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Forward, backward and elliptic Harnack inequalities
for non-negative solutions

to certain singular parabolic partial differential equations

EMMANUELE DIBENEDETTO, UGO GIANAZZA AND VINCENZO VESPRI

Abstract. Forward, backward and elliptic Harnack inequalities for non-negative
solutions of a class of singular, quasi-linear, parabolic equations, are established.
These classes of singular equations include the p-Laplacean equation and equa-
tions of the porous medium type. Key novel points include form of a Harnack
estimate backward in time, that has never been observed before, and measure the-
oretical proofs, as opposed to comparison principles. These Harnack estimates
are established in the super-critical range (1.5) below. Such a range is optimal for
a Harnack estimate to hold.

Mathematics Subject Classification (2010): 35K65 (primary); 35B65, 35B45
(secondary).

1. Main results

Let E be an open set in RN and for T > 0 let ET = E × (0, T ]. Let u be a weak
solution

u ∈ Cloc
(
0, T ; L2

loc(E)
) ∩ L p

loc

(
0, T ; W 1,p

loc (E)
)

1 < p < 2 (1.1)

of a quasi-linear, singular parabolic equation of the type

ut − div A(x, t, u, Du) = B(x, t, u, Du) weakly in ET (1.2)

where the functions A : ET × RN+1 → RN and B : ET × RN+1 → R are only
assumed to be measurable and subject to the structure conditions


A(x, t, u, Du) · Du ≥ Co|Du|p − C p

|A(x, t, u, Du)| ≤ C1|Du|p−1 + C p−1

|B(x, t, u, Du)| ≤ C |Du|p−1 + C p
a.e. in ET (1.3)
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where p ∈ (1, 2) and Co and C1 are given positive constants, and C is a given non-
negative constant. If u is a weak solution of (1.1)-(1.2), the quasi-linear structure
conditions (1.3) are in addition required to preserve the property of sub(super)-
solutions of the truncations ±(u − k)±, for all k ∈ R, where

(u − k)+ ≡ max{(u − k), 0}, (u − k)− ≡ max{−(u − k), 0}.
Namely

∂

∂t
(u−k)±−div A(x, t, (u−k)±,D(u−k)±)≤ B(x, t,(u−k)±,D(u−k)±) (1.2)±

weakly in ET against admissible non-negative test functions. The prototype exam-
ple is

ut − div |Du|p−2 Du = 0, 1 < p < 2, weakly in ET . (1.4)

This p.d.e. is singular since the modulus of ellipticity |Du|p−2 goes to ∞ as
|Du| → 0. We will establish that non-negative weak solutions of (1.1)-(1.2) satisfy
an intrinsic form of the Harnack inequality provided p is in the super critical range

p∗ = 2N

N + 1
< p < 2. (1.5)

The parameters {N , p, Co, C1, C} are the data, and we say that a generic constant
γ = γ (N , p, Co, C1, C) depends upon the data, if it can be quantitatively deter-
mined a priori only in terms of the indicated parameters. For ρ > 0 let Kρ be the
cube of center the origin on RN and edge 2ρ and for y ∈ RN let Kρ(y) denote the
homothetic cube centered at y. Fix Po = (xo, to) ∈ ET , such that u(xo, to) > 0,
and consider cylinders of the type

Qρ(Po)= Kρ(xo)×
{

to −
(

u(Po)

c4

)2−p

ρ p < t ≤ to +
(

u(Po)

c4

)2−p

ρ p

}
, (1.6)

where c is the constant of Theorem 1.1. These cylinders are “intrinsic” to the solu-
tion since their time length is determined by the value of u at (xo, to). Cylindrical
domains of the form Kρ ×(0, ρ p], reflect the natural, parabolic space-time dilations
that leave (1.4) invariant. The latter however is not homogeneous with respect to
the solution u. The time dilation by a factor [u(Po)]2−p is intended to restore the
homogeneity. Then the Harnack inequality holds in such an intrinsic geometry.

Theorem 1.1. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exist positive constants δ∗ and c, depending only
upon the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂
ET , either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, t) (1.7)
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for all times

to − δ∗[u(Po)]2−pρ p ≤ t ≤ to + δ∗[u(Po)]2−pρ p. (1.8)

The constants c and δ∗ tend to zero as either p → 2 or as p → p∗.

This inequality is simultaneously a “forward and backward in time” Harnack
estimate as well as a Harnack estimate of elliptic type. Inequalities of this type
would be false for non-negative solutions of the heat equation. This is reflected
in (1.7)-(1.8), as the constants c and δ∗ tend to zero as p → 2. It turns out that
these inequalities lose meaning also as p tends to the critical value p∗ in (1.5). We
comment on each these aspects separately.

1.1. The forward in time Harnack inequality

A forward Harnack estimate can be established independently of Theorem 1.1 and
it takes the following form.

Theorem 1.2. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exist positive constants c+, δ+ such that for all
cylinders

K8ρ(xo) ×

to −

(
u(Po)

c4+

)2−p

(8ρ)p < t ≤ to +
(

u(Po)

c4+

)2−p

(8ρ)p




contained in ET , either u(Po) < Cρ, or

c+u(xo, to) ≤ inf
Kρ(xo)

u(x, to + δ+[u(Po)]2−pρ p). (1.9)

The constants c+ and δ+ tend to zero as p → p∗ but they are “stable” as p → 2, in
the sense that there exist positive constants c+(2) and δ+(2), that can be determined
a priori only in terms of the data, such that c+(p), δ+(p) → c+(2), δ+(2) as p → 2.
Thus by formally letting p → 2 in (1.9) one recovers the classical Moser’s Harnack
inequality of [11].

A positive waiting time is needed, for a Harnack estimate to hold even for
non-negative solutions of the heat equation, as pointed out by a counterexample of
Moser ( [11]). The novelty of (1.9) is in that such a waiting time is intrinsic to the
solution itself. No forward in time Harnack estimate would be possible for non-
negative solutions of (1.1)-(1.3) unless the waiting time is driven by the solution
itself. Indeed, weak non-negative solutions of (1.4) in bounded domains, with ho-
mogeneous Dirichlet data on ∂ E and non-negative initial data uo, become extinct,
abruptly, in finite time. That is, there exists a time T that can be determined a priori
in terms of the data and uo, such that for all x ∈ E ([6, Chapter VII, Section 2])

u(x, t) > 0 for t < T and u(x, t) = 0 for t > T . (1.10)

For such a solution, a Harnack estimate with waiting time independent of u would
not hold.
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1.2. The elliptic Harnack inequality

A consequence of (1.7)-(1.8) is the following elliptic form of the Harnack inequal-
ity.

Corollary 1.3. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exists a positive constant c, depending only upon
the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂ ET ,
either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, to). (1.11)

The constant c tends to zero as either p → 2 or as p → p∗.

While unusual, such inequality can be understood by examining the nature of
(1.4). As |Du| ≈ 0, the modulus of ellipticity becomes large and the p.d.e. tends to
favour its elliptic component. The inequality (1.11) makes this heuristic argument
quantitatively precise. The parabolic component enters in that u is required to exist
for a sufficiently large time interval about to.

The inequality is false for non-negative solutions of the heat equations (p = 2)
and is also false for 1 < p ≤ p∗, as remarked below.

1.3. The backward in time Harnack inequality

Another consequence of (1.7)-(1.8) is a backward Harnack estimate in the following
form.

Corollary 1.4. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exist positive constants δ∗ and c, depending only
upon the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂
ET , either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, to − δ∗[u(Po)]2−pρ p). (1.12)

The constants c and δ∗ tend to zero as either p → 2 or as p → p∗.

While unexpected, this occurrence reflects the tendency of the solution to be-
come extinct in finite time, as indicated in (1.10). Despite the form of the inequality,
the time is not reversed. Indeed for (1.12) to hold, the solution u is required to exist
in a large time-interval about to. Neverthless this remains the most intriguing aspect
of these inequalities and we will comment further on it.

1.4. On the range (1.5) of p

The range of p in (1.5), is optimal for an intrinsic forward in time Harnack estimate
(1.9) to hold. For 1 < p < p∗ solutions of the Cauchy problem for (1.4) for non-
negative initial data uo ∈ L1(RN ) become extinct, abruptly, after a finite time T ,
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and the solutions exhibit a behavior similar to (1.10) ([6, Chapter VII, Section 3]).
Pick (xo, to) ∈ RN × (0, T ) where to is so close to T to satisfy

T − to <
δ+c4(2−p)

+
8p

to,

and δ+ and c+ are the constants appearing in (1.9). Now choose ρ > 0 so large that

δ+[u(xo, to)]2−pρ p = T − to.

For such a choice

K8ρ(xo) ×

to −

(
u(Po)

c4+

)2−p

8pρ p, to +
(

u(Po)

c4+

)2−p

8pρ p


 ⊂ R

N × (0, ∞)

however the intrinsic Harnack estimate (1.9) fails. For these solutions, also the
elliptic version (1.11) fails, as evidenced by the following explicit weak solution
of (1.4)

u(x, t)=
(

|λ|
(

p

2− p

)p−1
) 1

2−p
(T − t)

1
2−p
+

|x | p
2−p

, 1< p<
2N

N + 2
, λ= N (p−2)+ p

Such a u is non-negative, unbounded near x = 0 for all t < T and finite otherwise.
Thus (1.11) fails to hold. For 1 < p ≤ p∗ the mere notion of weak solution is
not sufficient to ensure its local boundedness ( [6, Chapter V, Section 5]). The
previous solution of (1.4) is indeed unbounded near x = 0. However the lack
of a Harnack estimate is not due to the possible unboundedness of the solutions.
The following example can be constructed relying on similar results for the porous
medium equation (see [13]), for p = 2N

N+2 < p∗

u(x, t) = (T − t)
N+2

4+
[
a + b|x | 2N

N−2

]− N
2
, N > 2,

where a > 0 and T are arbitrary, and

b = b(N , a) = N − 2

N 2

(
N + 2

4Na

) N+2
N−2

.

