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Kähler manifolds and their relatives

ANTONIO J. DI SCALA AND ANDREA LOI

Abstract. Let M1 and M2 be two Kähler manifolds. We call M1 and M2 rela-
tives if they share a non-trivial Kähler submanifold S, namely, if there exist two
holomorphic and isometric immersions (Kähler immersions) h1 : S → M1 and
h2 : S → M2. Moreover, two Kähler manifolds M1 and M2 are said to be weakly
relatives if there exist two locally isometric (not necessarily holomorphic) Kähler
manifolds S1 and S2 which admit two Kähler immersions into M1 and M2 re-
spectively. The notions introduced are not equivalent (cf. Example 2.3). Our
main results in this paper are Theorem 1.2 and Theorem 1.4. In the first theo-
rem we show that a complex bounded domain D ⊂ C

n with its Bergman metric
and a projective Kähler manifold (i.e. a projective manifold endowed with the
restriction of the Fubini–Study metric) are not relatives. In the second theorem
we prove that a Hermitian symmetric space of noncompact type and a projective
Kähler manifold are not weakly relatives. Notice that the proof of the second
result does not follows trivially from the first one. We also remark that the above
results are of local nature, i.e. no assumptions are used about the compactness or
completeness of the manifolds involved.

Mathematics Subject Classification (2010): 53C55 (primary); 58C25 (sec-
ondary).

1. Introduction

The study of holomorphic and isometric immersions between Kähler manifolds
(called Kähler immersions in the sequel) was started by Eugenio Calabi who, in his
pioneering work [6] of 1953 (see also [9]), solved the problem of deciding about the
existence of Kähler immersions between complex space forms. More specifically,
he proved that two complex space forms with curvature of different sign cannot be
Kähler immersed one into another and, in particular that, for complex space forms
of the same type, just projective spaces can be embedded between themselves in
a non trivial way by using Veronese mappings. Unfortunately, this subject has not
been further explored by other authors as pointed out by Marcel Berger in [3] who
referring to Calabi’s paper wrote: “this wonderful text remains quite unknown and
almost unused...”.
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The authors believe that the results of the present paper are in accordance with
Berger’s opinion (see also in [4, page 528]) and could stimulate future research in
this field.

In order to state our first result we give the following:

Definition 1.1. Let r be a positive integer. Two Kähler manifolds M1 and M2 are
said to be r-relatives if they have in common a complex r -dimensional Kähler sub-
manifold S, i.e. there exist two Kähler immersions h1 : S → M1 and h2 : S → M2.
Otherwise, we say that M1 and M2 are not relatives.

Our first result is the following:

Theorem 1.2. A bounded domain D ⊂ Cn endowed with its Bergman metric and a
projective Kähler manifold endowed with the restriction of the Fubini–Study metric
are not relatives.

It is worth pointing out that the previous definition and the previous theorem
are inspired by the work of Masaaki Umehara [14] on Kähler embeddings between
complex space forms. Indeed, his main result in [14] can be stated in our terminol-
ogy by saying that two finite dimensional complex space forms with holomorphic
sectional curvatures of different signs cannot be relatives (cf. also Remark 2.6).

The following definition generalizes the previous one:

Definition 1.3. Let r be a positive integer. Two Kähler manifolds M1 and M2 are
said to be weakly r-relatives if there exist two locally isometric Kähler manifolds S1
and S2 of complex dimension r which admit two Kähler immersions h1 : S1 → M1
and h2 : S2 → M2.

We remark that here the local isometry between S1 and S2 is not assumed to be
holomorphic (cf. Example 2.3 below). Observe also that it is immediate to see that
two Kähler manifolds of complex dimension one which are weakly relatives are
also relatives.

Let us now state our second result.

Theorem 1.4. An irreducible Hermitian symmetric space of noncompact type and
a projective Kähler manifold are not weakly relatives.

Notice that even if the word weakly relatives in the above theorem is replaced
by the word relatives the proof of Theorem 1.4 does not directly follow from The-
orem 1.2 (cf. discussion before Example 2.3).

