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On square roots of class Cm of nonnegative functions of one variable

JEAN-MICHEL BONY, FERRUCCIO COLOMBINI

AND LUDOVICO PERNAZZA

Abstract. We investigate the regularity of functions g such that g2 = f , where f
is a given nonnegative function of one variable. Assuming that f is of class C2m

(m > 1) and vanishes together with its derivatives up to order 2m − 4 at all its
local minimum points, one can find a g of class Cm . Under the same assumption
on the minimum points, if f is of class C2m+2 then g can be chosen such that it
admits a derivative of order m + 1 everywhere. Counterexamples show that these
results are sharp.

Mathematics Subject Classification (2010): 26A15 (primary); 26A27 (sec-
ondary).

Introduction

In this paper we study the regularity of functions g of one variable whose square is
a given nonnegative function f .

For a function f of class C2, first results are due to G. Glaeser [6] who proved
that f 1/2 is of class C1 if the second derivative of f vanishes at the zeros of f ,
and to T. Mandai [8] who proved that one can always choose g of class C1. More
recently in [1] (and later in [7]), for functions f of class C4, it was proved that one
can find g of class C1 and twice differentiable at every point.

F. Broglia and the authors proved in [3] that this result is sharp in the sense that
it is not possible to have in general a greater regularity for g. They also showed that
if f is of class C4 and vanishes at all its (local) minimum points, one can always
find g of class C2 and that the result is sharp. Later, in [4] it was proved that for f
of class C6 vanishing at all its minimum points one can find g of class C2 and three
times differentiable at every point.

In this paper we generalize these results. First we prove that for f of class
C2m , m = 1, 2, . . . , ∞, vanishing at its (local) minimum points together with all
its derivatives up to order (2m − 4) one can find g of class Cm (Theorem 2.2). If
the derivatives vanish only up to order 2m − 6 at all the minimum points, the other
assumptions being unchanged, g can be chosen m times differentiable at every point
(Theorem 3.1, where m is replaced by m + 1).
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Counterexamples are given to show that these assumptions cannot be relaxed
and that the regularity of g cannot be improved in general.

1. Precised square roots

In this paper, f will always be a nonnegative function of one real variable whose
regularity will be precised below. Our results being of local character, we may and
will assume that the support of f is contained in [0, 1].
Definition 1.1. Assuming f of class C2m , m = 1, 2, . . . , ∞, we say that g is a
square root of f precised up to order m, if g is a continuous function satisfying
g2 = f and if, for any (finite) integer k ≤ m and for any point x0 which is a zero
of f of order exactly 2k, the function x �→ (x−x0)

k g(x) keeps a constant sign
near x0.

It is clear that g cannot be m times differentiable at every point if this condition
is not fulfilled.

It is easy to show the existence of square roots precised up to order m and even
to describe all of them. Let us consider the closed set

G = {x ∈ R | f (x) = 0, f ′(x) = 0, . . . , f (2m)(x) = 0}, (1.1)

with the convention that all derivatives vanish if m = ∞. Its complement is a
union of disjoint intervals Jν . In Jν , the zeros of f are isolated and of finite order
≤ 2m. For a square root precised up to order m, one should have |g| = f 1/2 and
the restriction of g to Jν should be one of two well defined functions +gν and −gν

thanks to the condition on the change of sign. There is a bijection between the set
of families (εν) with εν = ±1 and the set of square roots precised up to order m:
one has just to set g(x) = ενgν(x) for x ∈ Jν and g(x) = 0 for x ∈ G.

A modulus of continuity is a continuous, positive, increasing and concave func-
tion defined on an interval [0, t0] and vanishing at 0. Any continuous function ϕ

defined on a compact set K has a modulus of continuity, i.e. a function ω as above
such that for every t1, t2 with |t2 − t1| < t0, one has |ϕ(t2) − ϕ(t1)| < ω(|t2 − t1|).
One says that ϕ ∈ Cω(K ). If ϕ ∈ Ck(K ) and if ω is a modulus of continuity of
ϕ(k), one says that ϕ ∈ Ck,ω(K ).

