Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. IX (2010), 423-457

On a stronger Lazer-McKenna conjecture
for Ambrosetti-Prodi type problems

JUNCHENG WEI AND SHUSEN YAN

Abstract. We consider an elliptic problem of Ambrosetti-Prodi type involving
critical Sobolev exponent on a bounded smooth domain. We show that if the
domain has some symmetry, the problem has infinitely many (distinct) solutions
whose energy approach to infinity even for a fixed parameter, thereby obtaining
a stronger result than the Lazer-McKenna conjecture.
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1. Introduction

Elliptic problems of Ambrosetti-Prodi type have the following form:

—Au = g(u) —5s¢i(x), inQ,

1.1
u=>0, on 9€2, (1.1

where g(¢) satisfies lim;—, _ oo @ =V < Ay, limy, 4 @ = > A, AL 18
the first eigenvalue of —A with Dirichlet boundary condition and ¢; > 0 is the
first eigenfunction. Here 4 = +o0o and v = —oo are allowed. It is well-known
that the location of w, v with respect to the spectrum of (—A, H(} (2)) plays an
important role in the multiplicity of solutions for problem (1.1). See for example
[3,8,9,18-20,23-26,31-34]. In the early 1980s, Lazer and McKenna conjectured
that if © = 400 and g(¢) does not grow too fast at infinity, (1.1) has an unbounded
number of solutions as s — +00. See [24].
In this paper, we will consider the following special case:
—Au=u>"" % ou— sp1, in €2,

1.2
u=>0, on 0%2, (12)
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where Q is a bounded domain in RY with C2 boundary, N > 3, A < A1, § > 0,
us+ = max(u, 0) and 2* = 2N /(N — 2).
It is easy to see that (1.2) has a negative solution

s
U- —m — s
Us = =559

if A < A1. Moreover, if u; + u is a solution of (1.2), then u satisfies

—Au=u— s<p1)%:_1 + Au, 1in 2,

1.3
u=0, on 0%2, (1.3)

where s = A]s——l > 0.

Let us recall some recent results on the Lazer-McKenna conjecture related to
(1.3). Firstly, Dancer and the second author proved in [12, 13] that for N > 2 and
A € (—o0, A1), the Lazer-McKenna conjecture is true if the critical exponent in
(1.3) is replaced by sub-critical one. In the critical case, it was proved in [27,28,36]
that if N > 6 and A € (0, A1), then (1.3) has unbounded number of solutions as
s — 400. The solutions constructed for (1.3) concentrate either at the maximum
points of the first eigenfunction [27], or at some boundary points of the domain [36]
as § — —+o00. On the other hand, Druet proves in [21] that the conditions N > 6
and A € (0, A1) are necessary for the existence of the peak-solutions constructed
in [27,36]. More precisely, the result in [21] states that if N = 3,4,5,or N > 6
and A < 0, then (1.3) has no solution uy, such that the energy of u; is bounded as
s — —+oo. This result suggests that it is more difficult to find solutions for (1.3) in
the lower dimensional cases N = 3,4, 5, orinthecase A <0and N > 6.

Note that all the results just mentioned state that (1.3) has more and more
solutions as the parameter s — +o00. But for fixed s > 0, it is hard to estimate
how many solutions (1.3) has. (In the critical case, for fixed s, it is even unknown
if there is a solution.)

In this paper, we will deal with (1.3) in the lower dimensional cases N =
4,5,6,or N > 7 and A < 0, assuming that the domain 2 satisfies the following
symmetry condition:

(SD: If x = (x1, -+ ,xN) € Q,
then, for any 6 € [0, 2], (rcos@, rsin®, x3,--- ,xy) € 2, where r =

/.2 2.
Xy X33

(82): If x = (x1,-+- ,xN) € R,
then, forany 3 <i < N, (x1, X2, X3, -+, —Xj, -+ , XN) € Q.
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The main result of this paper is the following:

Theorem 1.1. Suppose that Q satisfies (S1) and (S2). Assume that one of the
following conditions holds:

i) N=4,5A<Arands > 0;
(i) N =6, A < A1 and s > |\|sg for some sog > 0, which depends on Q2 only;
(i) N>7,2=0ands > 0.

Then, (1.3) has infinitely many distinct solutions whose energy can approach to
infinity.

The result in Theorem 1.1 is stronger than the Lazer-McKenna conjecture.
Note that in Theorem 1.1, the constant s is fixed. In fact, all the parameters are
fixed. This gives a striking contrast to the results in [27,36], where s is regarded as
a parameter which needs to tend to infinity in order to obtain the results there. As
far as the authors know, this seems to be the first such result for Ambrosetti-Prodi
type problems. We believe Theorem 1.1 should be true in any general domain and
hence we pose the following stronger Lazer-McKenna conjecture:

Stronger Lazer-McKenna Conjecture: Let s be fixed and ). < Ay. Then problem
(1.3) has infinitely many solutions.

We are not able to obtain similar result for the cases N = 3, and N > 7 and
A < 0. But we have the following weaker result for N > 7 and A < 0, which gives
a positive answer to the Lazer—McKenna conjecture in this case:

Theorem 1.2. Suppose that Q2 satisfies (S1) and (S2), and N > 7, . < A1. Then,
the number of distinct solutions for (1.3) is unbounded as s — +0o0.

Problem (1.3) is a bit delicate in the case N = 3. When s = 0, Brezis and
Nirenberg [7] proved that (1.3) has a least energy solution if A € (0, A1), while
for N = 3, this result holds only if A € (A*, A1) for some A* > 0 (if Q is a ball,
A = %1). The main reason for this difference is that the function defined in (1.4)
does not decay fast enough if N = 3. Similarly, the main reason that we are not
able to prove Theorem 1.1 for N = 3 is that the function defined in (1.7) does not
decay fast enough.

In the Lazer and McKenna conjecture, the parameter s is large. Let us now
consider the other extreme case: s — 0+. Using the same argument as in [7], we
can show that for A € (A*, A1), A* =0if N =4, A* > 0if N = 3, (1.3) has a least
energy solution if s > 0 is small. We can obtain more in the case N = 3.

Theorem 1.3. Suppose that Q2 satisfies (S1) and (S2), and N = 3, L < A1. Then,
the number of the solutions for (1.3) is unbounded as s — 0+.