Since an irreducible Hermitian symmetric space of compact type admits a
Kähler embedding into a complex projective space (see e.g. [10] and [11]), The-
orem 1.4 yield to the following appealing:

Corollary 1.5. An irreducible Hermitian symmetric space of noncompact type and
an irreducible Hermitian symmetric space of compact type, are not weakly relatives.
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2. Proof of the main results

Let �B(z, z) be a (globally defined) Kähler potential for the Bergman metric gB
on a bounded domain D ⊂ Cn . Then �B(z, z) = log K B(z, z) where K B(z, z)
is the Bergman kernel function on D, namely K B(z, z) = ∑+∞

j=0 |Fj (z)|2 where
Fj , j = 0, 1, . . . is an orthonormal basis for the Hilbert space H consisting of
square integrable holomorphic functions on D. Observe that, from the bounded-
ness of D, H contains all polynomials. In particular each element of the sequence
zk

1, k = 0, 1, . . . belongs to H, where z1 is the first variable of z = (z1, . . . , zn) ∈
D ⊂ Cn . By applying the Gram–Schmidt orthonormalization procedure to the se-
quence zk

1 we can assume that there exists a sequence of linearly independent poly-
nomials Pk(z1), k = 0, 1 . . . in the variable z1 such that P0(z1) = F0(z1, . . . , zn) =
λ0 ∈ C∗ and Pk(z1) = Fk(z1, . . . , zn), ∀k = 1, . . . . Consider now the holomorphic
map of D into the standard complex Hilbert space l2(C) given by:

φ : D → l2(C), z = (z1, . . . , zn) �→ (P(z1), F(z)), (2.1)

where P(z1) = (P0(z1), P1(z1), . . . ) and F(z) is the sequence obtained by deleting
the sequence zk

1 from the sequence Fj (z).
Observe that l2(C) can be seen as the affine chart Z0 �= 0 of the infinite dimen-

sional complex projective space CP∞, endowed with homogeneous coordinates
[Z0, . . . , Z j , . . . ]. Moreover, the Fubini-Study metric g∞

F S of CP∞ restricts to the
Kähler metric

i

2
∂∂̄ log

(
1 +

+∞∑
j=1

|w j |2
) (

w j = Z j

Z0

)

on l2(C) and it follows by the very definition of the Bergman metric that the map
(2.1) induces a Kähler immersion

�(z) = [P(z1), F(z)] : (D, gB) → (CP∞, g∞
F S). (2.2)

Remark 2.1. The fact that a bounded domain endowed with its Bergman metric
admits a Kähler immersion � into the infinite dimensional complex projective space
is well-known and was first pointed out by Kobayashi [11]. For the proof of our
main result it is crucial that the map � can be put in the special form (2.2).

For later use we give the following definition. Let S be a complex manifold.
We say that a holomorphic map � : S → CP∞ is non-degenerate iff �(S) is not
contained in any finite dimensional complex projective space CP N ⊂ CP∞. The
following lemma summarizes what we need about non-degenerate maps.

Lemma 2.2. Let S ⊂ Cn be an open subset of Cn and let

� : S → CP∞ : z �→ [ψ0(z), ψ1(z), . . . ]
be a holomorphic map induced by the holomorphic map

ψ : S → l2(C) : z �→ (ψ0(z), ψ1(z), . . . )
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where ψ j , j = 0, 1 . . . is an infinite sequence of holomorphic functions on S. As-
sume that there exists an infinite subsequence ψ jα of ψ j , consisting of linearly
independent functions such that for all s ∈ S there exists a function of this sub-
sequence non-vanishing at s. Then � is non-degenerate. Furthermore, if � is
non-degenerate and �̃ : S → CP∞ is another holomorphic immersion which in-
duces on S the same Kähler metric induced by �, i.e. �∗(gF S) = �̃∗(gF S), then
also �̃ is non-degenerate.

Proof. Let W be the infinite dimensional complex subspace of l2(C) spanned by the
vectors e jα , where e j is the canonical basis of l2(C). Denote by π : l2(C) → W
the projection onto W . Therefore, the map π ◦ ψ : S → W ⊂ l2(C) induces a
holomorphic and non-degenerate map S → CP∞. Hence, a fortiori, the map � is
non-degenerate. The proof of the second part of the lemma is an immediate con-
sequence of Calabi’s rigidity theorem (see [6]), which asserts that any two Kähler
immersions �1, �2 of a Kähler manifold S into CP∞ are related by a unitary trans-
formation U of CP∞, i.e. U ◦ �1 = �2.

Proof of Theorem 1.2. We can restrict ourself to prove that the domain D ⊂ Cn

equipped with its Bergman metric is not relative to any complex projective space
CPm . Assume by contradiction this is the case. Then, there exists an open subset
S ⊂ C passing through the origin and two Kähler immersions f : S → D and
h : S → CPm . If ( f1, . . . , fn) denote the components of f we can assume that
∂ f1
∂ξ

(0) �= 0, where ξ is the complex coordinate on S. Consider the Kähler immer-
sion of S into CP∞ given by the composition � ◦ f : S → CP∞, where � is
given by (2.2). We claim that this map is indeed non-degenerate. In order to prove
our claim observe that from (2.2) one gets:

