. For completeness, we sketch its
proof, in the setting of shells, in Appendix A. We also note that because of the non-
trivial geometry of the shell, the density in the limiting energy I , in general exhibits
a dependence on x ∈ S, although the three-dimensional density W is homogeneous.

Our second main result concerns the possibility of recovering the functional
I (V, Btan) in (2.3) (or its components) as the limit of scaled energies 1

eh I h(yh), for
some sequence of deformations.

Theorem 2.2. Assume (2.1). For every V ∈ V and every Btan ∈ B, there exists a
sequence of deformations uh ∈ W 1,2(Sh, R3) such that:

(i) yh converge in W 1,2(Sh0) to π .
(ii) V h[yh] converge in W 1,2(S) to V .

(iii) 1
h sym ∇V h[yh] converge in L2(S) to Btan.

(iv) Recalling the definition (2.3) one has:

lim
h→0

1

eh
I h(yh) = I (V, Btan).

The form of the limiting energy functional I simplifies, when the space B is large
enough to choose Btan so that the first term in (2.3) vanishes. That is, we call S
“approximately robust” if for every V ∈ V one has (A2)tan ∈ B.
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Theorem 2.3. Assume (2.1). Let κ = 0 or let S be approximately robust. Then for
every V ∈ V there exists a sequence of deformations uh ∈ W 1,2(Sh, R3) such that
(i) and (ii) of Theorem 2.2 hold. Moreover:

lim
h→0

1

eh
I h(yh) = Ĩ (V ),

where

Ĩ (V ) = 1

24

∫
S
Q2

(
x,

(∇(A�n) − A�
)

tan

)
. (2.5)

Theorems 2.2 and 2.3 will be proved in Section 6. In Section 5 we discuss the
space B. In particular, we shall see that convex surfaces, surfaces of revolution, and
non-flat developable surfaces are approximately robust.

Theorems 2.1 and 2.2 (or 2.3) can be summarized (although they provide more
information than the below statement), using the language of �-convergence. For
completeness, the following result will be presented in Appendix B.

Corollary 2.4. Assume (2.1).

(i) Define a sequence of functionals:

Fh : W 1,2(Sh0, R
3) × W 1,2(S, R

3) × L2(S, R
2×2) −→ R

Fh(yh, V h, Bh
tan) =

{ 1

eh
I h(yh) if V h = V h[yh] and Bh

tan = 1
h sym ∇V h,

+∞ otherwise.

Then Fh �-converge, as h → 0, to the following functional:

F(y, V, Btan) =
{

I (V, Btan) if y = π, V ∈ V and Btan ∈ B,

+∞ otherwise.

(ii) Assume that κ = 0 or let S be approximately robust. Define the functionals:

F̃h : W 1,2(Sh0, R
3) × W 1,2(S, R

3) −→ R

F̃h(yh, V h) =
{ 1

eh
I h(yh) if V h = V h[yh],

+∞ otherwise.

Then F̃h �-converge, as h → 0, to the functional:

F̃(y, V ) =
{

Ĩ (V ) if y = π and V ∈ V,

+∞ otherwise.

All statements above remain valid if the product spaces (the domains of functionals
Fh, F̃h) are equipped with the weak (instead of strong) topology.
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We further consider a sequence of forces f h ∈ L2(Sh, R3), acting on thin
shells Sh . For simplicity, we assume that:

f h(x + t �n(x)) = h
√

eh det (Id + t�(x))−1 f (x),

where f ∈ L2(S, R3) is normalized so that:∫
S

f = 0. (2.6)

Define m to be the maximized action of force f on S over all rotations of S, and let
M be the corresponding set of maximizers:

M =
{

Q̄ ∈ SO(3);
∫

S
f (x) · Q̄x dx = m = max

Q∈SO(3)

∫
S

f · Qx

}
. (2.7)

The total energy functional on Sh is given through:

J h(yh) = I h(yh) + mh − 1

h

∫
Sh

f huh,

where mh = h
√

ehm.

Theorem 2.5. Assume (2.1) and (2.6). Then:

(i) For every small h > 0 one has:

0 ≥ inf

{
1

eh
J h(yh); uh ∈ W 1,2(Sh, R

3)

}
≥ −C.

(ii) If uh ∈ W 1,2(S, R3) is a minimizing sequence of 1
eh J h, that is:

lim
h→0

(
1

eh
J h(yh) − inf

1

eh
J h

)
= 0, (2.8)

then there exists Qh ∈ SO(3) and ch ∈ R3 such that for the normalized
deformations ỹh = (Qh)T yh − ch the convergences of Theorem 2.1 (i) (ii) and
(iii) hold. The convergence of (a subsequence of) 1

h sym∇V h[ỹh] to Btan in (iii)
is strong in L2(S).
Moreover, the set of accumulation points of {Qh} is contained within M. Any
limit (V, Btan, Q̄) minimizes the functional:

J (V, Btan, Q̄) = I (V, Btan) −
∫

S
f · Q̄V,

over all V ∈ V , all Btan ∈ B and Q̄ ∈ M.
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(iii) If κ = 0 in (2.1), or if S is approximately robust, then for any minimizing se-
quence as in (2.8), we obtain convergences of ỹh, V h[ỹh] and Qh as described
in (ii) above, and the limit (V, Q̄) minimizes the functional:

J̃ (V, Q̄) = Ĩ (V ) −
∫

S
f · Q̄V

over all V ∈ V and all Q̄ ∈ M.

In Section 7 we prove Theorem 2.5 and explain the significance of the set M in the
setting of dead loads.

The lower bound on the functionals J and J̃ , as well as attainment of their
infima, can be proved independently, under conditions (2.6) and:∫

S
f (x) · Q̄Fx dx = 0 ∀Q̄ ∈ M, ∀F ∈ so(3). (2.9)

Here M is any closed, nonempty subset of SO(3). When M has the form (2.7),
then (2.9) follows from (2.7) and can be seen as its linearization. This analysis will
be carried out in Appendix C.

3. Convergence of low energy deformations

In this section we derive some bounds on families of vector mappings {uh}h>0,
defined on Sh , under the assumption of smallness on their energy. In what follows,
by C we denote an arbitrary positive constant, depending on the geometry of S but
not on h or the vector mapping under consideration. In all proofs, the convergences
are understood up to a subsequence, unless stated otherwise.

We will work under the following hypothesis:

(H)




A sequence of vector mappings uh ∈ W 1,2(Sh, R3) and a sequence of
positive numbers eh satisfy, for small h > 0:

(i)
1

h

∫
Sh

W (∇uh) ≤ Ceh ,

(ii) lim
h→0

eh/h2 = 0.

As for the flat case in [10], the first crucial step is the following approximation
result.

Lemma 3.1. For each uh as in (H) there exist a matrix field Rh ∈ W 1,2(S, R3×3)

such that:
Rh(x) ∈ SO(3) ∀x ∈ S,

and a matrix Qh ∈ SO(3) such that:
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(i) ‖∇uh − Rhπ‖L2(Sh) ≤ Ch1/2
√

eh,

(ii) ‖∇ Rh‖L2(S) ≤ Ch−1
√

eh,

(iii) ‖(Qh)T Rh − Id‖L p(S) ≤ Ch−1
√

eh, for all p ∈ [1, ∞).

The proof follows from Lemma A.1 given in Appendix A, in view of:

E(uh, Sh) =
∫

Sh
dist2(∇uh, SO(3)) ≤ C

∫
Sh

W (∇uh) ≤ Cheh

so that limh→0 h−3 E(uh, Sh) = 0 by hypothesis (H).

Lemma 3.2. Assume (H) and let Rh, Qh be given as in Lemma 3.1. There holds:

(i) lim
h→0

(Qh)T Rh = Id, in W 1,2(S) and in L p(S).

Moreover, there exists a W 1,2 skew-symmetric matrix fields A : S −→ so(3) such
that:

(ii) lim
h→0

h√
eh

(
(Qh)T Rh − Id

)
= A, weakly in W 1,2(S) and (strongly) in L p(S).

(iii) lim
h→0

h2

eh
sym

(
(Qh)T Rh − Id

)
= 1

2
A2, in L p(S).

In (ii) and (iii) convergence is up to a subsequence (that we do not relabel). In (i),
(ii), and (iii) the appropriate convergence holds for all p ∈ [1, ∞).

Proof. The convergences in (i) follow from Lemma 3.1 in view of (H). To prove
(ii), notice that the sequence:

Ah = h√
eh

(
(Qh)T Rh − Id

)

is bounded in W 1,2(S) and so it has a weakly converging subsequence. In view of
the compact embedding of W 1,2(S) into L p(S) the convergence is strong in L p(S).
One has:

Ah + (Ah)T = h√
eh

(
(Qh)T Rh + (Rh)T Qh − 2Id

)
= −

√
eh

h
(Ah)T · Ah .

The latter converges to 0 in L p(S), and therefore the limit matrix field A is skew-
symmetric. The above equality proves as well that:

lim
h→0

h√
eh

sym Ah = 1

2
A2

in L p(S), which implies (iii).
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Recall the rescaling:

yh(x + t �n(x)) = uh (x + th/h0�n(x)) ∀x ∈ S, ∀t ∈ (−h0/2, h0/2),

so that yh ∈ W 1,2(Sh0, R3). Also, define:

∇h yh(x + t �n(x)) = ∇uh (x + th/h0�n(x)) .

By a straightforward calculation we obtain the following proposition.

Proposition 3.3. For each x ∈ S, t ∈ (−h0/2, h0/2) and τ ∈ Tx S there hold:

∂τ yh(x + t �n) = ∇h yh (x + t �n) (Id + th/h0�(x)) (Id + t�(x))−1τ

∂�n yh(x + t �n) = h

h0
∇h yh (x + t �n) �n(x).

Moreover, for I h(yh) = 1
h

∫
Sh W (∇uh) one has:

I h(yh) = 1

h0

∫
Sh0

W (∇h yh(x + t �n)) · det
[
(Id + th/h0�) (Id + t�)−1

]

=
∫

S

∫ h0/2

−h0/2
W (∇h yh(x + t �n)) · det [Id + th/h0�(x)] dt dx .