Note that the result in Theorem 1.3 is not trivial, because if A < A*, we can not
find even one solution by using the method in [7]. Moreover, we show that (1.3)
has more and more solutions as s — O+ forall A < A if N = 3.
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The readers can refer to [6, 10, 11, 17] for results on the Lazer-McKenna con-
jecture for other type of nonlinearities.

In Theorems 1.1-1.3, we have assumed that N > 3. When N = 2, M. del
Pino and Munoz [17] proved the Lazer-McKenna conjecture when the right hand
nonlinearity is ¢ (which is still subcritical in R?). The authors believe that when
N = 2, results similar to Theorems 1.1-1.3 may be true if the right hand nonlin-

earity is of the critical type, i.e., h(u)e“z. When N = 1, the critical exponent is

%—f% = —3. In this case, some form of Lazer-McKenna conjecture may be true

if the right hand nonlinearity is —u=3. We refer to [1] and [2] for discussions on
critical nonlinearities in dimensions N = 1, 2.

Before we close this section, let us outline the proof of Theorems 1.1 and 1.2
and discuss the conditions imposed in these two theorems.
For any x € RY, u > 0, denote

uN=2/2
(+ @2y =PV

Upz(y) = (N(N —2)"5 (1.4)

Then, U, ; satisfies —AU, ; = UZ*; ' In this paper, we will use the following
notation: U = Uy o.
Let

A —1
&= — M:;,AE[(S,S ]

and k > kg, where § > 0 is a small constant, and kg > O is a large constant, which
is to be determined later. v
Using the transformation u(y) > ¢~ 2 u (%) we find that (1.3) becomes

N2 2%—1 5 )
—Au = (u —sg 2 gol(sy)> + Ae“u, in g,
+ (1.5)
u=0, on 0%,
where Q2. = {y : ey € Q}. Let
N-2
Q. (y) =€ 2 gi1(ey).

For & € Q,, we define W ¢ as the unique solution of

_ [P T, Lo R
AW — re“W = UA,s in g, (1.6)
W=0 on 082.
Lety = (y',y") € RN, where y' = (y1, y2), and y” = (y3, - , yn). Define
H, = {u cue HY(Q),uisevenin y,,h =3,---, N, u(rcosé, rsin, y")

27 . 27 ,, .
=u|rcos 9+T , ¥ sin 9+T V), j=1,...,k—1¢,
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and 2(j —1 2(j —1
Xj = Zcos G- )n,tsin G- )n,O , j=1,---k,
£ k £ k
where 0 is the zero vector in RV 2,
Let
k
Wea() =Y Wax;. (1.7)

j=1

We are going to construct a solution for (1.3), which is close to W, 4 for some
suitable A and r and large k.
Theorem 1.1 is a direct consequence of the following result:

Theorem 1.4. Under the same conditions as in Theorem 1.1, there is an integer
ko > 0, such that for any integer k > ko, (1.5) has a solution uy of the form

ug = Wi a, (y) + @i,
where w; € Hy, and as k — +o00, ry — rg > 0, Ay — Ag > 0, ||wk|lpe — O.
On the other hand, if N > 7 and A < 0, we have the following weaker result:

Theorem 1.5. Suppose that N > 7 and . < X,i. Then there is a large constant
(2-20)(N—-4)
so > 0, such that for any s > so, and integer k satisfying s ¥-9W-2 < k <
2—-6)(N—4) . .
s N-00-2) where 6 > 0 is a fixed small constant, (1.5) has a solution uy s of the

form
Uk s = er,Ak o)+ Wk .55
where wi s € Hy, and as's — 400, 1y — 19 > 0, Ay = Ao > 0, |log 5|l — 0.
. Q2—-0)(N—-4) (2-26)(N—4) ) )

Since s ¥-ONV-2) — ¢ N-ON-2) — 400 as § — 400, Theorem 1.2 is a direct
consequence of Theorem 1.5. Let us point out that in the case N > 7 and A €
(0, A1), the solutions in Theorem 1.5 are different from those constructed in [27,36],
where the energy of the solutions remains bounded as s — +o0.

It is easy to see that Theorem 1.3 is a direct consequence of the following
result:

Theorem 1.6. Suppose that N = 3 and . < \i. Then there is a small constant
s1 > 0 and a large constant kg > 0 (independent of s ), such that for any s € (0, s1),

and integer k satisfying
2t
ko <k=<Cs T2, (1.8)
for some T € (0, %), then (1.5) has a solution uy g of the form

Uk s = er,Ak o)+ Wk.ss

where wi s € Hy, andass — 0, ry — 19 > 0, Ay = Ao > 0, |lok sllze — 0.
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Let make a few remarks on the conditions imposed on Theorems 1.1 and 1.2.
It is easy to see that the first eigenfunction ¢ € Hs. In this paper, we denote

@(r) = ¢1(r, 0).

The functional corresponding to (1.5) is

I
I(M)ZE/ (1Dul? - 2e%u?) ——f w—s®)% . ue H.
2

Let I be a connected component of the set @ N {y3 =--- = yy = 0}. Then, by
(S1), there are r, > r; > 0, such that

f={y: rli\/nyry%Srz, y3=-~-=y1v=0}.

If N = 4,5, then Y2 < 2. We obtain from Proposition A.3,

AZS(/_)(”)ST_ AzeN—2fN-2 (N=2)(1+0)
I(Wr,A)=k<A0+ T VAR o(e=27)). a9

It is easy to see that the function

rr 95( ), relr,nrnl (1.10)
N2
has a maximum point ry, satisfying ro € (r1, r2), since r; 2 o) =0,i=1,2. As

a result, ~
Aps@(r) A
A¥ rN—ZAN—Z ’

has a maximum point (rg, Ag), where

(r, A) € (r1,m2) x (8,871,

2

243 N=2
No=\—"—"—"F 5= g
Aasry “¢(ro)

for any fixed s > 0. Thus, I (W, ) has a maximum point in (r1, r2) x (8, s, if
k > 0 is large.