Such a function is non-negative, locally bounded, solves (1.4) weakly in RN × R,
and it does not satisfy the Harnack estimate, in any of the forward, backward or
elliptic forms.

The same occurs for the critical value p = p∗. Indeed the following explicit
solution of (1.4), for p = p∗

u(x, t) =
[
|x | 2N

N−1 + ebt
]− N−1

2
, b = 2N

2N
N+1

N − 1
, N ≥ 2
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constructed by adapting a result of [9], is positive, locally bounded in the whole
RN × R, and it fails to satisfy the Harnack estimate in any one of the forward,
backward, or elliptic form. These remarks raise the question of what form, if any,
the Harnack estimate might take for p in the sub-critical range 1 < p ≤ p∗.

1.5. Novelty and significance

For non-negative solutions of the prototype, homogeneous equation (1.4), intrinsic
Harnack inequalities in the forward form (1.9) and the elliptic form (1.11), were
established in a series of contributions ( [3–5]), collected and re-organized in [6].
These proofs, one way or another had at their root the application of the maxi-
mum principle by comparing, locally, the solutions of (1.4) with either the explicit
Barenblatt solution ([6]), or some suitably constructed sub-solution ([4]).

The original proofs of the parabolic Harnack inequality for non-negative solu-
tions of the heat equation, due independently to Hadamard [8] and Pini [14], were
based on local comparisons with caloric potentials. The leap forward achieved by
Moser ( [10–12]) consists in replacing comparison methods by measure-theoretical
arguments. This is precisely one of the key novel points of this contribution, that is,
the Harnack inequalities (1.7)-(1.9) are established by entirely measure-theoretical
arguments, thereby bypassing any form of comparison principle. These arguments
are rather different than the classical iteration techniques of De Giorgi [2] and
Moser [11]. For degenerate equations (1.1)-(1.3) a similar result has been recently
established in [7], to which we refer for further comments.

A second key novel point is the backward inequality in the form (1.12). The
latter has never been observed before, not even for the prototype equation (1.4)
and it opens intriguing issue on the local behavior of solutions of such singular
equations.

The approach is sufficiently general as to apply, by minor modifications, to
non-negative weak solutions of a class of singular parabolic equations, including
quasi-linear versions of the singular porous-medium equations. Some of these
classes and generalizations are indicated in Section 8

2. Main components in the proof of Theorem 1.1

2.1. L1
loc-L∞

loc Harnack-type estimates for λ > 0

Theorem 2.1. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exists a positive constant γ depending only upon
the data, such that for all cylinders

K2ρ(y) × [s − (t − s), s + (t − s)] ⊂ ET (2.1)

either

Cρ > min

{
1 ;

(
t − s

ρ p

) 1
2−p

}
(2.2)
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or

sup
Kρ(y)×[s,t]

u ≤ γ

(t − s)
N
λ

(
inf

2s−t<τ<t

∫
K2ρ(y)

u(x, τ )dx

) p
λ

+ γ

(
t − s

ρ p

) 1
2−p

(2.3)

where

λ
def= N (p − 2) + p. (2.4)

Remark 2.2. The range (1.5) corresponds to λ > 0. Starting from Kρ , the solution
u is required to exist in a larger neighborhood K2ρ(y) and for times comparably
larger and smaller than s.

2.2. Expansion of positivity

Theorem 2.3. Let u be a non-negative, local, weak solution of (1.1)-(1.3) satisfy-
ing ∣∣[u(·, t) > M] ∩ Kρ(y)

∣∣ > α|Kρ | (2.5)

for all times
s − (θδρ)p ≤ t ≤ s where θ p = M2−p (2.6)

for some M > 0, and some α and δ in (0, 1) and assume that K16ρ(y) × [s −
(θδρ)p, s] is contained in ET . Then, there exists η ∈ (0, 1) that can be determined
a priori, quantitatively only in terms of the data, and the numbers α and δ, and is
independent of M, such that either Cρ > min{1; M} or

u(x, t) ≥ ηM for all x ∈ K2ρ(y) (2.7)

for all times
s − (θδ 1

2ρ)p < t ≤ s. (2.8)

Thus measure theoretical information on the measure of the “positivity set” in
Kρ(y) for all times in (2.6) implies that such a positivity set actually expands to
K2ρ(y) for comparable times.

Assuming these theorems for the moment, we proceed to establish the Harnack
estimates of Theorem 1.1.

3. An auxiliary proposition

Weak solutions of (1.1)-(1.3), for p in the range (1.5), are locally bounded and
locally Hölder continuous within their domain of definition. Having fixed (xo, to) ∈
ET , let R be the largest positive number satisfying

sup
K R(xo)

u(x, to) = M (3.1)
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and

QM(Po) = K8R(xo) × (to − M2−p(8R)p, to + M2−p(8R)p] ⊂ ET . (3.2)

The upper bound M and the number R are only known qualitatively. Assume in
addition that

CR ≤ min{1; u(xo, to)} (3.3)

where C is the constant in the structure conditions (1.3).

Proposition 3.1. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). There exist positive constants δ∗ and c, depending only
upon the data, such that

c u(xo, to) ≤ inf
K R(xo)

u(·, t) (3.4)

for all times

to − δ∗[u(Po)]2−p R p ≤ t ≤ to + δ∗[u(Po)]2−p R p. (3.5)

The constants c and δ∗ tend to zero as either p → 2 or as p → p∗.

The difference between this inequality and that in Theorem 1.1 is that (3.4)-
(3.5) is established for the specific radius R for which (3.1)-(3.3) hold. As indicated
before the value of R is only qualitatively known. Part of the proof of Theorem 1.1,
will be to turn these qualitative information into quantitative ones. Assuming them
for the moment, introduce the change of variables and unknown function

x → x − xo

R
, t → t − to

[u(Po)]2−p R p
, v = u

u(Po)
.

This maps QM(Po) into

QM = K8 ×
(

−
( M

u(Po)

)2−p

8p,

( M
u(Po)

)2−p

8p

]
. (3.6)

Relabeling by x, t the new coordinates, v is a weak solution of

vt − div Ā(x, t, v, Dv) = B̄(x, t, v, Dv) (3.7)

in QM. Taking into account (3.3), the functions Ā and B̄ satisfy the structure
conditions 


Ā(x, t, v, Dv) · Dv ≥ Co|Dv|p − 1
|Ā(x, t, v, Dv)| ≤ C1|Dv|p−1 + 1
|B̄(x, t, v, Dv)| ≤ |Dv|p−1 + 1

(3.8)

where Co and C1 are the constants appearing in (1.3). Establishing Proposition 3.1,
consists in finding positive constants δ∗ and c, depending only upon the data, such
that

v(x, t) ≥ c for all x ∈ K1, for all t ∈ [−δ∗, δ∗]. (3.9)

In the following we assume v continuous, only in order to give unambiguous mean-
ing to sup v, but in no way the modulus of continuity of v is used in the proof.
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4. Locating the supremum of v in K1

For τ ∈ (0, 1) introduce the family of nested expanding cubes {Kτ } centered at the
origin, and the increasing families of positive numbers

Mτ = sup
Kτ

v, Nτ = (1 − τ)−β

where β is a positive parameter to be fixed later. As τ → 1, Nτ → ∞, whereas
Mτ remains finite. Therefore the equation Mτ = Nτ has roots. Denoting by τo the
largest root

Mτo = (1 − τo)
−β and Mτ ≤ Nτ for all τ ≥ τo.

Since v is continuous, the supremum Mτo is achieved at some x̄ ∈ Kτo . Choose
τ1 ∈ (0, 1) from

(1 − τ1)
−β = 4(1 − τo)

−β i.e., τ1 = 1 − 4− 1
β (1 − τo).

Set also

2r
def= τ1 − τo = (1 − 4− 1

β )(1 − τo). (4.1)

For these choices, K2r (x̄) ⊂ Kτ1 , Mτ1 ≤ Nτ1 , and

sup
Kτo

v(·, 0) = (1 − τo)
−β = v(x̄, 0) ≤ sup

K2r (x̄)

v(·, 0)

≤ sup
Kτ1

v(·, 0) ≤ 4 (1 − τo)
−β .

The information on τo is only qualitative. By using the parameter β we will elimi-
nate such a qualitative dependence from our arguments. The qualitative information
on M still remains and it will be removed as a final step. Because of this interplay
between qualitative and quantitative information, our quantitative arguments below
are deviced not to depend upon β, M and R.

5. Estimating the sup of v in some intrinsic neighborhood about (x̄, 0)

Consider the cylinder centered at (x̄, 0)

Q2r = K2r (x̄) × (−(θo2r)p, (θo2r)p] where θ
p
o = (1 − τo)

−β(2−p).

Such a cylinder is included in the box QM introduced in (3.6) since

(θo2r)p = (1 − τo)
−β(2−p)(1 − 4− 1

β )p(1 − τo)
p

≤ (1 − τo)
−β(2−p) =

(
u(x̄, 0)

u(Po)

)2−p

≤
( M

u(Po)

)2−p

.
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Remark 5.1. For such an inclusion to hold the number M should not exceed the
supremum of the original u(·, to) at the fixed time level to. This justifies the choice
of M in (3.1). Such a M however, is still qualitatively determined.

Proposition 5.2. There exists a constant γ1 = γ1(data), independent of β, M and
R, such that

sup
Qr

v ≤ γ1(1 − τo)
−β.

The constant γ1 → ∞ as p → 2 and as p → p∗.