Also, directly from Lemma 3.1 (i) and Lemma 3.2 (ii) the next proposition follows:

Proposition 3.4. Assume (H). Then:

(i) ‖∇h yh − Rhπ‖L2(Sh0 ) ≤ C
√

eh,

(ii) lim
h→0

h√
eh

(
(Qh)T ∇h yh − Id

)
= Aπ , in L2(Sh0) up to a subsequence.

We will consider the corrected by rigid motions deformations ỹh ∈ W 1,2(Sh0, R3)

and averaged displacements V h ∈ W 1,2(S, R3):

ỹh = (Qh)T yh − ch, V h = V h[ỹh] = h√
eh

∫ h0/2

−h0/2
ỹh(x + t �n) − x dt,

where ch =
∫

S

∫ h0/2

−h0/2
(Qh)T yh − x dt dx , so that

∫
S

V h = 0.

Lemma 3.5. Assume (H). Then:

(i) lim
h→0

ỹh = π, in W 1,2(Sh0),

(ii) lim
h→0

V h = V, in W 1,2(S) up to a subsequence.
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The vector field V in (ii) has regularity W 2,2(S, R3) and it satisfies ∂τ V (x) =
A(x)τ for all τ ∈ Tx S. The W 1,2 skew-symmetric matrix field A : S −→ so(3) is
as in Lemma 3.2.

Proof. 1. In view of Proposition 3.3 and Proposition 3.4 we have:∥∥∥∇tan ỹh −
(
(Qh)T Rh

)
tan

· (Id + th/h0�)(Id + t�)−1
∥∥∥

L2(Sh0 )
≤ C

√
eh

∥∥∥∂�n ỹh
∥∥∥

L2(Sh0 )
≤ Ch‖∇h yh‖L2(Sh0 ) ≤ Ch.

(3.1)

To prove convergence of V h , consider:

∇V h(x) = h√
eh

∫ h0/2

−h0/2
∇tan ỹh(x + t �n)(Id + t�) − Id dt

= h√
eh

∫ h0/2

−h0/2

(
∇tan ỹh −

(
(Qh)T Rh

)
tan

(Id+t�)−1
)
(Id+t�)dt

+ h√
eh

(
(Qh)T Rh(x) − Id

)
tan

.

(3.2)

We see that by (3.1) the first term in the right hand side above converges to 0 in
L2(Sh0), as h → 0. The second term converges, up to a subsequence, to Atan by

Lemma 3.2 (ii). Therefore ∇V h converges to Atan in L2(S) and since
∫

S
V h = 0,

we may use Poincaré inequality on S to deduce (ii).

2. To prove (i), notice that by (3.1) and Lemma 3.2 we obtain the following conver-
gences in L2(Sh0):

lim
h→0

∇tan ỹh = (Id + t�)−1 = ∇tanπ,

lim
h→0

∂�n ỹh = 0.

Therefore ∇ ỹh converges to ∇π in L2(Sh0).
Since the sequence {V h} is bounded in L2(S), it also follows that:

lim
h→0

∥∥∥∥∥
∫ h0/2

−h0/2
ỹh − π dt

∥∥∥∥∥
L2(S)

= 0. (3.3)

Now, let g(x + t �n) = |det (Id + t�(x))|−1. Consider the two terms in the right
hand side of:

‖ỹh−π‖L2(Sh0 ) ≤
∥∥∥∥∥(ỹh −π) −

∫
Sh0

(ỹh − π) · g∫
Sh0 g

∥∥∥∥∥
L2(Sh0 )

+
∣∣∣∣∣
∫

Sh0
(ỹh −π) · g∫

Sh0 g

∣∣∣∣∣ .
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The first term can be bounded by means of the weighted Poincaré inequality, by
‖∇(ỹh − π)‖L2(Sh0 ) and therefore it converges to 0 as h → 0. The second term
converges to 0 as well, in view of (3.3) and:∣∣∣∣

∫
Sh0

(ỹh − π) · g

∣∣∣∣ =
∣∣∣∣∣
∫

S

∫ h0/2

−h0/2
ỹh − π dt dx

∣∣∣∣∣ ≤ C

∥∥∥∥∥
∫ h0/2

−h0/2
ỹh − π dt

∥∥∥∥∥
L2(S)

.

This justifies convergence of ỹh to π in L2(Sh0) and ends the proof of (i).

Towards the proof of Theorem 2.1, we need to consider the following sequence
of matrix fields on Sh0 :

Gh = 1√
eh

(
(Rh)T ∇h yh − Id

)
.

In view of Proposition 3.4 (i), 2symGh is the
√

eh order term in the expansion of
the nonlinear strain (∇uh)T ∇uh , at Id. This expression will also play a major role
in the expansion of the energy density at Id: W (∇h yh) = W (Id + √

ehGh).

Lemma 3.6. Assume (H). Then the sequence {Gh} as above has a subsequence,
converging weakly in L2(Sh0) to a matrix field G. The tangential minor of G is,
moreover, affine in the �n direction. More precisely:

∀τ ∈ Tx S G(x + t �n)τ = G0(x)τ + t

h0
·
(
∇(A�n)(x) − A�(x)

)
τ,

where G0(x) =
∫ h0/2

−h0/2
G(x + t �n) dt .

Proof. 1. The sequence {Gh} is bounded in L2(Sh0) by Proposition 3.4 (i). There-
fore it has a subsequence (which we do not relabel) converging weakly to some G.

For a fixed s>0, consider now the sequence of vector fields fs,h∈W1,2(Sh0,R3):

f s,h(x + t �n) = 1

s
√

eh

[(
h0 ỹh(x + (t + s)�n) − h(x + (t + s)�n)

)

−
(

h0 ỹh(x + t �n) − h(x + t �n)
)]

.

We claim that f s,h converges in L2(Sh0) (up to a subsequence) to (A�n)π as h → 0.
Indeed, using Proposition 3.3 one has:

f s,h(x + t �n) = 1√
eh

∫ t+s

t

(
h0∂�n ỹh(x + σ �n) − h�n

)
dσ

= h√
eh

∫ t+s

t

(
(Qh)T ∇h yh(x + σ �n) − Id

)
�n dσ,

and the convergence follows by Proposition 3.4 (ii).
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2. We claim that this convergence is actually weak in W 1,2(Sh0). First, notice that
the normal derivatives converge to 0 in L2(Sh0) by Proposition 3.4 (ii):

∂�n f s,h(x + t �n) = h

s
√

eh
(Qh)T

(
∇h yh(x + (t + s)�n) − ∇h yh(x + t �n)

)
�n(x).

We now find the weak limit of the tangential gradients of f s,h . By Proposition 3.3
there holds, for all τ ∈ Tx S:

∂τ f s,h(x + t �n) = 1

s
√

eh

(
h0∇ ỹh(x + (t + s)�n)(Id + (t + s)�)(Id + t�)−1

− h0∇ ỹh(x + t �n) − hs�(Id + t�)−1
)
τ

= h0

s
√

eh
(Qh)T

(
∇h yh(x+(t+s)�n)−∇h yh(x + t �n)

)
(Id+th/h0�)(Id+t�)−1τ

+ h

s
√

eh

(
(Qh)T ∇h yh(x + (t + s)�n) − Id

)
s�(Id + t�)−1τ.

By Proposition 3.4 (ii), the second term in the right hand side above:

h√
eh

(
(Qh)T ∇h yh(x + (t + s)�n) − Id

)
�(Id + t�)−1

converges in L2(Sh0) to A�(Id + t�)−1.
On the other hand, the first term equals to:

h0

s
(Qh)T Rh

(
Gh(x + (t + s)�n) − Gh(x + t �n)

)
(Id + th/h0�)(Id + t�)−1

and by Lemma 3.2 (i) it converges weakly in L2(Sh0) to

h0

s

(
G(x + (t + s)�n) − G(x + t �n)

)
(Id + t�)−1.

This establishes the (weak) convergence of f s,h in W 1,2(Sh0).

3. Equating the weak limits of tangential derivatives, we obtain, for every τ ∈ Tx S:

∂τ (A�n)(x) · (Id + t�)−1 = h0

s

(
G(x + (t + s)�n) − G(x + t �n)

)
(Id + t�)−1τ

+ A�(Id + t�)−1τ.

This proves the lemma.
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Finally, we have the following bound for convergence of the scaled energies I h :

Lemma 3.7. Assume (H). Then:

lim inf
h→0

1

eh
I h(yh) ≥ 1

2

∫
S
Q2 (x, (sym G0)tan) + 1

24

∫
S
Q2 (x, (∇(A�n) − A�)tan) .

Proof. By the frame invariance property of W we have:

W (∇h yh) = W ((Rh)T ∇h yh) = W (Id +
√

ehGh).

Consider the sets 
h = {x ∈ Sh0; (eh)1/4|Gh(x)| ≤ 1}. Clearly the sequence of
characteristic functions χ
h converges to 1 in L1(Sh0), as {(eh)1/4Gh} converges
pointwise to 0. Since W is C2 in a neighborhood of Id, then by the above calculation,
in 
h (for h sufficiently small) there holds:

1

eh
W (∇h yh) = 1

eh

1

2
D2W (Id)(

√
ehGh,

√
ehGh)

+
∫ 1

0
(1−s)

[
D2W (Id+s

√
ehGh)−D2W (Id)

]
ds(Gh,Gh)

= 1

2
Q3(G

h) + o(1)|Gh |2.

(3.4)

Above o(1) is the Landau symbol denoting any quantity uniformly converging to 0,
as h → 0. In view of Proposition 3.3 we now obtain:

lim inf
h→0

1

eh
I h(yh) ≥ lim inf

h→0

1

eh

∫
S

∫ h0/2

−h0/2
χ
h W (∇h yh)det [Id + th/h0�] dt dx

= lim inf
h→0

∫
S

∫ h0/2

−h0/2
χ
h

1

eh
W (∇h yh) dt dx

= lim inf
h→0

1

2

∫
S

∫ h0/2

−h0/2
Q3

(
sym (χ
h Gh)

)
+ o(1)

∫
Sh0

|Gh |2

≥ 1

2

∫
S

∫ h0/2

−h0/2
Q3(sym G).