If N = 6, then Y52 = 2. Thus, we find from Proposition A.3,
2 414
_ £ Asze’k
I(Wrn) =k (Ao + (=2A1 + As@(r)) G O (s”")) . (1.11)

Let
g(r) = r2(Aws@(r) — A1h), 1 €lri,ml. (1.12)
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It is easy to see that we can always choose a constant 5o > 0, such that if s > |A|sg,

then g(r) has a maximum point rg, satisfying g(rg) > 0, rg € (r1, r2). As a result,
—AAL + Axsp(r) Az

A2 TAAR

(r, A) € (r1,m2) x (8,871,

has maximum point (rp, Ag), where

2A; :
Ao = - 7l
(=AA1 + Azs@(ro))r

for any fixed s > 0. Thus, /(W, ) has a maximum point in (r{, r2) X (8, s, if
k > 0 is large.
If N > 7 and A = 0, then Proposition A.3 gives

Apsg(r)e’ s AzeN2%N2 (N-2)(1+0)
1Wn) =k | Ao+ == 55—~ < o(s727)). a3

So, we are in the same situation as the case N = 4, 5.
N-2
On the other hand, if N > 7, then NT_z > 2. Thus ¢ 2 is a higher order term
of 2. Thus if A # 0, then for each fixed s > 0, we have

AA1e2 AzeNT2N2
I(W,,A):k(AO— - S +0<82+G> , (1.14)
But
LA Az

(r, A) € (r1,m2) x (8,871,

A2 pN-2pAN-2°
does not have a critical point even if A < 0. So, we don’t know whether I (W, »)
has a critical point. Thus, to obtain a solution for (1.3), we need to let s change so
that

2 N2
efkKse 7, ekl (1.15)
If (1.15) holds, then
A2<Z)(r)ss¥ AzeN -2 N-2 N=2 qy
TWo) =k A0+ =2 — = T s +0 (")) ). 1.16)

So, we are in a similar situation as A = 0. Note the (1.15) implies
2(N—4) 1
kL sW2N=0 k> sN2,

which gives an upper bound for k. Therefore, in this case, we are not able to obtain
the existence of infinitely many solutions even if s > 0 is large.
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In the case N = 3, for fixed s > 0, some estimates which are valid for N > 4
may not be true due to the slow decay of the function W, 5. Under the condition

1 .
s <C k~2*! for some T € (0, %), we can recover all these estimates. But the

condition s < Ck_%+1 imposes an upper bound (1.8) for the number of bubbles k.

The energy of the solutions obtained in Theorems 1.4 and 1.5 is very large
because k must be large. This result is in consistence of the result in [21].

Finally, let us point out that the eigenvalue ¢ is not essential in this paper. We
can replace ¢ by any function g, satisfying ¢ > 0in 2, ¢ = 0on 92 and ¢ € H;.

We will use the reduction argument as in [4,5, 14-16,29,30] and [38] to prove
the main results of this paper. Unlike those papers, where a parameter always ap-
pears in some form, in Theorem 1.4, s is a fixed positive constant. To prove The-
orem 1.4, the number of the bubbles k is used as a parameter to carry out the
reduction. Similar idea has been used in [35,37].

2. The reduction

In this section, we will reduce the problem of finding a k-peak solution for (1.3) to
a finite dimension problem.

Let
k | -1
luell« = sup (Z ) (), .1)

N-2
y\iSiAd+ly—-x;) 7 T

and

k 1 -1
||f||**=SUP( — ) £, 2.2)
y ;<1+|y—xj|)72+f

where T € (0, 1) is a constant, such that

k 1
—— < C. 2.3)
j; Ix; —xi*
2
Recall that ¢ = “Z—;z and

k 1 ko

Z — < C&KT Z — < C&'k.

o exl =

In order to achieve (2.3), we need to choose t according to whether s > 0 is fixed
or not. We choose 7 as follows:

L {% in Theorems 1.4 and 1.5; 2.4)

the number in (1.8), in Theorem 1.6.
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Let
AW x; 2 220U x,
Yi1= T Zin=—AYi1 — eV = Q2" = DUy o 3
and
AW x, 2 22 9UAx;
Yio= T, Zio=—AYip—AeYin = 2" — I)UA,X,- oy
We consider
) 22 2 Kk .
—A¢p—re“pp— (25 —1) (Wr,A_S(Ds)Jr $e=h+)_ > cjZij, in Q,
j=li=1
o € Hy, (2.5)

k
<Z Zi,j,¢k>=0, i=12,
=

for some number c;, where (u, v) = st uv.
We need the following result, whose proof is standard.

Lemma 2.1. Let f satisfy || f ||+« < 00 and let u be the solution of
—Au — retu = f in g, u=0 on 092,

where A < Ai. Then we have

()| < c/ @b,

Q lz—yIN=2
Next, we need the following lemma to carry out the reduction.

Lemma 2.2. Assume that ¢y solves (2.5) for h = hy. If ||hi|l«+ goes to zero as k
goes to infinity, so does | @ || «-

Proof. We argue by contradiction. Suppose that there are k — 400, h = hy,
Ay € 8,871, and ¢y solving (2.5) for h = hy, A = Ag, with ||hg|l« — 0, and
ldrll« = ¢’ > 0. We may assume that |||« = 1. For simplicity, we drop the
subscript k.

By Lemma 2.1,

1 *
b0 <C [ W d:

£

1
+ C/Q T (Ih(z)l +

c;jZ; j(2)

2
= 1

k

(2.6)
) dz

j=1i
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Using Lemma B.4 and B.5, there is a strictly positive number 6 such that

1
< Cligllx Z(1+|y_x =T 2.7)

1
|, oy e@:

It follows from Lemma B.3 that

1
<Clille | | -y

1
f L
Q. 12—yl =1 (1+|z—x; R

k
1
< Clihllae Yy

N—2,.°’
SA+ly—xp T

(2.8)
and

/Q Iz—yIN . IN—2 ZZtJ(Z)dZ

1
<C d
Z/N - y|N 2 (117 —x V2 *
2.9)

Next, we estimate c¢;. Multiplying (2.5) by Y;; and integrating, we see that c;
satisfies

