
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5)
Vol. IX (2010), 687-723

Characterizations of intrinsic rectifiability
in Heisenberg groups

PERTTI MATTILA, RAUL SERAPIONI AND FRANCESCO SERRA CASSANO

Abstract. We define rectifiable sets in the Heisenberg groups as countable
unions of Lipschitz images of subsets of a Euclidean space, in the case of low-
dimensional sets, or as countable unions of subsets of intrinsic C1 surfaces, in the
case of low-codimensional sets. We characterize both low-dimensional rectifiable
sets and low codimensional rectifiable sets with positive lower density, in terms
of almost everywhere existence of approximate tangent subgroups or of tangent
measures.

Mathematics Subject Classification (2010): 28A75 (primary); 28C10 (sec-
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1. Introduction

Rectifiable sets are basic concepts of geometric measure theory. They were intro-
duced in the 1920’s in the plane by Besicovitch and in 1947 in general dimensions
in Euclidean spaces by Federer. A systematic study of rectifiable sets in general
metric spaces was made by Ambrosio and Kirchheim in [2] in 2000. However, the
definitions they used are not always appropriate in Heisenberg groups, and many
other Lie groups, when equipped with their natural Carnot-Carathéodory metric;
indeed, often there are only trivial rectifiable sets of measure zero.

A different definition, in Heisenberg groups Hn and more general Carnot
groups, has been given in [14], for sets of codimension 1, and in general dimen-
sions in [17, 18]. Let us sketch the inspiring ideas.

According to Federer’s original definition, k-dimensional rectifiable sets are
contained, up to a negligible set, in countable unions of Lipschitz images of subsets
of Rk . In Euclidean spaces, it is equivalent to use coverings with countable unions
of k-dimensional C1 sub-manifolds (see [12, 31]).
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Also in groups it is possible to follow the pattern of both definitions, provided
we have good intrinsic notions of Lipschitz maps and of C1 sub-manifolds. Respec-
tively we will define the classes of (k, HL)-rectifiable sets and of (k, H)-rectifiable
sets.

Let us begin with the notion of intrinsic C1 sub-manifold (see Definition 2.10).
If k is an integer, 1 ≤ k ≤ 2n, intrinsic k-dimensional C1 sub-manifolds of Hn

(also called H-regular surfaces) are locally defined, if 1 ≤ k ≤ n, as images of
continuously differentiable maps Rk → Hn and, if n + 1 ≤ k ≤ 2n, as non critical
level sets of continuously differentiable functions Hn → R2n+1−k .

Notice that differentiable means always Pansu differentiable (see Definition
2.5). We recall that, if d is the distance, defined in (2.1), equivalent with the Carnot-
Carathéodory metric, and if Sk is the k-dimensional spherical Hausdorff measure
in Hn , built using the distance d, then the Hausdorff dimension of Hn is 2n + 2
and a (typical) k-dimensional H-regular sub-manifold has Hausdorff dimension km ,
where km = k, if 1 ≤ k ≤ n, and km = k + 1, if n + 1 ≤ k ≤ 2n.

Then we say that E ⊂ Hn is (k, H)-rectifiable if there is a sequence of k-
dimensional H-regular surfaces Si such that

Skm

(
E \

⋃
i

Si

)
= 0.

We introduce also the following analogue of Federer’s Lipschitz definition. If k is
an integer with 1 ≤ k ≤ 2n, we say that E ⊂ Hn is (k, HL)-rectifiable if there is a
sequence of Lipschitz functions fi : Ai ⊂ Rk → Hn such that

Skm

(
E \

⋃
i

fi (Ai )

)
= 0.

This last definition is non trivial only if 1 ≤ k ≤ n, because, for n + 1 ≤ k and
f Lipschitz, always Skm ( f (A)) = 0 (see [2]), hence we will consider (k, HL)-
rectifiable sets only for 1 ≤ k ≤ n.

Given that the above mentioned generalization of Federer’s Lipschitz definition
is not a good one for high dimensional rectifiable sets in Carnot groups, different re-
lated approaches have been proposed in the literature. As an example, Pauls in [28]
considered images in Hn of Lipschitz maps defined not on Rk but on subgroups of
Hn; in [18] a different notion of intrinsic Lipschitz sub-manifold is considered.

We explicitly observe that we do not know if (k, HL)-rectifiability and (k, H)-
rectifiability are equivalent if 1 ≤ k ≤ n. Clearly they are not if n + 1 ≤ k ≤ 2n.

In this paper we approach the problem of characterizing intrinsic k-rectifiable
sets in Hn through almost everywhere existence and uniqueness of generalized tan-
gent subgroups or tangent measures.

We prove two main theorems. Suppose that E ⊂ Hn has locally finite Skm

measure.
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• The first one, Theorem 3.14, deals with the case 1 ≤ k ≤ n and with (k, HL)-
rectifiability. We prove that E is (k, HL)-rectifiable if and only if it has an
approximate tangent subgroup, Sk almost everywhere. The latter means that, for
Sk almost all p ∈ E , there exists a homogeneous subgroup Tp, of topological
and Hausdorff dimension k, such that

lim
r→0

r−kSk(E ∩ B(p, r) ∩ {q : d(p−1 · q, Tp) > sd(p, q)}) = 0

for all s > 0, where the distance d is defined in (2.1) and is comparable with the
Carnot-Carathéodory distance in Hn .