Proof. Apply (2.1) of Theorem 2.1 to the function v, solution of (3.7)-(3.8), over
the pair of cylinders Qr ⊂ Q2r two times, first for the choice s = 0, t = (θo2r)p,
and then for s = −(θor)p, t = 0. Taking into account the structure conditions
(3.8), and the definition of θo, the condition (2.2) is always violated. Therefore
Theorem 2.1 with these stipulations, gives

sup
Qr

v ≤ γ (1 − τo)
−β

N (p−2)
λ

(
1

|K2r |
∫

K2r (x̄)

v(x, 0)dx

) p
λ + γ 2

p
2−p θ

p
2−p

o

≤ γ
(

4
p
λ + 2

p
2−p

)
(1 − τo)

−β = γ1(1 − τo)
−β.

Introduce next the cylinder

Qr (δθo) = Kr (x̄) × (−(δθor)p, (δθor)p] ⊂ Q2r

where δ ∈ (0, 1) is to be chosen.

Proposition 5.3. There exist numbers δ, ε, and α in (0, 1), depending only upon
the data and independent of β, M and R, such that∣∣[v(·, t) ≥ ε(1 − τo)

−β ]∣∣ > α|Kr |
for all t ∈ [ − (δθor)p, (δθor)p]
where θ

p
o = (1 − τo)

−β(2−p).

(5.1)

The constants δ, ε and α tend to zero as either p → 2 or as λ → 0, i.e., as p tends
to the critical value p∗ in (1.5).

Proof. Apply (2.1) of Theorem 2.1 to the function v, solution of (3.7)-(3.8), over the
pair of cylinders Q 1

2 r (δθo) ⊂ Qr (δθo), for the choices s = 0, t = (δθor)p. Taking

into account the structure conditions (3.8), and the definition of θo, the condition
(2.2) is always violated. Therefore for all t ∈ [ − (δθor)p, (δθor)p

]
(1 − τo)

−β = v(x̄, 0) ≤ sup
K 1

2 r
(x̄)

v(·, 0)

≤ γ (1 − τo)
−β(1− p

λ
)

δ
N p
λ

(
1

|Kr |
∫

Kr

v(x, t)dx

) p
λ + γ (2δ)

p
2−p (1 − τ)−β.
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Choose δ from

γ (2δ)
p

2−p ≤ 1

2
and set γ2 = 2γ, γ3 = 2

N (2−p)
λ γ2

δ
N p
λ

.

For such choices, δ, γ2 and γ3 depend only upon the data and are independent of β.
Then for all t ∈ [ − (δθor)p, (δθor)p

]
1

γ2
(1 − τo)

−β ≤ (1 − τo)
−β

N (p−2)
λ

δ
N p
λ

(
1

|Kr |
∫

Kr

v(x, t)dx

) p
λ

.

From this for ε ∈ (0, 1)

1

γ3
(1 − τo)

−β ≤ (1 − τo)
−β

N (p−2)
λ

2
N (2−p)

λ

(
1

|Kr |
∫

Kr

v(x, t)dx

) p
λ

≤ (1 − τo)
−β

N (p−2)
λ

(
1

|Kr |
∫

Kr

v(x, t)χ[v(·,t)<ε(1−τo)−β ]dx

) p
λ

+ (1 − τo)
−β

N (p−2)
λ

(
1

|Kr |
∫

Kr

v(x, t)χ[v(·,t)≥ε(1−τo)−β ]dx

) p
λ

≤ ε
p
λ (1−τo)

−β +γ
p
λ

1 (1−τo)
−β

(
1

|Kr |
∫

Kr

χ[v(·,t)≥ε(1−τo)−β ]dx

) p
λ

.

To prove (5.1) choose

ε
p
λ = 1

2γ3
and set α = 1

γ1

(
1

2γ3

) λ
p

.

6. Expanding the positivity of v

Apply Theorem 2.3 to v with ρ = r , M = ε(1 − τo)
−β , with θ = θε given by

θ p
ε = [ε(1 − τo)

−β ]2−p = ε2−pθ
p
o

and with s ranging over

−(δθor)p + (δθεr)p < s < (δθor)p.

It gives
v(x, t) > ηε(1 − τo)

−β for all x ∈ K2r (x̄)

and for all times
−(δθor)p + (δθεr)p < t < (δθor)p.
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Apply again Theorem 2.3 with ρ = 2r , M = ηε(1 − τ)−β and θ = θεη given by

θ p
εη = [εη(1 − τo)

−β ]2−p = (εη)2−pθ
p
o

and for all s in the range

−(δθor)p + (δθεr)p + (δθεη2r)p < s < (δθor)p.

It gives
v(x, t) > η2ε(1 − τo)

−β for all x ∈ K4r

for all times

−(δθor)p + (δθεr)p + (δθεη2r)p < t < (δθor)p.

After n iterations

v(x, t) > ηnε(1 − τo)
−β for all x ∈ K2n+1r (6.1)

for all times

−(δθor)p +
n∑

j=0
(δθεη j 2 j r)p < t < (δθor)p.

Recall the definition (4.1) of r and choose n so large that

1 ≤ 2nr ≤ 2 which implies (1 − τo)
−1 > 2n−2(1 − 4− 1

β ).

Since τo is only known qualitatively also n is qualitative. We remove such a qualita-
tive dependence for a suitable choice of β as follow. Taking into account the lower
bound in (6.1) and the previous choice of n

ηnε(1 − τo)
−β > ε2−2β(1 − 4− 1

β )β(η2β)n.

Choose β so large that

η2β = 1 and set c = ε2−2β(1 − 4− 1
β )β .

Finally, by choosing ε even smaller if necessary we may insure that

∞∑
j=0

(δθεη j 2 j r)p ≤ 1

2
(δθor)p.

Thus
v(x, t) ≥ c for all x ∈ K1 (6.2)

for all times

−1

2
(δθor)p < t < (δθor)p. (6.3)
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As indicated earlier the information on τo is only qualitative and as such, the range
of times in (6.3) is qualitative. However from the definition (4.1) of r and (5.1) of θo

1

2
(δθor)p = δ p

2p+1
(1 − 4− 1

β )p(1 − τo)
−β(2−p)(1 − τo)

p

≥ δ p

2p+1
(1 − 4− 1

β )p = δ∗

provided β ≥ p/(2 − p), which we may assume by possibly taking η smaller if
necessary. Thus (6.2) holds for all times t ∈ (−δ∗, δ∗) and establishes (3.9).

7. Removing the qualitative information on M and R

The constants in (3.4)-(3.5), do not depend upon M nor R. These parameters are
qualitatively chosen to insure the inclusion (3.2) and play no further role otherwise.
However the inequality (3.4)-(3.5) of Proposition 3.1 holds in the qualitative ge-
ometry determined by R. We will remove such a qualitative dependence to infer
an entirely local and quantitative Harnack estimate as stated in Theorem 1.1. We
commence by recording two consequences of Proposition 3.1.

Corollary 7.1. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). Fix (xo, to) ∈ ET and let R be the largest positive
number such that, setting

Mn = sup
K2n R(xo)

u(·, to) (7.1)

there holds the inclusions K8(2n R)(xo) ⊂ E, and

(to − M2−p
n 8p(2n R)p, to + M2−p

n 8p(2n R)p] ⊂ (0, T ]. (7.2)

Then either C2n R > min{1; u(xo, to)}, or

c u(xo, to) ≤ inf
x∈K2n R(xo)

u(·, t) (7.3)

for all times

to − δ∗[u(xo, to)]2−p(2n R)p ≤ t ≤ to + δ∗[u(xo, to)]2−p(2n R)p. (7.4)

Corollary 7.2. Let u be a non-negative, weak solution to (1.1)-(1.3) for p in the
super-critical range (1.5). Fix Po = (xo, to) ∈ ET and let R be the largest positive
number such that K8(2n+1 R)(xo) ⊂ E, and

(to − M2−p
n+1 8p(2n R)p, to + M2−p

n+1 8p(2n R)p] ⊂ (0, T ].
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Then for all y ∈ K2n R(xo), either C2n R > min{1; u(y, to)}, or

c sup
K2n R(xo)

u(·, to) ≤ u(y, to) ≤ c−1 inf
x∈K2n R(xo)

u(·, t)

for the same constant c as in Proposition 3.1, and at the same time level to.

The constant c = c(data) being determined, one may assume that

u(xo, to) ≤ c4Mo. (7.5)

Indeed if not, any radius ρ > 0 for which(
to −

(
u(Po)

c4

)2−p

(8ρ)p, to +
(

u(Po)

c4

)2−p

(8ρ)p

]
⊂ (0, T ) (7.6)

would satisfy (3.1)-(3.2) and the conclusion of Theorem 1.1 follows from Proposi-
tion 3.1.

Proposition 7.3. Let R be the largest number for which (7.1)-(7.2) hold for n = 0,
and let (7.5) hold. Then for all n ∈ N such that K8(2n R)(xo) ⊂ E, and(

to −
(

u(Po)

c4

)2−p

8p(2n R)p, to + 8p(2n R)p
(

u(Po)

c4

)2−p
]

⊂ (0, T )

there holds
c u(xo, to) ≤ inf

x∈K2n R(xo)
u(·, t)

for all times

to − δ∗
(

u(Po)

c4

)2−p

(2n R)p ≤ t ≤ to + δ∗
(

u(Po)

c4

)2−p

(2n R)p.

The constants c and δ∗ are the same as in Proposition 3.1.

Proof. The statement holds for n = 0. Assuming it holds for n it will be shown by
induction that continues to hold for n+1. For y ∈ K2n+1 R(xo) the point z = xo+ 1

2 y
is in K2n R(xo) and by the induction hypothesis and Corollary 7.1

c sup
K2n R(z)

u(·) ≤ u(z) ≤ c−1 inf
K2n R(z)

u(·).

