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Classical solutions and stability results
for Stokesian Hele-Shaw flows

JOACHIM ESCHER, ANCA-VOICHITA MATIOC AND BOGDAN-VASILE MATIOC

Abstract. In this paper we study a mathematical model for the motion of a
Stokesian fluid in a Hele-Shaw cell surrounded by a gas at uniform pressure. The
model is based on a non-Newtonian version of Darcy’s law for the bulk fluid, as
suggested in [9, 12].

Besides a general existence and uniqueness result for classical solutions, it is
also shown that classical solutions exist globally and tend to circles exponentially
fast, provided the initial data is sufficiently close to a circle. Finally, our analysis
discloses the influence of surface tension and the effective viscosity on the rate of
convergence.

Mathematics Subject Classification (2010): 35K55 (primary); 35J65, 35R35,
42A45, 76A05 (secondary).

1. Introduction and main results

Despite their importance in applications, the mathematical understanding of moving
boundary problems for non-Newtonian fluids is far from being complete. In this
paper we offer an analytic framework in which two-dimensional Stokesian fluids1

with a free interface may be studied. We investigate the dynamic behaviour of such
a fluid located between two parallel and transparent plates in a horizontal Hele-
Shaw cell. Relative to some typical lateral dimension on the plate, the distance
between these plates is assumed to be small so that we shall consider planar flows
in the following. This setting is widely used both in experimental and theoretical
work, cf. [9] and the references therein.

The motivation of our research is twofold. One the one hand we provide an
analytic framework which guarantees well-possedness of the full flow problem for
general data. This result may serve as the theoretical justification of numerical stud-
ies or formal expansions. On the other hand we give some insight in the dynamic
behaviour of the flow near equilibria. As a main result we show that circles are
exponential stable under small perturbations. However, in contrast to the periodic

1 In a Stokesian fluid the stress tensor is a continuous function of the deformation. The Newtonian
fluid is a linear Stokesian fluid. Particularly, the viscosity µ is constant in this case.
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strip-like geometry considered in [6], steady states are no longer isolated, but form
a three-dimensional submanifold Mc

loc of the phase space. Nevertheless, a centre
manifold analysis allows us to prove that Mc

loc attracts at an exponential rate any
solution which is sufficiently close nearby. This means that by perturbing a circle
S0 initially sufficiently small, the corresponding solution exists globally and con-
verges to a circle S∞, which is uniquely determined by S0, since the centre of mass
and the fluid volume are preserved by the flow.

To describe our main result precisely, let is introduce the following notation.
The initial shape of the fluid’s body is assumed to be a small deformation of the uni-
tary disc. Let S1 denote the unit circle. Further, let a ∈ (0, 1/4) be fixed and let ρ ∈
C([0, T ], C2(S1)) ∩ C1([0, T ], C1(S1)), T > 0, with maxt∈[0,T ] ‖ρ(t)‖C(S1) < a
be a mapping with the property that at each time t ∈ [0, T ] the fluid occupies the
domain �ρ(t), where for ρ ∈ C2(S1) with ‖ρ‖C(S1) < a we define

�ρ :=
{

x ∈ R
2 : |x | < 1 + ρ

(
x

|x |
)}

∪ {0}.

The boundary �ρ of the domain �ρ is given by

�ρ =
{

x ∈ R
2 : |x | = 1 + ρ

(
x

|x |
)}

=
{

x(1 + ρ(x)) : x ∈ S
1
}

.

It is suitable to represent �ρ as the 0-level set of an appropriate function. For this,
let Nρ : R(3/4, 5/4) → R be the function defined by

Nρ(y) = |y| − 1 − ρ(y/|y|),
where R(3/4, 5/4) is the circular ring centred in 0 with radii 3/4 and 5/4, i.e.

R(3/4, 5/4) := {x ∈ R
2 : 3/4 < |x | < 5/4}.

O

.

S1

x

−ρ(x
|x|)
.

y
ρ( y

|y|).

0

Ωρ

Γρ
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Figure 1.1. The fluid domain.
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Since �ρ= N−1
ρ (0) it follows that the outward normal νρ at �ρ is νρ = DNρ/|DNρ |,

with DNρ denoting the gradient of Nρ.

The viscous behaviour of the fluid is modeled by a function µ ∈ C∞(R≥0)

satisfying the relation

0 < µ(r) for all r ≥ 0,

0 < µ(r) + 2rµ′(r) for all r ≥ 0,

rµ2(r) →r→∞ ∞.

(1.1)

We point out here that the first two conditions on the viscosity function were also
found in [3], where the full Navier-Stokes problem, but on a fixed domain, is stud-
ied. Note that the second and third condition guarantee the invertibility of the map-
ping

h : [0, ∞) → [0, ∞), h(r) := rµ2(r) for r ≥ 0. (1.2)

If µ is increasing the fluid is called shear thickening. Relation (1.1) holds for all
shear thickening fluids having positive viscosities. In addition to the examples men-
tioned in [5], in particular Oldroyd-B fluids and shear thinning power law fluids, we
include also the following cases

µ(r) = ν0(1 + r)s/2 and µ(r) = ν∞ + ν0rs/2,

where ν0 and ν∞ are positive constants. These are also power-law fluids. For
the first example the parameter s belongs to (−1, ∞). The second example was
introduced in the mathematical literature by Ladyzhenskaya in [13]. Here (1.1)
holds iff s ∈ {0} ∪ [2, ∞).

For later purpose we formulate the following stronger version of relation (1.1).
Assume there are positive constants mµ and Mµ such that

mµ ≤ µ(r) ≤ Mµ and mµ ≤ µ(r) + 2rµ′(r) ≤ Mµ for all r ≥ 0. (1.3)

A further interesting example is the Johnson-Segalman-Oldroyd model with relax-
ation times λk and k-th mode viscosities ηk, k = 1, ..., N . The viscosity function is
given by

µ(r) = α0 +
N∑

k=1

αk

1 + β2
k · r

,

where the positive constants occurring in the relation are assumed to satisfy

α0 = µs/µ0, αk = ηk/µ0, βk = λk/λ1 and µ0 = µs +
N∑

k=1

ηk .

We refer to [9] for details. In this case the relation (1.3) holds for any choice of the
parameters.
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The dynamic of the Stokesian fluid, assumed to be incompressible, is governed
by a non-Newtonian Darcy law

v = − Du

µ(|Du|2) in �ρ(t),

cf. [12], where u is the pressure and v is the velocity of the fluid. The effective
viscosity µ is defined, see [12], by

1

µ(r)
:= c

∫ 1

−1

s2

µ̃(rs2)
ds, ∀ r ≥ 0,

where c is a positive constant, µ̃ := µ ◦ h−1 and h is the function defined by (1.2).
The well-known Laplace-Young condition states that at each point on the

boundary �ρ(t) the pressure has a jump according to the equation uint − uext =
γ κρ(t), where κρ(t) is the curvature of �ρ(t) (taken to be positive if �ρ(t) is con-
vex) and γ is the surface tension coefficient, cf. [17]. The pressure uext of the gas
surrounding the fluid is assumed to be zero. Thus we get

u = γ κρ(t) on �ρ(t).

Assuming that a particle located on the boundary �ρ(0) remains on the boundary of
the fluid domain we obtain, using once again Darcy’s law, the following kinematic
boundary condition

∂t Nρ(t) − 1

µ(|Du|2) 〈Du, DNρ(t)〉 = 0 on �ρ(t).