We now state two lemmas taken almost literally from [2, Lemme 4.1, Lemme
4.2 and Corollaire 4.3]. Note that in the rest of this section m will not be allowed to
take the value ∞.

Lemma 1.2. Let ϕ ∈ C2m(J ) be nonnegative, where J is a closed interval con-
tained in [−1, 1], and let M = sup

∣∣ϕ(k)(x)
∣∣ for 0 ≤ k ≤ 2m and x ∈ J . Assume

that for some j ∈ {0, . . . , m}, the inequality ϕ(2 j)(x) ≥ γ > 0 holds for x ∈ J and
that ϕ has a zero of order 2 j at some point ξ ∈ J .

Let us define H and ψ in J by

ϕ(x) = (x − ξ)2 j H(x) , ψ(x) = (x − ξ) j H(x)1/2.
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Then, H ∈ C2m−2 j (J ) and ψ ∈ C2m− j (J ). Moreover, there exists C1, depending
only on m, such that∣∣∣ψ(k)(x)

∣∣∣ ≤ C1γ
1
2 −k Mk, k = 1, . . . , 2m − j. (1.2)

Lemma 1.3. Let ϕ be a nonnegative function of one variable, defined and of class
C2m in the interval [−1, 1] such that

∣∣ϕ(2m)(t)
∣∣ ≤ 1 for |t | ≤ 1 and that

max0≤ j≤m−1 ϕ(2 j)(0) = 1.

(i) There exists a universal positive constant C0, such that∣∣∣ϕ(k)(t)
∣∣∣ ≤ C0, for |t | ≤ 1 and 0 ≤ k ≤ 2m. (1.3)

(ii) There exist universal positive constants a j and r j , j = 0, . . . , m−1, such that
one of the following cases occurs:

(a) One has ϕ(0) ≥ a0 and then ϕ(t) ≥ a0/2 for |t | ≤ r0.
(b) For some j ∈ {1, . . . , m−1} one has ϕ2 j (t) ≥ a j for |t | ≤ r j and ϕ

has a local minimum in [−r j , r j ].
In the following proposition, G is defined by (1.1) and d(x, G) denotes the dis-
tance of x from G. When G = ∅, (a) and (b) are always true and condition (1.4)
disappears.

Proposition 1.4. Assuming that f is of class C2m, the three following properties
are equivalent.

(a) There exists g ∈ Cm such that g2 = f .
(b) Any function g which is a square root of f precised up to order m belongs to

Cm.
(c) There exists a modulus of continuity ω such that∣∣∣ dk

dxk f 1/2(x)

∣∣∣ ≤ d(x, G)m−kω(d(x, G)), (1.4)

for any x such that f (x) 	= 0 and any k ∈ {0, . . . , m}.

Proof. It is clear that (b)⇒(a): as said above, precised square roots do exist. Under
assumption (a), g and its derivatives up to order m should vanish on G. If ω is a
modulus of continuity of g(m) one gets

∣∣g(m)(x)
∣∣ ≤ ω(d(x, G)). Successive inte-

grations prove that the derivatives g(k) are bounded by the right hand side of (1.4).
These derivatives being equal, up to the sign, to those of f 1/2 when f does not
vanish, (a) ⇒ (c) is proved.