Since y ∈ K2n+1 R(xo) is arbitrary, this implies

Mn+1 = sup
y∈K2n+1 R(xo)

u(·, to) ≤ c−2u(xo, to).
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Moreover, taking into account (7.5)

M2−p
n+1 8p(2n+1 R)p ≤ 2pc2(2−p)

(
u(Po)

c4

)2−p

8p(2n R)p

provided 2pc2(2−p) ≤ 1, which we may assume. Thus Mn+1 and 2n+1 R satisfy
the assumption of Corollary 7.1, and the conclusion follows from (7.3)-(7.4) for the
index n + 1.

7.1. Proof of Theorem 1.1 concluded

Fix (xo, to) ∈ ET and pick a radius ρ for which (7.6) is satisfied. Then qualitatively
determine M and R as in (3.1)-(3.2). There exists a non-negative integer n such
that 2n R ≤ ρ ≤ 2n+1 R.

8. Miscellaneous results

8.1. Hölder continuity of solutions

Locally bounded weak solutions u of (1.1)-(1.2), with no sign restrictions are lo-
cally Hölder continuous. Such a local behavior was established in [6, Chapter IV],
along with locally quantitative Hölder estimates (see also [1]).

Working exactly as in [7, Section 10], the forward in time Harnack inequality
of Theorem 1.2 can be used to establish locally quantitative Hölder estimates for
local, weak solutions u of (1.1)-(1.2), thereby providing an alternative proof to [6],
for p in the range (1.5).

8.2. Proof of Theorem 1.2

The estimates in the proof of Theorem 1.1 are not stable as p → 2. Stable estimates
for p → 2 required in the proof of Theorem 1.2 can be derived as in [7] by almost
identical arguments. Here we point out the the main difference. By the same change
of variables as in Section 3, construct the family of expanding cylinders Qτ ≡
{|x | < τ } × {−τ, 0} and the numbers

Mτ ≡ ‖v‖∞,Qτ , Nτ ≡ (1 − τ)−β,

where again β is a positive number to be chosen. Let τo be the largest root of the
equation Mτ = Nτ , so that

Mτo = (1 − τo)
−β, M 1+τo

2
≤ 2β(1 − τo)

−β.

If (x̄, t̄) is a point in Qτo where v achieves the value Mτo , we have

v(x, t) ≤ 2β(1 − τo)
−β, |x − x̄ | <

1 − τo

2
, t̄ − 1 − τo

2
< t < t̄ . (8.1)
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Now let
Ro = 1

2 2−β
2−p

p (1 − τo)
β

2−p
p (1 − τo)

and consider the cylinder

Qo(x̄, t̄) ≡ {|x − x̄ | < Ro} ×
{

t̄ − [
2β(1 − τo)

−β
] 2−p

p R p
o , t̄

}
.

From the definitions of Qτ and Ro, we have Qo(x̄, t̄) ⊂ Q 1+τo
2

, so that by (8.1),

‖v‖∞,Qo(x̄,t̄) ≤ 2β(1 − τo)
−β.

Therefore Qo(x̄, t̄) has the right size. From here on, the proof works exactly as
in [7, Sections 7 and 8], to which we refer.

8.3. Decay in space and time variables

Let u be a non-negative weak solution of (1.2), fix (xo, to) with u(xo, to) > 0,
(x, t) in ET , with t > to and x �= xo, and construct the line through them, and the
p-paraboloid with vertex at (xo, to)

y(s) − xo = x − xo

t − to
(s − to), s − to = (δu(xo, to))

2−p |y − xo|p

where δ = δ
1

2−p
+ , and δ+ is the constant appearing in the time delay required by

Theorem 1.2. The line and the p-paraboloid intersect at (x1, t1) where

|x1 − xo|p−1 =
(

1

δ u(xo, to)

)2−p t − to
|x − xo| ,

t1 − to = (δu(xo, to))
2−p |x1 − xo|p.

Iteration of this process gives a sequence of points {(x j , t j )} such that

|x j+1 − x j |p−1 =
(

1

δ u(x j , t j )

)2−p t − to
|x − xo|

t j+1 − t j = (
δu(x j , t j )

)2−p |x j+1 − x j |p.

(8.2)

The intrinsic geometry of (x j , t j ) permits to relate u(x j+1, t j+1) to u(x j , t j ), by
means of the Harnack inequality, provided the space-time cylinders relative to each
(x j , t j ), and defined in (1.6) are all contained in ET . Stipulating that to < t j ≤ t ,
this occurs if

t j − 8

(c4+δ)
2−p

p

(t j+1 − t j ) ≥ to − 8

(c4+δ)
2−p

p

(t − to) ≥ 0,

K8|x−xo|(xo) ⊂ E .
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Therefore if (t − to) <
(c4+δ)

2−p
p

8 to, the conditions of Theorem 1.2 are verified, and

c+u(x j , t j ) ≤ u(x j+1, t j+1) for j = 0, 1, . . . , n

where n is a positive integer to be chosen. From this, by iteration

u(xn, tn) ≥ cn+u(xo, to). (8.3)

From (8.2)

|x − xo| ≥
n−1∑
j=0

|x j+1 − x j | =
(

1

δ2−p

t − to
|x − xo|

) 1
p−1 n−1∑

j=0

(
1

u(x j , t j )

) 2−p
p−1

≥
(

t − to
|x − xo|

) 1
p−1

(
1

δ u(xn, tn)

) 2−p
p−1 n−1∑

j=0

(
c

2−p
p−1
+

)n− j

=
(

t − to
|x − xo|

) 1
p−1

(
1

δ u(xn, tn)

) 2−p
p−1 q(1 − qn)

1 − q
where q = c

2−p
p−1
+ .

From this

(c
2−p
p−1
+ )n + 1 − q

q

(
[δ u(xn, tn)]2−p|x − xo|p

(t − to)

) 1
p−1

≥ 1. (8.4)

Without loss of generality, by a possible further application of the Harnack inequal-
ity, and by possibly slightly modifying the constant c+ if needed, we may assume
that (xn, tn) = (x, t). Combining (8.3) and (8.4) we have proved

Proposition 8.1. Let u be a non-negative solution of (1.2) and let (xo, to) ∈ ET be
such that u(xo, to) > 0. Then for all (x, t) in ET with x �= xo K8|x−xo|(xo) ⊂ ET

and 0 < t − to <
(c4+δ)

2−p
p

8 to

u(x, t)

u(xo, to)
≥ c+


1 + γ

(
[u(xo, to)]2−p|x − xo|p

(t − to)

) 1
p−1




p−1
p−2

, (8.5)

where

γ = (c
p−2
p−1
+ − 1)δ

1
p−1
+ . (8.6)

Notice that (8.5) gives the same space-decay of the explicit Barenblatt “fundamental
solution” of (1.4). As for the decay in the time variable, consider the sequence

to = s > 0, t1 = 2s, . . . , tk = 2ks = τ.
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A repeated application of the forward Harnack inequality (1.9) for sufficiently large
s yields

u(0, τ ) ≥
( s

τ

)a
u(0, s), a = | log2 c+|.

8.4. Equations of porous medium type

Consider quasi-linear, singular, parabolic differential equations of the form

ut − div A(x, t, u, Du) = B(x, t, u, Du) weakly in ET (8.7)

where the functions A : ET × RN+1 → RN and B : ET × RN+1 → R are only
assumed to be measurable and subject to the structure conditions




A(x, t, u, Du) · Du ≥ Co|u|m−1|Du|2 − C2

|A(x, t, u, Du)| ≤ C1|u|m−1|Du| + C
|B(x, t, u, Du)| ≤ C |u|m−1|Du| + C2

a.e. in ET (8.8)

where 0 < m < 1 and Co and C1 are given positive constants, and C is a given
non-negative constant. If u is a weak solution of (8.7), the quasi-linear structure
conditions (8.8) are in addition required to preserve the property of sub(super)-
solutions of the truncations ±(u − k)±, for all k ∈ R. Namely

∂

∂t
(u−k)±−div A(x, t,(u−k)±, D(u−k)±)≤ B(x, t, (u−k)±,D(u−k)±) (8.2)±

weakly in ET against admissible non-negative test functions. The prototype exam-
ple is

ut − 
(|u|m−1u) = 0, 0 < m < 1, weakly in ET . (8.9)

This p.d.e. is singular since the modulus of ellipticity m|u|m−1 goes to ∞ as
|u| → 0. Non-negative weak solutions of (8.7)-(8.8) satisfy an intrinsic form of
the Harnack inequality provided m is in the super-critical range

m∗ = (N − 2)+
N

< m < 1. (8.10)

Fix Po = (xo, to) ∈ ET , such that u(xo, to) > 0, and consider cylinders of the type

Qρ(Po)= Kρ(xo)×
{

to −
(

u(Po)

c4

)1−m

ρ2 < t ≤ to +
(

u(Po)

c4

)1−m

ρ2

}
, (8.11)

where c is the constant of Theorem 8.2. These cylinders are “intrinsic” to the solu-
tion since their time length is determined by the value of u at (xo, to).
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Theorem 8.2. Let u be a non-negative, weak solution to (8.7)-(8.8) for m in the
super-critical range (8.10). There exist positive constants δ∗ and c, depending only
upon the data, such that for all Po ∈ ET and all cylinders of the type Q8ρ(Po) ⊂
ET , either u(Po) ≤ Cρ, or

c u(xo, to) ≤ inf
Kρ(xo)

u(·, t) (8.12)

for all times

to − δ∗[u(Po)]1−mρ2 ≤ t ≤ to + δ∗[u(Po)]1−mρ2. (8.13)

The constants c and δ∗ tend to zero as either m → 1 or as m → m∗.

The same methods leading to the Harnack estimates of Theorem 8.2 can be
used to establish the local Hölder continuity of locally bounded weak solutions.