Summarizing, we come to the following moving boundary problem

div
(

Du
µ(|Du|2)

)
= 0 in �ρ(t), t ∈ [0, T ],

u = γ κρ(t) on �ρ(t), t ∈ [0, T ],
∂t Nρ(t) − 1

µ(|Du|2) 〈Du, DNρ(t)〉 = 0 on �ρ(t), t ∈ [0, T ],
ρ(0) = ρ0 on S1,

(1.4)

where ρ0 is the initial data.
Notice that we have to handle a fully nonlinear problem: the first three equa-

tions of (1.4) are all containing nonlinearities in the highest spatial derivative. A
further nonlinearity arises from the fact that the a priori unknown domains �ρ(t)
are evolving in time.

In order to define the notion of classical solutions to (1.4), we introduce first
the Banach spaces which we shall use frequently in this paper. Given r ≥ 0, the
small Hölder space hr (S1) denotes the closure of C∞(S1) in Cr (S1). The small
Hölder spaces have the nice property that

hr (S1)
d

↪→ hs(S1) for 0 ≤ s < r,

with compact embedding.
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Assume that U is an open subset of R2. Given k ∈ N∪ {∞}, the set BUCk(U )

denotes the space of all maps from U to R which have bounded and uniformly
continuous derivatives up to order k. Given α ∈ (0, 1), the space BUCk+α(U )

consists of all f ∈ BUCk(U ) having uniformly α-Hölder continuous derivatives of
order k. Finally, we set buck+α(U ) to be the closure of BUC∞(U ) in BUCk+α(U ).

For our analysis we fix α ∈ (0, 1) and set

Vα :=
{ {ρ ∈ h4+α(S1) : ‖ρ‖C(S1) < a}, if (1.3) hold,

{ρ ∈ h4+α(S1) : ‖ρ‖C2(S1) < a}, else.

We have defined in this way an open neighbourhood Vα of the origin in h4+α(S1).
In addition, if one of the conditions (1.3) is not satisfied, we choose a < 1/8, which
implies that �ρ is convex for ρ ∈ Vα and �ρ has positive curvature. Indeed, for
such ρ we have:

|κρ − 1| =
∣∣∣∣∣ (1 + ρ)2 + 2ρ′2 − (1 + ρ)ρ′′

((1 + ρ)2 + ρ′2)3/2
− 1

∣∣∣∣∣
≤

∣∣∣∣∣ (1+ρ)2

((1+ρ)2+ρ′2)3/2
− 1

∣∣∣∣∣+ 2ρ′2

((1+ρ)2+ρ′2)3/2
+ (1+ρ)|ρ′′|

((1+ρ)2+ ρ′2)3/2

≤ 2a2

(1 − a)3
+ (1 + a)a

(1 − a)3
+ |(1 + ρ)2 − ((1 + ρ)2 + ρ′2)3/2|

((1 + ρ)2 + ρ′2)3/2

≤ |(1 + ρ)4 − ((1 + ρ)2 + ρ′2)3|
(1 − a)3((1 − a)2 + (1 − a)3)

+ 3a2 + a

(1 − a)3

≤ a(2 + a)(1 + a)4 + 3a2(1 + a)4 + 3a4(1 + a)2 + a6

(1 − a)3((1 − a)2 + (1 − a)3)
+ a + 3a2

(1 − a)3

≤ 0.8.

Consequently κρ ≥ 0.2 and the domain �ρ is strictly convex. The convexity of �ρ

is needed to guarantee the solvability of the elliptic problem (2.4) in Section 2.
A pair (u, ρ) is called a classical Hölder solution of (1.4) on interval [0, T ],

T > 0, if

ρ ∈ C([0, T ],Vα) ∩ C1([0, T ], h1+α(S1)),

u( · , t) ∈ buc2+α(�ρ(t)), t ∈ [0, T ],
and if (u, ρ) satisfies the equations in (1.4) pointwise.

If (1.3) does not hold, the interface ρ(t) must correspond to a convex domain
for t ∈ [0, T ]. This is no longer the case if (1.3) is satisfied. The set Vα is large
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enough to contain functions, which parametrize non-convex domains too. For ex-
ample, the mapping ρ given by ρ(x) = −(1/5)x10

1 for x ∈ S1 belongs to Vα and
the curvature of �ρ in point (1 − 1/5) is negative.

Let Qu := div
(
Du/µ(|Du|2)) for all u ∈ buc2+α(�ρ) and all ρ ∈ Vα.

We use the sum convention ai j (Du)ui j = ∑
i j ai j (Du)ui j to compute that Qu =

ai j (Du)ui j , where

ai j (p) = δi j

µ(|p|2) − 2pi p jµ
′(|p|2)

µ2(|p|2) , 1 ≤ i, j ≤ 2,

for all p = (p1, p2) ∈ R2. The eigenvalues of the matrix [ai j (p)]1≤i, j≤2, are

λ1(p) = 1

µ(|p|2) , λ2(p) = 1

µ(|p|2) − 2|p|2µ′(|p|2)
µ2(|p|2)

and the quasilinear operator Q is elliptic because at each point p ∈ R2 we have

0<min{λ1(p), λ2(p)}|ξ |2 ≤ ai j (p)ξiξ j

≤ max{λ1(p), λ2(p)}|ξ |2, ∀ξ =(ξ1, ξ2)∈R
2 \ {0}.

The inequality 0 < min{λ1(p), λ2(p)} for p ∈ R2 is obtained directly from the
properties of the mapping µ. If in addition to (1.1) the relation (1.3) holds, then
Q is uniformly elliptic cf. [5]. Given the geometric setting considered in this pa-
per we can weaken slightly the assumptions on the viscosity function µ, because
sufficiently small deformations of the unitary disc remains convex, whereas in the
strip-like geometry of [5] and [6] the cylinder may lose convexity property by arbi-
trarily small deformations.

The first main result of this paper is proved at the end of Section 3 and guaran-
tees local existence and uniqueness of classical solutions.

Theorem 1.1 (Existence and uniqueness). Assume that (1.1) holds true.
There exists an open neighbourhood O of 0 in Vα such that, for any initial

data ρ0 ∈ O, there exists a maximal existence time T := T (ρ0) > 0 and a
unique classical solution (u, ρ) to problem (1.4) defined on [0, T (ρ0)) which satis-
fies ρ([0, T (ρ0))) ⊂ O.

Note that Theorem 1.1 implies that

� := {(t, x) ∈ (0, T ) × R
2 ; x ∈ �ρ(t)}

is a C1-hypersurface of R3. Using techniques as in [7], it is in fact possible to show
that � is a real analytic manifold, i.e. � ∈ Cω.

We now turn our attention to the dynamic behaviour of solutions near circles.
For this we first note that the volume of fluid enclosed by the moving interface ρ is a
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constant of motion, cf. Lemma 3.6. Moreover, in Section 4 we prove that the circles
near the unit circle are the only steady-states of system (1.4) and we show that the
set containing all small steady-state solutions is a three dimensional manifold, a
so-called local centre manifold for the flow. The solutions to (1.4) corresponding to
initial data close to an element ρ(c,R) of this centre manifold exist in the large and
are attracted exponentially fast by a circle with centre c0 and radius R, parametrized
over S1 by the mapping ρ(c0,R) (see Theorem 4.3).

ACKNOWLEDGEMENTS. The authors thank the anonymous referees for their sug-
gestions and comments which improved the quality of the paper.