The last inequality follows from positive definiteness of Q3 on symmetric matrices,
and the fact that χ
h Gh converges weakly to G, in L2(Sh0).

By the definition of Q2 and by Lemma 3.6 we get:

1

2

∫
S

∫ h0/2

−h0/2
Q3(sym G) = 1

2

∫
S

∫ h0/2

−h0/2
Q2 (x, (sym G)tan)

= 1

2

[ ∫
S

∫ h0/2

−h0/2
Q2 (x, (sym G0)tan)

+
∫

S

∫ h0/2

−h0/2

t2

h2
0

Q2 (x, (∇(A�n) − A�)tan)

]
,

which proves the result.
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4. A proof of Theorem 2.1 and some explanations

To complete the proof of Theorem 2.1, in view of Lemma 3.5 and Lemma 3.7,
it remains to understand the structure of the admissible matrices G0. This is the
content of the next lemma.

In addition to the hypothesis (H), we now also assume the existence of the
finite limit:

κ = lim
h→0

√
eh/h2 < ∞. (4.1)

When eh ≈ hβ , this corresponds to the case β ≥ 4, with κ > 0 for β = 4 and
κ = 0 for β > 4.

Lemma 4.1. Assume (H) and (4.1). Let G0 be the matrix field on S, as in Lemma 3.6.
Then we have the following convergence, up to a subsequence, weakly in L2(S):

lim
h→0

1

h
sym ∇V h =

(
sym G0 + κ

2
A2

)
tan

, (4.2)

where the subscript tan denotes, as usual, the tangential minor of a given matrix
field on S.

Proof. We use the formula (3.2) to calculate 1
h sym ∇V h . The last term in the right

hand side gives:

1√
eh

sym
(
(Qh)T Rh − Id

)
tan

=
√

eh

h2

h2

eh
sym

(
(Qh)T Rh − Id

)
tan

,

which converges in L2(S) to κ/2(A2)tan by Lemma 3.2 (iii).
To treat the first term in the right hand side of (3.2), notice that for every τ ∈

Tx S:

1√
eh

[∫ h0/2

−h0/2
∇ ỹh(x + t �n)(Id + t�) − (Qh)T Rh(x) dt

]
τ

= 1√
eh

(Qh)T
[∫ h0/2

−h0/2
∇h yh(x + t �n) − Rh(x) dt +

∫ h0/2

−h0/2
th/h0∇h yh� dt

]
τ

= 1√
eh

(Qh)T Rh(x)

[∫ h0/2

−h0/2
(Rh)T ∇h yh − Id dt

]
τ

+ h/h0√
eh

(Qh)T
[∫ h0/2

−h0/2
t
(
∇h yh − Rhπ

)
dt

]
�(x)τ,

where we used Proposition 3.3. Now, the second term in the right hand side above
converges in L2(S) to 0, by Proposition 3.4 (i). Further, the matrix in the first term
equals to:

(Qh)T Rh(x)

∫ h0/2

−h0/2
Gh(x + t �n) dt,
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and by Lemma 3.2 (i) and Lemma 3.6, it converges weakly in L2(S) to G0. This
completes the proof.

We now comment on the regularity and role of various quantities containing V
and A, intrinsically related to the geometry of the problem.

Remark 4.2. Notice first that if a vector field V ∈W 2,2(S, R3) has skew-symmetric
gradient:

τ · ∂τ V (x) = 0 ∀τ ∈ Tx S,

then it uniquely determines a W 1,2 matrix field A : S −→ so(3) by:

∀τ ∈ Tx S Aτ = ∂τ V,

A�n = � · Vtan − ∇tan(V �n).
(4.3)

Regarding the regularity, write V as the sum of its tangential and normal compo-
nents, to obtain:

V = Vtan + (V �n)�n, sym ∇V = sym ∇Vtan + (V �n)�.

Hence, assuming sufficient regularity of S (say, S is C3,1 up to its boundary) it
follows that sym ∇Vtan = −(V �n)� ∈ W 2,2(S, R2×2). Using the same calculations
as in [1, page 119], we may deduce that the tangential component Vtan enjoys higher
regularity than the vector field V . Namely, Vtan ∈ W 3,2(S, R3) and:

‖Vtan‖W 3,2(S) ≤ C
(
‖Vtan‖W 1,2(S) + ‖V �n‖W 2,2(S)

)
.

By Korn’s inequality, one can replace the W 1,2 norm of Vtan by a term of the order
‖Vtan‖L2 + ‖sym ∇Vtan‖L2 , so that we finally obtain:

‖Vtan‖W 3,2(S) ≤ C
(
‖Vtan‖L2(S) + ‖V �n‖W 2,2(S)

)
.

For an elementary derivation of Korn’s inequality on S from Korn’s inequality on
open sets, see, e.g., [17].

In the same manner, one can prove the following useful bound, valid under
C2,1 regularity of S:

‖Vtan‖W 2,2(S) ≤ C
(
‖Vtan‖L2(S) + ‖V �n‖W 1,2(S)

)
. (4.4)

Remark 4.3. 1. The (scaled) t - derivative of Gτ , which is also the argument of
the second term in the definition of I (and Ĩ ), may be written as:

(∇(A�n) − A�
)
τ =

[(∇(A�n) − A�
)
τ
]

tan
= (∂τ A)�n.

This expression measures the difference of order h between the shape operator �

on S and the shape operator �h of the deformed surface Sh = (id + hV )(S) (see
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n nRhnh

Sh

xh Rh+   V

id + hV S
x

→ → →
≈

≈

τ

ττ
τ

hd

Figure 4.1. The mid-surface S and its deformation.

Figure 4.1). To see this, let x ∈ S and let τ1, τ2 ∈ Tx S be such that �n(x) = τ1 × τ2.

The tangent map of the deformation φh(x) = x + hV (x) equals Id + h A, and we
obtain the following expansion of the (scaled) normal vector �nh to Sh at the point
φh(x):

�nh =
(
∂τ1φ

h × ∂τ2φ
h
)
(x) = �n(x) + h(τ1 × ∂τ2 V + ∂τ1 V × τ2) + O(h2)

= �n + h A�n + O(h2),

where we used the Jacobi identity for vector product and the fact that A ∈ so(3).
Note that |�nh | = 1 + O(h2) and therefore

�h(Id + h A)τ = ∂τ

( �nh

|�nh |
)

= ∂τ �nh + O(h2).

Hence the amount of bending of S, in the direction of τ ∈ Tx S, can be estimated
by:

(Id + h A)−1�h(Id + h A)τ − �τ = (Id + h A)−1(∂τ �nh + O(h2)) − �τ

= (Id + h A)−1
(
(Id + h A)�τ + h(∂τ A)�n + O(h2)

)
− �τ

= (Id − h A)h(∂τ A)�n + O(h2) = h(∂τ A)�n + O(h2).

A closely related heuristics is the following. By Proposition 3.4 (for simplicity, we
assume here that eh = h4) the tangent map ∇uh(x), at x ∈ S, is approximately a
rotation Rh(x) ∈ SO(3). Hence, �nh ≈ Rh �n. Assuming that lim Qh = Id, we may
think that Rh(x) ≈ Id + h A(x). The difference of the shape operators on Sh and S
satisfies:

(Rh)T ∇�nh − � ≈ (Id + h AT )
(
� + h∇tan(A�n)

)
− �

≈ h∇tan(A�n) + h AT � = h
(
∇(A�n) − A�

)
tan

.
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2. In turn, the role of the first term in the definition of I :

(sym G0)tan = lim
h→0

1

h
sym ∇V h − κ

2
(A2)tan,

is to measure the difference of order h2 between the metric on S and the metric
of the deformed mid-surface. Notice that under the deformation id + hV , as in
Figure 4.1, there is no first order change in the length of curves on S because the
gradient field ∇V is skew-symmetric. In geometrical terms, vector fields V with
this property are known as infinitesimal isometries (see [27, Chapter 12]).

Under the same condition (for simplicity we again assume that eh = h4), the
amount of stretching of S, in the direction τ ∈ Tx S and induced by the deformation
φh = id + hV + h2w has indeed the following expansion:

∣∣∣∂τφ
h
∣∣∣2 − |τ |2 = h2

(
2τ∂τw + |∂τ V |2

)
+ O(h3)

= 2h2
(

τ T (sym∇w)τ − 1

2
τ T A2τ

)
+ O(h3).

5. The space of finite strains B and three examples of approximately
robust surfaces

The space of limits as in the left hand side of (4.2) plays an important role in defining
the exact limiting energy functional on S. With this in mind, we introduce the
following definition.

Definition 5.1. The space of finite strains is the following closed subspace of L2(S):

B =
{

lim
h→0

sym ∇wh; wh ∈ W 1,2(S, R
3)

}

where limits are taken in L2(S).

Clearly, by Mazur’s theorem, B contains all weak L2(S) limits of symmetric
gradients of W 1,2 vector fields on S.

As we shall see in Theorem 2.3, the form of the limiting energy functional
simplifies, for surfaces with large space B.

Definition 5.2. We say that S is approximately robust, if for every V ∈ V one has:
(A2)tan ∈ B.

According to our terminology, S would be called “robust” if every admissible
(A2)tan as above, equaled sym ∇w for some w ∈ W 1,2(S, R3). The notion of robust
surfaces will arise at lower scalings, that is when κ = ∞, which we do not consider
in this paper.
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Remark 5.3. An equivalent construction of B is the following. Define the linear
space of finite strain displacements:

W = W 1,2(S, R
3)/{w ∈ W 1,2; sym ∇w = 0}.

It can be normed by ‖[w]‖W = ‖sym ∇w‖L2(S). Then (B, ‖ · ‖L2(S)) is linearly

isometric to the completion W of (W, ‖ · ‖W), so that the elements of B can be
seen as generalized symmetric gradients of elements of W .

Such construction is used in [11] or in [1] in the context of derivation of mem-
brane theories from linear elasticity. Note the different regularity of the kernels
considered in [11] and the related explanations in [1, page 262].