(� ◦ f )(ξ) = [P( f1(ξ)), F( f1(ξ), . . . , fn(ξ))].
Hence, by the first part of Lemma 2.2, it is enough to prove that Pk( f1(·)), k =
0, 1, . . . is a sequence of linearly independent functions on S. So, let q be any
positive integer and assume that there exist q complex numbers a0, . . . , aq such
that

a0 P0( f1(ξ)) + · · · aq Pq( f1(ξ)) = 0, ∀ξ ∈ S. (2.3)

By the assumption on f1 : S → C it follows that f1(S) is on open subset of
C. Therefore, equality (2.3) is satisfied on all C, and since P1, . . . Pq are linearly
independent all the a j ’s are forced to be zero, proving our claim. Next, consider
the Kähler immersion of S into CP∞ given by the composition i ◦ h, where i :
CPm ↪→ CP∞ is the natural inclusion. Since this map is obviously degenerate the
second part of Lemma 2.2 yields the desired contradiction.

Before proving Theorem 1.4 let us explain the two main problems one has to face
in proving it.

The first one comes from the fact that a Hermitian symmetric space of non-
compact type (D, g) may only be equivalent to a bounded symmetric domain with
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its Bergman metric (D, gB) up to homotheties, i.e. g = cgB, c > 0. Hence, we
cannot apply directly Theorem 1.2 even when weakly relatives is replaced by rela-
tives. Indeed, one can easily exibit two Kähler manifolds which are not r -relatives
(for all r ) but become s-relatives (for some s) when one multiplies the metric of
one of them by a suitable constant (for example (CP1, g = λgF S) endowed with
an irrational multiple λ of the Fubini–Study metric is not r -relative to (CP1, gF S)

but the later is obviously 1-relative to itself).
The second problem is that weakly relatives Kähler manifolds may not be rel-

atives as shown by the following:
Example 2.3. Let X be a K 3 surface with its hyperkählerian structure (see e.g.
[5, page 400]). It is well-known that its isometry group Iso(X) is finite (see [1]
for a beautiful description of this group). Let J1 and J2 be two parallel complex
structures which do not belong to the same Iso(X)-orbit. Then, the two Kähler
manifolds (X, J1) and (X, J2) are obviously weakly 2-relatives but not 2-relatives.

The following lemma allow us to avoid the previous difficulty.

Lemma 2.4. Let (D, g) be a Hermitian symmetric space of noncompact type and
V be a projective Kähler manifold. If D and V are weakly relatives then D and V
are also relatives.

Proof. Let L : S1 → S2 be the local isometry between the two Kähler manifolds
S1 and S2 which makes D and V weakly relatives and let h1 : S1 → D and
h2 : S2 → V be the corresponding Kähler immersions. Since all the concepts
involved are of local nature, we can assume that L is a global isometry and, with
the aid of De Rham decomposition theorem, that the Riemannian manifold S1 = S2
decompose as

S1 = S2 = F × I1 × · · · × Ik,

where F is an open subset of the Euclidean space with the flat metric and I j , j =
1, . . . k are irreducible Riemannian manifolds. Observe that the factor F is indeed
a flat Kähler manifold of S2. Since S2 is a projective Kähler manifold it follows
by the above mentioned theorem of Calabi (see the introduction) that F is trivial.
We also claim that the above decomposition does not contain Ricci flat factors.
Indeed, assume for example that I j is such a factor. Then, as a consequence of the
Gauss equation and the non-positivity of the curvature of (D, g), it follows that the
map h1 : I j → D is totally geodesic. Since a totally geodesic submanifold of a
locally homogeneous Riemannian manifold is also locally homogeneous, a well-
known theorem of Alekseevsky–Kimel’fel’d–Spiro (see [2] and [13]) implies that
I j is actually flat, which proves our claim. Finally, observe that the isometry L
above takes an irreducible factor I of S1 into an irreducible factor L(I ) of S2. Since
these factors are not Ricci flat it is well-known that, L : I → L(I ) or its conjugate
L̄ is holomorphic and so D and V are relatives since they share the same Kähler
manifold I .

Remark 2.5. The above lemma is valid (the proof follows the same line) when D
is a homogeneous bounded domain of non-positive holomorphic bisectional cur-
vature. Notice that the celebrated example of Pyatetski-Shapiro [12] shows that



500 ANTONIO J. DI SCALA AND ANDREA LOI

Hermitian symmetric spaces of non-compact type are strictly contained in such do-
mains (see also [7]).