2. The transformed problem

A fundamental difficulty in treating problem (1.4) is the fact that one has to work
with unknown, variable domains �ρ . We overcome this difficulty by transforming
problem (1.4) on the unitary disc � := D(0, 1). Therefore we define for ρ ∈ Vα

the Hanzawa diffeomorphism φρ : R2 → R2 by

φρ(x) =


x

|x |
(

|x | + ϕ(|x | − 1)ρ

(
x

|x |
))

, 0 < |x | < 2,

x , else,

where ϕ ∈ C∞(R, [0, 1]) satisfies

ϕ(r) =
{

1 , |r | ≤ a,

0 , |r | ≥ 3a,

and additionally max |ϕ′(r)| < 1/a. In fact for |x | ≤ 1−3a and for |x | ≥ 1+3a we
have φρ(x) = x . Given y ∈ S1, the mapping [0, ∞) � r �→ r +ϕ(r −1)ρ(y/|y|) ∈
[0, ∞) is strictly increasing and therefore bijective. Taking also in account that for
x �= 0 we have

D

(
ρ

(
x

|x |
))

= ρ′
(

x

|x |
) (

− x2

|x |2 ,
x1

|x |2
)

we can easily verify that φρ ∈ Diff 4+α(�, �ρ) ∩ Diff 4+α(R2, R2). Additionally,
we have that φρ(S1) = �ρ. The push-forward operator induced by φρ is defined by

φ∗
ρ : BUC(�ρ) → BUC(�), u �−→ u ◦ φρ.

These operators allow us to transform the problem into an abstract Cauchy problem
over S1. General results of the theory of maximal regularity, due to Sinestrari [20],
can be used to prove existence of a unique classical solution, corresponding to small
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initial data. Let ψρ := φ−1
ρ . The solution to (1.4) is then obtained (see Lemma 2.1

below) using the pull-back operators defined by

φ
ρ∗ : BUC(�) → BUC(�ρ), v �−→ v ◦ ψρ.

The transformed differential operators A(ρ) and B, acting on buc2+α(�), respec-
tively on Vα × buc2+α(�) are set to be:

A(ρ) := φ∗
ρ ◦ Q ◦ φ

ρ∗ ,

B(ρ, v)(x) := 1
µ(|D(φ

ρ∗ v)|2) 〈D(φ
ρ∗ v), DNρ〉(φρ(x)), x ∈ S1.

We compute that the curvature κρ of �ρ, ρ ∈ Vα is given by

κρ((1 + ρ(x))x) = (1 + ρ)2 + 2ρ′2 − (1 + ρ)ρ′′

((1 + ρ)2 + ρ′2)3/2
(x), x ∈ S

1.

It is not difficult to see that if (ρ, u) is a solution of (1.4), then (ρ, φ∗
ρu) is a solution

of the following problem

A(ρ)v = 0 in � × [0, T ],

v = γ
(1 + ρ)2 + 2ρ′2 − (1 + ρ)ρ′′

((1 + ρ)2 + ρ′2)3/2
on S1 × [0, T ],

∂tρ + B(ρ, v) = 0 on S1 × [0, T ],
ρ(0) = ρ0.

(2.1)

In fact the problems (1.4) and (2.1) are equivalent in the following sense:

Lemma 2.1. Given ρ0 ∈ Vα we have:

(a) If (ρ, u) is a classical Hölder solution for (1.4), then (ρ, φ∗
ρu) is a classical

Hölder solution for (2.1).
(b) If (ρ, v) is a classical Hölder solution for (2.1), then (ρ, φ

ρ∗ v) is a classical
Hölder solution for (1.4).

Proof. Given ρ ∈ Vα there exists positive constants K and δ depending only on ρ

such that
‖φρ − φρ̃‖BUC4+α(R2) ≤ K‖ρ − ρ̃‖C4+α(S1) (2.2)

for all ρ̃ ∈ Vα with ‖ρ − ρ̃‖C4+α(S1) ≤ δ. In fact, we can choose K large enough
such that the relation

‖ψρ − ψρ̃‖BUC4+α(R2) ≤ K‖ρ − ρ̃‖C4+α(S1) (2.3)

holds for ‖ρ − ρ̃‖C4+α(S1) ≤ δ. Indeed, given ρ ∈ Vα , let ψρ =: (ψ1
ρ, ψ2

ρ).



STOKESIAN HELE-SHAW FLOW 333

Using the chain rule, we compute

ψ1
ρ,1(φρ(x))=


1

1+ϕ′ρ
+ x2

|x |3
(

1+ 1
|x |ϕρ

)
(1+ϕ′ρ)

(−x2ϕρ+x2|x |ϕ′ρ+x1ϕρ′),

0 < |x | < 2,

1, else,

ψ1
ρ,2(φρ(x))=


− x1

|x |3
(

1 + 1

|x |ϕρ

)
(1 + ϕ′ρ)

(−x2ϕρ + x2|x |ϕ′ρ + x1ϕρ′),

0 < |x | < 2,

0, else,

ψ2
ρ,1(φρ(x))=


− x2

|x |3
(

1 + 1

|x |ϕρ

)
(1 + ϕ′ρ)

(−x1ϕρ + x1|x |ϕ′ρ − x2ϕρ′),

0 < |x | < 2,

0, else,

ψ2
ρ,2(φρ(x))=


1

1+ϕ′ρ
+ x1

|x |3
(
1+ 1

|x |ϕρ
)

(1+ϕ′ρ)
(−x1ϕρ+x1|x |ϕ′ρ−x2ϕρ′),

0 < |x | < 2,

1, else,

where ϕ = ϕ(|x | − 1) and ρ = ρ(x/|x |). Relation (2.3) is now immediate. The
assertion follows now due to relations (2.2) and (2.3), using arguments similar to
the ones in Lemma 1.2 in [5].

Given ρ ∈ Vα, the operator A(ρ) is elliptic (uniformly elliptic if (1.3) holds)
and it carries also a quasilinear structure, in the sense that

A(ρ)v = bi j (x, ρ, Dv)vi j + bi (x, ρ, Dv)vi , ∀v ∈ buc2+α(�),

where

bi j (x, ρ, Dv) = ψ i
ρ,k(φρ(x))ψ

j
ρ,l(φρ(x))akl(D(φ

ρ∗ v)(φρ(x))) for 1 ≤ i, j ≤ 2,

bi (x, ρ, Dv) = ψ i
ρ,kl(φρ(x))akl(D(φ

ρ∗ v)(φρ(x))) for 1 ≤ i ≤ 2,

and
D(φ

ρ∗ v)(φρ(x)) = (vk(x)ψk
ρ,1(φρ(x)), vk(x)ψk

ρ,2(φρ(x)))
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for v∈buc2+α(�) and x ∈�. Moreover, given ρ ∈Vα , x ∈� and p=(p1, p2)∈ R2,
we have

bi j (x,ρ,p)ξiξ j =ai j(pkψ
k
ρ,1(φρ(x)), pkψ

k
ρ,2(φρ(x)))(ξkψ

k
ρ,i (φρ(x)))(ξkψ

k
ρ, j (φρ(x)))

for all ξ = (ξ1, ξ2) ∈ R2. The ellipticity, respectively the uniform ellipticity of
A(ρ) is a immediate consequence of relation (1.1), respectively (1.3). We study
now the right-hand side of the second equation of (2.1).

Lemma 2.2. The mapping

Vα � ρ �−→ κ(ρ) := (1 + ρ)2 + 2ρ′2 − (1 + ρ)ρ′′

((1 + ρ)2 + ρ′2)3/2
∈ buc2+α(S1)

is smooth. Given ρ ∈ h4+α(S1), we have ∂κ(0)[ρ] = −ρ − ρ′′.

Proof. We can express κ as κ := ϒ ◦ � where ϒ and � are the functions defined
by

ϒ : Vα → h2+α(S1) × h2+α(S1) × h2+α(S1),

ϒ(ρ) = (ρ, ρ′, ρ′′),

� : h2+α(S1) × h2+α(S1) × h2+α(S1) → h2+α(S1),

�(ρ1, ρ2, ρ3) = (1 + ρ1)
2 + 2ρ2

2 − (1 + ρ1)ρ3

((1 + ρ1)2 + ρ2
2)3/2

.