The constants c ans δ∗ can be stabilized in the forward in time Harnack inequal-
ity as m → 1, exactly as for the corresponding quantities for equations (1.1)-(1.3),
when p → 2.

If A and B are locally analytic in ET ×RN+1, then non-negative weak solutions
are locally analytic in the space variables and at least Lipschitz continuous in time.

More precisely, fix Po ≡ (xo, to) ∈ ET , such that u(xo, to) > 0, and suppose
that Q8ρ(Po) ⊂ ET : working as in [5], the following result can be established:

Theorem 8.3. Let u be a non-negative, weak solution to (8.7)-(8.8) for m in the
super-critical range (8.10), with C = 0, and suppose that A is locally analytic in
ET × RN+1. Assume moreover that A, whenever well defined, is a locally analytic
function of its arguments. Then there exists a positive constant γ depending only
upon the data and independent of u, such that for every multiindex α

|Dαu(xo, to)| ≤ γ |α|+1|α|!
ρ|α| u(xo, to). (8.14)

Moreover for every non-negative integer k,∣∣∣∣ ∂k

∂tk
u(xo, to)

∣∣∣∣ ≤ γ 2k+1(k!)2

ρ2k
[u(xo, to)]1−(1−m)k . (8.15)

By a straightforward approximation procedure, the conclusion of Theorem 8.3 con-
tinues to hold for points (xo, to) ∈ ET such that u(xo, to) = 0 (for further details,
see [5, Sections 2 and 3]).

Appendices

A. Proof of Theorem 2.1

A.1. An L1
loc-form of the Harnack inequality for all 1 < p < 2

Proposition A.1. Let u be a non-negative, weak solution to (1.1)-(1.3) for 1 <

p < 2. There exists a positive constant γ depending only upon the data, such that
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for all cylinders K2ρ(y) × [s, t] ⊂ ET , either

Cρ > min{1 ; ε} where ε =
(

t − s

ρ p

) 1
2−p

(A.1)

or

sup
s<τ<t

∫
Kρ(y)

u(x, τ )dx ≤ γ inf
s<τ<t

∫
K2ρ(y)

u(x, τ )dx + γ

(
t − s

ρλ

) 1
2−p

(A.2)

where λ is defined in (2.4).

The range (1.5) corresponds to λ > 0, and viceversa. However (A.2) holds
true for all 1 < p < 2 and accordingly, λ could be of either sign. The constant
γ = γ (p) → ∞ as either p → 2 or as p → 1.

The theorem was established in [6, Chapter VII, Section 4], for non-negative
weak solutions of the prototype homogeneous equation (1.4). Here we give a proof
that includes equations of the type of (1.1)-(1.2), with the full quasi-linear structure
(1.3).

A.2. An auxiliary lemma

Lemma A.2. Let u be a non-negative, weak solution to (1.1)-(1.3) for 1 < p < 2.
There exists a positive constant γ depending only upon the data, such that for all
cylinders Kρ(y) × [s, t] ⊂ ET , and all σ ∈ (0, 1), and all ε > 0, either (A.1)
holds, or ∫ t

s

∫
Kσρ(y)

τ
1
p (u + ε)

− 2
p |Du|pζ pdxdτ

≤ γρ

(1 − σ)p

(
t − s

ρλ

) 1
p (

S + ερN )2 p−1
p

(A.3)

where

S = sup
s<τ<t

∫
Kρ(y)

u(x, τ )dτ. (A.4)

The constant γ (p) → ∞ as either p → 1, 2.

Proof. Assume (y, s) = (0, 0), fix σ ∈ (0, 1) and let x → ζ(x) be a non-negative
piecewise smooth cutoff function in Kρ that equals one on Kσρ and such that
|Dζ | ≤ 1/(1 − σ)ρ p. In the weak formulation of (1.2) take the test function

ϕ = −t
1
p (u + ε)

1− 2
p ζ p for some ε > 0
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modulo a Steklov averaging process. This gives

2 − p

p
Co

∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p |Du|pζ pdxdτ

≤ p

2(p − 1)
t

1
p

∫
Kρ

(u + ε)
2 p−1

p (x, t)ζ pdx

+ pC1

∫ t

0

∫
Kρ

τ
1
p (u + ε)

1− 2
p |Du|p−1ζ p−1|Dζ |dxdτ

+ 2 − p

p
C p

∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p ζ pdxdτ

+ C p
∫ t

0

∫
Kρ

τ
1
p (u + ε)

1− 2
p ζ pdxdτ

+ pC p−1
∫ t

0

∫
Kρ

τ
1
p (u + ε)

1− 2
p ζ p−1|Dζ |dxdτ

+ C
∫ t

0

∫
Kρ

τ
1
p (u + ε)

1− 2
p |Du|p−1ζ pdxdτ.

From this, by repeated application of Young’s inequality

∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p |Du|pζ pdxdτ ≤ γ t

1
p

∫
Kρ

(u + ε)
2 p−1

p (x, t)ζ pdx

+ γ

∫ t

0

∫
Kρ

τ
1
p (u + ε)

p− 2
p
(|Dζ |p + C pζ p) dxdτ

+ γ C p
∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p ζ pdxdτ

where γ = γ (data) tends to ∞ as either p → 2 or as p → 1. By Hölder’s
inequality

γ t
1
p

∫
Kρ

(u + ε)
2 p−1

p (x, t)ζ pdx

≤ γ t
1
p ρ

N (2−p)
p

(
sup

0≤τ≤t

∫
Kρ

u(x, τ )dx + ε(2ρ)N

)2 p−1
p

≤ γρ

(
t

ρλ

) 1
p (

S + ερN )2 p−1
p .
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Next

γ

∫ t

0

∫
Kρ

τ
1
p (u + ε)

p− 2
p
(|Dζ |p + C pζ p) dxdτ

≤ γ
1 + C pρ p

(1 − σ)pρ p

∫ t

0

∫
Kρ

τ
1
p (u + ε)p−2(u + ε)

2 p−1
p dxdτ

≤ γ
1 + C pρ p

(1 − σ)p

(
t

ρ p

)
ε p−2t

1
p sup

0≤τ≤t

∫
Kρ

(u + ε)
2 p−1

p dx

≤ γρ
1 + C pρ p

(1 − σ)p

(
t

ρ p

)
ε p−2

(
t

ρλ

) 1
p (

S + ερN )2 p−1
p .

Finally

γ C p
∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p ζ pdxdτ

≤ γρ

(
Cρ

ε

)p (
t

ρ p

)
ε p−2

(
t

ρλ

) 1
p (

S + ερN )2 p−1
p .

Combining these estimates

∫ t

0

∫
Kρ

τ
1
p (u + ε)

− 2
p |Du|pζ pdxdτ

≤ γρ

(1 − σ)p

{
1 +

[
1 + (Cρ)p + (Cρ)p

ε p

] (
t

ρ p

)
ε p−2

} (
t

ρλ

) 1
p (

S + ερN )2 p−1
p .

To prove the Lemma A.2, choose ε as in (A.1) and stipulate that C violates the first
of (A.1).

Lemma A.3. Let u be a non-negative, weak solution to (1.1)-(1.3) for 1 < p < 2.
There exists a positive constant γ depending only upon the data, such that for all
cylinders Kρ(y) × [s, t] ⊂ ET , and all σ ∈ (0, 1), either (A.1) holds, or

1

ρ

∫ t

s

∫
Kσρ(y)

|Du|p−1dxdτ ≤ δS + γ (p)

[δ2(1 − σ)p] p−1
2−p

(
t − s

ρλ

) 1
2−p

(A.5)

for all δ ∈ (0, 1). The constant γ (p) → ∞ as either p → 1, 2.
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Proof. Continue to assume that (y, s) = (0, 0) and that C violates (A.1). By
Hölder’s and Young’s inequalities∫ t

0

∫
Kσρ

|Du|p−1dxdτ

=
∫ t

0

∫
Kσρ

[
τ

1
p

p−1
p (u + ε)

− 2
p

p−1
p |Du|p−1

] [
τ

− 1
p

p−1
p (u + ε)

2
p

p−1
p

]
dxdτ

≤
(∫ t

0

∫
Kσρ

τ
1
p (u + ε)

− 2
p |Du|pdxdτ

) p−1
p

(∫ t

0

∫
Kσρ

τ
1
p −1

(u + ε)
2 p−1

p dxdτ

) 1
p

≤ γρ

(1−σ)p−1

(
t

ρλ

) 1
p(
S+ερN )2 p−1

p ≤δρS+ γρ

δ
2(p−1)

2−p (1−σ)
p(p−1)

2−p

(
t

ρλ

) 1
2−p

.

A.3. Proof of Proposition A.1

Assume (y, s) = (0, 0) and for n = 0, 1, 2 . . . set

ρn =
n∑

j=1

1

2 j
ρ, Kn = Kρn ; ρ̃n = ρn + ρn+1

2
, K̃n = Kρ̃n

and let x → ζn(x) be a non-negative, piecewise smooth cutoff function in K̃n that
equal one on Kn , and such that |Dζn| ≤ 2n+2/ρ. In the weak formulation of (1.1)-
(1.3) take ζn as a test function, to obtain∫

K̃n

u(x, τ1)ζndx ≤
∫

K̃n

u(x, τ2)ζndx

+ 2n+2

ρ

[
C1 + (Cρ)

] ∣∣∣∣
∫ τ2

τ1

∫
K̃n

|Du|p−1dxdτ

∣∣∣∣
+ 2n+2+N

(
Cρ

ε

)p−1 [
1 + (Cρ)

] (
t

ρλ

) 1
2−p

for any two time levels τ1 and τ2 in [0, t], where ε is defined in (A.1). Therefore if
C violates the first of (A.1)∫

Kn

u(x, τ1)dx ≤
∫

K2ρ

u(x, τ2)dx

+ γ 2n

ρ

∫ t

0

∫
K̃n

|Du|p−1dxdτ + 2n+2
(

t

ρλ

) 1
2−p

.