Proof of Theorem 1.4. Let Hk be the Hilbert space consisting of holomorphic func-

tions f on D such that
∫

D
| f |2
K kc

B
dz < +∞, where dz is the Lebesgue measure on

D and k is a positive integer. Let Fk
j be an orthonormal basis for Hk . It is not

hard to see that
∑+∞

j=0 |Fk
j (z)|2

K kc
B (z,z)

is invariant under the action of the group of isometric

biholomorphisms of (D, g = cgB). Since this group acts transitively on D we have
that

+∞∑
j=0

|Fk
j (z)|2 = ck K kc

B (z, z), ck > 0. (2.4)

It can be shown that for k sufficiently large, Hk contains all polynomials (see [10]
and reference therein). Fix such an k. As in the proof of the previous theorem one
can built a holomorphic map

�k : D → CP∞, z = (z1, . . . , zn) �→ [Pk(z1), Fk(z)], (2.5)

where Pk(z1) = (Pk
0 (z1), Pk

1 (z1), . . . ) is an infinite sequence of linearly indepen-
dent polynomials in the variable z1 and Pk

0 (z1) is a non-zero complex number.
Moreover, it follows by (2.4) that �∗

k(g
∞
F S) = kg. Observe now that there exists a

holomorphic immersion Vk : CPm → CP

(
m+k

m

)
(obtained by a suitable rescal-

ing of the Veronese embedding) satisfying V ∗
m(gF S) = mgF S (see Calabi [6]).

Assume, by a contradiction, that the Hermitian symmetric space of noncompact
type (D, g) and CPm are weakly relatives. Then by Lemma 2.4 they are also
relatives and so there exists an open subset S ⊂ C and two Kähler immersions
f : S → D and h : S → CPm . Then, obviously, (D, kg) and (CPm, kgF S) would
be relatives. Hence, as in the proof of Theorem 1.2, we get the desired contradic-
tion, by applying Lemma 2.2 to the Kähler immersions �k ◦ f : S → CP∞ and

i ◦ Vk ◦ h : S → CP∞, (where i : CP

(
m+k

m

)
↪→ CP∞ is the natural inclusion)

which are respectively non-degenerate and degenerate.

Remark 2.6. Observe that Theorem 1.4 when D is a rank one Hermitian symmet-
ric space of non-compact type (i.e. D = CHn) was proven in [14] by Masaaki
Umehara. Umehara’s proof is based on the Calabi embedding CHn ↪→ l2(C).
Since such (Kählerian) embeddings do not exist for higher rank Hermitian symmet-
ric space of non-compact type (see [8] for a proof) Umehara’s approach cannot be
used to give an alternative proof of our theorem.



KÄHLER MANIFOLDS AND THEIR RELATIVES 501

References

[1] D. V. ALEKSEEVSKY and M. M. GRAEV, Calabi-Yau metric on the Fermat surface. Isome-
tries and totally geodesic submanifolds, J. Geom. Phys. 7 (1990), 21–43.

[2] D. V. ALEKSEEVSKY and B. N. KIMEL’FEL’ D, Structure of homogeneous Riemannian
spaces with zero Ricci curvature, Funktsional. Anal. i Prilozhen. 9 (1975), 5–11.

[3] M. BERGER, Encounter with a geometer: Eugenio Calabi, Manifolds and geometry (Pisa,
1993), 20–60, Sympos. Math., XXXVI, Cambridge Univ. Press, Cambridge, 1996.

[4] M. BERGER, “A Panoramic View of Riemannian Geometry”, Springer Verlag, 2003.
[5] A. BESSE, “Einstein Manifolds”, Springer Verlag, 1987.
[6] E. CALABI, Isometric imbeddings of complex manifolds, Ann. of Math. 58 (1953), 1–23.
[7] J. E. D’ATRI, Holomorphic sectional curvatures of bounded homogeneous domains and

related questions, Trans. Amer. Math. Soc. 256 (1979), 405–413.
[8] A. J. DI SCALA and A. LOI, Kähler maps of Hermitian symmetric spaces into complex

space forms, Geom. Dedicata 25 (2007), 103–113.
[9] D. HULIN, Kähler-Einstein metrics and projective embeddings, J. Geom. Anal. 10 (2000),

525–528.
[10] A. LOI, Calabi’s diastasis function for Hermitian symmetric spaces, Differential Geom.

Appl. 24 (2006), 311–319.
[11] S. KOBAYASHI, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267–

290.
[12] I. I. PYATETSKI-SHAPIRO, On a problem proposed by E. Cartan (Russian), Dokl. Akad.

Nauk SSSR 124 (1959) 272–273.
[13] A. SPIRO A remark on locally homogeneous Riemannian spaces, Results Math. 24 (1993),

318–325.
[14] M. UMEHARA, Kähler submanifolds of complex space forms, Tokyo J. Math. 10 (1987),

203–214.

Dipartimento di Matematica
Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino, Italia
antonio.discala@polito.it

Dipartimento di Matematica e Informatica
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