Since ϒ and � are smooth, then so is also κ. The second assertion is now
obvious.

Assume first that relation (1.3) is not satisfied. Then, given ρ ∈ Vα, the bound-
ary curve

(∂�ρ, γ κρ) = {(z, γ κρ(z)) : z ∈ ∂�ρ} ⊂ R
3

satisfies a bounded slope condition since the curvature of ∂�ρ is everywhere pos-
itive and the boundary ∂�ρ , respectively the boundary value γ κρ, belong to the
class C2. This means that for each point P ∈ (∂�ρ, γ κρ) the curve (∂�ρ, γ κρ) is
bounded from above and below on the cylinder ∂�ρ × R by two planes and coin-
cides with them at P . The slopes of the planes are uniformly bounded by a constant
which does not depend on the point P . In view of [14, Theorem 6.4.2] we obtain
that for each ρ ∈ Vα, the Dirichlet problem

Qu = 0 in �ρ,

u = γ κρ on �ρ

(2.4)

possesses a solution u ∈ BUC2+α(�ρ). If (1.3) holds, then Q is uniformly elliptic
and the same result for (2.4) is obtained by applying [14, Theorem 4.8.2].
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Moreover, the mean value theorem (see [10, Theorem 10.2] for more details)
yields that this solution is unique. Notice also that if ρ ∈ C∞(S1), then the solution
u to (2.4) is smooth, that is u ∈ BUC ∞(�ρ).

Together with Lemma 2.2 we obtain the following existence, uniqueness and
regularity result.

Theorem 2.3. Given ρ ∈ Vα, there exists a unique solution T (ρ) ∈ buc2+α(�) of
the quasilinear Dirichlet problem

A(ρ)v = 0 in �,

v = γ κ(ρ) on S1.
(2.5)

Moreover, the mapping [Vα � ρ �−→ T (ρ) ∈ buc2+α(�)] is smooth.

Proof. In view of the facts discussed above it suffices to prove that T is smooth.
Indeed, knowing that T is smooth and that (2.4) has a unique solution for ρ ∈ Vα,

we obtain in view of T (C∞(S1)) ⊂ BUC ∞(�), that ρ ∈ Vα implies T (ρ) ∈
buc2+α(�).

We proceed now and prove that T is a smooth operator. Let S : Vα ×
BUC 2+α(�) → L(BUC 2+α(�), BUC α(�)) be the operator defined by

S(ρ, v)[u] := bi j (x, ρ, Dv)ui j + bi (x, ρ, Dv)ui ,

where we use the standard sum convention. Given (ρ, v) ∈ Vα × BUC 2+α(�),

S(ρ, v) is a linear, uniformly elliptic differential operator of second order satisfying

S ∈ C∞(Vα × BUC 2+α(�),L(BUC 2+α(�), BUC α(�))).

It follows that I : Vα × BUC 2+α(�) → BUC 2+α(�), with

I(ρ, v) := (S(ρ, v), tr)−1(0, γ κ(ρ)),

is a smooth operator. We have denoted by tr the trace operator on S1. The smooth-
ness is obtained in view of Lemma 2.2, taking also into account that the function
mapping a linear operator to its inverse is analytical.

The function [ρ �→ (ρ,T (ρ))] is a parametrization of the 0-level set of the
smooth mapping

F : Vα × BUC 2+α(�) → BUC 2+α(�), F(ρ, v) := v − I(ρ, v).

The derivative of F with respect to v is given by the relation

∂vF(ρ, v) = idBUC 2+α(�) − ∂vI(ρ, v),

where ∂v I( ρ, v) is a compact operator. This is due to the fact that S and I
have natural extensions to operators on Vα × BUC 1+α(�) and the embedding



336 JOACHIM ESCHER, ANCA-VOICHITA MATIOC AND BOGDAN-VASILE MATIOC

BUC 2+α(�) ↪→ BUC 1+α(�) is compact. Consequently, ∂vF(ρ, v) is a Fredholm
operator of index 0.

Let us compute the Fréchet derivative ∂vI(ρ,T (ρ)) for ρ ∈ Vα. Let ρ ∈ Vα

be given and set v := T (ρ). Given w ∈ BUC 2+α(�), the mapping ∂vI(ρ, v)[w] is
the unique solution of the following Dirichlet problem:

bi j (x,ρ,Dv)zi j +bi (x,ρ,Dv)zi = − [
∂bi j (x, ρ, Dv)vi j + ∂bi (x, ρ, Dv)vi

]
· (D(φ

ρ∗ w)(φρ)) in �

z = 0 on ∂�, (L)

where

∂bi j (x, ρ, Dv) = ψ i
ρ,k(φρ(x))ψ

j
ρ,l(φρ(x))∂akl(D(φ

ρ∗ v)(φρ(x))) for 1≤ i, j ≤2,

∂bi (x, ρ, Dv) = ψ i
ρ,kl(φρ(x))∂akl(D(φ

ρ∗ v)(φρ(x))) for 1≤ i ≤2,

and ∂ai j are the usual Fréchet derivatives of the smooth mappings ai j : R2 → R,

1 ≤ i, j ≤ 2.

We state that the linear operator ∂vF(ρ,T (ρ)) is an isomorphism for all ρ ∈
Vα. Taking into consideration that ∂vF(ρ,T (ρ)) is a Fredholm operator of index 0,
it suffices to prove that it is one-to-one. Indeed, let w ∈ BUC 2+α(�) be a function
with the property that ∂vF(ρ,T (ρ))[w] = 0, that is w = ∂vI(ρ,T (ρ))[w]. Then,
w is the solution of (L), hence w = 0.

The implicit function theorem yields that T is smooth in a neighbourhood of
ρ for all ρ ∈ Vα . This completes the proof.

3. The nonlinear Cauchy problem

Replacing in the third equation of (2.1) v by T (ρ), the solution to (2.5), we reduce
problem (1.4) to a nonlinear Cauchy problem over the unit circle:

∂tρ + �(ρ) = 0, ρ(0) = ρ0, (3.1)

where �( · ) := B( · ,T ( · )) is a nonlinear and nonlocal operator of third order.
In order to prove Theorem 1.1 we observe first that � is a smooth mapping and

that −∂�(0) generates a strongly continuous analytic semigroup in L(h1+α(S1))

with domain of definition h4+α(S1), that is ∂�(0) ∈ H(h4+α(S1), h1+α(S1)).
We study now the regularity properties of the operator B. First we prove the

following result:

Lemma 3.1. The nonlinear operator B belongs to C∞(Vα×buc2+α(�),h1+α(S1)).

Moreover, given (ρ0, v0) ∈ (−a, a) × R ⊂ Vα × buc2+α(�), we have

∂B(ρ0, v0)[ρ, v] = 1

µ(0)
tr ∂νv
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for all [ρ, v] ∈ h4+α(S1) × buc2+α(�), where ν is the unit exterior normal vector
field to ∂�.

Proof. Given (ρ, v) ∈ Vα × buc2+α(�) we compute:

〈D(φ
ρ∗ v), DNρ〉(φρ) =

[
xiψ

j
ρ,i (φρ) + ρ′

1 + ρ

(
x2ψ

j
ρ,1(φρ) − x1ψ

j
ρ,2(φρ)

)]
v j

and the regularity assumption is now obvious. We used here again the usual sum
convention.