• The second main theorem, Theorem 3.15, deals with n+1 ≤ k ≤ 2n and (k, H)-
rectifiability. We prove that E is (k, H)-rectifiable if and only if it has, Skm

almost everywhere, an approximate tangent subgroup and, additionally, positive
lower density. These two conditions mean that, for Skm almost all p ∈ E , there
exists a homogeneous subgroup Tp, of topological dimension k and Hausdorff
dimension km = k + 1, such that

lim
r→0

r−kmSkm
(

E ∩ B(p, r) ∩ {q : d(p−1 · q, Tp) > sd(p, q)}
)

= 0

for all s > 0, and

lim inf
r→0

r−kmSkm (E ∩ B(p, r)) > 0.

We do not know if the assumption of positive lower density is necessary.

In both cases, we shall also give other equivalent conditions in terms of weak con-
vergence of blow-ups and existence of tangent measures. One of these, condi-
tion (v) of Theorem 3.15, says that E , with positive density as above, is (k, H)-
rectifiable if and only if for Skm -a.e. p ∈ E there is a non-trivial Radon measure λp

such that every tangent measure at p of the restriction Skm E is a constant multi-
ple of λp. More informally, this means that, at all sufficiently small scales around
p, Skm E looks, suitably magnified, like λp. Note that this condition does not
refer to any particular kind of subgroups, parametrizations or concepts of differen-
tiability, whence its equivalence to rectifiability in a way indicates that the concept
of intrinsic rectifiability we are using is a natural one.

Notice that Ambrosio and Kirchheim’s definition in general metric spaces,
when specialized to Heisenberg groups, coincides with (k, HL)-rectifiability. They
also have a characterization of rectifiability, under the assumption of positive lower
density, in terms of approximate tangent planes. Their approach to the notion of
(approximate) tangent space is different from ours. Indeed they imbed their metric
space into a Banach space and use the linear structure there. However, eventually,
the two notions coincide.

Notice that we use the spherical Hausdorff measure Sm instead of the usual
Hausdorff measure Hm because the blow-up Theorem 3.4 is only known for it and



690 PERTTI MATTILA, RAUL SERAPIONI AND FRANCESCO SERRA CASSANO

hence we can get the conditions (ii) and (iv), of both main theorems, only for the
spherical Hausdorff measure. As Sm and Hm have the same null-sets, and even
Hm(A) ≤ Sm(A) ≤ 2mHm(A) for all A ⊂ Hn , the rectifiable sets are the same
for both measures and the equivalence of the conditions (i), (iii) and (v) in Theo-
rem 3.14 and 3.15 holds also for Hm .

In [14,15], (2n, H)-rectifiable sets were used to establish De Giorgi’s structure
theory for sets of finite perimeter in step 2 Carnot groups, see also [3] for more gen-
eral Carnot groups. In Euclidean spaces, rectifiable sets have been fundamental in
many aspects of geometric calculus of variations, in particular for minimal surfaces
of general dimensions. Problems of existence and regularity of minimal surfaces in
Heisenberg groups have recently been considered by many people and it could be
expected that rectifiable sets would play a significant role also here. See also, for a
different application, the recent [10].

Finally we thank the referee for his careful reading of this paper.

2. Heisenberg groups

2.1. Algebraic and metric structure of Hn

For a general review on Carnot groups, and in particular on Heisenberg groups, we
refer to [8, 9, 19, 32] and to [33]. We limit ourselves to fix some notations.

Hn is the n-dimensional Heisenberg group, identified with R2n+1 through ex-
ponential coordinates. A point p ∈ Hn is denoted p = (p1, . . . , p2n, p2n+1) =
(p′, p2n+1), with p′ ∈ R2n and p2n+1 ∈ R. If p and q ∈ Hn , the group operation
is defined as

p · q :=
(

p′ + q ′, p2n+1 + q2n+1 − 2
n∑

i=1

(pi qi+n − pi+nqi )

)
.

The inverse of p is p−1 := (−p′, −p2n+1) and e = 0 is the identity of Hn .
The centre of Hn is the subgroup T := {p = (0, . . . , 0, p2n+1)}.
For any q ∈ Hn and r > 0, we denote as τq : Hn → Hn the left translation

p �→ q · p = τq(p) and as δr : Hn → Hn the dilation

p �→ (r p′, r2 p2n+1) = δr p.

Notice that dilations are also automorphisms of Hn .
We denote, for all p, q ∈ Hn ,

‖p‖ := d(p, e) := max{‖(p1, · · · , p2n)‖R2n , |p2n+1|1/2}
and

d(p, q) = d(q−1 · p, e) = ‖q−1 · p‖. (2.1)
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Then, for all p, q, z ∈ Hn and for all r > 0,

d(z · p, z · q) = d(p, q) and d(δr p, δr q) = rd(p, q).

Finally, U (p, r) and B(p, r) are the open and the closed ball associated with d.
The standard basis of the Lie algebra h of Hn is given by

Xi := ∂i + 2xi+n∂2n+1, Yi := ∂i+n − 2xi∂2n+1, T := ∂2n+1,

for i = 1, . . . , n. The horizontal subspace h1 is the subspace of h spanned by
X1, . . . , Xn and Y1, . . . , Yn . Denoting by h2 the linear span of T , the 2-step strati-
fication of h is expressed as

h = h1 ⊕ h2.

The Lie algebra h is endowed with the scalar product 〈·, ·〉, that makes X1, ..., Yn, T
orthonormal, and by the induced norm ‖ · ‖.