Let us assume (c) and consider any connected component Jν of the comple-
ment of G. Near each zero of f in Jν , which is of order exactly 2 j for some
j ∈ {1, . . . , m}, the precised square root gν is given (up to the sign) by Lemma 1.2
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and so it is of class Cm . Moreover, the estimate (1.4) extends by continuity to the
points x ∈ Jν where f vanishes and one has∣∣∣g(k)

ν (x)

∣∣∣ ≤ d(x, G)m−kω(d(x, G))

for x ∈ Jν and k ∈ {0, . . . , m}.
If we define g equal to ενgν in Jν and to 0 in G, it remains to prove the exis-

tence and the continuity of the derivatives of g at any point x0 ∈ G. By induction,
the estimates above prove, for k = 0, . . . , m − 1, that gk+1(x0) exists and is equal
to 0 and that gk+1(x) → 0 for x → x0. The proof is complete.

Corollary 1.5. Let f be a nonnegative C∞ function of one variable such that for
any m there exists a function gm of class Cm with g2

m = f . Then there exists g of
class C∞ such that g2 = f .

Actually, if g is any square root of f precised up to order ∞, it is precised up to
order m for any m and thus of class Cm for any m by the proposition above.

2. Continuously differentiable square roots

We start with an auxiliary result which contains the main argument. The function
f ∈ C2m , m ≥ 2, and the set G 	= ∅ are as above, and � is a closed subset of G.
We will use this lemma for p = 0, in which case � can be disregarded, and for
p = 1.

Lemma 2.1. Assume that m 	= ∞ and f and all its derivatives up to order 2m − 4
(included) vanish at all its local minimum points. Assume moreover that there exist
a modulus of continuity α and constants C > 0 and p ≥ 0 such that∣∣∣ f (2m)(x)

∣∣∣ ≤ Cd(x, �)2pα(d(x, G)). (2.1)

Then, there exists a constant C̄ such that∣∣∣ dk

dxk f 1/2(x)

∣∣∣ ≤ C̄d(x, �)pd(x, G)m−kα(d(x, G))1/2 (2.2)

for any x such that f (x) 	= 0 and any k ∈ {0, . . . , m}.
Proof. Let J be any connected component of the complement of G and for x ∈ J ,
let x̂ be (one of) the nearest endpoint(s) of J . The distance between x and x̂ is thus
equal to d(x, G) and we remark that, for y between x and x̂ , we have d(y, �) ≤
2d(x, �). Integrating 2m − k times the estimate for f (2m) between x̂ and x we get

| f (k)(x)| ≤ C ′d(x, �)2pd(x, G)2m−kα(d(x, G))

for k = 0, . . . , 2m, the constant C ′ being independent of J .
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Next, for x in J such that f (x) 	= 0, we define as in [2],

ρ(x) = max
0≤k≤m−1


[

f (2k)
+ (x)

C ′d(x, �)2pα(d(x, G))

] 1
2m−2k

 .

One has thus ρ(x) ≤ d(x, G) and

| f (k)(x)| ≤ C ′d(x, �)2pα(d(x, G))ρ(x)2m−k

for k = 0, . . . , 2m. The auxiliary function

ϕ(t) = f (x + tρ(x))

C ′d(x, �)2pα(d(x, G))ρ(x)2m

is defined in [−1, 1] and satisfies the assumptions of Lemma 1.3. Two cases should
be considered.

1. — One has ϕ(0) ≥ a0 and then ϕ(t) ≥ a0/2 for |t | ≤ r0 while the deriva-
tives of ϕ are uniformly bounded by C0. Thus, there exists an universal constant

C ′′ such that
∣∣∣ dk

dxk ϕ1/2(t)
∣∣∣ ≤ C ′′ in this interval. We have thus, by the change of

variable t �→ x + tρ(x),∣∣∣ dk

dxk f 1/2(x)

∣∣∣ ≤ C ′′d(x, �)pρ(x)m−kα(d(x, G))1/2

which implies (2.2).
2. — We are in case (b) of Lemma 1.3: all the derivatives of ϕ are bounded by