Remark 5.4. In general, it is complicated to directly determine the exact form of
B or W . The crucial step in identifying W is finding the optimal norm ‖ · ‖o for
which a Korn-Poincaré type inequality

inf
{
‖u − w‖o; w ∈ W 1,2, sym ∇w = 0

}
≤ C‖sym∇u‖L2(S) (5.1)

holds with a uniform constant C , for all u ∈ W 1,2(S, R3). Unlike in the case of
tangent vector fields, this optimal norm is usually weaker than L2. The reason is
that the boundedness of the left hand side in:

sym ∇wh = sym ∇wh
tan + (wh �n)�

does not, in general, imply L2 boundedness of both terms in the right hand side.
This is the case, for example, when S is (a piece of) a cylinder S1×[−1/2, 1/2].

Let τ1 and τ2 be the tangent unit vector fields, respectively orthogonal and parallel
to the axis x3 of the cylinder. One can show that there exists a sequence [wh] ∈ W
converging in W , such that for any choice of representatives wh ∈ W 1,2(S, R3),
the norms ‖whτ1‖L2(S) and ‖wh �n‖H−1(S) blow up. However, this is the worst case
scenario, and one has:

W =
{
v ∈ D′(S, R

3); vτ1 ∈ H−1(S), vτ2 ∈ L2(S), v�n ∈ H−2(S),

sym ∇v ∈ L2(S),∫ 1/2

−1/2
x3(v�n) ≡ const,

∫ 1/2

−1/2
v�n ≡ const,

∫
S
vτ1 =

∫
S
vτ2 =

∫
S

x3(vτ1) = 0

}
.

In this particular case, however, as we will see below, W is isometric to the space
of all symmetric L2 matrix fields Btan on S.
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Remark 5.5. Flat surfaces S ⊂ R2 are not approximately robust. Indeed:

B =
{

sym ∇w; w ∈ W 1,2(S, R
3)

}
=

{
Btan ∈ L2(S, R

2×2); BT
tan = Btan, curlT curl Btan = 0

}
.

On the other hand, given V ∈ V , one has (A2)tan ∈ B if and only if V 3 = V �n
solves the degenerate Monge-Ampère equation: det ∇2(V 3) = 0 (see [10]).

A particular class of approximately robust surfaces are surfaces for which:

B =
{

Btan ∈ L2(S, R
2×2); BT

tan = Btan

}
. (5.2)

As we show below, three main examples of such surfaces are: convex surfaces,
surfaces of revolution, and developable surfaces without flat regions.

Lemma 5.6. Assume that S is a simply connected, compact surface of class C2,1

with C1 boundary, and that its shape operator � is strictly positive (or strictly
negative) definite up to the boundary:

∀x ∈ S̄ ∀τ ∈ Tx S
1

C
|τ |2 ≤

(
�(x)τ

)
· τ ≤ C |τ |2. (5.3)

Then S is approximately robust, and more precisely (5.2) holds.

Proof. 1. We will prove that every compactly supported, smooth symmetric bilinear
form Btan on S, must be of the form:

Btan = sym ∇w, (5.4)

for some w ∈ W 1,2(S, R3). This will clearly imply the lemma. In [23] this result
is proved under an additional assumption that S is closed. The same method, with
a slight modification, can be applied in our case. For convenience of the reader, we
present an overview of the argument and for details of calculations we refer to [23]
and [12, Section 9.2].

Since S is simply connected, it can be parameterized by a single chart r ∈
C2,1(
̄, R3), where 
 ⊂ R2 is a simply connected domain with C1 boundary. The
definite form [gi j ]i, j :1..2 with gi j = ∂i r ·∂ j r is the pull-back metric on 
 and

√|g| =√
det[gi j ] is the associated volume form. Also, the shape operator � expressed in

the coordinates (x1, x2) ∈ 
 is given by [hi j ]i, j :1..2, where hi j = ∂i (�n ◦ r) · ∂ j r.
The inverse of � is denoted �−1 = [hi j ]i, j :1..2. The mean curvature H of S equals
to 1

2 tr ([gi j ]−1�).
With the above notation, (5.4) becomes the following system of partial differ-

ential equations in 
: 


∂1r · ∂1w = B11
∂1r · ∂2w + ∂2r · ∂1w = 2B12
∂2r · ∂2w = B22,

(5.5)
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where we set Bi j = ∂i r · Btan∂ j r . Since sym ∇w is determined, one concentrates
on the skew part of ∇w. Following [23], we let:

ω = 1√|g| (∂1w · ∂2r − ∂2w · ∂1r) ,

and we observe that ω must satisfy the equation:

− 1√|g|∂i

(√|g|hi j∂ jω
)

− 2Hω = D(Bi j ). (5.6)

The operator D : W 2,2(
, R2×2) −→ L2(
, R) is a bounded differential operator
which depends on the geometry of S. The exact expression of D is given in the
references mentioned before, but for our purposes it is enough to know its stated
regularity.

Now, the following crucial relation between problems (5.6) and (5.5) is a direct
consequence of calculations in [23].

Proposition 5.7. Assume that [Bi j ]i, j :1..2 ∈ W 2,2(
, R2×2). If (5.6) has a (weak)
solution ω ∈ W 1,2(
, R), then the system (5.5) has a solution w ∈ W 1,2(
, R3).

2. We now show that the hypothesis of Proposition 5.7 is satisfied. Note that we
have not imposed any boundary conditions on ω, which makes the argument easier.
Extend first the coefficients hi j and |g| to h̃i j and |g̃|, respectively, defined on 
ε =
{x ∈ R2; dist (x, 
) < ε} for a small ε > 0. This extension can be made so that
[h̃i j ]i, j :1..2 satisfies the ellipticity condition (5.3) and that h̃i j , |g̃| and 1/|g̃| stay
bounded in 
ε .

In order to prove existence of a solution to (5.6), we want to find f0∈C∞
c (
ε\
)

such that the Dirichlet problem

Lω = D(Bi j ) + f0 (5.7)

has a solution ω ∈ W 1,2
0 (
ε, R). The restriction of ω to 
 will, clearly, serve our

purpose. Here the operator L is given:

Lω = − 1√|g̃|∂i

(√|g̃|h̃i j∂ jω
)

− 2H̃ω

is elliptic and self-adjoint with respect to the scalar product:

〈ω, ζ 〉 =
∫


ε

ωζ
√|g̃|.

Therefore, by the classical theory of elliptic operators (see, e.g., [7, Section 6.2,
Theorem 4]), (5.7) has a solution if and only if its right hand side satisfies the
orthogonality condition:

〈D(Bi j ) + f0, ζ 〉 = 0,
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for all solutions ζ ∈ W 1,2
0 (
ε, R) of the homogeneous problem: Lζ = 0 in 
ε .

The solution space of this problem is finite dimensional, say spanned by a basis
{ζ1, . . . , ζk}. For f0 ∈ C∞

c (
ε \ 
̄) consider the functional:

L( f0) =
k∑

i=1

〈 f0, ζi 〉ei ∈ R
k .

In view of the above, it suffices to prove that L is surjective.
We now argue by contradiction. Assume that there exists a nonzero α =

(α1, . . . , αk) ∈ Rk orthogonal to the range of L . In other words:

∫

ε\


(
k∑

i=1

αiζi

)
f0

√|g̃| = 0 ∀ f0 ∈ C∞
c (
ε \ 
̄),

which clearly implies that
∑k

i=1 αiζi = 0 in 
ε \ 
̄. By the Hörmander unique-
ness theorem for second order elliptic equations (see [13, Theorem 2.4]), we obtain∑k

i=1 αiζi = 0 in 
ε , contradicting the linear independence of {ζ1, . . . , ζk}.
In view of Proposition 5.7, this ends the proof.

Lemma 5.8. Assume that S is rotationally invariant, C2 up to the boundary, and
let S̄ have no intersection with its axis of rotation. Then (5.2) holds.

Proof. 1. After a suitable rigid motion, the surface S can be parameterized by:

r : (s0, s1) × [0, 2π ] → R
3, r(s, θ) := g(s)γ (θ) + se3,

for a positive function g ∈C2([s0, s1], R), e3 =(0, 0, 1), and γ (θ)=(cos θ, sin θ, 0).
As in the proof of Lemma 5.6, we will show that (5.4) has a solution for Btan

in an appropriate dense subset of the space in the right hand side of (5.2). Given
w ∈ W 1,2(S, R3), write:

w(s, θ) := a(s, θ)γ (θ) + b(s, θ)γ ′(θ) + c(s, θ)e3

and also let:
Bi j = ∂i r · Btan∂ j r.

The equation (5.4) can now be expressed as the following periodic system of partial
differential equations in (s0, s1) × [0, 2π ] (see [27, Chapter 12]):


g′∂sa + ∂sc = B11
∂θb + a = B22
g′(∂θa − b) + g∂sb + ∂θc = 2B12.

(5.8)

We will prove that (5.8) has a solution W 1,2, periodic in θ ∈ [0, 2π ], for Bi j be-
ing finite linear combinations of the Schauder basis for L2([s0, s1] × [0, 2π ]) con-
sisting of eigenfunctions of Laplacian under the periodic boundary conditions at
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θ ∈ {0, 2π} and Neumann boundary conditions in s ∈ {s0, s1}. By density, this will
establish the lemma.

2. Differentiating the third equation in s and using the first two equations in (5.8)
we obtain:

g∂2
s b − g′′(b + ∂2

θ b) = 2∂s B12 − ∂θ B11 − g′′∂θ B22 =: ψ(s, θ). (5.9)

Note that ψ ∈ C0 and for all s, ψ(s, ·) is a finite linear combination of {eikθ }k≤N ,
for some integer N independent of s. Hence:

b(s, θ) =
+∞∑
−∞

bk(s)e
ikθ and ψ(s, θ) =

+∞∑
−∞

ψk(s)e
ikθ ,

with ψk = ψ−k and ψk = 0 for k > N . Expressing (5.9) in terms of the Fourier
coefficients bk and ψk we have:

b′′
k − g′′

g
(1 − k2)bk = ψk

g
.