The vector fields X1, . . . , Xn, Y1, . . . , Yn define a vector subbundle of the tan-
gent vector bundle THn , the so called horizontal vector bundle HHn – according to
the notation of Gromov, (see [19] and [26]). We identify sections φ of HHn , us-
ing coordinates with respect to the moving frame X1, . . . , Yn , with functions φ =
(φ1, . . . , φ2n) : Hn → R2n . We will also identify sections φ : � ⊂ Hn → HHn

with the map φ : � → h1 defined as

φ(p) =
n∑

j=1

φ j (p)X j + φn+ j (p)Y j .

We denote by π : Hn → h1 the map defined as

π(p) :=
n∑

j=1

(
p j X j + pn+ j Y j

)
. (2.2)

Remark 2.1. Because the topologies defined by d and by the Euclidean distance
coincide, the topological dimension of Hn is 2n + 1. Moreover d is bilipschitz
equivalent to the Carnot-Carathéodory metric dc induced by the horizontal sub-
bundle HHn (see [19, 26]).

The (2n + 1)-dimensional Lebesgue measure L2n+1 on Hn ≡ R2n+1 is left
(and right) invariant and it is a Haar measure of the group.

For m ≥ 0, we denote by Sm the m-dimensional spherical Hausdorff measure,
obtained from the distance d following Carathédory’s construction as in [12, Sec-
tion 2.10.2].

For A ⊂ Hn and δ > 0, Sm(A) = limδ→0 Sm
δ (A), where

Sm
δ (A) = inf

{∑
i

αmrm
i : A ⊂

⋃
i

B(pi , ri ), ri ≤ δ

}
.
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We have to be precise about the constants αm appearing in this definition. We
will define αm only for m integer, 0 ≤ m ≤ 2n + 2 and m �= n + 1. Indeed
explicit computations will be carried out only in these cases, because, as observed
in the introduction, k-dimensional C1 (or Lipschitz) submanifolds have intrinsic
Hausdorff dimension k if 1 ≤ k ≤ n and Hausdorff dimension k + 1 if n + 1 ≤ k ≤
2n + 1.

Hence, if ωm is the Lm measure of the unit Euclidean ball Bm,euc in Rm , we
define

αm :=
{

ωm if 1 ≤ m ≤ n,

2ωm−2 if n + 2 ≤ m ≤ 2n + 2.
(2.3)

With this choice, the Sm measure restricted to homogeneous subgroups of G(Hn)

(see Definition 2.16) coincides with the appropriate Lebesgue measure. The precise
statement is in Proposition 2.20.

Translation invariance and homogeneity under dilations of Hausdorff measures
follow as usual. For all A ⊆ Hn , for all p ∈ Hn , r ∈ (0, ∞) and 1 ≤ m ≤ 2n + 2

Sm(τp A) = Sm(A), Sm(δr (A)) = rmSm(A). (2.4)

Finally we denote by Hm
euc the m-dimensional Hausdorff measure related to the

Euclidean distance in R2n+1.

2.2. Function spaces

If � is an open subset of Hn ≡ R2n+1 and k ≥ 0 is a non negative integer, Ck(�)

indicates the usual space of real valued functions which are k times continuously
differentiable in the Euclidean sense. We denote by Ck(�, HHn) the set of all
Ck-sections of HHn where the Ck regularity is understood as regularity between
smooth manifolds.

Definition 2.2. If � is an open subset of Hn and f ∈ C1(�) we define the hori-
zontal gradient of f as

∇H f := (X1 f, . . . , Xn f, Y1 f, . . . , Yn f ) . (2.5)

Alternatively ∇H f can be defined as the section of HHn

∇H f :=
n∑

j=1

(X j f ) X j + (Y j f ) Y j

whose canonical coordinates are (X1 f, . . . , Xn f, Y1 f, . . . , Yn f ).

Definition 2.3. We say that f : Hn → R is differentiable along X j (or along Y j ) at
p0 if the map r �→ f (p0 · δr e j ) (respectively: r �→ f (p0 · δr e j+n)) is differentiable
at r = 0. Here ek is the k-th vector of the canonical basis of R2n+1.
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Clearly, if f ∈ C1(�) then f is differentiable along X j and Y j , for j =
1, . . . , n, at all points of � and

d f

dr
(p0 · δr e j )

∣∣
r=0 = X j f (p0) ,

d f

dr
(p0 · δr e j+n)

∣∣
r=0 = Y j f (p0)

for all p0 ∈ �. Hence, if f is differentiable along X j ’s and Y j ’s at p0 and we define
the horizontal gradient to be

∇H f (p0) :=
n∑

j=1

X j f (p0) X j +
n∑

j=1

Y j f (p0) Y j (2.6)

then this definition naturally extends the one given in (2.5).

Definition 2.4. If U ⊂ Hn , we denote by C1
H (U) the set of continuous real valued

functions in U such that ∇H f exists and is continuous in U ; [C1
H (U)]k is the set of

k-tuples f = ( f1, · · · , fk) such that each fi ∈ C1
H (U) for 1 ≤ i ≤ k.

Notice that C1(�) ⊂ C1
H (�), and the inclusion is strict (see [14, Remark 5.9]).

The following definition of differentiability, for functions acting between Carnot
groups, was given by Pansu in [27].