As time level τ2 take one for which∫
K2ρ

u(x, τ2)dx = inf
0≤τ≤t

∫
K2ρ

u(x, τ )dx
def= I.
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Also set

Sn = sup
0≤τ≤t

∫
Kn

u(x, τ )dx .

Since τ1 ∈ [0, t] is arbitrary, the previous inequality yields

Sn ≤ I + γ 2n

ρ

∫ t

0

∫
K̃n

|Du|p−1dxdτ + γ 2n
(

t

ρλ

) 1
2−p

.

The term involving |Du| is estimated above by applying (A.5) over the pair of
cubes K̃n ⊂ Kn+1 for which (1 − σ) = 2−(n+2), and for δ = γ −12−n−2εo, where
εo ∈ (0, 1) is to be chosen. For these choices

2n+2

ρ

∫ t

0

∫
K̃n

|Du|p−1dxdτ ≤ εoSn+1 + γ (p, εo)b
n
(

t

ρλ

) 1
2−p

where b = 2p2
.

Combining these remarks gives the recursive inequalities

Sn ≤ εoSn+1 + γ (data, εo)

{
I +

(
t

ρλ

) 1
2−p

}
.

The theorem now follows from the interpolation Lemma 4.3 of [6, Chapter I]. �

A.4. Proof of Theorem 2.1

The theorem is an immediate consequence of Proposition A.1 and the following
sup-estimate.

Proposition A.4. Let u be a non-negative, weak solution to (1.1)-(1.3) for p∗ <

p < 2, or equivalently for λ > 0. There exists a positive constant γ depending only
upon the data, such that for all cylinders Kρ(y) × [2s − t, t] ⊂ ET , either (A.1)
holds, or

sup
K 1

2 ρ
(y)×[s,t]

u ≤ γ

(
ρ p

t − s

) N
λ

(
1

ρN (t − s)

∫ t

2s−t

∫
Kρ(y)

udxdτ

) p
λ

+
(

t − s

ρ p

) 1
2−p

.

Proof. Assume (y, s) = (0, 0) and for fixed σ ∈ (0, 1) and n = 0, 1, 2, . . . set

ρn = σρ + 1 − σ

2n
ρ, tn = −σ t − 1 − σ

2n
t

Kn = Kρn , Qn = Kn × (tn, t).
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This is a family of nested and shrinking cylinders with common “vertex” at (0, t),
and by construction Qo = Kρ × (−t, t) and Q∞ = Kσρ × (−σ t, t). By the results
of [6, Chapter V], the solution u is locally essentially bounded in ET and we set

M = ess sup
Qo

u, Mσ = ess sup
Q∞

u.

We first find a relationship between M and Mσ . Denote by ζ a non-negative,
piecewise smooth cutoff function in Qn that equals one on Qn+1 and has the form
ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =
{

1 in Kn+1

0 in R
N − Kn

|Dζ1| ≤ 2n+1

(1 − σ)ρ

ζ2 =
{

0 for t ≤ tn
1 for t ≥ tn+1

0 ≤ ζ2,t ≤ 2n+1

(1 − σ)t

introduce the increasing sequence of levels kn = k − 2−nk, where k > 0 is to be
chosen, and in the weak formulation of (1.2), take the test functions (u − kn+1)+ζ p

to obtain, after standard calculations

sup
tn≤τ≤t

∫
Kn

[(u − kn+1)+ζ ]2(x, τ )dx +
∫∫

Qn

|D[(u − kn+1)+ζ ]|pdxdτ

≤ γ 2np

(1 − σ)pρ p

[
1 + (Cρ)p] ∫∫

Qn

(u − kn)
p
+dxdτ

+ γ 2n

(1 − σ)t

∫∫
Cn

(u − kn)
2+dxdτ + γ C p

∫∫
Qn

χ[(u−kn)+>0]dxdτ.

Estimate ∫∫
Qn

(u − kn)
p
+dxdτ ≤ M p−1

∫∫
Qn

(u − kn)+dxdτ∫∫
Qn

(u − kn)
2+dxdτ ≤ M

∫∫
Qn

(u − kn)+dxdτ

∫∫
Qn

χ[(u−kn+1)+>0]dxdτ ≤ 2n+1

k

∫∫
Qn

(u − kn)+dxdτ.

Therefore stipulating that Cρ violates (A.1), the previous inequalities yield

sup
tn≤τ≤t

∫
Kn

[(u − kn+1)+ζ ]2(x, τ )dx +
∫∫

Qn

|D[(u − kn+1)+ζ ]|pdxdτ

≤ γ 2np M

(1 − σ)pt

{
1 +

(
t

ρ p

)
M p−2 + (Cρ)p

Mk

(
t

ρ p

)} ∫∫
Qn

(u − kn)+dxdτ.
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The last term in {· · · } is estimated by stipulating to take

k ≤ M and k ≥
(

t

ρ p

) 1
2−p

. (A.6)

With these stipulations, taking into account the restriction (A.1) on Cρ, and that
1 < p < 2, estimate

{· · · } ≤ 1 + 1

k2−p

(
t

ρ p

)
+ 1

k2

(
t

ρ p

) p
2−p

(
t

ρ p

)
≤ 3.

Therefore, if (A.1) is violated and (A.6) is in force, there exists a constant γ =
γ (data) such that

sup
tn≤τ≤t

∫
Kn

[(u − kn+1)+ζ ]2(x, τ )dx +
∫∫

Qn

|D[(u − kn+1)+ζ ]|pdxdτ

≤ γ 2np M

(1 − σ)pt

∫∫
Qn

(u − kn)+dxdτ.

By Hölder’s inequality and the embedding Proposition 3.1 of [6, Chapter I]

∫∫
Qn+1

(u − kn+1)+dxdτ ≤
(∫∫

Qn

[(u − kn+1)+ζ ]p N+2
N dxdτ

) N
p(N+2)

×
(∫∫

Qn

χ[(u−kn+1)+>0]dxdτ

)1− N
p(N+2)

≤ γ

(∫∫
Qn

|D[(u − kn+1)+ζ ]|pdxdτ

) N
p(N+2)

×
(

sup
tn≤τ≤t

∫
Kn

[(u − kn)+ζ ]2(x, τ )dx

) 1
N+2

×
(∫∫

Qn

χ[(u−kn+1)+>0]dxdτ

)1− N
p(N+2)

≤ γ

(
2pn M

(1 − σ)pt

) 1
p

N+p
N+2

(∫∫
Qn

(u − kn)+dxdτ

) N
p(N+2)

+ 1
N+2

×
(∫∫

Qn

χ[(u−kn+1)+>0]dxdτ

)1− N
p(N+2)

.

Estimate ∫∫
Qn

χ[(u−kn+1)+>0]dxdτ ≤ 2n+1

k

∫∫
Qn

(u − kn)+dxdτ
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and set

Yn = 1

|Qn|
∫∫

Qn

(u − kn)+dxdτ =
∫∫

Qn

(u − kn)+dxdτ.

Then the previous recursive inequalities can be written more concisely as

Yn+1 ≤ γ bn

(1 − σ)
N+p
N+2

(
M N+p

k N+p+λ

) 1
p(N+2)

(
ρ p

t

) N
p

1
N+2

Y
1+ 1

N+2
n

for b = b(N , p) > 1. It follows from these that {Yn} → 0 as n → ∞ provided k is
chosen to satisfy

Yo =
∫∫

Qo

udxdτ = (1 − σ)N+p

γ N+2b(N+2)2

(
k N+p+λ

M N+p

) 1
p
(

t

ρ p

) N
p

.

For these choices

Mσ ≤ γ (data)

(1 − σ)
p(N+p)
N+p+λ

M
N+p

N+p+λ

(
ρ p

t

) N
N+p+λ

(∫∫
Qo

udxdτ

) p
N+p+λ

.

From this, by a standard interpolation process and taking into account (A.6)

sup
K 1

2 ρ
×[0,t]

u ≤ γ (data)

(
ρ p

t

) N
λ

(∫∫
Qo

udxdτ

) p
λ +

(
t

ρ p

) 1
2−p

.

B. Proof of Theorem 2.3

B.1. Energy estimates for the truncations (u − k)±

For ρ > 0 and θ > 0 set

Q−
ρ (θ) = Kρ × (−(θρ)p, 0], Q+

ρ (θ) = Kρ × (0, (θρ)p]

and for (y, s) ∈ RN × R

(y, s) + Q−
ρ (θ) = Kρ(y) × (s − (θρ)p, s]

(y, s) + Q+
ρ (θ) = Kρ(y) × (s, s + (θρ)p].

We also write Q±
ρ (1) = Q±

ρ . There exists a constant γ = γ (data) such that, for
every cylinder [(y, s) + Q−

ρ (θ)] ⊂ ET , every k ∈ R and every piecewise smooth,



412 EMMANUELE DIBENEDETTO, UGO GIANAZZA AND VINCENZO VESPRI

non-negative function ζ vanishing on ∂Kρ(y)

ess sup
s−(θρ)p<t<s

∫
Kρ(y)

(u − k)2±ζ p(x, t)dx

−
∫

Kρ(y)

(u − k)2±ζ p(x, s − (θρ)p)dx

+ Co

∫∫
(y,s)+Q−

ρ (θ)

|D(u − k)±ζ |pdxdτ

≤ γ

∫∫
(y,s)+Q−

ρ (θ)

[
(u − k)

p
±
(|Dζ |p + C p) + (u − k)2±|ζτ |

]
dxdτ

+ γ C p
∫∫

(y,s)+Q−
ρ (θ)

χ[(u−k)±>0]ζ pdxdτ

(B.1)

where Co and C are the constants appearing in the structure conditions (1.3). These
energy estimates are proved by taking ±(u − k)±ζ p in the weak formulation of
(1.1) and carrying standard calculations. Similar energy estimates hold for cylinders
[(y, s) + Q+

ρ (θ)] ⊂ ET .