C0 and for some j ∈ {1, . . . , m − 1} one has ϕ2 j (t) ≥ a j for |t | ≤ r j and ϕ has
a local minimum at some point ξ ∈ [−r j , r j ]. Our assumptions imply that ϕ2k(ξ)

vanishes for k ∈ {0, . . . , m − 2} so j is necessarily equal to m − 1. We can thus set
ϕ(t) = (t−ξ)2m−2 H(t) and ψ(t) = (t−ξ)m−1 H(t)1/2 as in Lemma 1.2. There is

a universal constant C ′′′ (computed from C0 and am−1) such that
∣∣∣ dk

dxk ψ(t)
∣∣∣ ≤ C ′′′

for |t | ≤ rm−1. In particular, for t = 0, these derivatives coincide up to the sign
with those of ϕ1/2. The change of variable t �→ x + tρ(x) gives again the estimates
(2.2) on the derivatives of f 1/2(x). The proof is complete.

Theorem 2.2. Let f be a nonnegative function of one variable of class C2m with
m ≥ 2 such that, at all its minimum points, f and its derivatives up to the order
(2m − 4) vanish. Then any square root of f precised up to order m is of class Cm.

Proof. The result is evident if G is empty and we can thus assume G 	= ∅. If α

is a modulus of continuity of f (2m), we have
∣∣ f 2m(x)

∣∣ ≤ α(d(x, G)) which is the
assumption (2.1) for p = 0. By the preceding lemma, we have the estimates∣∣∣ dk

dxk f 1/2(x)

∣∣∣ ≤ C̄d(x, G)m−kα(d(x, G))1/2

when f (x) 	= 0. By Proposition 1.4, this implies that all the square roots precised
up to order m are of class Cm . The case m = ∞ follows now from Corolla-
ry 1.5.
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Remark 2.3. It is certainly not necessary to assume that f vanishes at all its mini-
mum points. For instance, we could also allow nonzero minima at points x̄i , i ∈ N,
provided that the values f (x̄i ) be not “too small”. With the notations of Lemma 2.1,
it suffices to have f (x̄i ) ≥ Cα(d(x̄i , G))ρ(x̄i )

2m for some uniform positive con-
stant C .

It is clear that the assumption f ∈ C2m of Theorem 2.2 cannot be weakened to
f ∈ C2m−1,1 (take f (t) = t2m + 1

2 t2m−1|t |). The two following counterexamples
show that in the general case no stronger regularity is possible (Theorem 2.4) and
that the vanishing of 2m − 4 derivatives cannot be replaced by the vanishing of
2m − 6 derivatives (Theorem 2.5).

Theorem 2.4. For any given modulus of continuity ω there is a nonnegative func-
tion f of class C∞ on R such that, at all its minimum points, f and all its deriva-
tives up to the (2m − 4)-th one vanish, but there is no function g of class Cm,ω such
that g2 = f .

Proof. Let χ ∈ C∞(R) be the even function with support in [−2, 2] defined by
χ(t) = 1 for t ∈ [0, 1] and by χ(t) = exp

{ 1
(t−2)e1/(t−1)

}
for t ∈ (1, 2). We note that

the logarithm of χ is a concave function on (1, 2). For every (a, b) ∈ [0, 1]×[0, 1],
(a, b) 	= (0, 0), and every m ≥ 1 the function t �→ log(at2m + bt2m−2) is concave
on (0, +∞) and thus the function

t �→ χ2(t)(at2m + bt2m−2)

has only one local maximum point and no local minimum points in (1, 2), for its
logarithmic derivative vanishes exactly once. Set

ρn = 1

n2
, tn = 2ρn +

∞∑
j=n+1

5ρ j ,

In = [tn − 2ρn, tn + 2ρn], αn = 1

2n

(2.3)

and

εn = ω−1(αn), βn = αnε
2
n.

Notice that the In’s are closed and disjoint and that, for n ≥ 4, one has

εn ≤ αn ≤ ρn . (2.4)

Define

f =
∞∑

n=4

χ2
( t − tn

ρn

)
(αn(t − tn)

2m + βn(t − tn)
2m−2).