Let (ρ0, v0) ∈ (−a, a) × R be fixed and θ > 0, with the property any ρ ∈
h4+α(S1) satisfying ‖ρ − ρ0‖C4+α(S1) ≤ θ belongs to Vα. We prove that

∂B(ρ0, v0)[ρ, v](x) = 1

µ(0)
〈D(φ

ρ0∗ v), DNρ0〉(φρ0(x)), x ∈ S
1

for [ρ,v]∈h4+α(S1)×buc2+α(�) satisfying ‖[ρ,v]−[ρ0,v0]‖C4+α(S1)×BUC2+α(�) ≤
θ. We notice first that B(ρ0, v0) = 0. Further on, we write

B(ρ0 + ρ, v0 + v) − 1

µ(0)
〈D(φ

ρ0∗ v), DNρ0〉(φρ0)

=
(

1

µ(|D(φ
ρ0+ρ∗ (v0 + v))|2) − 1

µ(0)

)
〈D(φ

ρ0+ρ∗ (v0 + v)), DNρ0+ρ〉(φρ0+ρ)

+ 1

µ(0)

(
〈D(φ

ρ0+ρ∗ (v0 + v)), DNρ0+ρ〉(φρ0+ρ) − 〈D(φ
ρ0∗ v), DNρ0〉(φρ0)

)
=: E1 + E2.

Using standard arguments we find a positive constant χ depending only on (ρ0, v0)

such that ‖Ei‖C1+α(S1) ≤ χ‖[ρ, v]‖2
C4+α(S1)×BUC2+α(�)

. The relation 〈D(φ
ρ0∗ v),

DNρ0〉(φρ0) = ∂νv leads then to the conclusion.
Indeed, the estimate for E1 follows easily from the mean value theorem and

the fact that v0 is constant. Moreover, we have that

µ(0)E2 = 〈D(φ
ρ0+ρ∗ v), DNρ0+ρ〉(φρ0+ρ) − 〈D(φ

ρ0∗ v), DNρ0〉(φρ0)

=
{

xi (ψ
j
ρ0+ρ,i (φρ0+ρ) − ψ

j
ρ0,i

(φρ0))

+
[

ρ′

1 + ρ0 + ρ

(
x2ψ

j
ρ0+ρ,1(φρ0+ρ) − x1ψ

j
ρ0+ρ,2(φρ0+ρ)

)
− ρ′

1 + ρ

(
x2ψ

j
ρ,1(φρ) − x1ψ

j
ρ,2(φρ)

)]}
v j

which, in view of (2.2) and (2.3) completes the proof.
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Summarizing,we obtain from Theorem 2.3 and Lemma 3.1 that �∈C∞(Vα,h1+α(S1)).

Using the chain rule we have

∂�(0) = ∂B(0,T (0)) ◦ (idh4+α(S1), ∂T (0)).

Let us first notice that T (0) = γ . We are left to determine the derivative ∂T (0).
Using Lemma 2.1 we obtain:

Lemma 3.2. Given ρ ∈ Vα , the mapping ∂T (0)[ρ] ∈ buc2+α(�) is the unique
solution of the linear Dirichlet problem

�ω = 0 , in �,

ω = −γ (ρ + ρ′′) , on S1.
(3.2)

Proof. The proof is standard and is left to the reader.

Thus, given ρ ∈ Vα, the derivative ∂�(0) satisfies ∂�(0)[ρ] = (1/µ(0))∂νω,

where ω is the unique solution to (3.2). If we consider the Fourier expansion of
ρ = ∑

k∈Z
ρ̂(k)xk , we obtain from the well-known Poisson integral formula that

ω(r x) =
∑
k∈Z

γ (k2 − 1)r |k|ρ̂(k)xk

for all r ≤ 1 and x ∈ S1. Particularly, ∂νω(x) = ∑
k∈Z

γ |k|(k2 − 1)ρ̂(k)xk for
x ∈ S1, and we conclude

−∂�(0)

[∑
k∈Z

ρ̂(k)xk

]
=

∑
k∈Z

ζ |k|(1 − k2)ρ̂(k)xk (3.3)

for all
∑

k∈Z
ρ̂(k)xk ∈ h4+α(S1), where ζ := γ /µ(0).

We will use the Fourier representation (3.3) to prove that ∂�(0)∈H(h4+α(S1),

h1+α(S1)). The coefficients λk := ζ |k|(1 − k2), k ∈ Z will play an important role
in our further analysis. Given r ≥ 0, the Sobolev space Hr (S1) is defined by

Hr (S1) := {ρ ∈ L2(S1) :
∑
k∈Z

(1 + k2)r |ρ̂(k)|2 < ∞},

and is endowed with the scalar product 〈ρ , ς〉 := ∑
k∈Z

(1 + k2)r ρ̂(k)ς̂(k). The
smooth functions are dense in Hr (S1) and the Sobolev embedding Hk+r (S1) ↪→
Ck(S1) holds for all k ∈ N, provided r > 1/2. Moreover, Hk+s(S1)

d
↪→ hk+β(S1)

for all k ∈ N, β ∈ [0, 1], and s > 3/2.

Let us now consider the operator −∂�(0), given by (3.3), as an operator be-
tween Sobolev spaces. Given Re λ ≥ 1 the operator λ+ ∂�(0) is an isomorphisms.
More precisely, it belongs to Isom(Hr+3(S1), Hr (S1)) for all r ≥ 0. This can be
seen using the Fourier expansions of the functions belonging to the spaces Hs(S1),

s ≥ 0, together with the relation lim|k|→∞(λ|k|/|k|3) = −ζ. Consequently, for any
Re λ ≥ 1 and r ≥ 0, the resolvent R(λ, −∂�(0)) is a well-defined element of
L(Hr (S1), Hr+3(S1)). Applying this result we obtain:
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Proposition 3.3. Let k ∈{1,4} and suppose R(λ,−∂�(0))∈L(C1+α(S1),Ck+α(S1))

for some Re λ ≥ 1. Then R(λ, −∂�(0)) ∈ L(h1+α(S1), hk+α(S1)).

Proof. From the assumption we deduce that R(λ,−∂�(0))∈L(h1+α(S1),C4+α(S1)).

Given ρ ∈ h1+α(S1), we find a sequence (ρn)n ⊂ Hr (S1), r > 3, such that ρn →
ρ in C1+α(S1). It follows that

R(λ, −∂�(0))ρn −→ R(λ, −∂�(0))ρ in Ck+α(S1).

Thanks to the above mentioned result we obtain

R(λ, −∂�(0))ρ ∈ Hr+3(S1)
‖ · ‖Ck+α(S1) = hk+α(S1).

This proposition is very useful because it allows us to transfer the problem of study-
ing the spectrum of the operator −∂�(0) considered as an operator between small
Hölder spaces to the case when it acts between Hölder spaces, which is more at
hand due to the identification Cs(S1) = Bs∞,∞(S1) for s > 0, s /∈ N. Here we have
denoted by Bs∞,∞(S1) the usual Besov spaces over S1 (for more details see [16]).

In order to show that ∂�(0) ∈ H(h4+α(S1), h1+α(S1)) it suffices, cf. [1], to
find a constant χ ≥ 1 such that

λ + ∂�(0) ∈ Isom(h4+α(S1), h1+α(S1)), (3.4)

|λ| · ‖R(λ, −∂�(0))‖L(h1+α(S1)) ≤ χ, (3.5)

for all Re λ ≥ 1. We shall prove that there exists a constant χ such that relations
(3.4) and (3.5) hold. The proof is based on a straightforward generalization of a
result appeared in [2].

Theorem 3.4. Let r, s be two positive constants and let (Mk)k∈Z ⊂ C be a se-
quence satisfying the following conditions

(i) sup
k∈Z\{0}

|k|r−s |Mk | < ∞,

(ii) sup
k∈Z\{0}

|k|r−s+1|Mk+1 − Mk | < ∞,

(iii) sup
k∈Z\{0}

|k|r−s+2|Mk+2 − 2Mk+1 + Mk | < ∞.