Definition 2.5. Let (G1, d1) and (G2, d2) be Carnot groups and A ⊂ G1. A func-
tion f : A → G2 is Pansu differentiable in g ∈ A if there is a homogeneous
homomorphism Lg : G1 → G2 such that

d2
(

f (g)−1 · f (g′), Lg(g−1 · g′)
)

d1(g, g′)
→ 0, as d1(g, g′) → 0, g′ ∈ A.

The homogeneous homomorphism Lg is denoted dH fg and is called the Pansu
differential of f in g.

Pansu obtained, in [27], a Rademacher type theorem for Lipschitz functions
acting between Carnot groups proving that they are almost everywhere differen-
tiable, in the sense of Definition 2.5. We shall use the following case of Pansu’s
theorem, (see [21, Theorem 3.4.11]).

Theorem 2.6. Let A ⊂ Rm be an Lm measurable set and f : A → Hn be a
Lipschitz map. Then f is Pansu differentiable Lm-a.e. in A.

The functions of C1
H (�) are differentiable in Pansu’s sense (see [27] and [14])

and the Pansu differential dH f is represented by the horizontal gradient ∇H f .

Proposition 2.7. With the notations of Definition 2.3, f ∈ C1
H (�) if and only if its

distributional derivatives Xi f , Yi f (i = 1, . . . , n) are continuous in �.
Moreover, if f ∈ C1

H (�), then for all p, p0 ∈ �

f (p) = f (p0) + dH f p0(p−1
0 · p) + o(d(p, p0)), as p → p0. (2.7)
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We mention also the following ‘converse’ result to Theorem 2.6.

Proposition 2.8. Let 1 ≤ d ≤ n. If f : A ⊂ Rd → Hn is Pansu differentiable in
x0 then f is also Euclidean differentiable in x0 and

f (x0) · dH fx0(R
d) = f (x0) + d fx0(R

d).

Proof. By the contact property of H-linear maps (see [21] or [17]) we know that
L := dH fx0 is a classical linear map from Rd to R2n+1 and L(v) = (Av, 0) where
A is a suitable 2n × d matrix. Then, for the first 2n components f1, . . . , f2n of f ,
Pansu differentiability coincides with Euclidean differentiability so that

A =



∇ f1(x0)
...

∇ f2n(x0)




while a not difficult computation yields

∇ f2n+1(x0) = 2
n∑

j=1

(
f j+n(x0)∇ f j (x0) − f j (x0)∇ f j+n(x0)

)
.

It follows that, for all v ∈ Rd ,

f (x0) · dH fx0(v) = f (x0) + d fx0(v)

and the proof is completed.

We conclude this section mentioning the following Whitney’s extension theo-
rem (see [14]).

Theorem 2.9. Let F ⊂ Hn be a closed set, f : F → R, k : F → HHn be
continuous functions. Define

R(p′, p) := f (p′) − f (p) − 〈k(p), π(p−1 · p′)〉
d(p, p′)

,

and, if K ⊂ F is a compact set,

ρK (δ) := sup{|R(p′, p)| : p, p′ ∈ K , 0 < d(p, p′) < δ}.
If ρK (δ) → 0 as δ → 0 for every compact set K ⊂ F, then there exists f̃ : Hn →
R, f̃ ∈ C1

H (Hn), such that

f̃|F = f and ∇H f̃|F = k.

2.3. H-regular surfaces

H-regular surfaces are the intrinsic C1 embedded submanifolds in Hn . A systematic
study of H-regular surfaces has been recently carried out in [4, 5, 11, 17]. Let us
begin with the definition.
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Definition 2.10. S ⊂ Hn is a d-dimensional H-regular surface when the following
is true

(i) for 1 ≤ d ≤ n
for any p ∈ S there are open sets U ⊂ Hn , V ⊂ Rd and a function ϕ : V → U
such that p ∈ U , ϕ is injective, and continuously Pansu differentiable with
dHϕp injective, and

S ∩ U = ϕ(V);
(ii) for n + 1 ≤ d ≤ 2n

for any p ∈ S there are an open set U ⊂ Hn and a function f : U → R2n+1−d

such that p ∈ U , f ∈ [C1
H(U)]2n+1−d , with dH fq surjective for every q ∈ U

and
S ∩ U = {q ∈ U : f (q) = 0} .

In this second case, sometimes we speak of (2n + 1 − d)-codimensional H-regular
surfaces.

These notions of H-regular submanifolds are different from the corresponding
Euclidean ones and from each other. Indeed d-dimensional H-regular submani-
folds, 1 ≤ d ≤ n, are a subclass of d-dimensional Euclidean C1 submanifolds
of R2n+1 (see [17]). On the contrary, k-codimensional H -regular submanifolds,
1 ≤ k ≤ n, can be very irregular objects from a Euclidean point of view. An exam-
ple of a 1-codimensional H -regular surface in H1 ≡ R3, with fractional Euclidean
dimension equal to 2.5, is provided in [20]. On the other side, the horizontal plane
{p : p2n+1 = 0} = exp h1 is Euclidean regular but not intrinsic regular at the origin.
Nevertheless, H-regular surfaces share several properties with the Euclidean regu-
lar ones. To see this let us first introduce the notion of intrinsic tangent subgroup to
an H-regular surface.

Definition 2.11. Let S be a d-dimensional H-regular surface in Hn and ϕ and f as
in Definition 2.10. The tangent group to S in p0 ∈ S, denoted as TH S(p0), is the
homogeneous subgroup of Hn defined,

(i) for 1 ≤ d ≤ n, as

TH S(p0) := {dHϕx0(x) : x ∈ R
d}, where ϕ(x0) = p0.