Clearly, f is of class C∞: this is obvious at every point except perhaps at the origin,
but for small t ∈ In and a suitable positive constant Ck one has that

| f (k)(t)| ≤ Ckρ
2m−2−k
n αn
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that converges to 0 as t goes to 0 (which implies that n goes to infinity). Moreover,
f takes the value 0 at all its local minimum points, which are the points tn and the
points between In and In+1.

We argue by contradiction and look for functions g of class Cm,ω such that
g2 = f ; but any such g must be of the form

g =
∞∑

n=1

σnχ
( t − tn

ρn

)
(t − tn)

m−1
√

βn + αn(t − tn)2 (2.5)

for some choice of the signs σn = ±1. In order to evaluate g(m), let us calculate first(√
βn + αn(t − tn)2)

)(h) for h = 1, . . . , m. To this end, we will use Faà di Bruno’s
formula (see [5]), with F(x) = x1/2 and ψ(t) given by ψ(t) = β + αt2:

(F ◦ ψ)(h) =
h∑

j=1

(F ( j) ◦ ψ)
∑

p(h, j)

h!
h∏

i=1

(ψ(i))µi

(µi !)(i !)µi
,

where:

p(h, j) =
{

(µ1, . . . , µh) : µi ≥ 0 ,

h∑
i=1

µi = j ,

h∑
i=1

iµi = h

}
.

Now obviously we have:

F ( j)(x) = (
x1/2)( j) = 2− j (2 j − 3)!! (−1) j+1 x1/2− j ,

where, for n odd, n!! = 1 · 3 · · · n and, for n even, n!! = 2 · 4 · · · n. Moreover, in
our case, the only nonzero terms are those with i = 1 or i = 2 and µ1 = 2 j − h,
µ2 = h − j , with

[ h+1
2

] ≤ j ≤ h. So we have:(√
β + αt2)

)(h)

=
h∑

j=
[

h+1
2

] h! 2 j−h (2 j − 3)!! (−1) j+1 (β + αt2)1/2− jα j t2 j−h

(2 j − h)! (h − j)! .

(2.6)

We calculate now g(m)(t) for t ∈ Ĩn := [tn − ρn, tn + ρn], with g given by (2.5).
We note that on Ĩn one has g(t) = σn(t − tn)m−1

√
βn + αn(t − tn)2, and so,

for t ∈ Ĩn:

g(m)(t) = σn

m∑
h=1

(m)!
h!(m − h)! (t − tn)

h−1 (m − 1)!
(h − 1)!

(√
βn + αn(t − tn)2

)(h)

. (2.7)
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Now, set t ′n = tn + λ εn , with λ to be chosen later, 1/2 ≤ λ ≤ 1, so that, thanks to
(2.4), t ′n ∈ Ĩn . Taking (2.6) and (2.7) into account, we have:

g(m)(t ′n) = σnα
1/2
n

m∑
h=1

(m)!
h!(m−h)!

(m−1)!
(h−1)!

×
h∑

j=
[

h+1
2

] h!2 j−h(2 j −3)!!(−1) j+1λ2 j−1(1+λ2)
1
2−j

(2 j −h)!(h − j)! = σnα
1/2
n Km(λ).

Since Km(λ) is a nonzero polynomial of degree 2m −1 in
λ

(1 + λ2)1/2
, we can

choose a value λ0, 1/2 ≤ λ0 ≤ 1, in such a way that Km(λ0) 	= 0. But now since
g(m)(tn) = 0 we have that

|g(m)(tn + λ0 εn) − g(m)(tn)|
ω(λ0 εn)

= |g(m)(tn + λ0 εn)|
ω(λ0 εn)

= α
1/2
n |Km(λ0)|
ω(λ0εn)

≥ α
1/2
n |Km(λ0)|

ω(εn)
= |Km(λ0)|

α
1/2
n

that goes to infinity as n → ∞.