The mapping ∑
k∈Z

ρ̂(k)xk �−→
∑
k∈Z

Mk ρ̂(k)xk

belongs then to L(Bs∞,∞(S1), Br∞,∞(S1)).
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Proof. The proof follows similarly to that of Theorem 4.5 (i) in [2] with the obvious
modifications.

Theorem 3.5.
∂�(0) ∈ H(h4+α(S1), h1+α(S1)).

Proof. Let Re λ ≥ 1 be fixed. Given
∑

k∈Z
ρ̂(k)xk ∈ L2(S1), we have

R(λ, −∂�(0))

[∑
k∈Z

ρ̂(k)xk

]
=

∑
k∈Z

Mλ
k ρ̂(k)xk,

where Mλ
k = 1/(λ−λk), k ∈ Z. We prove first that R(λ, −∂�(0)) ∈ L(h1+α(S1),

h4+α(S1)). Thanks to Proposition 3.3 and Theorem 3.4 it suffices to show that the
coefficients (Mλ

k ) satisfy conditions (i), (ii) and (iii) of the above theorem (with
s = 1 + α and r = 4 + α).

The relation lim
k→∞k3/(λ−λk) = 1/ζ implies (i). Further on, we write for k ≥ 1

k4|Mλ
k+1 − Mλ

k | = k3

|λ − λk+1|
k3

|λ − λk |
|λk+1 − λk |

k2
−→
k→∞

3

ζ
,

because of (λk − λk+1)/k2 → 3ζ, and (ii) is proved. We also have

k5|Mk+2 − 2Mk+1 + Mk |
= k3

|λ − λk+2|
k3

|λ − λk+1|
k3

|λ − λk |
1

k4

∣∣∣λ(λk+2 − 2λk+1 + λk) +

+λk(λk+1 − λk+2) + λk+2(λk+1 − λk)

∣∣∣,
and (λk+2 − 2λk+1 + λk)/k4 → 0, respectively (λk(λk+1 − λk+2) + λk+2(λk+1 −
λk))/k4 → 12ζ 2. This proves (iii). Thus, λ + ∂�(0) ∈ Isom(h4+α(S1), h1+α(S1))

for all Re λ ≥ 1.
We prove now (3.5). Denoting by Nλ

k := λMλ
k for Re λ ≥ 1 and k ∈ Z, it

suffices to show that the conditions (i), (ii) and (iii) of Theorem 3.4 (with s = r =
1 + α) hold for (Nλ

k ) uniformly in λ ∈ {λ : Re λ ≥ 1}. Let us notice first that
|λ − λk | ≥ max{1, |λ|, |λk |} for all Re λ ≥ 1 and k ∈ Z. Moreover, λk = 0 iff
|k| ≤ 1. Therefore, we have

sup
Re λ≥1

sup
k∈Z

|Nλ
k | ≤ 1.

We also get

|k||Nλ
k+1 − Nλ

k | = |λ|
|λ − λk+1|

|k|3
|λ − λk |

|λk+1 − λk |
k2

≤ |λk+1 − λk |
k2

xk,
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where

xk :=


1 , |k| ≤ 1,

|k|3
|λk | , |k| ≥ 2,

and we are left to verify that (iii) holds. For k �= 0 we have

k2|Nλ
k+2 − 2Nλ

k+1 + Nλ
k |

= |λ|
|λ − λk+2|

k3

|λ − λk+1|
k3

|λ − λk |
1

k4

∣∣∣λ(λk+2 − 2λk+1 + λk) +

+λk(λk+1 − λk+2) + λk+2(λk+1 − λk)

∣∣∣
≤ xk

|λk+2 − 2λk+1 + λk |
|k| + xk xk+1

|λk(λk+1 − λk+2) + λk+2(λk+1 − λk)|
k4

.

The relation (λk+2 − 2λk+1 + λk)/k −→
k→∞ −6ζ leads to conclusion.

We are now able to sketch the proof of Theorem 1.1. We fix 0 < β < α

and set θ := (α − β)/3. Since α ∈ (0, 1) was arbitrary in our analysis, we de-
duce from Theorem 3.5, using the fact that H(h4+β(S1), h1+β(S1)) is open in
L(h4+β(S1), h1+β(S1)), the existence of an open neighbourhood Oβ of 0 in Vβ

with the property that ∂�(x) ∈ H(h4+β(S1), h1+β(S1)) for all x ∈ Oβ. Let O :=
Oβ∩h4+α(S1). Letting C > 0 be the norm of the compact embedding h4+α(S1) ↪→
h4+β(S1), we find that Bh4+α(S1)(x, r/C) ⊂ O for any ball Bh4+β(S1)(x, r) ⊂ Oβ .
Thus O is an open neighbourhood of 0 in Vα.

Moreover, given x ∈ O, the operator −∂�(x) is the part in h1+α(S1) of a sec-
torial operator B : h4+β(S1) ⊂ h1+β(S1) −→ h1+β(S1) with DB(θ) = h1+α(S1)

and DB(θ +1) = h4+α(S1), where DB(θ) and DB(θ +1) are suitable interpolation
spaces, associated to the operator B. We refer to [15] for details. We have used here
the well-known interpolation property of the small Hölder spaces

(hσ0(S1),hσ1(S1))θ =h(1−θ)σ0+θσ1(S1), if θ ∈(0, 1) and (1−θ)σ0+θσ1 /∈N. (3.6)

Thus, we have establish that the assumptions of Theorem 8.4.1 in [15] hold and the
proof of Theorem 1.1 is now obvious. Consequently, given ρ0 ∈ O, there exists a
positive time T (ρ0) > 0 and a unique classical solution (u, ρ) to problem (1.4) on
[0, T (ρ0)] satisfying ρ([0, T (ρ0)]) ⊂ O. Moreover, the solution may be extended
on a maximal interval [0, T (ρ0)) and if ρ is uniformly continuous with values in
h4+α(S1), then either

lim
t↗T (ρ0)

ρ(t) ∈ ∂O or T (ρ0) = +∞.



342 JOACHIM ESCHER, ANCA-VOICHITA MATIOC AND BOGDAN-VASILE MATIOC

We prove now a conservation law for the fluid volume:

Lemma 3.6 (Conservation of volume). Given ρ∈Vα ,we have
∫

S1(1+ρ)�(ρ)dx =0.

Proof. Let ρ ∈ Vα be given. Denoting by u the unique solution of the Dirichlet
problem

div
(

Du
µ(|Du|2)

)
= 0 in �ρ,

u = γ κρ on �ρ,

we obtain ∫
S1

(1 + ρ)�(ρ) dx =
∫

S1
(1 + ρ)B(ρ,T (ρ)) dx

=
∫

S1
(1 + ρ)

〈
Du

µ(|Du|2) , DNρ

〉
(φρ) dx

= 1

2π

∫
∂�ρ

〈
Du

µ(|Du|2) , νρ

〉
dσ

= 1

2π

∫
�ρ

div

(
Du

µ(|Du|2)
)

dx = 0.

This completes the proof.

Given ρ ∈ Vα , the volume of the domain �ρ is vol(�ρ) = π
∫

S1(1 + ρ)2dx .
Fixing ρ0 ∈ O, we denote by ρ : [0, T (ρ0)) → Vα the solution to (1.4). We
compute

d

dt
vol(�ρ(t)) = −2π

∫
S1

(1 + ρ(t))�(ρ(t)) dx = 0,

thus the volume of the fluid is preserved. Furthermore, we know [18] that also the
centre of mass of the fluid domain is preserved by the flow.

4. Equilibria and stability properties

We determine the equilibria of the problem (1.4) by solving the following free
boundary problem

div
(

Du
µ(|Du|2)

)
= 0 in �ρ,

u = γ κρ on �ρ,

〈Du, DNρ〉 = 0 on �ρ.