(ii) for n + 1 ≤ d ≤ 2n, as

TH S(p0) := {p ∈ H
n : dH f p0(p) = 0}.

Remark 2.12. If 1 ≤ d ≤ n and if S is a H-regular d-dimensional surface, then, for
all p ∈ S, TH S(p) is a d-dimensional subgroup contained in HHn . Moreover the
Euclidean tangent plane to S in p coincides with TH S(p) (see [17, Theorem 3.5]). If
n +1 ≤ d ≤ 2n and if S is an H-regular d-surface, then TH S(p) is a d-dimensional
subgroup containing the centre T of Hn (see [17]). Finally, it follows, from the very
Definition 2.10, that S is a k-codimensional H-regular surface, 1 ≤ k < n, if and
only if S is, locally, the intersection of k 1-codimensional H-regular hypersurfaces,
with linearly independent normal vectors.
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2.4. The intrinsic Grassmannian

A subgroup G of Hn is a homogeneous subgroup if

δr g ∈ G,

for all g ∈ G and for all r > 0. Notice that, through the identification of Hn with
R2n+1, homogeneous subgroups of Hn are vector subspaces of R2n+1. Homoge-
neous subgroups either are contained in the horizontal plane exp h1, and are then
called horizontal, or they contain the centre T of Hn , and are called vertical. Hor-
izontal subgroups are commutative while vertical subgroups are non-commutative
normal subgroups of Hn .

We use the symbol dim G to indicate the ‘linear’ dimension of the subgroup
G, i.e. the dimension of its Lie algebra, and the symbol dimH G for its Hausdorff
dimension, with respect to the metric d, defined in (2.1). It follows from a gen-
eral result of Mitchell (see [25]), and also from direct verification in this case, that
dimH V = dim V, if V is a horizontal subgroup, and that dimH W = dim W + 1, if
W is a vertical subgroup.

In the following we will refer to homogeneous subgroups G of linear dimen-
sion d as d-subgroups and we will denote as dm the metric dimension of G.

Definition 2.13. Two homogeneous subgroups V and W of Hn are complementary
subgroups in Hn , if W ∩ V = {e} and if, for all p ∈ Hn , there are w ∈ W and
v ∈ V such that p = w · v. If W and V are complementary subgroups, we say that
Hn is the product of W and V and we write

H
n = W · V,

Remark 2.14. In Hn one of two complementary subgroups, is always a normal
subgroup and the other one a horizontal subgroup. Hence the product Hn = W · V

in Definition 2.13, is always a semidirect product (see Proposition 2.17). We will
use the symbol W for normal subgroups and the symbol V for the horizontal ones.

Proposition 2.15. If Hn = W · V is as above, with V horizontal and W vertical,
each p ∈ Hn has unique components pW ∈ W, pV ∈ V, such that

p = pW · pV.

For all p, q ∈ Hn and λ > 0, pW and pV depend continuously on p and,

(p−1)W = (pV)−1 · (pW)−1 · pV, (p−1)V = (pV)−1 (2.8)

(δλ p)W = δλ pW, (p · q)W = pW · pV · qW · p−1
V

(δλ p)V = δλ pV, (p · q)V = pV · qV,
(2.9)

hence, in particular, the map p �→ pV, from Hn to V, is a homogeneous homomor-
phism.
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There is a constant c = c(W, V) > 0 such that, for all p ∈ Hn,

c (‖pW‖ + ‖pV‖) ≤ ‖p‖ ≤ ‖pW‖ + ‖pV‖,
c
(
‖p−1

V
· pW · pV‖ + ‖pV‖

)
≤ ‖p‖ ≤ ‖p−1

V
· pW · pV‖ + ‖pV‖. (2.10)

and consequently

c‖pV‖ ≤ d(p, W) ≤ ‖pV‖,
c‖p−1

V
· pW · pV‖ ≤ d(p, V) ≤ ‖p−1

V
· pW · pV‖. (2.11)

Proof. Uniqueness, continuity, (2.8) and (2.9) are trivial. Then (2.10) follows from
triangular inequality and by a compactness argument, observing also that p = pW ·
pV = pV · (pV)−1 · pW · pV.

Because

d(p, W) = inf{d(p, w) : w ∈ W} = inf{‖w−1 · p‖ : w ∈ W},
we get, from (2.10),

d(p, W) = inf{‖w−1 · pW · pV‖ : w ∈ W} ≤ ‖pV‖
and, on the other side,

‖w−1 · pW · pV‖ ≥ c(‖w−1 · pW‖ + ‖pV‖) ≥ c‖pV‖
that gives the first one of (2.11).

Once more from (2.10),

d(p, V) = inf{‖p−1 · v‖ : v ∈ V}
= inf{‖(pV)−1 · (pW)−1 · pV · (pV)−1 · v‖ : v ∈ V}
≥ c inf{‖(pV)−1 · (pW)−1 · pV‖ + ‖(pV)−1 · v‖ : v ∈ V}
= c ‖p−1

V
· (pW)−1 · pV‖

= c ‖p−1
V

· pW · pV‖.
The estimate from above is obtained in the same way.