B.2. A De Giorgi-type lemma

For a fixed cylinder [(y, s) + Q−
2ρ(θ)] ⊂ ET , denote by µ± and ω, non-negative

numbers such that

µ+ ≥ ess sup
(y,s)+Q−

2ρ
(θ)

u, µ− ≤ ess inf
(y,s)+Q−

2ρ
(θ)

u, ω ≥ µ+ − µ−.

Denote by ξ and a fixed numbers in (0, 1).

Lemma B.1. There exists a number ν depending upon the data and θ , ξ , ω and a,
such that if ∣∣∣[u ≥ µ+ − ξω] ∩ [(y, s) + Q−

2ρ(θ)]
∣∣∣ ≤ ν|Q−

2ρ(θ)| (B.2)

then either
Cρ > min{1; ξω} (B.3)

or
u ≤ µ+ − aξω a.e. in

[
(y, s) + Q−

ρ (θ)
]
. (B.4)

Likewise, if ∣∣∣[u ≤ µ− + ξω] ∩ [(y, s) + Q−
2ρ(θ)]

∣∣∣ ≤ ν|Q−
2ρ(θ)| (B.5)

then either (B.3) holds true, or

u ≥ µ− + aξω a.e. in
[
(y, s) + Q−

ρ (θ)
]
. (B.6)
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Proof. We prove the second statement, to trace the precise dependence of ν on θ ,
a, ξ and ω. Assume (y, s) = (0, 0), and for n = 0, 1, 2, . . . , set

ρn = ρ + ρ

2n
, Kn = Kρn , Qn = Kn × (−(θρn)

p, 0].

Apply (B.1) over Kn and Qn to (u − kn)−, for the levels

kn = µ− + ξnω where ξn = aξ + 1 − a

2n
ξ.

The cutoff function ζ is taken of the form ζ(x, t) = ζ1(x)ζ2(t), where

ζ1 =
{

1 in Kn+1

0 in RN − Kn
|Dζ1| ≤ 1

ρn − ρn+1
= 2n+1

ρ

ζ2 =
{

0 for t < −θ pρ
p
n

1 for t ≥ −θ pρ
p
n+1

0 ≤ ζ2,t ≤ 1

θ p(ρ
p
n − ρ

p
n+1)

≤ 2p(n+1)

(θρ)p
.

With these stipulations, and assuming that (B.3) is violated, the energy inequalities
(B.1) yield

ess sup
−(θρn)p<t<0

∫
Kn

(u − kn)
2−ζ 2(x, t)dx +

∫∫
Qn

|D(u − kn)−ζ |pdxdτ

≤ γ
2np

ρ p

(∫∫
Qn

(u − kn)
p
−dxdτ + 1

θ p

∫∫
Qn

(u − kn)
2−dxdτ

)

≤ γ
2np

ρ p

(
(ξω)p + (ξω)2

θ p

)
|[u < kn] ∩ Qn|.

By Proposition 3.1 of [6, Chapter I],∫∫
Qn

[(u − kn)−ζ ]p N+2
N dxdt

≤
∫∫

Qn+1

|D[(u − kn)−ζ ]|pdxdτ

(
ess sup

−(θρn)p<t<0

∫
Kn(t)

[(u − kn)−ζ ]2dx

) p
N

≤ γ

[
2np

ρ p

(
(ξω)p + (ξω)2

θ p

)] N+p
N

|[u < kn] ∩ Qn| N+p
N .

Estimate below∫∫
Qn

[(u − kn)−ζ ]p N+2
N dxdt ≥

[
2−(n+1)(1 − a)ξω

]p N+2
N |[u < kn+1] ∩ Qn+1|



414 EMMANUELE DIBENEDETTO, UGO GIANAZZA AND VINCENZO VESPRI

and set

Yn = |[u < kn] ∩ Qn|
|Qn| .

Then

Yn+1 ≤ γ bn

(1 − a)(N+2)
p
N

(
θ p

(ξω)2−p

) p
N

[
1 + (ξω)2−p

θ p

] N+p
N

Y
1+ p

N
n

where
b = 2

p
N [2(N+1)+p].

By Lemma 4.1 of [6, Chapter I], {Yn} → 0 as n → ∞, provided

Yo ≤ γo(1 − a)N+2

(ξω)2−p

θ p(
1 + (ξω)2−p

θ p

) N+p
p

def= ν. (B.7)

Thus this choice of ν yields Y∞ = 0 which is equivalent to (B.6). Similar arguments
for the corresponding statement (B.2)-(B.4) yield the same expression in (B.7) with
the proper interpretation of Yo.

B.3. Proof of Theorem 2.3. Transforming u into w

Regard the equation as holding in K8ρ(y)×(s, s+(δθρ)p] and introduce the change
of variables and the new unknown

z = x − y

ρ
, τ = t − s

δθ pρ p
, w(z, τ ) = 2

M
u(x, t).

The cylindrical domain K8ρ(y) × (s, s + (δθρ)p] is transformed into K8 × (0, 1],
and by formal calculations

wτ − divz Ã(z, τ, w, Dzw) = B̃(z, τ, w, Dzw) (B.8)

in the weak sense over K8×(0, 1]. Assuming that Cρ ≤ 2 min{1; M}, the functions
Ã and B̃ satisfy the structure conditions



Ã(x, τ, w, Dw) · Dw ≥ 2−pδCo|Dw|p − δ

(
Cρ

2M

)p

|Ã(x, τ, w, Dw)| ≤ 2−pδC1|Dw|p−1 + δ

(
Cρ

2M

)p−1

|B̃(x, τ, w, Dw)| ≤ 2−pδCρ|Dw|p−1 + δ(Cρ)

(
Cρ

2M

)p−1

(B.9)
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where Co and C1 are the constants appearing in (1.3). These coefficients depend
upon δ, which is assumed to be a parameter quantitatively determined only in terms
of the data. Assume momentarily

wτ ∈ C
[
(0, 1]; L1(K8)

]
. (B.10)

Then (B.8)-(B.9) and the structure assumption (1.2)− imply the weak inequality

∫
K8

∂

∂τ
(k − w)+ϕdz +

∫
K8

Ã(z, τ, (k − w)+, Dz(k − w)+) · Dϕdz

≤
∫

K8

B̃(z, τ, (k − w)+, Dz(k − w)+)ϕdz
(B.11)

for all admissible non-negative test functions ϕ. The assumption (2.5) of Theo-
rem 2.3, translates into

|[w(·, τ ) ≥ 1] ∩ K1| > α for all τ ∈ (0, 1]. (B.12)

This measure-theoretical lower bound will be converted into a lower bound for w

over the expanded cube K2 for all “times” τ ∈ ( 1
2 , 1

]
.

Lemma B.2. Let w be a weak solution of (B.8)-(B.9). For every ν ∈ (0, 1) there
exists εν depending only upon the data, ν and α, such that either

δ
1
p Cρ > min {1; 2εν M} (B.13)

or

|[w(·, τ ) < εν]| ≤ ν|K4| for all τ ∈
(

1
4 , 1

]
. (B.14)

B.3.1. Proof of Theorem 2.3 assuming Lemma B.2

Apply (B.5)-(B.6) of Lemma B.1 to w, with µ− = 0, ξ = 1 and ω = εν over the
cylinders

K4 × (τ, τ + θ̃ p] where θ̃ p = ε2−p
ν .

These are contained in K4 × ( 1
4 , 1] as τ ranges over ( 1

4 , 1 − θ̃ p]. In (B.7) choose
a = 1

2 . This determines, quantitatively, only in terms of the data, the number
ν ∈ (0, 1) for which

w(·, τ ) ≥ 1
2εν in K2 for all τ ∈

(
1
2 , 1

]
.

The expansion of positivity of Theorem 2.3 follows from this, upon returning to the
original coordinates.
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B.4. Proof of Lemma B.2

Let ζ be a cutoff function in K8 that equals one on K4, vanishes outside K8, such
that |Dζ | ≤ 4 and the sets [ζ ≥ k] are convex for all k ∈ (0, 1). In the weak
inequality (B.11) take the testing function

ϕ = ζ pτ

[k − (k − w)+ + εk]p−1

where k, ε ∈ (0, 1) are to be chosen. In the arguments to follow, the product kε will
form the number εν claimed by Lemma B.2. Accordingly it is stipulated that the
various choices of kε below will violate (B.13). Thus for q > 0(

Cρ

2M

)q 1

[k − (k − w)+ + εk]q
≤

(
Cρ

2εk M

)q

≤ δ
− q

p .

Set also

�k(w) =
∫ (k−w)+

0

ds

[k − s + εk]p−1

�k(w) = ln
k(1 + ε)

k(1 + ε) − (k − w)+
.

(B.15)

By standard calculations, there exist constants γ̄o and γ̄ , depending only upon the
data, such that

d

dτ

∫
K8

�k(w)ζ pτdz + γ̄o

∫
K8

|D�k(w)|pζ pτdz ≤ γ̄

2 − p
.