2k
<Z Zzl,j,yl,l> ¢ =<—A¢—x52¢— @ = DHW2 %0, Y1,1> —(h, Y1), (2.10)

j=1i=1

It follows from Lemma B.2 that

1
h.YL)| <Cllh| / dz <C s,
(.10} “ Jav (1412 — xl|)N 2- ﬁ;(l—Hz x; ) "

since B > 0 can be chosen as small as desired.
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On the other hand,
(~a¢ - 2629 — @" — W22, 114)
_ <—AY1J ey - 2 — 1)W21—2Y1,1,¢> Q2.11)

=@ - 1)<U/2\ CUns — WY, ¢>>,

where o) = 0p ifl =1,0, =0, if [ = 2.
By Lemmas B.1,

g = Clidlls

We consider the cases N > 6 first. Note that ﬁ < 1for N > 6. Using Lem-
mas A.1 and B.2, noting that

2% 2%-2
|VVrA _WAx1|<ZWAx’
j=

and
C

577
1+ |z —xq]

we obtain

‘ (UIZC;IZBZUA,)CJ- — W21_2Y1y1, ¢> '

§C||¢||*L8 1+ |z — Xll)N 2— ﬂZ(1+|Z—X|)4 ﬂd

+Clgl. / p2=2 (eN-24 M€ f !
o (I+]y—x; PN =4-F

N-2
=t (I |z=x; )7 7

I8l [ Uns (V2 e 7 i 1
A
"o, (I+]y—x; V—4-F o A+z—x) T

=Cliol+ Z |1+U o[ llx=0(D)[|#]l«.

(2.12)
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For N = 3,4, 5, we have ﬁ > 1. By Lemmas B.1, B.2,

‘ (Ulz\*’;lzalUA,xj — W},Z’Z_ZYL[, ¢> ‘

k 4
SC/Q WAXfZWAx,IYu¢|+C/ (D Wax;) "2 19|
¢ j= Qe 2

+C||¢||*/ U2 -2 N 2+ |)‘|82 Xk: 1
o " A+ly=x; DY P ) 5 (x5

j=1

4l | Un (V2 P _Qi !
Ax | € I -
Yo A = N L

<Clg| / ! 3 1
B ) Qe (1 + |Z —X] |)4_l3 i=2 (1 =+ |Z — Xj|)N—2—/3

k 4
Cfg (D UN D)2 1Y161 + o(DIgl
& j=2

d 1

<clol. | — i ITEDS

Qe (1+|Z—Xl|)N 2= ﬁ =2 J S A+ly—-xi) 2 24t

+o(M ¢l
(2.13)

Let
yooxj T
Qi={y=0"y)eq < >zcos—}.
! { V1 Ix;] k
If y € Q1, then
1

k
-8 _ 1
U :
j; X/ +|y—X1|)N 2—1t—(N-2)8— QZ|X _X1|r+€

1
= o(1) ,
U+ Iy = x N2~ (V=25

and

k | c
)

— N=-2
Ay —x) T (H-Iy—XlI)T
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So, we obtain

1 A 1
. UA_‘ —
/szl (I + |z = xiPN=2=F ; ;<1+|y—xi|>NTz+f

1
= 0(1) N12 4(.[ 9) = 0(1)a
Q (1 4|z —x PN+ 7 T 4

since V42 — HH) 48 5 0,if > 0 and 6 > 0 are small.

Ify e Q,1>2,then

k c
>kl ,
= = Uty —w)V-2 0P

and

k 1 C
> —
)z

N-=2
i=1 (L + [y — x| (I+ly—=x"72
As aresult,

k Nk |
./Q, (1+Iz—X1I)N 2 (Z:: Axf) ;(1+|y_xi|)NT’2+f

<C/ 1 1
T Jo T+ lz—x PN (14 y— X1|)4—4ﬂ—%+¥

c

N+274717 _ ’
Cx - x| 2 w20

where 6 > 0 is a fixed small constant.
Since 7 = 1 for N > 4,and 7t < %forN = 3, we find that for & > 0 and

B > 0 small, N+2 5 — 6 — 4B > 7. Thus
! £ 3ok !
u,r =
./szg 1+ |z —x HN=2 <Jz:; A”") ; 1+ |y—x,~|)¥Jrr
k 1
50(1)+CZ T = o(1).

=2 |xp — x| 2 N2

So, we have proved

(VR R20Un N, — W21, ¢)‘ = o)l
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But there is a constant ¢ > 0,
2
> Zij. Vi) =és; +o(D).
j=1i=1

Thus we obtain that
cr=o([ollx) + O|h]ls)-

So,
k 1
El (ty—x;) 2+
@1l < | o(D) 4 ks + — (2.14)
1
21 Ay T
Since ||¢ ||+ = 1, we obtain from (2.14) that there is R > 0, such that
¢ Brexi) = co >0, (2.15)

for some i. But ¢(y) = ¢(y — x;) converges uniformly in any compact set of ]Rf
to a solution u of .
Au+ (2* = DU g%u=0 (2.16)

for some A € [8,87 '], and u is perpendicular to the kernel of (2.16). So, u = 0.
This is a contradiction to (2.15). O]

From Lemma 2.2, using the same argument as in the proof of [14, Proposi-
tion 4.1], we can prove the following result :

Proposition 2.3. There exists kg > 0 and a constant C > 0, independent of k,
such that for all k > ko and all h € L*°(R2;), problem (2.5) has a unique solution
¢ = Ly (h). Besides,

Lk ()]s < CllAllx, lcjl < Clinlls. 2.17)

Moreover, the map Ly (h) is C' with respect to A.

Now, we consider

2*—1
—A(Wen+ ) =22 (Wen+¢) = (Wen + ¢ —s5P:) .
2k
+ > > cjZij, in Q,
j=ti=l (2.18)
¢ € HS’

k
< Z,-,j,¢>=0, ji=1,2.
Z

1
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We have:

Proposition 2.4. There is an integer ko > 0, such that for each k > ko, r1 <r <
rm,d <A< 5_1, where § is a fixed small constant, (2.18) has a unique solution ¢,
satisfying

1§l < Clse ™7 )2H 4+ Clrls'*,
where o > 0 is a fixed small constant. Moreover, A — ¢(A) is CL.