Theorem 2.5. There is a nonnegative function f of class C∞ on R such that, at all
its minimum points, f and all its derivatives up to the (2m − 6)-th one vanish, but
there is no function g of class Cm such that g2 = f .

Proof. Let χ be a function of class C∞ as in Theorem 2.4 and define ρn, tn, In and
αn as in (2.3); define also

εn = αn, βn = αnε
2
n

and

f =
∞∑

n=4

χ2
( t − tn

ρn

) (
αn(t − tn)

2m−2 + βn(t − tn)
2m−4

)
.

The function f is obviously of class C∞ and satisfies our hypotheses. Again, any
function g of class Cm−1 such that g2 = f is of the form

g =
∞∑

n=1

σnχ
( t − tn

ρn

)
(t − tn)

m−2
√

βn + αn(t − tn)2

for some choice of the signs σn = ±1.
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Now, set t ′n = tn + λ εn , with 1/2 ≤ λ ≤ 1: thanks to (2.4), t ′n ∈ Ĩn . Taking
(2.6) and (2.7) into account we have again that

g(m)(t ′n) = σn
α

1/2
n

εn

m∑
h=2

(m)!
h!(m − h)!

(m − 2)!
(h − 2)!

×
h∑

j=
[

h+1
2

]h!2 j−h(2 j − 3)!!(−1) j+1λ2 j−2(1 + λ2)
1
2 − j

(2 j − h)!(h − j)! =σn
1

α
1/2
n

Hm(λ)

where Hm is a polynomial function in
λ

(1 + λ2)1/2
; for some good choice of λ,

then, this expression goes to infinity as above.

3. Differentiable square roots

Theorem 3.1. Let f be a nonnegative function of one variable of class C2m+2

(2 ≤ m ≤ ∞) such that, at all its minimum points, f and all its derivatives up to
the order (2m − 4) vanish. Then any square root g of f which is precised up to
order m + 1 is of class Cm and its derivative of order m + 1 exists everywhere.

Proof. Since f is also a function of class C2m and g is in particular precised up to
order m we already know that g is of class Cm .

Let us consider the following closed set

� = {x ∈ R | f (x) = 0, f ′(x) = 0, . . . , f (2m+2)(x) = 0}. (3.1)

If it is empty, the set G is made of isolated points where f (2m+2)(x) 	= 0 and,
thanks to the condition on the signs, g is of class Cm+1. So, we may assume � 	= ∅
and thus, for the same reason, g is of class Cm+1 outside �. What remains to prove
is that g(m) is differentiable at each point of �.

The function � defined by �(x) = d(x, �)−2 f (2m)(x) outside � and by
�(x) = 0 in � is continuous and vanishes on G. If α is a modulus of continu-
ity of �, one has thus ∣∣∣ f (2m)(x)

∣∣∣ ≤ d(x, �)2α(d(x, G)), (3.2)

which is the assumption (2.1) of Lemma 2.1 with p = 1. Thanks to this lemma, we
get ∣∣∣g(m)(x)

∣∣∣ =
∣∣∣ dm

dxm f 1/2(x)

∣∣∣ ≤ C̄d(x, �)α(d(x, G))1/2

for x such that f (x) 	= 0 and k ∈ {0, . . . , m}. By continuity, the estimate of g(m)(x)

is also valid for the isolated zeros of f , and it is trivial for x ∈ �. For x0 ∈ � one
has thus

∣∣g(m)(x) − g(m)(x0)
∣∣ / |x − x0| ≤ Cα(d(x, G))1/2 which converges to 0

for x → x0. This proves that gm+1(x0) exists and is equal to 0, which ends the
proof.
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Remark 3.2. We have already proved that, under the assumptions of the theorem,
g is not of class Cm+1 in general (Theorem 2.5 with m replaced by m + 1). Coun-
terexamples analogous to those given above show that the hypotheses cannot be
relaxed.
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