(4.1)

Assuming that ρ ∈ Vα is known, we obtain from the first and the third equation of
(4.1), using the fact that the outward normal at ∂�ρ is νρ = DNρ/|DNρ |, that u
must be a constant function. Consequently, the curvature of ∂�ρ is constant and
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∂�ρ must be a circle. Furthermore, it is obvious that any circle sufficiently near the
unit circle determines a steady-state solution for (1.4). There exists also an open
neighbourhood U of the origin in R3 with the property that

E := {(ρ(c,R), γ /(R + 1)) ∈ Vα × buc2+α(�) : (c, R) ∈ U}

contains all the equilibria of problem (1.4) in Vα . Given (c, R) ∈ U , the mapping

ρ(c,R)(x) =
√

(R + 1)2 − |c|2+ < c, x >2+ < c, x > −1, x ∈ S
1,

defines an element of Vα and the boundary ∂�ρ(c,R)
is exactly the circle with centre

c and radius (R+1).
In order to study the stability of the 0 solution for the problem (3.1) we shall

proceed like in [15] and [4] and construct a three dimensional invariant submani-
fold of the phase space with the property that the eigenspace corresponding to the
eigenvalue λ1 = 0 is tangential to it in 0.

Let 0 < β < α < 1 and θ := (α − β)/3. Letting G(ρ) := Aρ − �(ρ) for
ρ ∈ Vβ we write problem (3.1) as follows

∂tρ = −Aρ + G(ρ), t ≥ 0,

ρ(0) = ρ0,
(4.2)

where A := ∂�(0) ∈ H(h4+β(S1), h1+β(S1)). We have G ∈ C∞(Vα, DA(θ)),
G(0) = 0 as well as ∂G(0) = 0. These relations follow by reason of DA(θ) =
(h4+β(S1), h1+β(S1))θ = h1+α(S1) and DA(θ + 1) = {ρ ∈ h4+β(S1) : Aρ ∈
DA(θ)} = h4+α(S1). Notice that the part of A in DA(θ) is denoted again by A. We
refer also to [15] for details.

The embedding h4+β(S1) ↪→ h1+β(S1) is compact, and therefore −A is an
operator with a compact resolvent. We infer to Theorem III.8.29 in [11] to con-
clude that its spectrum consists only of eigenvalues having finite multiplicity. Thus,
σ(−A) = {λk : k ≥ 1} and the multiplicity of λ1 is equal to 3, respectively the
multiplicity of λk is 2 for k ≥ 2, as can be deduced from (3.3). We find ourself in a
critical case of stability: the value λ1 = 0 belongs to the spectrum of −A.

Let us denote by P ∈ L(h1+β(S1)) the spectral projection associated with the
nonnegative spectral set {0} :

P = 1

2π i

∫
C

R(z, −A) dz,

where C is the circle centred in 0 with radius ζ. Notice that the closed ball bounded
by C contains non of the negative eigenvalues of the operator −A. Using the Fourier
expansions of the functions ρ ∈ h1+β(S1) we see that P is a Fourier multiplier.
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More precisely, given ρ = ∑
k∈Z

ρ̂(k)xk ∈ h1+β(S1) we compute

P

[∑
k∈Z

ρ̂(k)xk

]
= 1

2π i

∫
C

R(z, −A)ρ dz = 1

2π i

∫
C

∑
k∈Z

1

z − λk
ρ̂(k)xk dz

= 1

2π i

∑
k∈Z

∫
C

1

z − λk
ρ̂(k)xk dz

=
∑

k∈{−1,0,1}

(
1

2π i

∫
C

1

z − λk
dz

)
ρ̂(k)xk

=
∑

k∈{−1,0,1}
ρ̂(k)xk .

Note that ρ ∈ h 1 + β ( S1) ensures the uniform convergence of the series∑
k∈Z

1
z−λk

ρ̂(k)xk . Particularly, Theorem 3.4 implies P ∈ L(hk+σ (S1)) for all
k ∈ N and σ ∈ (0, 1).

We set X1 = P(h1+β(S1)), X2 = (I − P)(h1+β(S1)), and

A1 : X1 → X1, A1x = Ax

A2 : X2 ∩ h4+β(S1) → X2, A2x = Ax .

Then A1 ∈ L(X1) is the 0X1 operator, σ(−A2) = {λk : k ≥ 2} and DA2(θ) =
DA(θ)∩ X2, DA2(θ +1) = DA(θ +1)∩ X2. Setting h̃k+σ (S1) := {ρ ∈ hk+σ (S1) :
ρ̂(m) = 0 for |m| ≤ 1} for k ∈ N and σ ∈ (0, 1), we have

DA2(θ) = h̃1+α(S1) and DA2(θ + 1) = h̃4+α(S1).

Moreover, A2 is the part in h̃1+α(S1) of the operator A2 ∈ H(̃h4+β(S1), h̃1+β(S1)).

Let us further notice that Phk+σ (S1) is a three-dimensional space, thus

hk+σ (S1) = Phk+σ (S1) ⊕ h̃k+σ (S1), k ∈ N, σ ∈ (0, 1)

is a topological direct sum.
Choose r0 > 0 such that Bh4+α(S1)(0, r0(1+ K )) ⊂ O and let ψ : X1 → [0, 1]

be a smooth cutoff function satisfying

ψ(x) = 1 for ||x ||C1+β(S1) ≤ 1

2
and ψ(x) = 0 for ||x ||C1+β(S1) ≥ 1.

We have denoted by K the norm of (X1, ‖ · ‖C4+α(S1)) ↪→ (X1, ‖ · ‖C1+β(S1)).
Given r ≤ r0, the mapping

Gr : X1 × Bh̃4+α(S1)(0, r0) ⊂ h4+α(S1) → h1+α(S1),

Gr (ρ) := G

(
ψ

(
Pρ

r

)
Pρ + (I − P)ρ

)
, ρ ∈ X1 × Bh̃4+α(S1)(0, r0),
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has the same regularity properties as G and G(0) = 0, ∂G(0) = 0. Further on, for
r ≤ r0 the abstract Cauchy problem:

∂tρ = −Aρ + Gr (ρ), t ≥ 0

ρ(0) = ρ0,
(4.3)

is equivalent to the problem (4.2) for small solutions. More precisely, the solutions
of (4.2) remaining in BX1(0, r/2) × Bh̃4+α(S1)(0, r0) ⊂ h4+α(S1) coincide with the
solutions of (4.3). Given ρ ∈ X1×Bh̃4+α(S1)(0, r0), we assume that −A+∂Gr (ρ) is

the part in h1+α(S1) of a sectorial operator B : h4+β(S1) ⊂ h1+β(S1) → h1+β(S1),
such that DB(θ) = h1+α(S1) and DB(θ + 1) = h4+α(S1). This can be achieved by
choosing r0 small enough.

Under this assumptions we obtain for each initial data ρ0 ∈ X1×Bh̃4+α(S1)(0,r0),
applying again Theorem 8.4.1 in [15], existence and uniqueness of a maximal de-
fined solution ρ ∈ C([0, T (ρ0)), X1×Bh̃4+α(S1)(0, r0))∩C1([0, T (ρ0)), h1+α(S1)).

Clearly, problem (4.3) is equivalent to the following coupled system

x ′ = −A1x + f (x, y),

y′ = −A2 y + g(x, y),

x(0) = x0, y(0) = y0,

(4.4)

where
f : X1 × Bh̃4+α(S1)(0, r0) ⊂ X1 × h̃4+α(S1) → X1,

f (x, y) = PG
(
ψ

( x
r

)
x + y

)
,

g : X1 × Bh̃4+α(S1)(0, r0) ⊂ X1 × h̃4+α(S1) → h̃1+α(S1),

g(x, y) = (I − P)G
(
ψ

( x
r

)
x + y

)
.