Rewrite (2.18) as
—A¢ — he2p — (2F — 1)(Wyp — s<1>a>2**2¢ N@ i
+ZZC1 i,j> in ¢,

beH j=li= (2.19)
S

k
<Z Zi,j,¢>=0, j=12,
l

=1

where

Y _ 2*—1 2%—1 * 252
N(¢) = (Wr,A —s5b; + ¢)+ — (Wi a —s®£)+ — 2" =D (WA _S<Ds)+ b,
and

I = <W§"}(l ZUZ —1) + (Wra —s®)F = w2l

In order to use the contraction mapping theorem to prove that (2.19) is uniquely
solvable in the set on which ||¢ ||« is small, we need to estimate N (¢) and Ix.

Lemma 2.5. We have
IN (@)l < Cllp|mnE =12,
Proof. We have
_ Clp* !, Nz6;
IN@)| < C<WFNA’X¢2+ o _1) N =3,4,5.

Firstly, we consider N > 6. We have

) 1 2*—1
N @) <CligllY 1(2 |>N—‘2+’)
2

<Clipl -

=1 +]y—x;
k 1 k T
<C i - ( > 2.20
] g b E g 0T |y_x]|)r (2.20)
k 1

I+1y - X]|)_+T
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where we use the inequality

1 k 1
P q 1 1 .
Za,b <(Z f.’> (ij.) : ;+5:1,a,-,bjzo,J:1,...,k,
j=1

j=1
and
k k
<C+ —=<C
;( +|y—X]|)’ ;Im —X;[*

which follows from Lemma B.1.
For N = 3,4, 5, similarly to the case N > 6, we have

N (@)
2 a 1
SC'W”*(Z Aty x,-|>N—2—ﬂ>

1
+Clol ‘12
S+ -xDE

k 1 2% 1 Z 1
sc||¢||i( 5 ) +Clp|* ! —
S+ ly—x;pz " A+ ly—x;p 2t

<Cli$l3 Z 1

A+l -xDE

6—

=

2
l\J

(Sare)
S+ —xpT

2.21)

Next, we estimate [.
Lemma 2.6. We have

N-2

lto
”lk”** fC(SST)z +C|)\.|81+U,

where o > 0 is a fixed small constant.

, y’ X; T
Qi=1y=0"y)eq - > cos — | .
ly ||/| k

From the symmetry, we can assume that y € €2;. Then,

Proof. Recall

ly —x;| > |y —xq], VyeQ.
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Thus, for y € Q1, by Lemma A.1,

l
|kl_(lJrIy xi )4 ﬁz(lJrly—X HN=2-F

. X 21
+C
(Z d+1y - Xj|)N_2_ﬂ) (2.22)

Jj=2

_ |Ale
+C N=2 4
E:u+w—xm4ﬂ< (LHy—wnM*ﬁ>

1 20
—1—5— 1 20 N-=2
2 N-=2 §+7_ZST+O’.

—I—CWr’A s

Here, we have used the inequality: for any boundeda > O and b > 0, ¢ € (0, 1]

|(a _ b)2 71 2*—1| S CaZ*—l—aba‘

Let us estimate the first term of (2.22). Using Lemma B.2, we obtain

1 1
(I+ [y =xiD*F (1 + [y —x; )N 2P

1 1 1
=¢ + 2.3
<(1-|‘|y—X1|)N2+2Jrr (1+|y—xj|)N§r2+f> X — x| T T2 (2.23)
<C ! 1 .
= , j>1
A+ 1y —x ) Fr |xj — x| 728
Since Ngz — 28 > 1, we find
1 1
(L4 y =xiD*F ; (14 |y —x,;pN—2-8
1
=C (ke) 35728 (2.24)

a+w—mn%ﬂf

“+o
<c (w5 1

A+]y—x )T+t

Here we have used

8}

lis
(ke)' 3 -2 — o ((sg”T)2+ ) , (2.25)

for some small o > 0.
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In fact, if s > O is fixed (as in Theorem 1.4), then k = ﬁ and T = % As a

result,
(ke)' 5726 — 0 (EW—%— ) -0 (s¥+‘7).

So, we obtain (2.25).
If N >7,thent = %, and

(2—20)(N—4) (2-0)(N—4)

STOND) <k < s N-O0W—2) (2.26)
But
2\ MR- N+1-4p
N+2 ) SN=2 s N-=2
(ke) 2 T = (T s
and
1
N2\ 3F0 52 2
(s2°)" " = o
Thus, we see that (2.25) is equivalent to
s 220 < Cp32-(N=2)0 (2.27)

Using (2.26), we find (2.27) holds.

For N =3,k = % Thus,

(ke)> 728 = (562)3 728 < C(se2)27.

So, we obtain (2.25).
Now, we estimate the second term of (2.22).
Using Lemma B.2 again, we find for y € Q,

1 1 1

N-2-8 N—2-8

<
_ wv.\N—2-B —
A+l =xD" 2 7 gy —x )" T Ay —x;) 2

C 1 1
= N2 5 N2 Nz v, T N2, N2
Xj—x| 7 PN NA+ly—x )T TVRT (L4 |y —x;]) 7 TRt
C 1

N2 N=2 N-2,6 N=2_"°
xj —xi| 2 PINRT (L |y —xi]) T R

(2.28)
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Suppose that N > 5. Then NT_Z - B — % +§r > 1 since T < 1. Then (2.28) gives
fory e

21
i :
S A+ ly—x V2P

<C (ke) T DB ! (229)

N+2
A4y —xi|) 2 t°

R
= SE .
A+]y—x/hTte

If N = 3,4, then (2.28) gives

2%—1
i :
S+ [y —x V2P

_ 2% —1
<C (ke"THFEF) S (2.30)
(I+1y —xi) T+

N2 N2 ¢ _pyg 1

=CkN—2g 2 — .
A+]y—x/h2 T

If N =4, then
(NS MRt DB _ 3352 -DB 0 1= =DB _ cpito

Hence for N = 4,

N-=2

k 1 2%—1 k Ce 7 to
(Z(l-Hy—XjDZ) ;

j=2 I+1y—x) 2 nad

For N = 3, we have

KOed—T—(@ DB _ 2T 42025 —1)B 5-21-22"~ B

But
1+20
1.1 S
3\2t0 —
(S82)2 = -
k2te
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5 * 1.1 . .
So, kOe27 T2 =DB < C(5¢2)21 is equivalent to