By virtue of (B.12) and the embedding Proposition 2.1 of Chapter I of [6]∫
K8

�
p
k

[
(w(z, τ )

]
ζ pdz ≤ CN

∫
K8

|D�k[w(z, τ )]|pζ pdz

for a constant CN depending only upon the data, and for all τ ∈ (0, 1]. Therefore
there exist constants γo and γ , depending only upon the data, such that

d

dτ

∫
K8

�k[w(z, τ )]ζ pτdz + γo

∫
K8

�k[w(z, τ )]pζ pτdz ≤ γ. (B.16)

Introduce the quantities

Yn = sup
0<τ≤1

∫
K8

ζ p(x)τχ[w(·,τ )<εn]dz for n = 0, 1, . . . (B.17)

The proof of Lemma B.2 is a consequence of the following

Proposition B.3. For every ν ∈ (0, 1), there exist numbers ε and σ in (0, 1) de-
pending only upon N, p, the data and ν, such that if (B.13) is violated for εν = εn,
then either

Yn ≤ 1
2ν or Yn+1 ≤ max

{
1
2ν; σYn

}
. (B.18)
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B.4.1. Proof of Lemma B.2, Assuming Proposition B.3

Iterating (B.18) gives

Yn ≤ max

{
1

2
ν; σ n−1Yo

}
n = 1, 2, . . .

Since Yo ≤ |K8|, take n = no so large that 2σ no−1 ≤ ν8−N . Then the lemma
follows with εν = σ no . �

B.5. Proof of Proposition B.3

In (B.16) take k = εn for n ∈ N, where ε ∈ (0, 1) is to be chosen. By the definition
of Yn , for every ε there exists τo ∈ (0, 1), such that

∫
K8

ζ p(x)τoχ[w(·,τo)<εn+1]dz ≥ Yn+1 − ε. (B.19)

The numbers n and τo ∈ (0, 1) being fixed, consider the following two cases. Either

d

dt

∫
K8

ζ pτo�εn
[
w(z, τo)

]
dz ≥ 0 (B.20)

or
d

dt

∫
K8

ζ pτo�εn
[
w(z, τo)

]
dz < 0. (B.21)

In either case assume that Yn > 1
2ν, otherwise the conclusion is trivial. While ε in

(B.19) is arbitrary, it will be taken in the range ε ∈ (0, 1
4ν).

If (B.20) holds, then from (B.16) with k = εn

∫
K8

ζ pτo�εn
[
w(z, τo)

]
dz ≤ γ

γo
.

Minorize this integral by extending the integration over the smaller set

[w(·, to) < εn+1] ∩ K8 on which �εn (w) ≥ ln
εn(1 + ε)

2εn+1
.

Therefore(
ln

1 + ε

2ε

)p ∫
K8∩[w(·,τo)<εn+1]

ζ pτodz ≤
∫

K8

�εn
[
w(z, τo)

]
ζ pτodz.
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From this and (B.19)

Yn+1 ≤ ε + γ

γo

(
ln

1 + ε

2ε

)−p

≤ 1

2
ν

for the choices ε ≤ 1
4ε and then for ε so small that

γ

γo

(
ln

1 + ε

2ε

)−p

≤ 1

4
ν.

Such a choice depends only upon the constants γ, γo and ν and therefore it depends
only upon the data.

B.6. Proof of Proposition B.3 when (B.10) holds

If (B.10) holds true, define

τ∗ = sup

{
τ ∈ (0, τo)

∣∣∣∣ d

dt

∫
K8

ζ pτ�εn
[
w(z, τ )

]
dz ≥ 0

}
.

By the definition of τ∗∫
K8

ζ pτo�εn
[
w(z, τo)

]
dz ≤

∫
K8

ζ pτ∗�εn
[
w(z, τ∗)

]
dz. (B.22)

By the arguments of the first alternative

∫
K8

ζ pτ∗�εn
[
w(z, τ∗)

]
dz ≤ γ

γo

and for all s ∈ (0, 1)

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dz ≤ γ

γo

(
ln

1 + ε

1 + ε − s

)−p

.

From this and the definition of Yn

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dz ≤ min

{
Yn; γ

γo

(
ln

1 + ε

1 + ε − s

)−p
}

=



Yn if 0 ≤ s < s∗
γ

γo

(
ln

1 + ε

1 + ε − s

)−p

if s∗ ≤ s < 1
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where s∗ is the root of the equation

Yn = γ

γo

(
ln

1 + ε

1 + ε − s

)−p

=⇒ s∗ = e

(
γ
γo

1
Yn

) 1
p

− 1

e

(
γ
γo

1
Yn

) 1
p

(1 + ε). (B.23)

Since Yn > ν, estimate

s∗ <
e

(
γ
γo

1
ν

) 1
p

− 1

e

(
γ
γo

1
ν

) 1
p

(1 + ε)
def= σo(1 + ε). (B.24)

Next estimate the integral on the right hand side of (B.22). By Fubini’s theorem and
(B.23)-(B.24)

∫
K8

ζ pτ∗�εn
[
w(z, τ∗)

]
dz =

∫
K8

ζ pτ∗

(∫ εn

0

χ [s < (εn − w)+]
[εn(1 + ε) − s]p−1

ds

)
dz

=
∫ εn

0

1

[εn(1 + ε) − s]p−1

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dzds

=
∫ 1

0

εn(2−p)

[1 + ε − s]p−1

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dzds

=
∫ s∗

0

εn(2−p)

[1 + ε − s]p−1

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dzds

+
∫ 1

s∗

εn(2−p)

[1 + ε − s]p−1

∫
K8

ζ pτ∗χ[(εn−w)+>sεn]dzds

≤
∫ s∗

0

εn(2−p)

[1 + ε − s]p−1
Ynds

+
∫ 1

s∗

εn(2−p)

[1 + ε − s]p−1

γ

γo

(
ln

1 + ε

1 + ε − s

)−p

ds

=
∫ 1

0

εn(2−p)

[1 + ε − s]p−1
Ynds

−
∫ 1

s∗

{
Yn − γ

γo

(
ln

1 + ε

1 + ε − s

)−p
}

εn(2−p)

[1 + ε − s]p−1
ds

= Ynε
n(2−p)F(Yn, ε)
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where

F(Yn, ε) =
∫ 1

0

ds

[1 + ε − s]p−1

−
∫ 1

s∗

[
1 − 1

Yn

γ

γo

(
ln

1 + ε

1 + ε − s

)−p
]

ds

[1 + ε − s]p−1

≤
∫ 1

0

ds

[1 + ε − s]p−1

−
∫ 1

σo(1+ε)

[
1 − 1

ν

γ

γo

(
ln

1 + ε

1 + ε − s

)−p
]

ds

[1 + ε − s]p−1

since Yn ≥ ν and by the definition (B.23)-(B.24) of σo. Combining these estimates,
gives an upper bound for the right hand side of (B.22). Therefore∫

K8

ζ pτo�εn
[
w(z, τo)

]
dz ≤ Yn[1 − f (ε)]

∫ 1−ε

0

εn(2−p)

[1 + ε − s]p−1
ds (B.25)

where

f (ε)

∫ 1−ε

0

ds

[1 + ε − s]p−1
= −

∫ 1

1−ε

ds

[1 + ε − s]p−1

+
∫ 1

σo(1+ε)

[
1 − 1

ν

γ

γo

(
ln

1 + ε

1 + ε − s

)−p
]

ds

[1 + ε − s]p−1
.

(B.26)

Estimating below the left hand side of (B.25), gives∫
K8

ζ pτo�εn
[
w(z, τo)

]
dz ≥

∫
K8

ζ pτoχ[w(·,τo)<εn+1]dz
∫ 1−ε

0

εn(2−p)

[1 + ε − s]p−1
ds

≥ (Yn+1 − ε)

∫ 1−ε

0

εn(2−p)

[1 + ε − s]p−1
ds.

This and (B.25) yield
Yn+1 − ε ≤ Yn[1 − f (ε)].

Estimate f (ε) below as follows. Let σ1 ≥ σo be defined by

σ1 = e

(
2γ
γo

1
ν

) 1
p

− 1

e

(
2γ
γo

1
ν

) 1
p

(see also (B.24)).

Then integrating the second integral on the right hand side of (B.26) over the smaller
interval [σ1(1 + ε), 1], gives

f (ε) >
1

2
(1 − σ1)

2−p −
(

2ε

1 + ε

)2−p

.



HARNACK INEQUALITIES FOR SINGULAR PARABOLIC PDES 421

Choose ε so small that

f (ε) > 1
4 (1 − σ1)

2−p and set σ = 1 − 1
4 (1 − σ1)

2−p.

Since ε ∈ (0, 1
4ν) is arbitrary, Yn+1 ≤ σYn , thereby establishing the proposition

under the assumption that (B.10) holds true.

B.7. Removing the assumption (B.10)

Inequality (B.16) holds in any case in the integrated form

∫
K8

ζ pτ�k
[
w(z, τ )

]
dz −

∫
K8

ζ p(τ − h)�k
[
w(z, τ − h)

]
dz

+ γo

∫ τ

τ−h

∫
K8

ζ ps�k
[
w(z, s)

]
dzds ≤ γ h.

Divide by h and let h → 0 to obtain (B.16) where the term involving the τ -
derivative is replaced by

(
d

dτ

)−∫
K8

ζ pτ�k(w)dz = lim sup
h→0

1

h

{∫
K8

ζ pτ�k(w)dz −
∫

K8

ζ p(τ − h)�k(w)dz

}
.

Introduce the set

S =
{

τ ∈ (0, 1]∣∣ ( d

dτ

)− ∫
K8

ζ pτ�k(w)dz ≥ 0

}

and let τo be defined as in (B.19). If τo ∈ S, then

∫
K8

ζ pτo�
p
k (w)dz ≤ γ.

If τo /∈ S but sup{τ < τo|τ ∈ S} = τo, by working with a sequence of time levels
τn ∈ S and {τn} → τo, the previous inequality continues to hold. If τo /∈ S and

τ∗ = sup{τ < τo|τ ∈ S} < τo

we derive an inequality analogous to (B.22). The remainder of the proof remains
the same.
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