Since the coefficients of the above linear equation are continuous in [s0, s1], we
deduce that there exist unique solutions bk ∈ C2([s0, s1], R) satisfying bk(s0) =
b′

k(s0) = 0. Also, bk = b−k and bk = 0 for k > N . Concluding, the finite linear
combination b = ∑

bk(s)eikθ is a W 2,2 solution to (5.9), periodic in θ . One can
now solve the first two equations in (5.8) for a and then for c, obtaining a W 1,2

solution to (5.8) and hence also to (5.4).

Finally, the following result has been proved in [26, Lemma 3.3].

Lemma 5.9. Let S be a C2 developable surface without flat regions. That is, assume
that for each x ∈ S the Gauss curvature κ(x) = 0 while �(x) �= 0. Then S
satisfies (5.2).

6. The recovery sequence: proofs of Theorems 2.2 and 2.3

In this section, we want to prove Theorems 2.2 and 2.3, that is to define a suitable
recovery sequence yh . Recall the definition (2.4). With a slight abuse of notation,
one can write:

Q2(x, Ftan) = min{Q3(Ftan + c ⊗ �n(x) + �n(x) ⊗ c); c ∈ R
3}. (6.1)

The unique vector c, for which the above minimum is attained will be called c(x,Ftan).
By uniqueness, the map c is linear in its second argument.
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Given Btan ∈ B, there exists a sequence of vector fields wh ∈ W 1,2(S, R3)

such that sym ∇wh converge in L2(S) to Btan. Without loss of generality, we may
assume that wh are smooth, and (by possibly reparameterizing the sequence) that:

lim
h→0

√
h‖wh‖W 2,∞(S) = 0. (6.2)

Let V ∈ V . We approximate V by a sequence vh ∈ W 2,∞(S, R3) such that, for a
sufficiently small, fixed ε0 > 0:

lim
h→0

‖vh − V ‖W 2,2(S) = 0,

√
eh

h
‖vh‖W 2,∞(S) ≤ ε0,

lim
h→0

h2

eh
µ

{
x ∈ S; vh(x) �= V (x)

}
= 0.

(6.3)

The existence of such vh follows by partition of unity and a truncation argument, as
a special case of the Lusin-type result for Sobolev functions in [18] (see also [10,
Proposition 2]).

Define a sequence of rescaled deformations yh ∈ W 1,2(Sh0, R3):

yh(x + t �n) = x +
√

eh

h
vh(x) +

√
ehwh(x)

+ th/h0�n(x) + t/h0

√
eh

(
�vh

tan − ∇(vh �n)
)
(x)

− th/h0

√
eh �nT ∇wh + th/h0

√
ehd0,h(x)

+ t2

2h2
0

h
√

ehd1,h(x).

(6.4)

Notice that if V ∈ W 2,∞(S) then one may take vh = V in which case the term
t/h0

√
eh(�vh

tan − ∇(vh �n)) is exactly t/h0
√

eh A�n (see (4.3) in Remark 4.2).
The vector fields d0,h, d1,h ∈ W 1,∞(S, R3) are defined so that:

lim
h→0

√
h

(
‖d0,h‖W 1,∞(S) + ‖d1,h‖W 1,∞(S)

)
= 0 (6.5)

and:

lim
h→0

d0,h =2c
(

x, Btan − κ

2
(A2)tan

)
+ κ A2�n − 1

2
κ(�nT A2�n)�n in L2(S),

lim
h→0

d1,h =2c (x, sym (∇(A�n) − A�)tan)+
(
�nT A� − �nT ∇(A�n)

)
in L2(S).

(6.6)

Lemma 6.1. Assume (4.1). For the sequence {yh} in (6.4) the convergences (i), (ii)
and (iii) of Theorem 2.2 hold.
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Proof. (i) follows by the normalization (6.2), (6.3) and (6.5). For (ii) and (iii) notice
that:

V h[yh] = vh + hwh + 1

24
h2d1,h

1

h
sym ∇V h[yh] = 1

h
sym ∇vh + sym ∇wh + 1

24
hsym ∇d1,h .

The proof will be achieved once we establish that:

lim
h→0

1

h
‖sym ∇vh‖L2(S) = 0. (6.7)

Since the Lipschitz constant of each ∇vh is bounded by ε0
h√
eh

, and sym ∇vh = 0

on the set {x ∈ S; vh(x) = V (x)}, we have:

|sym ∇vh(x)| ≤ C
h√
eh

dist
(

x, {vh = V }
)
.

Now we claim that the right hand side above converges to 0, in L∞(S). For oth-

erwise there would be dist (xh, {vh = V }) ≥ C
√

eh

h , for some sequence xh ∈ S.
Consequently, denoting by Bxh (r) the ball in R3 centered at xh and radius r , we
would obtain:

µ{x ∈ S; vh(x) �= V (x)} ≥
∣∣∣∣S ∩ Bxh

(
1

2
dist (xh, {vh = V })

)∣∣∣∣ ≥ C
eh

h2
,

contradicting (6.3). In the last inequality above we used that the surface S is of class
C1, with Lipschitz continuous boundary. We thus obtain:

lim
h→0

‖sym ∇vh‖L∞(S) = 0.

On the other hand:

1

h
‖sym ∇vh‖L2(S) ≤ 1

h
µ{x ∈ S; vh(x) �= V (x)}1/2 · ‖sym ∇vh‖L∞(S)

≤ C

√
eh

h2
‖sym ∇vh‖L∞(S).

The two statements above imply (6.7).
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Proof of Theorem 2.2. We will prove that:

lim sup
h→0

1

eh
I h(yh) ≤ I (V, Btan) + η, (6.8)

where η denotes an error quantity, with the property:

η → 0 as ε0 → 0. (6.9)

In view of Theorem 2.1, this will imply (iv) for a recovery sequence obtained
through a diagonal argument, when ε0 → 0. Clearly, the assertions (i) - (iii) will
follow as well, by Lemma 6.1.

1. We first look closer at quantities ∇h yh . By Proposition 3.3, it follows that:

(∇h yh)(x + t �n)�n(x) = �n +
√

eh

h

(
�vh

tan − ∇(vh �n)
)

−
√

eh �nT ∇wh +
√

ehd0,h + t/h0

√
ehd1,h,

(∇h yh)(x + t �n)τ = ∇ yh(x + t �n)(Id + t�)(Id + th/h0�)−1τ

=
(

Id +
√

eh

h
∇vh +

√
eh∇wh + th/h0�

+ t/h0

√
eh∇

(
�vh

tan − ∇(vh �n)
)

− th/h0

√
eh∇(�nT ∇wh) + th/h0

√
eh∇d0,h

+ t2

2h2
0

h
√

eh∇d1,h
)

(Id + th/h0�)−1τ,

(6.10)

for all τ ∈ Tx S.
By (6.2), (6.3) and (6.5) one has: ‖∇h yh − Id‖L∞(Sh0 ) ≤ Cε0. It now follows

by polar decomposition theorem (assuming ε0 to be sufficiently small), that ∇h yh

is a product of a proper rotation and the well defined square root of (∇h yh)T ∇h yh .
By properties of the energy density function and Taylor expansion, we obtain:

W (∇h yh) = W

(√
(∇h yh)T ∇h yh

)
= W

(
Id + 1

2
K h + O(|K h |2)

)
,

where:
K h = (∇h yh)T ∇h yh − Id.

Clearly:
‖K h‖L∞(Sh0 ) ≤ Cε0, (6.11)

and so reasoning as in (3.4), the above expansion in W yields:

1

eh
W (∇h yh) = 1

2
Q3

(
1

2
√

eh
K h + 1√

eh
O(|K h |2)

)
+ 1√

eh
η · O(|K h |2), (6.12)

where η depends only on ε0 and satisfies (6.9).
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2. Using (6.10) we now calculate K h . By Error we will cumulatively denote all the
terms with the property:

lim
h→0

1√
eh

‖ Error ‖L2(Sh0 ) = 0. (6.13)

We start with the tangential minor of K h :

K h
tan(x + t �n) = (Id + th/h0�)−1

[
Id + 2

√
eh

h
sym ∇vh + 2

√
ehsym ∇wh

+ 2th/h0� + 2t/h0

√
ehsym ∇

(
�vh

tan − ∇(vh �n)
)

+ eh

h2
(∇vh)T ∇vh + t2h2/h2

0�
2

+ 2t
√

eh/h0sym
(
�∇vh

)
+ Error

]
(Id + th/h0�)−1 − Id

= (Id + th/h0�)−1
√

eh

[
2sym ∇wh +

√
eh

h2
(∇vh)T ∇vh

+ 2t/h0sym ∇
(
�vh

tan − ∇(vh �n)
)

+ 2t/h0sym
(
�∇vh

)]
(Id + th/h0�)−1 + Error,

where we used the formulae:

(Id + F)T (Id + F) = Id + 2sym F + FT F,

F−1
1 F F−1

1 − Id = F−1
1 (F − F2

1 )F−1
1 .

Notice that the quantity Error contains the term
√

eh

h sym ∇vh , resulting from the
relaxation of the constraint (2.2) on the small set {vh �= V }, and other product
terms, e.g.: eh

h (∇vh)T ∇(�vh
tan −∇(vh �n)). The convergence of 1

h ‖sym ∇vh‖L2(Sh0 )
to 0 has been proved in (6.7). All other terms in Error can be dealt with by repeated
use of (6.3), (6.2), Hölder and Sobolev inequalities, e.g.:

√
eh

h
‖(∇vh)T ∇(�vh

tan−∇(vh �n))‖L2(S) ≤C

√
eh

h
‖∇vh‖L4(S)‖vh‖W 2,4(S)

≤C

√
eh

h
‖∇vh‖W 1,2(S)‖vh‖1/2

W 2,∞(S)
‖vh‖1/2

W 2,2(S)

≤C

√
eh

h
‖vh‖1/2

W 2,∞(S)
−→ 0 as h → 0.
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Now, the normal minor of K h is calculated as:

�nT K h(x + t �n)�n =
√

eh

(√
eh

h2

∣∣∣�vh
tan −∇(vh �n)

∣∣∣2 +2d0,h �n +2t/h0d1,h �n
)

+Error .