_ 8—4t—4o—42*-1B)
k < Cs™ #4120 H42"=1)p) (2.31)

Since k < Cs_%, we see that (2.31) is valid if

8 —4r1 2t
> .
1+47 1 -2t

Thus, if T € (0, 11) (2.31) holds. Hence for N = 3, we also have

(X": 1 )2*1 X": C(se¥)%+<’
(L4 1y —x;]? =

=2 (+Jy —x:) e

Note that for y € 1,

C
Ty —xipN2mrA

rA(y)

We claim that

N+2 1 20 N —2 )>N+2+ (2.32)
_— === —2—-1 T, .
N-2 2 N-=-2 -
if N > 3.
In fact, (2.32) is equivalent to
4(N —2)
3N +2°
which is true, since T = % ifN>41< % if N =3.
Thus, we obtain
Ni2_1_ 20 26 N-2 C

N+2 °
(+ly—x;) 21"

Finally,

i: [hle =f: [ile
Jﬂu+w—&wu+w XjDV=AF = (Ut |y — X DV P

k 1

< C|x|e? 5
SA+ly—-x;h 2t
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and
1 — 1
Z 48N—2 < C8N—2—NTG—I Z
= A+ 1y =x;D) =t (L ly =x;p72
N+2 k 1 N42 k 1
=Ce 2 Ty <Cke) > "y

N2 N+2
j= 1(1+|y—Xj|)2+T Sty —x;p 2t

SC(SSN; 2t Z !

j=1 +|y_xj|) 2+r

Combining all the above estimates, we obtain the result. O
Now, we are ready to prove Proposition 2.4.

Proof of Proposition 2.4. Let us recall that

2
§N-=2
£ = k2 .
Let
En=1du:uecC) lluls <57, ZZIJM—OJ—IZ

Qe i=
Then, (2.19) is equivalent to

¢ = A(p) =: L(N($)) + L)

Now we prove that A is a contraction map from Ey to Ex. Using Lemma 2.5, we
have

[AGllx < CIN @)l + Clllkcllas < C||¢||mi“<2*—1’2> + C g ||
< C(Vse 7M@) 4 O, (233)
< C(W5e T 4+ Cllli e

Thus, by Lemma 2.6, we find that A maps Ey to Ey.
Next, we show that A is a contraction map.

IA(p1) — A@) N« = IL(N($1)) — LIN (@) s < CIIN(p1) — N(2) ] s

Using .
Cle|* 2, N = 6;

N'@®)| < ~ 5
' ()'—{C(W%|¢|+|¢|2—2), N =345,
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we can prove that
IA(@1) — A(@2) ]I« < CIN (1) — N($2)]l4
= C (g 172D 4 g2 =2) gy — ]

1
< Ellfﬁl — ¢2l«.

Thus, A is a contraction map.
It follows from the contraction mapping theorem that there is a unique ¢ € Ey,
such that

¢ = A(9).
Moreover, it follows from (2.33) that

N-2
¢l < C(Wse )7 + Clllk .

So, the estimate for ||¢ ||« follows from Lemma 2.6. O]

3. Proof of the main results

Let
F(r,A)=1(Wa+9),

where ¢ is the function obtained in Proposition 2.4, and let

1 1 *
I(w) =5 Qg(lDMIQ —relu?) — > /Qs(u —s®e)3 .
Using the symmetry, we can check that if (r, A) is a critical point of F(A), then
W A + ¢ is a solution of (1.3).

Proposition 3.1. We have

N-2
Aro(r)se 2
F(r. A) :k(Ao+ W(L

A2

ASkaZSNfZ
FN=-2AN-2

+0Qw%%”“+mmw4mﬂﬁ),N=&¢

and

Are® | Apg(r)se T AgkN 26N
F(r,A)=k| Ao — A2 + AN=2/2 ~ N-2pAN-2

_ 140
40 <|k|82+0 + <SSNTZ) + (ks)(N_2>(1+"))) . N>5.

where the constant A; > 0,i = 0, 1,2 are positive constants, which are given in
Proposition A.3.
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Proof. Thereis ¢ € (0, 1), such that

F, 8 = IV + (1 (W) 9]+ 3 D (Wen +19) 6, )
=1<Wr,A>—/ lk¢+/ (1DgP+ g~ @"= 1) Wy — 5 +19) > ?)
=I(Wy.0) = 2" = 1) f Wn =P +16)7 7 = (Wea =50 %) ¢?

+ / N (@)
Qe

=I(Wr,A) - (2* - I)L ((WF,A - Sq)s + t¢)i_*_2 - (Wr,A — SCI)E){‘—2> ¢2

+ 0 (/ IN(¢)II¢|> :
Q

But

3.1

/Q IN ()]l
k 1 k | (3.2)

<CIN@) [l ]ls / _ —
QT A+ly—x;D T TS A+ly—xD T 1T

Using Lemma B.2, we find

B 1 a 1 1
Z(l+|y—x |)N+2r +Z

= S a +|y—x,|> AT Ay - T
> e > > !
< +C
N+2 3
Ay =X DM gy X DV S x - x [T
k 1
<C

S+ ly —xghN T

Thus, we obtain

240 N2y IHo
[ 15 @ligl = CKIN@algl = ClgIE = Ch (111 + (s2°5) 7).

Qe
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Now i
(Wr,A — 5@, + t¢)2 I (Wr,A sP )2 -

0 (1pP2). Nz6:
- O(Wr”A2|¢|+|¢| ) N =3,4,5.