Definition 2.16. Let d be a non negative integer. We denote by H(Hn, d, dm) the
set of all d-subgroups of Hn with metric dimension dm and by H(Hn) the family of
all homogeneous subgroups. A d-subgroup G belongs to the intrinsic Grassman-
nian of the d-subgroups G(Hn, d), if there is a (2n + 1 − d)-subgroup H such that
Hn = G · H, that is

G(Hn, d) :=
{
G : G is a d-subgroup and H

n = G · H

for a (2n + 1 − d)-subgroup H

}
.
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The intrinsic Grassmannian is defined as

G(Hn) =
2n+1⋃
d=0

G(Hn, d).

Proposition 2.17. The trivial subgroups {e} and Hn are the unique elements of,
respectively, G(Hn, 0) and G(Hn, 2n + 1). Moreover,

(i) for 1 ≤ d ≤ n, G(Hn, d) = H(Hn, d, d), the set of all horizontal homoge-
neous d-subgroups;

(ii) for n + 1 ≤ d ≤ 2n, G(Hn, d) = H(Hn, d, d + 1) coincides with the set of all
vertical homogeneous d-subgroups.

On the contrary, a vertical subgroup W with 1 ≤ dim W ≤ n is not in G(Hn). In
particular, the 1-subgroup T is not in G(Hn).

Proof. In all the possible splittings of Hn as semidirect product of two subgroups,
Hn = W · V, one of the two subgroups, say V, is horizontal and the other one, W,
contains T. In terms of Lie algebras, setting v and w the Lie algebras of V and W,
we have that h = v ⊕ w, v and w are subalgebras of h and, V being horizontal, v

is commutative.
Hence 0 ≤ dim V ≤ n because in h there are at most n linearly independent,

commuting horizontal vector fields. Consequently, n < dim W = 2n+1−dim V <

2n + 1. This shows that vertical subgroups of linear dimension not exceeding n can
never be a factor of a splitting of Hn .

If L is any vector subspace of h1 then span{L , T } is a subalgebra of h and
exp{span{L , T }} is a vertical subgroup of Hn . It follows that all the horizontal
subgroups are in G(Hn). Indeed, given a horizontal subgroup V, its Lie algebra v

is a vector subspace of h1. Let L be any complementary vector subspace of v in h1
and define W := exp{span{L , T }}. Then Hn is the semidirect product of V and W,
so that V ∈ G(Hn).

On the other side, if W is a vertical subgroup of dimension larger than n it is
proved in Lemma 3.26 of [17] that a complementary horizontal subgroup V exists
such that Hn is the direct product of W and V.

Remark 2.18. G(Hn) and H(Hn) are, in a natural way, subsets of the Euclidean
Grassmannian G(R2n+1) and are endowed with the same topology. Moreover no-
tice that G(Hn, d) and H(Hn, d, dm) are compact metric spaces with respect to the
distance

ρ(G1, G2) := dHaus
(
G1 ∩ B(e, 1), G2 ∩ B(e, 1)

)
, (2.12)

where dHaus is the Hausdorff distance induced by the distance d .

Remark 2.19. If S is a d-dimensional H-regular surface and p ∈ S then

TH S(p) ∈ G(Hn, d).
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Proposition 2.20. Let G ∈ H(Hn, d, dm). Then Hd
euc G, is a left Haar measure

of G and
Hd

euc G = Sdm G,

where

dm = d if G is a horizontal subgroup,

dm = d + 1 if G is a vertical subgroup.

In particular, if G ∈ G(Hn, d) then dimHG = dm, where

dm = d if 1 ≤ d ≤ n,
(2.13)

dm = d + 1 if n + 1 ≤ d ≤ 2n.

Proof. It is known, and can be checked by direct computation (see e.g. [13]), that
the Lebesgue measure Ld is a, left and right invariant, Haar measure on G. More-
over, for all Borel sets A ⊂ G and r > 0,

Ld(δrA) = rdmLd(A)

and
Ld

G = Hd
euc G.

Notice also that, if G is horizontal, then

B(e, 1) ∩ G = Bdm ,euc

and, if G is vertical, then

B(e, 1) ∩ G = (B2n,euc × [−1, 1]) ∩ G = Bdm−2,euc × [−1, 1].
In the preceding lines we have identified G, respectively, with Rd or with Rd × R

while Bm,euc denotes the unit closed ball in Rm . Now, let A be a fixed Borel set and
let p ∈ A ∩ G. Then, taking into account (2.3),

Hd
euc

(
B(p, r) ∩ G

) = Ld(
B(p, r) ∩ G

) = rdmLd(
B(e, 1) ∩ G

)
= rdmHd

euc

(
B(e, 1) ∩ G

) = αdm rdm .

Then by [12, 2.10.17(2) and 2.10.19(3)]

Hd
euc

(
G ∩ A

) = Sdm
(
G ∩ A

)
and the thesis follows.

We say that two homogeneous subgroups are orthogonal if their subalgebras
are orthogonal vector subspaces in h.
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Remark 2.21. If 1 ≤ d ≤ n and V ∈ G(Hn, d), there is a unique subgroup
V⊥ ∈ G(Hn, 2n + 1 − d) that is orthogonal to V. Then V, V⊥ are complementary
subgroups and we define the projections

PV : H
n → V and PV⊥ : H

n → V
⊥,

where, for all p ∈ Hn , PV(p) is the V-component of p in the decomposition V, V⊥
of Hn and analogously for PV⊥(p).

As observed in Proposition 2.15, the function PV is a homogeneous homomor-
phism and we can also state differently Proposition 2.15.