The remaining coefficients of the symmetric matrix K h(x + t �n) are, for τ ∈ Tx S:

τ TK h(x+t �n)�n = �nT
[√

eh

h
∇vh +t/h0

√
eh∇

(
�vh

tan−∇(vh �n)
)]

(Id + th/h0�)−1τ

+
[√

eh

h

(
�vh

tan − ∇(vh �n)
)T + (

√
ehd0,h + t/h0

√
ehd1,h)T

+ eh

h2

(
�vh

tan − ∇(vh �n)
)T ∇vh

+t/h0

√
eh

(
�vh

tan−∇(vh �n)
)T

�

]
(Id+th/h0�)−1τ +Error

=
√

eh

[
t/h0�nT ∇

(
�vh

tan−∇(vh �n)
)
+

√
eh

h2

(
�vh

tan−∇(vh �n)
)T ∇vh

+ t/h0

(
�vh

tan − ∇(vh �n)
)T

�

+ (d0,h + t/h0d1,h)T
]
(Id + th/h0�)−1τ + Error .

We leave the estimation in Error to the reader. The convergence of the most trou-
blesome term:

lim
h→0

1

h
‖�nT ∇vh + (�vh

tan − ∇(vh �n))T ‖L2(Sh0 ) = 0

can be proved as in (6.7), since the quantity in question vanishes on the set {vh =
V }. Therefore, ‖�nT ∇vh + (�vh

tan −∇(vh �n))T ‖L∞(S) converges to 0, as h → 0, and
the displayed convergence follows by the last assertion in (6.3).

3. In view of (6.13) we may now write (with a slight abuse of notation)

lim
h→0

1

2
√

eh
K h = K1(x)tan + t

h0
K2(x)tan + (ζ ⊗ �n + �n ⊗ ζ ) in L2(Sh0), (6.14)

where the symmetric matrix fields (Ki )tan ∈ L2(S, R2×2) and the vector field ζ ∈
L2(Sh0, R3) are given by:

K1(x)tan = Btan − κ

2
(A2)tan,

K2(x)tan = sym (∇(A�n) − A�)tan ,

ζ(x + t �n) = c
(

x, Btan − κ

2
(A2)tan

)
+ t

h0
c
(

x, sym (∇(A�n) − A�)tan

)
.

(6.15)
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Further, we observe:

lim
h→0

1

eh

∫
Sh0

|K h |4 = 0. (6.16)

Indeed, (6.14) implies that 1√
eh

K h converges pointwise a.e. in Sh0 . Thus 1
eh |K h |4

converges a.e. to 0. By the boundedness of K h in (6.11): 1
eh |K h |4 ≤ C 1

eh |K h |2,
and the dominated convergence theorem achieves (6.16).

4. Finally, we prove now (6.8). By (6.16), it follows that the argument of Q3 in
(6.12) converges in L2(Sh0) to the same limit as 1

2
√

eh
K h in (6.14). Using Proposi-

tion 3.3, (6.14) and (6.1), we obtain:

lim sup
h→0

1

eh
I h(yh) = lim sup

h→0

1

eh

∫
S

∫ h0/2

−h0/2
W (∇h yh) · det(Id + th/h0�) dtdx

≤ 1

2
lim sup

h→0

∫
S

∫ h0/2

−h0/2
Q3

(
1

2
√

eh
K h(x + t �n)

)
· det(Id + th/h0�) dtdx

+ Cη lim sup
h→0

1

eh

∫
Sh0

|K h |2

= 1

2

∫
S

∫ h0/2

−h0/2
Q3

(
lim
h→0

1

2
√

eh
K h

)
+ Cη

∥∥∥∥ lim
h→0

1

2
√

eh
K h

∥∥∥∥
2

L2(Sh0 )

≤ 1

2

∫
S

∫ h0/2

−h0/2
Q2

(
x, K1(x)tan + t

h0
K2(x)tan

)
dtdx + Cη

= 1

2

∫
S

∫ h0/2

−h0/2
Q2 (x, K1(x)tan) + t2

h2
0

Q2 (x, K2(x)tan) dtdx + Cη,

which implies (6.8) in view of (6.15).

Remark 6.2. A more careful calculation reveals the exact convergence:

lim
h→0

1

eh
I h(yh) = I (V, Btan),

for the recovery sequence (6.4). We have used another argument for the sake of a
more transparent presentation.

Proof of Theorem 2.3. When κ = 0, the recovery sequence (for V ∈ V) is given
again by (6.4), where we put wh = 0, Btan = 0 and κ = 0. That is:

yh(x + t �n) = x +
√

eh

h
vh(x) + th/h0�n(x)

+ t/h0

√
eh

(
�vh

tan − ∇tan(v
h �n)

)
(x) + t2

2h2
0

h
√

ehd1,h(x),

where d1,h ∈ W 1,∞(S, R3) satisfies (6.5) and the second formula in (6.6).
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Clearly, yh and V h[yh] converge in W 1,2(Sh0) to π and V , respectively, as
in Lemma 6.1. The convergence of the scaled energy follows as in Theorem 2.2
(iv).

7. The convergence of minimizers: proof of Theorem 2.5

Recall that the considered sequence of forces f h ∈ L2(Sh, R3) with zero mean:∫
Sh f h = 0, has the form:

f h(x + t �n(x)) = h
√

eh det(Id + t�(x))−1 f (x).

Lemma 7.1. Let uh ∈ W 1,2(Sh, R3) be a sequence of deformations such that
V h[yh] converges in L2(S) to some V : S −→ R3 and let Qh ∈ R3×3 converge to
some Q. Then:

lim
h→0

1

eh

1

h

∫
Sh

f h · Qh(uh − id) =
∫

S
f · QV .

Proof. We have:

1

eh

1

h

∫
Sh

f h · Qh(uh − id) = 1

eh

∫
S

f h(x) · Qh
∫ h/2

−h/2
uh(x + t �n) − x dtdx

= 1

eh

∫
S

f h(x) · Qh

√
eh

h
V h[yh] dx

=
∫

S
f · Qh V h[yh],

and the result follows.

Proof of Theorem 2.5. 1. We first show that given any uh ∈ W 1,2(Sh, R3) there
exists Qh ∈ SO(3) and ch ∈ R3 such that wh = (Qh)T uh − ch − id satisfies:

‖wh‖2
W 1,2(Sh)

≤ Ch−1 I h(yh). (7.1)

Indeed, by Lemma A.1 and properties of the energy density W , it follows that:

I h(yh) ≥ Ch−1
∫

Sh
dist2(∇uh, SO(3)) ≥ Ch−1

∫
Sh

|∇uh − Rhπ |2

≥ Ch−1
∫

Sh
|(Qh)T ∇uh − Id|2 − Ch−1

∫
Sh

|(Qh)T Rhπ − Id|2

≥ Ch−1
∫

Sh
|∇wh |2 − Ch−2 I h(yh).

(7.2)
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Actually, the assumption of smallness of h−3 E(uh, Sh) cannot be expected to hold
here. In this general case one exchanges the SO(3)-valued matrix field Rh with
R̃h ∈ W 1,2(S, R3×3) given in the proof of Lemma A.1. Then Qh for which the
above estimates are true may be taken as a rotation in SO(3) with minimal distance

from
∫

S
R̃h .

By (7.2) it follows that:

‖∇wh‖2
L2(Sh)

≤ ChI h(yh) + Ch−1 I h(yh),

which implies (7.1) in view of the Poincaré inequality, for an appropriately chosen
constant ch . A proof of the uniform Poincaré inequality on Sh can be found, for
example, in [17].

2. Notice that by the definition of mh we have:

1

h

∫
Sh

f h(z) · Qhz dz = h
√

eh

∫
S

∫ h/2

−h/2
f (x) · Qh(x + t �n) ≤ mh .

Therefore, in view of (2.6) and (7.1) we obtain:

J h(yh) − I h(yh) = mh − 1

h

∫
Sh

f huh

= −1

h

∫
Sh

(Qh)T f h · wh + mh − 1

h

∫
Sh

f h · Qhz dz

≥ −1

h

∫
Sh

(Qh)T f h · wh

≥ −Ch1/2
√

eh‖ f ‖L2(S)‖wh‖L2(Sh)

≥ −C
√

eh I h(yh)1/2.

(7.3)

We now prove the first claim of the theorem. Taking uh(z) = Q̄z for any Q̄ ∈ M,
we notice that J h(yh) = 0. Hence inf J h ≤ 0. The lower bound of 1

eh J h follows
from (7.3):

1

eh
J h(yh) ≥ 1

eh
I h(yh) − C

(
1

eh
I h(yh)

)1/2

, (7.4)

which proves (i).

3. To prove (ii), let uh be a minimizing sequence of 1
eh J h , as defined in (2.8).

Then { 1
eh J h(yh)} is bounded, and therefore, by (7.4) { 1

eh I h(yh)} is also bounded.

The convergences of ỹh , V h[ỹh] and 1
h sym ∇V h[ỹh] follow from Theorem 2.1. In

particular:

lim inf
h→0

1

eh
I h(yh) ≥ I (V, Btan). (7.5)
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The strong convergence of 1
h sym ∇V h[ỹh] is deduced from the strong convergence

of the sequence sym Gh
tan in Lemma 3.6. This last result is in turn implied by

the convergence of
∫

S Q3(Gh) (valid because the sequence is minimizing), positive
definiteness of Q3 on symmetric matrices, and the weak convergence of Gh . Since
the details are exactly the same as in [10, Section 7.2], we omit them.

We now prove that the limit Q̄ of any converging subsequence of Qh belongs
to M. By (2.6) we have:

1

eh
J h(yh) − 1

eh
I h(yh) = 1

eh

(
mh − 1

h

∫
Sh

f huh
)

= h√
eh

(
m −

∫
S

∫ h/2

−h/2
f (x) · Qhũh dtdx

)

= − 1

heh

∫
Sh

f h · Qh(ũh − id)

+ h√
eh

(
m −

∫
S

f · Qh x dx

)
.