Thus, we have

/ ((Wen = sc +16)" %) = (Wen = 506)* %) 62
< clol | ( - ) ,
2 ;(lJrly—le)sz“

if N> 6.If N =3,4,5,noting that N — 2 > Y22 4 ¢, we obtain

/Q (W =5 +19)" %) = (Wrn = sd>s)2*‘2) ¢’

o-N * k 1 a4
SC/ W,,”A‘2|¢|3+C/Q ek s||¢||3/ (Z ) :

+|y_xj|) 2 T

Let n > 0 be small. Using Lemma B.2, if y € 21, then

1

N2
+ly—x;)z **

1 1
2 (I + [y —xiD)* R T4y —x;D) T R
1 1 _ 1
<C T < Ce" T
A+ly—x) 7 2 M= Xy = x|t A+]y—x|)z 27

As a result,

k r
1 247 1
E = <Ces -, Yy € Q.
(I+1y

%1
SA+ly—x;h T —x YN0

k | 2
/ <Z N2 > = Cke™2,
2 \j=i A+]y—x;) 2 *F

Thus
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So, we have proved

-/Qg ((Wr,A —sd, + t(P)z*_z) _ ((Wr,A _ sd)s)z*_2> ¢2

) ‘ } Voo . min(3,2%)
<Cke™2'|| | MinG2) < Cfe=2" (ms”“ n (ssT_)z > (3.3)
o\ 1+
<Ck (|A|82+U + (seNTz> 0)
Combining (3.1), (3.2) and (3.3), we find
2 N—2\ l+o
F(r, A) = [(Wy.0) + kO (lkle +o (ssT) ) . (3.4)

O

Proof of Theorems 1.4, 1.5 and 1.6. We just need to prove that F(r, A) has a criti-
cal point.
Firstly, we consider the cases N # 6. It follows from (3.4) and Proposition A.3

that
N-=2
Ar@(r)se 2 AzkN—2gN-2
F(r,A) =k (AO + AN=-2)/2 B FN-2AN-2
+0 ((ke)(Nz)(H”) + (ss’H)HU)) :
Let
Ar(r) As

F(r,A) = (r, A) € [r1,r] x [8,871].

AWN=-2)/2  N-2pAN-2’

Then, F(r, A) has a maximum point at (rg, Ag), where

2

2A3 N-2

Mo=\—F2-) -
AZro @(ro)

and ro is a maximum point of 7" T-@(r) = r T @i (r,0). So, if § > 0 is small,
(ro, Ao) is an interior point of [rq, r2] x [6, 8711. Thus, if k > 0 is large, F(r, A)
attains its maximum in the interior of [ry, r2] x [8, 8~!]. As aresult, F(r, A) has a
critical point in [rq, 2] X [4, s~

If N = 6, then

—AA1€2 4+ Arg(r)se?  Ask*e?
A2 Y

F(r,A) = k(AO +

+ 0 ((k8)4(1+0') + (s82)1+()'> )
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Let

—2A1sT 4+ A (r) Az
A2 B FANS?

F(r,A) = (r, A) € [r1, 2] x [8,87 1.

It is easy to see that there is an 59 > 0, such that if s > |X|sg, then
~ N-2 -1 -
o(r) =:r2 (—)»Als + A2¢(7)>, r € [ry, r]
has a maximum point rg € (r1.r2) and ¢(rg) > 0. Then, F(r, A) has a maximum

point at (rg, Ag), where
1
2A 2
A0=< =3 > .
ro@(ro)

So, we can prove that F(r, A) has a critical point in [r, 7] x [4, § -1 L]

A. Appendix

In this section, we will expand I (W, »). We always assume that d(X;, 9Q2) > ¢o >
0, where X; = ¢x;. Denote

@(r) = ¢1(r, 0).

First, let us recall that W ¢ is the solution of

- o 2 _pr2*—1 .
AW — Xe W_UA,s in Qg (A.1)
W=0 on 082.
Let
Yae=Ure — Wae.
Then,
—AYng —re* Yy =—Ae?Upe in Q, (A2)
Yae =Uag, on 9.

To calculate 1 (W, 5), we need to estimate /4 ¢.
Decompose /5 ¢ as follows

Yae =Ygl +Yag2,

where ¥ ¢ 1 is the solution of

—AlﬁA,g’l — Aszl//A’g,l = —)\82UA’5 in g, (A3)
Yae =0, on 02, )
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and V4 ¢ 7 is the solution of

{ —AYper — MleﬁA,g,z =0, in £,

Yae =Upg, on 9.

Since
Upre < CsN_z, on 082,

it is easy to see that
-2
YAl < CeV 2

Let ¥4 £ be the solution of

—AY =22y =Upe in Qg
v =0, on J%Q,,
Then, we can check that

Cln"2+|y—§D
(I+ ]y =PV~

Vg <

where m = 1 if N = 4, otherwise, m = 0. Thus, we have
Lemma A.1. We have
Yag =2 Vnge + O(EN ).

where W, ¢ ¢ is the solution of (A.6). Moreover,

[Wael < Cllng|"Un,
where m = 1 if N = 4, otherwise, m = 0.
Proof. We only need to show

[Wael < Cllne["Up g,
which follows from (A.7) and ¢ < m
Proposition A.2. We have

N=-2
2

Arp(r)se N=2
I (Wax;) = Ao+ % +0 ((ssT)1+"> , N
AT
and
Apre?  Arg(r)se T e [ N2
I(Wax;)=A0— 2T ——+O0 [ [AleT7 + (ss 2
AT

3’ 47

449

(A.4)

(AS)

(A.6)

(A7)

1+o
) ) N=>35;
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where

and o is some positive constant.

Proof. Write

~ 1 * *
) = I(u) - 2—/9 (=500 — ),

- 1 1 1 )
[(u) = —/ |Dul> — —/\82/ w?—— | u*.
2 Qe 2 2% Qe

By Lemma A.1, we have
T(Wan) = [ 03w L[ owe
( A,Xj) ) o MK AXj ™ 5y o X
1 . *
= Ao+ 5/ Uiy ¥ax, +0 (/ Uix,~ “w‘*") (A.8)
Q, Q.