Proposition 2.22. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there is c1 = c1(d) >

0 such that (2.10) holds with c = c1 and pV = PV(p), pW = PV⊥(p). Conse-
quently, (2.11) becomes

c1‖PV(p)‖ ≤ d(p, V
⊥) ≤ ‖PV(p)‖

c1‖PV(p)−1 · PV⊥(p) · PV(p)‖ ≤ d(p, V) ≤ ‖PV(p)−1 · PV⊥(p) · PV(p)‖,
(2.14)

for all p ∈ Hn.

Proof. We have to check only that, if W is V⊥, the constant in (2.10) depends only
on d. Indeed, by rotation, we can assume that

V = {(v1, . . . , vd , 0, . . . , 0)}
hence

W = V
⊥ = {(0, . . . , 0, wd+1, . . . , w2n+1)}

and the compactness argument gives a constant depending only on d. Finally, (2.14)
follows by the same proof giving (2.11) from (2.10).

Lemma 2.23. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there are s = s(d) ∈
(0, 1) and η = η(s) > 0 such that the following holds:

d(p−1 · q, V) < s d(p, q) =⇒ d
(
PV(p), PV(q)

)
> η d(p, q) (2.15)

whenever p, q ∈ Hn.

Proof. Without loss of generality, we can assume p = e. Indeed, from (2.9),

PV(p−1 · q) = PV(p)−1 · PV(q).

Hence (2.15) is equivalent to

d(q, V) < s‖q‖ =⇒ ‖PV(q)‖ > η‖q‖, (2.16)

for all q ∈ Hn .
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To prove (2.16) observe that

q = PV(q) · PV(q)−1 · PV⊥(q) · PV(q);
then, by triangular inequality, by the second line of (2.14) and by the assumption in
(2.16), we have

‖PV(q)‖ ≥ ‖q‖ − ‖PV(q)−1 · PV⊥(q) · PV(q)‖
≥ ‖q‖ − 1

c1
d(q, V)

≥ (1 − s/c1)‖q‖.
Hence, (2.15) is proved, if s < c1, with η = 1 − s/c1.

For A ⊂ Hn and r > 0, let

A(r) = {p ∈ H
n : d(p,A) ≤ r}. (2.17)

Lemma 2.24. For R > 0 and s > 0 there is δ = δ(R, s) > 0 depending only on
n, R, s such that if G ∈ G(Hn, d), 0 < r ≤ R and p ∈ B(e, R), q1, q2 ∈ B(p, r),
with d(q−1

2 · q1, G) ≥ sr , then

B(p, r) ∩ q1 · G(δsr) ∩ q2 · G(δsr) = ∅.

Proof. Denote B = B(e, 2R). Then, by compactness,

c(R, s) := inf
G∈G(Hn,d)

q1∈B\G(s R)

d
(
B ∩ q1 · G, B ∩ G

)
> 0.

Defining δ = δ(R, s) = c(R, s)/(3s R), we get

d
(
B ∩ q1 · G, B ∩ G

) ≥ 3δs R,

this gives by triangular inequality that for q1 ∈ B \ G(δs R),

B ∩ q1 · G(δs R) ∩ G(δs R) = ∅.

By translation invariance this proves the thesis in the case r = R and p = e.
The general case follows easily from this applying the translation by p−1 and the
dilation δR/r .

Lemma 2.25. Let V ∈ G(Hn, d), with 1 ≤ d ≤ n. Then there is c2 = c2(d) ≥ 1
such that, for all p ∈ Hn,

d(p, PV(p)) ≤ c2 d(p, V). (2.18)

Moreover, for all p ∈ Hn, q ∈ V and r > 0,

diam
(

P−1
V

(B(q, r)) ∩ p · V(r)
)

≤ 2(1 + c2)r.
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Proof. To prove the first statement observe that, from (2.14),

d(p, PV(p)) = ‖p−1 · PV(p)‖ = ‖PV(p)−1 · PV⊥(p)−1 · PV(p)‖
≤ 1

c1
d(p, V).

Hence (2.18) follows with c2 = 1/c1.
To check the second inequality, let pi ∈ p · V(r) with PV(pi ) ∈ B(q, r) for

i = 1, 2. Set qi = p−1 · pi . Then d(qi , V) ≤ r and, as PV is a homomorphism,
d(PV(q1), PV(q2)) = d(PV(p1), PV(p2)) ≤ 2r . So, by (2.18),

d(p1, p2) = d(q1, q2)

≤ d(q1, PV(q1)) + d(PV(q1), PV(q2)) + d(q2, PV(q2))

≤ 2(1 + c2)r.

This proves the lemma.

The last lemma is false for n < d ≤ 2n; the second inequality only holds with
r replaced by C

√
r . This is the main obstacle for carrying out the proof of the main

theorem without the positive lower density assumption in the case n < d ≤ 2n.

2.5. Intrinsic cones

We begin with the definition of intrinsic cone in Hn .

Definition 2.26. Let G be a d-subgroup of Hn . The intrinsic cone X (p0, G, s),
with vertex p0 ∈ Hn , axis G and opening s ∈ (0, 1), is

X (p0, G, s) :=
{

p ∈ H
n : d(p−1

0 · p, G) < s d(p, p0)
}

.

This definition is invariant by group translations, that is,

X (p0, G, s) = p0 · X (e, G, s)

= p0 · {
p ∈ H

n : d(p, G) < s d(p, e)
}
.