(7.6)

The first term above is bounded, as it in fact converges to −∫
S f ·Q̄V , by Lemma 7.1.

The quantity in brackets in the second term converges to m − ∫
S f · Q̄x . Therefore,

if Q̄ �∈ M, this last quantity is uniformly positive, and the second term above
converges to +∞ (as h/

√
eh → ∞). We observe that, in this situation, 1

eh J h(yh)

must converge to +∞, contradicting (i) and thus proving that Q̄ ∈ M.
In view of (7.5), (7.6) also implies:

lim inf
h→0

1

eh
J h(yh) ≥ lim inf

h→0

1

eh
I h(yh) −

∫
S

f · Q̄V ≥ J (V, Btan, Q̄).

The fact that the limit (V, Btan, Q̄) minimizes the functional J is now a standard
consequence of the above inequality. Indeed, if:

J (V̂ , B̂tan, Q̂) ≤ J (V, Btan, Q̄) − ε

for some V̂ ∈ V , some B̂tan ∈ B, Q̂ ∈ M and ε > 0, then for a related recovery
sequence ŷh there would be:

lim
h→0

1

eh
J h(Q̂ ŷh) = J (V̂ , B̂tan, Q̂) ≤ J (V, Btan, Q̄) − ε ≤ lim inf

h→0

1

eh
J h(yh) − ε,

which contradicts (2.8).
Finally, (iii) follows exactly as (i) and (ii).

Remark 7.2. 1. A dead load (versus a “live load”) is any external force which only
depends on the reference configuration point, and not on the deformation itself. An
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important feature of dead loads, discussed first in [21], is the following. If the load
is in a certain average sense compressive, it is advantageous for the body to perform
a large rotation rather than undergo a compression. Our analysis identifies M as
the set of candidates for such rotations, which are expected to minimize the total
energy J h among all rigid motions of the body.

This phenomenon may happen even if the average torque of the force is zero:∫
S

f (x) × x dx = 0. (7.7)

Note that vanishing of the average torque is necessary for Id ∈ M, since (7.7) can
be written as:

∫
S f · Fx = 0 for all F ∈ so(3). However, it is not sufficient, and

if Id �∈ M then we observe that the minimizers of J h will not be close to Id. In
general, the body chooses an infinitesimal isometric displacement V and a rotation
Q̄ ∈ M which is energetically advantageous in response to the force f . That is,
those rotations which allow for a better alignment of infinitesimal isometries with
the direction of the dead load, are preferred.

2. The assumption on the sequence of forces f h can of course be weakened. For
example, consider f h(x + t �n) = det(Id + t�(x))−1 f h(x) and let 1

h
√

eh
f h con-

verge weakly in L2(S) to some f ∈ L2(S, R3). In this situation, one needs to
enforce extra assumptions on the asymptotic behavior of the maximizers of the lin-
ear functions SO(3) � Q �→ ∫

S f h · Qx dx with respect to M, to exclude certain
degenerate cases. The analysis is as in the proof of Theorem 2.5 and we leave the
details to a courageous reader.

3. The lower bound on J and existence of its minimizers can be proved indepen-
dently, and under the following weaker assumptions:∫

S
f = 0 and

∫
S

f (x) · Q̄Fx dx = 0 ∀Q̄ ∈ M ∀F ∈ so(3),

which can be seen as the linearization of (2.7), although it makes perfect sense
for any closed nonempty subset M ⊂ SO(3). Indeed, the second equality above
follows by differentiating the expression

∫
S f (x) · Qx dx at Q̄ ∈ M and using that

so(3) is the tangent space to SO(3) at Id. We present the proof of coercivity and
the attainment of the minimum by J and J̃ under this condition, for arbitrary M,
in Appendix C.

Appendices

A. An approximation theorem on surfaces

For a given vector mapping u ∈ W 1,2(
, Rn) defined on an open subset 
 ⊂ Rn ,
denote:

E(u, 
) =
∫




dist2(∇u(x), SO(3)) dx .
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Lemma A.1. Let u ∈ W 1,2(Sh, Rn) and assume that h−3 E(u, Sh) is sufficiently
small. Then there exists a matrix field R ∈ W 1,2(S, R3×3), such that:

R(x) ∈ SO(3) ∀x ∈ S,

and a matrix Q ∈ SO(3) with the following properties:

(i) ‖∇u − Rπ‖L2(Sh) ≤ C E(u, Sh)1/2,

(ii) ‖∇ R‖L2(S) ≤ Ch−3/2 E(u, Sh)1/2,

(iii) ‖QT R − Id‖L p(S) ≤ Ch−3/2 E(u, Sh)1/2, for all p ∈ [1, ∞),

where C is independent of u and h (but may depend on p).

The proof of Lemma A.1 uses the following nonlinear quantitative rigidity
estimate by Friesecke, James and Müller.

Theorem A.2 ([9]). Let 
⊂Rn be an open, bounded domain with Lipschitz bound-
ary. Then, for every u ∈ W 1,2(
, Rn) one has:

min
R∈SO(n)

∫



|∇u(x) − R|2 dx ≤ C E(u, 
),

where the constant C depends only on 
. In particular, C is invariant under dila-
tions of 
, and it is also uniform for the uniform bilipschitz images of a unit ball
in Rn.

Proof of Lemma A.1. 1. For x ∈ S define ‘balls’ in S and the corresponding ’cylin-
ders’ in Sh :

Dx,h = B(x, h) ∩ S, Bx,h = π−1(Dx,h) ∩ Sh .

The main observation is that Theorem A.2 may be applied on each set Bx,h , yielding
matrices Rx,h ∈ SO(3) such that:∫

Bx,h

|∇u(z) − Rx,h |2 dz ≤ C E(u, Bx,h), (A.1)

with uniform constant C (independent of x or h).

2. Let ϑ ∈ C∞
c ([0, 1)) be a nonnegative cut-off function, equal to a nonzero con-

stant in a neighborhood of 0. For each x ∈ S define the function ηx : Sh −→ R:

ηx (z) = ϑ(|π z − x |/h)∫
Sh ϑ(|πy − x |/h) dy

.

Then ηx (z) = 0 for z �∈ Bx,h and:∫
Sh

ηx (z) dz = 1, ‖ηx‖L∞ ≤ Ch−3, ‖∇xηx‖L∞ ≤ Ch−4. (A.2)
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The last inequalities follow from the lipschitzianity of ∂S. In particular, the denom-
inator function in the definition of ηx has Lipschitz constant Ch2, and hence:∥∥∥∥∥∇x

(∫
Sh

ϑ(|πy − x |/h) dy

)−1
∥∥∥∥∥

L∞
≤ Ch−4.

Consider the matrix field R̃ ∈ W 1,2(S, R3×3):

R̃(x) =
∫

Sh
ηx (z)∇u(z) dz.

By the first two statements in (A.2) we obtain:

|R̃(x) − Rx,h |2 =
∣∣∣∣
∫

Sh
ηx (z)(∇u(z) − Rx,h) dz

∣∣∣∣
2

≤ Ch−3 E(u, Bx,h). (A.3)

Similarly:

|∇ R̃(x)|2 =
∣∣∣∣
∫

Sh
(∇xηx )∇u

∣∣∣∣
2

=
∣∣∣∣
∫

Sh
(∇xηx )(∇u − Rx,h)

∣∣∣∣
2

≤
∫

Bx,h

|∇xηx |2 ·
∫

Bx,h

∣∣∇u − Rx,h
∣∣2 ≤ Ch−5 E(u, Bx,h),

(A.4)

and likewise, for any x ′ ∈ Dx,h :

|∇ R̃(x ′)|2 ≤ Ch−5 E(u, 2Bx,h) (A.5)

with 2Bx,h = π−1(Dx,2h) ∩ Sh . Therefore, in view of the lipschitzianity of ∂S and
by the fundamental theorem of calculus:

|R̃(x ′′) − R̃(x)|2 ≤ Ch−3 E(u, 2Bx,h) ∀x ′′ ∈ Dx,h . (A.6)

Combining (A.1) with (A.3) and (A.6) yields:∫
Bx,h

|∇u(z) − R̃π(z)|2 dz

≤ 2

(∫
Bx,h

|∇u−Rx,h |2+
∫

Bx,h

|R̃(x)−Rx,h |2 +
∫

Bx,h

|R̃π− R̃(x)|2
)

≤ C E(u, 2Bx,h).

(A.7)

Now cover S by {Dxi ,h}Nh
i=1 so that the covering number of the family {2Bxi ,h}Nh

i=1
is independent of h. Summing the inequalities in (A.7) over i = 1 . . . N proves:∫

Sh
|∇u − R̃π |2 ≤ C E(u, Sh). (A.8)
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Also, integrating (A.5) over Dxi ,h and summing over i = 1 . . . N gives:∫
S
|∇ R̃|2 ≤ Ch−3 E(u, Sh). (A.9)

3. Notice that by (A.3), for every x ∈ S:

dist2(R̃(x), SO(3)) ≤ Ch−3 E(u, Sh).

Hence, if E(u, Sh)/h3 is sufficiently small, we may define:

R(x) = PSO(3)(R̃(x))

where PSO(3) is the orthogonal projection onto the compact manifold SO(3).
Clearly R : S −→ SO(3) is a W 1,2 matrix field and since:

|R(x) − R̃(x)| = dist (R̃(x), SO(3)),

by (A.8) we conclude that:∫
Sh

|∇u − Rπ |2 ≤ C

(∫
Sh

|∇u − R̃π |2 +
∫

Sh
dist2(∇u, SO(3))

)
≤ C E(u, Sh),

which proves (i) in Lemma A.1. The bound (ii) is deduced directly from (A.9).

4. To deduce (iii), define first the intermediate matrix Q̃ as the average of R on S.
Using the Sobolev and Poincaré inequalities, together with (ii) we obtain, for every
p ≥ 2:

(∫
S
|R − Q̃|p

)2/p

≤ C‖R − Q̃‖2
W 1,2(S)

≤ C
∫

S
|∇ R|2 ≤ Ch−3 E(u, Sh). (A.10)

Now, take Q ∈ SO(3) such that |Q − Q̃| = dist (Q̃, SO(3)). As before, (A.10)
remains true if Q̃ is replaced with Q. Clearly, the same bound must also hold for
p ∈ [1, 2), and so we conclude that:

∀p ∈ [1, ∞) ‖R − Q‖2
L p(S) ≤ Ch−3 E(u, Sh).