Being interested in the stability of the equilibria to problem (3.1) located near the
trivial solution 0 it will be sufficient to consider the problem (4.4) for small r .

A pair (x, y) is called solution of (4.4) if there exists a constant T > 0 such
that

x ∈ C1([0, T ], Ph1+α(S1)),

y ∈ C1([0, T ], h̃1+α(S1)) ∩ C([0, T ], h̃4+α(S1)),

and if (x, y) satisfies the system (4.4) pointwise. In view of [15, Proposition 9.2.1]
we can choose r0 small enough to guarantee, for r ≤ r0, the existence of a con-
stant positive C(r) with the property that solutions to (4.4) satisfying initially
‖ρ0‖C4+α(S1) ≤ C(r) exist globally.

We state now a theorem on the existence and smoothness of invariant manifolds
for the system (4.4), result which can be found in [19, Theorem 4.1] and [15, The-
orem 9.2.2] (see also [4] and [8]).
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Theorem 4.1 (Existence of centre manifolds). Given k ∈ N>0, there exists rk ∈
(0, r0] and for each r ∈ (0, rk] there is a unique mapping

σ ∈ BCk(X1, h̃4+α(S1)),

satisfying
σ(0) = 0 ∂σ(0) = 0.

Moreover
‖σ(x) − σ(x)‖C4+α(S1) ≤ b‖x − x‖C1+β(S1)

for a suitable constant b and

‖σ(x)‖C4+α(S1) ≤ r, ∀x ∈ X1.

Let M := M(r, k) = {(x, σ (x)) : x ∈ X1} ⊂ h4+α(S1). Then M is a globally
invariant 3-dimensional Ck-manifold for the problem (4.4), i.e. given (x0, y0) ∈
M, the solution (x, y) to (4.4) exists in the large and (x(t), y(t)) ∈ M for t ≥ 0.

Denote by z( · ) = z( · , x, σ ) the global solution of the initial value problem
for the reduced ordinary differential equation

z′(t) = f (z(t), σ (z(t))), t ∈ R,

z(0) = x .

The function σ is the unique fixed point of the following equation

σ(x) =
∫ 0

−∞
et A2 g(z(t, x, σ ), σ (z(t, x, σ ))) dt, (4.5)

and for (x0, y0) ∈ M we have that (x(t), y(t)) = (z(t, x0, σ ), σ (z(t, x0, σ ))), t ≥
0 is the globally defined solution to (4.4).

Additionally, if ρ : R → h4+α(S1) is a globally defined solution of (3.1) with

ρ(t) ∈ W (r) := BX1

(
0,

r

2

)
× Bh̃4+α(S1)(0, r),

i.e. ‖Pρ(t)‖C1+β(S1) < r/2 and ‖(I − P)ρ(t)‖C4+α(S1) < r for all t ≥ 0, then
(I − P)ρ(t) = σ(Pρ(t)) and Pρ is the unique solution of the following initial
value problem

z′(t) = f (z(t), σ (z(t))), t ∈ R,

z(0) = Pρ0.

Thus, M contains all small global solutions of (3.1). The tangent space to M in 0
is X1, the eigenspace corresponding to the eigenvalue 0

T0(M) = im(idX1, ∂σ (0)) = X1 × {0} ∼= X1.
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Fix now k ≥ 2. Given r ∈ (0, rk], we construct now a locally invariant Ck-manifold
Mc

loc for the problem (3.1) containing just stationary solutions of (3.1). Let V ⊂ U
be a small neighbourhood of 0 in R3 satisfying

ρ(c,R) ∈ W (r), ∀(c, R) ∈ V .

By Theorem 4.1 we have then ρ(c,R) = (Pρ(c,R), σ (Pρ(c,R))) for (c, R) ∈ V . The
mapping [U � (c, R) �→ ρ(c, R) := ρ(c,R) ∈ h4+α(S1)] is smooth and we compute

∂ρ(0, 0)[c, R] = c

2
x−1 + R + c

2
x = 〈c, x〉 + R, [c, R] ∈ R

3. (4.6)

Given (c, R) ∈ U , we can represent the periodic function Pρ(c,R) uniquely by its
trigonometric series

Pρ(c,R) = R̃ + 〈̃c, x〉, (4.7)

where R̃ = ρ̂(c,R)(0) and c̃ = 2ρ̂(c,R)(−1).

Using this relation, we state that the mapping F : U → R3, defined by
F(c, R) := (̃c, R̃), where (̃c, R̃) are given by (4.7), is smooth, satisfies F(0) = 0,
and additionally, by (4.7), ∂F(0) = idR3 . If V is small enough, then F : V →
F(V ) is a smooth diffeomorphism. Given (̃c, R̃) ∈ F(V ) we have:

PρF−1(̃c, R̃) = R̃ + 〈̃c, x〉,
thus PρF−1 is the restriction to F(V ) of the isomorphism [R3 � (̃c, R̃) �→ 〈̃c, x〉+
R̃ ∈ X1]. We conclude that Pρ(V ) is an open neighbourhood of 0 in X1. Define
Mc

loc as the graph of the restriction of σ to the open set Pρ(V ). We have obtain in
this way a local invariant manifold for the system (3.1). The example of A. Kelley
(Example 13.7) in [21] shows that invariant manifolds are in general not unique. In
the context of our problem we know additionally

Mc
loc = {(x, σ (x)) : x ∈ Pρ(V )} = {

(Pρ(c,R), σ (Pρ(c,R))) : (c, R) ∈ V
}

= {
ρ(c,R) : (c, R) ∈ V

}
.

This means that the (a priori non-unique) invariant manifold Mloc
c consists in equi-

libria only, i.e. in circles, and is therefore unique.
The manifold M attracts the solutions of (4.4) for small initial data. This result

is found in [15]. More precisely we have:

Theorem 4.2. Given ω ∈ (0, −λ2 = 6ζ ), there exist positive constants M = M(ω)

and r =r(ω) such that for r ≤r , (x0,y0)∈ X1 × h̃4+α(S1), with ‖(x0,y0)‖C4+α(S1) ≤
C(r), the solution (x, y) to (4.4) exists in the large and satisfies

‖y(t) − σ(x(t))‖C4+α(S1) ≤ Me−ωt‖y0 − σ(x0)‖C4+α(S1) for t ∈ [0, ∞).
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The following result on asymptotic stability ensures that for small initial data ρ0 the
solution to (3.1) exists in the large and there exists a steady state belonging to the
local centre manifold Mc

loc, uniquely determined by the initial data, which attracts
the solution exponentially. The proof of this result follows similarly as the proof
in [8, Theorem 6.5], which is an adoption of the proof in [19, Proposition 9.2.4].

Theorem 4.3. Let ω ∈ (0, 6γ /µ(0)) and r ≤ r be given. There exist positive
constants K = K (ω) and a neighbourhood W(r) of 0 in h4+α(S1) such that, for
ρ0 ∈ W(r) the solution to (3.1) exists in the large and there exists z0 ∈ Pρ(V ) with

‖ρ(t)−(z0,σ (z0))‖C4+α(S1) ≤ K e−ωt‖(I −P)ρ0−σ(Pρ0))‖C4+α(S1) for t ∈[0,∞).

Notice that for z0 ∈ Pρ(V ), the mapping (z0, σ (z0)) belongs to the local centre
manifold Mc

loc and is uniquely determined by the centre of mass and volume of
the initial data ρ0. Notice also the regularizing effect of the surface tension and
viscosity. Fluids with large surface tension coefficient and small viscosity converge
more rapidly to circles.
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