1 %
— A() + 5/ U12\,;jIWA,Xj +0 <|)»|82(1+U) + 8(N—2)(1+g)) )
Q2

where

On the other hand,

/ (Wan, —59:)> = | (Wax)¥
e 2 (A.9)

* _N=2 _
:—2*/ UF e AT 2 @(r)+0((sg¥)l+“).
RN /
For N = 3,4, by Lemma A.1 and (A.7),

f Up i Wax; = 06V 2 467 = ((ss¥)1+f’). (A.10)
Qe

Here we have used ¢ = % = sf = (s4/&)'T7 if N = 3. So, the result for
= 3, 4 follows from (A ]é) (A. 1 0).
Suppose that N > 5. Let wA,g be the solution of

(A.11)

—AYy =Ups in RV,
v(y) — 0,  as|y| > +oo.
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Then,
C

T (A4 ly—EpNY

[Wael <

and s

o Ce2 ™2+ |y — £)

Yae — Vagel < ,
PR Ay — gV

where m = 1 if N = 6, otherwise, m = 0. Thus,

fQ Uiy ¥ax, = —re /RN Uxy ¥ax; + 0 (sN*Z + |ale?] ln£|)

— _,\82/ U+ 0 (sN—Z + e lnsl) .
RN

So we obtain the result for N > 5. O

(A.12)

Proposition A.3. We have

N-=2
Arp(r)se 2z AzkN—2eN-2
I(Wr,A)=k<Ao+ ANsz — AN—2

((ke)(N 2040 4 (567 )‘“’)), N =34

and

Aire® | Axp(r)se’T | AgkN2eN2
T(Wer) = k(Ao = =5+ = 2 ~ N aAN 2

_o\ 1+
+0 <(k8)(N—2)(1+0) + |)»|82+0 + (sSNTz> 0) >, N > 5.

Proof. By using the symmetry, we have

k
| pweal —ae [ wi =303 [ UE W,

j=1i=1"%%

—k (/Q U3y, +/ Ux Mam + Z/Q Ux 'Unx

i=2

k
1
+0 (Z Fa—— _X1|N_2+U)> (A.13)
— 2% 2 -1
_k</RNU / A 1“’“+ZAN 21 _X1|N ?

k
1
i=2 '
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where By > 0 is a constant.

Let
Q;j —{y—(y ') € Q <y_ i>zcosz}.
I 1 k
Then,
ly —xi| > [y — xj1, Vy € Q;.
We have

1 >k 2%
> ) (Wra —s5®e), = ?/gl (Wra —s®e)’

£

k a 2%
:?(/ (Wamy —s®:)> +2% [ 3" (Wan, —5®e). ' Wax,
Q2 =2

k 2
o[ i (S
£ i=2
_ N2
— k UZ* 2* 2* 1 2*A2(P(r)38 2
= ? N - a A X] WA X; A(N—Z)/Z

k
/ Z Ux 'Unx;, + 0O (/ Up 3250 Y Unx, (A.14)
Q Q)

1 j= i=2

2
k
* N-2
+/ U,{,;f(§ UA,XI.> + (58 7)) 4 2>
2

i=2

N2
([ o7 -2 [ uRtvan - FRIE
24\ Jrw g Mmoo AT

k
2*By
+
; ANZ2|x; —x [N =2

+0<(k8)(N_2)(1+0)+(S€NTZ)1+U+|)\.|82+0>>.

Since 21
X; — x| :2|x1|sin]T)n, Jj=2,...,k,
we can prove
k 1
Y = Bae)" 2+ O ((ke) TN D) (A.15)
j=2 |X/ - X1|N_2

Thus, the result follows from (A.13), (A.14) and (A.15). ]
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B. Appendix
Firstly, we gives a few lemmas, whose proof can be found in [35,37].
Lemma B.1. Forany a > 0,
= 1 + )
; (1+|y—x i ( Z X1 —x,|a)
where C > 0 is a constant, independent of k.

For each fixed i and j, i # j, consider the following function

1 1
A+1y—=x;D¥ A+ ly —xi)?’

gij(y) = (B.1)

where @ > 1 and 8 > 1 are two constants. Then, we have

Lemma B.2. For any constant 0 < o < min(«, B), there is a constant C > 0, such
that

1 1
j— + :
s =1 ((1 +ly—xDee |y—xJ-|)°f+ﬁJ>

Lemma B.3. For any constant 0 < o < N — 2, there is a constant C > 0, such
that

1 1
/ dz<———.
av Iy — a2 41> T A e

Let us recall that
2
N7

=)

[

and for any 6 > 0,
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Lemma B.4. Suppose that N > 4. There is a small 8 > 0, such that

1
/RN Iy—ZIN W (Z)Z ;&

i= 1(1+|z—x|)
i 1

+|y—x |) 2 247460

where W, A is defined in (1.7).

Proof. Recall that

2= r=0n e (T ) 2ot
. y—yy COS —
! e 1 Ix;l k

For z € 1, we have |z — X;| > |z — x;|. Using Lemma B.2, we obtain

1 k 1

-

<1+|Z—X YR <1+|z—xl|>i<NZf‘);(lﬂz—xmiw“’)

T+l —x DV S -l

C
S 9
(L + 1z —x DN2F

Thus,
C

4
N=2
Woa (@) = g

(1+1z —xiD*”
As aresult, for z € @1, using Lemma B.2 again, we find that for 6 > 0 small,
A 1 C

N
“(2) —— =< —-
; A+1z—xD"TH 7 (1 4|z — x> +er2-r= 5

Since § =: 2 — 7 — 20 = 0if N > 4and g > 0 is small, we obtain

1
/Ql |y—z|N2 ()Z s

= 1(1+|z—XI)

1 C C
= N-2 N-2 dz < N-2 >
ST e T R A+ ]y—xil) z T+
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which gives

1 1
fsz ly —zIN= W (Z)Z ;&

j= 1(1+|Z_Xj|)

1
/|y a2 ()Z &

j= 1(1+|Z_X]|)
Zk: c

+|y—X|) 2 2440

The above proof does not work for N = 3 because

4T
N-2

2—1— <0

if N=3andt = % The choice of T € (0, 1) should ensure

£ 1
T
Yy ———— <Cek<C.
o XXl
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(B.2)

The above relation shows that T can be chosen smaller 1f & becomes smaller, which

4t

in turn will make 2 — 7 — =

then ¢ = 0( 5). We have

> (. Noting that ¢ = k2’

we find that if s — 0+,

Lemma B.5. Suppose that N = 3, the parameter s > 0 and the integer k satisfy

s < Ck_%H,
or some T € (0, 2). Then, there is a small 0 > 0, such that
[ 5

1 k 1
/ Win@)) —dz
R =1 (

3|y —z| 1+|Z—Xj|)7+t

Xi: 1

1+ |y —X; |)2+r+€

Proof. The proof of this lemma is similar to that of Lemma B.4. We only need to

use that for T < %
2—57t >0,

and
&'k = S2rk1—2r <C.

Thus, we omit the details.
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