The above easily implies (iii).

B. The �-convergence setting

We first recall the notion of �-convergence of a sequence of functionalsFh : X −→
R, defined on a metric space X . Namely, Fh �-converge, as h → 0, to some
F : X −→ R provided that the following two conditions hold:
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(i) For any converging sequence {xh} in X one has:

F
(

lim
h→0

xh
)

≤ lim inf
h→0

Fh(xh). (B.1)

(ii) For every x ∈ X , there exists a sequence {xh} converging to x , such that:

F(x) = lim
h→0

Fh(xh). (B.2)

When X is only a topological space, the definition of �-convergence involves, nat-
urally, systems of neighborhoods rather than sequences. However, when the func-
tionals Fh are equi-coercive and X is a reflexive Banach space equipped with weak
topology, one can still use (i) and (ii) above (for weakly converging sequences), as
an equivalent version of this definition. For details, we refer the reader to [6].

Proof of Corollary 2.4. We only prove (i), in the case when the product space in the
domain of F is equipped with the strong topology. The other statements follow the
same.

To obtain (B.1), we take a sequence of W 1,2(Sh0) vector mappings {yh} such
that, writing Bh

tan = 1
h sym ∇V h[yh], the sequence {Fh(yh, V h[yh], Bh

tan)} is

bounded, and such that yh , V h[yh] and Bh
tan converge to some y, V and Btan (in

W 1,2(Sh0), W 1,2(S) and L2(S) respectively). By Theorem 2.1 we obtain a se-
quence of normalized deformations ỹh = (Qh)T yh − ch , converging to π . More-
over, V h[ỹh] and 1

h sym ∇V h[ỹh] converge to Ṽ and weakly to B̃tan, respectively.
Notice now that:

|Qh − Id| = Ch−1
√

eh
∥∥∇V h[ỹh] − (Qh)T ∇V h[yh]∥∥L2(S)

≤ Ch−1
√

eh .

In particular, Lemma 3.1 remains true if we put Qh = Id, for all h. Consequently,
all the assertions of Theorem 2.1 still hold for ỹh = yh − ch (possibly after modi-
fying the constants ch).

Now, V h[yh]−V h[ỹh] = h/
√

ehch is bounded, so ch converge to 0, as h → 0.
On the other hand ch = yh − ỹh converge to y − π . Hence y = π . Moreover
∇V h[ỹh] = ∇V h[yh], so ∇V = ∇ Ṽ and Btan = B̃tan. By Theorem 2.1 (iv) we
conclude that:

F(y, V, Btan) ≤ lim inf
h→0

Fh(yh, V h, Bh
tan)

which proves (B.1).
The second requirement for �-convergence (B.2) follows directly from Theo-

rem 2.2, in view of (B.1).

We remark that in presence of external forces, the results of Theorem 2.5 can
also be formulated in the language of �-convergence, similarly as above.
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C. On coercivity of the generalized von Kármán functionals J and J̃

In this section, we consider the functionals:

J (V, Btan, Q̄) =1

2

∫
S
Q2

(
x, Btan − κ

2
(A2)tan

)

+ 1

24

∫
S
Q2 (x, (∇(A�n) − A�)tan) −

∫
S

f · Q̄V,

J̃ (V, Q̄) = 1

24

∫
S
Q2 (x, (∇(A�n) − A�)tan) −

∫
S

f · Q̄V,

defined for infinitesimal isometries V , matrix fields Btan ∈ B and rotations Q̄ ∈
M, where M is an arbitrary closed and nonempty subset of SO(3). We prove
that J and J̃ attain their finite lower bounds under the following assumptions on
f ∈ L2(S, R3):∫

S
f = 0 and

∫
S

f (x) · Q̄Fx dx = 0 ∀Q̄ ∈ M ∀F ∈ so(3). (C.1)

As mentioned in Remark 7.2, the second condition above is a consequence and
linearization of (2.7), with M defined by that formula.

Lemma C.1. Assume that S is of class C2,1. Then for every V ∈ V there exist
D ∈ so(3) and d ∈ R3, so that:

‖V − (Dx + d)‖2
W 2,2(S)

≤ C
∫

S
|(∇(A�n) − A�)tan|2 .

Proof. 1. We first prove that
∫

S |(∇(A�n) − A�)tan|2 = 0 implies for a W 2,2 in-
finitesimal isometry V to have the form V (x) = Dx + d, with D ∈ so(3) and
d ∈ R3.

To see this, let c ∈ W 1,2(S, R3) be such that:

A(x)τ = c(x) × τ ∀x ∈ S ∀τ ∈ Tx S.

Since A represents a gradient, it follows that ∂τ c × η = ∂ηc × τ for all τ, η ∈ Tx S.
In particular, for any τ and η such that τ × η = �n, one has:

(∂τ c) · �n = −(∂τ c × η) · τ = −(∂ηc × τ) · τ = 0.

On the other hand:

0 = (
∂τ (A�n) − A�τ

)
tan = (

∂τ (c × �n) − A�τ
)

tan = (∂τ c) × �n.

Hence ∂τ c = 0 on S, which yields the claim.
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2. We prove the result. Arguing by contradiction, we assume that for a sequence of
infinitesimal isometries V h ∈ W 2,2(S, R3) there holds:

distW 2,2(S)

(
V h, {Dx + d; D ∈ so(3), d ∈ R

3}
)

= 1

and lim
h→0

∫
S

∣∣∣(∇ Ah)�n
∣∣∣2 = 0.

(C.2)

Since the second condition above involves only higher derivatives of V h , we may
without loss of generality replace the first condition by:

‖V h‖W 2,2(S) = 1 and
〈
V h, Dx + d

〉
W 2,2(S)

= 0 ∀D ∈ so(3), d ∈ R
3. (C.3)

In particular, V h converges weakly in W 2,2(S) (up to a subsequence, which we do
not relabel) to some vector field V ∈ V . By (C.2) and the weak lower semiconti-
nuity of the L2 norm, we deduce that

∫
S |(∇ A)�n|2 = 0. Hence, in view of the first

part of the proof and the second condition in (C.3), it follows that V = 0 and so:

lim
h→0

‖V h‖W 1,2(S) = 0. (C.4)

By the estimate (4.4) and (C.4) we may deduce:

lim
h→0

‖V h
tan‖W 2,2(S) = 0, (C.5)

where V h
tan = V h − (V h �n)�n. Observe that:∫

S

∣∣∣(∇ Ah)�n
∣∣∣2 =

∫
S

∣∣∣∇ (
�V h

tan − ∇(V h �n)
)

− Ah�

∣∣∣2

=
∫

S

∣∣∣∇2(V h �n) + (Ah� − �Ah)tan − (∇�)V h
tan + (V h �n)�

∣∣∣2
.

Therefore:

‖∇2(V h �n)‖L2(S) ≤ C
(
‖(∇ Ah)�n‖L2(S) + ‖V h‖W 1,2(S)

)
,

and in view of (C.4) and the assumption (C.2) we also get:

lim
h→0

‖V h �n‖W 2,2(S) = 0.

The above together with (C.5) contradicts (C.3) and proves the lemma.

Lemma C.2. Assume (C.1) and let S be of class C2,1. Then the functionals J and
J̃ , defined for V ∈ V , Btan ∈ B and Q̄ ∈ M, are bounded from below and attain
their infima.
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Proof. 1. Let V ∈ V . By Lemma C.1, positive definiteness of Q2 (on symmetric
matrices) and (C.1), we obtain:

J̃ (V ) ≥ C‖Ṽ ‖2
W 2,2(S)

−
∫

S
f · Q̄V = C‖Ṽ ‖2

W 2,2(S)
−

∫
S

f · Q̄Ṽ

≥ C‖Ṽ ‖2
W 2,2(S)

− ‖ f ‖L2(S) · ‖Ṽ ‖L2(S),

(C.6)

for an appropriate modification Ṽ = V − (Dx + d). Hence the lower bound on J
(and J̃ ) follows.

2. Let now (V h, Bh
tan, Q̄h) be a minimizing sequence of J . Clearly, a subsequence

of Q̄h converges to some Q̄ ∈ M.
Using (C.6) and applying the positive definiteness of Q2 to the first term in J ,

there follows the (uniform in h) boundedness of the following expressions:

(
C‖Ṽ h‖2

W 2,2(S)
− ‖ f ‖L2(S) · ‖Ṽ h‖L2(S)

)
+ C

∥∥∥Bh
tan − κ

2
((Ah)2)tan

∥∥∥2

L2(S)
. (C.7)

Again, we put Ṽ h = V h − (Dh x + dh) and apply Lemma C.1. In particular, the
sequence Ṽ h is bounded in W 2,2(S) and so it converges (up to a subsequence),
weakly in W 2,2(S), to an infinitesimal isometry V . Further, the matrix fields Ãh =
Ah − Dh converge weakly in W 1,2(S) to the field A satisfying (2.2).

Notice that:

(Ah)2 = ( Ãh)2 + (Dh)2 + (Dh Ah + Ah Dh).

Hence the boundedness of the second term in (C.7) results in the L2(S) bounded-
ness of:

Bh
tan − κ

2

(
(Dh)2+(Dh Ah + Ah Dh)

)
tan

= Bh
tan − κ

2
sym ∇

(
(Dh)2x+2Dh V h(x)

)
.

We may now conclude that a subsequence of the above sequence of symmetric ma-
trix fields converges, weakly in L2(S), to some Btan ∈ B. Thus, Bh

tan − κ
2 ((Ah)2)tan

converges to Btan − κ
2 (A2)tan.

By the weak lower semicontinuity of both quadratic terms in J we conclude
that J (V, Btan Q̄) realizes the infimum of J . Likewise, J̃ (V, Q̄) realizes the infi-
mum of J̃ , had V h been a minimizing sequence of J̃ .
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