(2.19)

If ν ∈ h1 we denote by N(ν) ∈ G(Hn, 2n) the 1-codimensional normal subgroup
orthogonal to ν, that is,

N(ν) := {
p ∈ H

n : 〈ν, π(p)〉 = 0
}
. (2.20)

Proposition 2.27. If ν ∈ h1 and ‖ν‖ = 1, then, for all p0 ∈ Hn and for all
s ∈ (0, 1),

X (p0, N(ν), s) =
{

p ∈ H
n :

∣∣∣〈ν, π(p−1
0 · p)〉

∣∣∣ < s d(p, p0)
}

.
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Proof. Given (2.19), we assume p0 = e. Then, because

d(p, N(ν)) = inf
{
d(p, q) : q ∈ N(ν)

} = inf
{|p′ − q ′|R2n : q ∈ N(ν)

}
= ∣∣ 2n∑

i=1

piνi
∣∣/‖ν‖ = ∣∣ 2n∑

i=1

piνi
∣∣;

it follows that d(p, N(ν)) = |〈ν, π(p)〉|.
Notice that an H-regular submanifold S is locally contained, at any point p ∈ S, in
a cone with axis the tangent group TH S(p).

Lemma 2.28. Let S ⊂ Hn be a d-dimensional H-regular surface, let p0 ∈ S.
Then, for all α > 0, there exists r̄ = r̄(S, p0, α) > 0 such that

U (p0, r̄) ∩ S ⊂ X (p0, TH S(p0), α) . (2.21)

Proof. We divide the proof in two cases.
Assume 1 ≤ d ≤ n. By Definitions 2.10 and 2.11, there are r > 0 and an

injective continuously Pansu differentiable function ϕ : U ⊂ Rd → Hn such that

S ∩ U (p0, r) = {ϕ(x) : x ∈ U} , TH S(p0) =
{

dHϕx0(x) : x ∈ R
d
}

,

where p0 = ϕ(x0). Let p = ϕ(x), then

d
(

p−1
0 · p, TH S(p0)

)
≤ ‖dHϕx0(x0 − x) · ϕ(x0)

−1 · ϕ(x)‖ = o(|x0 − x |Rd ).

(2.22)

Since dHϕx0 : Rd → Hn is H-linear and injective, there is c = c(p0, ϕ) > 0 such
that

‖dHϕx0(x0 − x)‖ ≥ c|x0 − x |Rd .

Hence, for |x0 − x |Rd small,

‖p−1
0 · p‖ ≥ ‖dHϕx0(x − x0)‖ − d(dHϕx0(x − x0), p−1

0 · p)

≥ (c/2)|x0 − x |Rd .
(2.23)

From (2.22) and (2.23) we get (2.21).
Assume n + 1 ≤ d ≤ 2n. Once more by Definitions 2.10 and 2.11, there

are r > 0 and f ∈ [C1
H
(U (p0, r))]2n+1−d such that dH f p0 : Hn → R2n+1−d is

surjective and

S ∩ U (p0, r) = {p : f (p) = 0}
TH S(p0) = ker(dH f p0).
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If p ∈ S ∩ U (p0, r) from (2.7) we have that

|dH f p0(p−1
0 · p)|R2n+1−d = o(d(p0, p)). (2.24)

On the other hand, since dH f p0 : Hn → R2n+1−d is H-linear, there is c =
c(p0, f ) > 0 such that

|dH f p0(p−1
0 · p)|R2n+1−d ≥ c d(p−1

0 · p, ker(dH f p0)). (2.25)

Indeed, if L : Hn → R2n+1−d , n +1 ≤ d ≤ 2n, is H-linear then ker(L) is a vertical
subgroup of Hn and (by Lemma 3.26 of [17]) there is a horizontal (2n + 1 − d)-
subgroup V such that Hn = ker(L) · V. Then L : V → R2n+1−d is injective and
there exists c > 0 such that

|L(v)|R2n+1−d ≥ c‖v‖,
for all v ∈ V.

From (2.24) and (2.25) we get (2.21).

Now we collect a few technical Lemmas that will be used in the proofs of the
main results.

Lemma 2.29. Let G be a homogeneous subgroup of Hn and s ∈ (0, 1]. Then, for
p ∈ Hn and q ∈ Hn \ X (p, G, s),

B
(
q,

s

2
d(p, q)

) ⊂ H
n \ X (p, G, s/3).

Proof. Let r = d(p, q) > 0 and z ∈ B(q, sr/2). Then d(z, p) ≤ sr/2 + r ≤ 3r/2.
If g ∈ G, then

d(p−1 · z, g) ≥ d(p−1 · q, g) − d(p−1z, p−1 · q)

≥ sd(p, q) − d(z, q)

≥ sr − sr/2 = sr/2 ≥ sd(z, p)/3,

whence d ( p−1z, G) ≥ sd (z, p)/3 and z �∈ X ( p, G, s/3), which proves the
lemma.

Lemma 2.30. If 1 ≤ d ≤ 2n and 0 < s ≤ 1, there are k = k(s) homogeneous
subgroups of Hn, G1, . . . , Gk , with the same dimension d and metric dimension dm
such that for all p ∈ Hn and for all homogeneous subgroups G with dimension d
and metric dimension dm

X (p, G, s) ⊂ X (p, Gi , 3s), for some i = 1, . . . , k.

Proof. By a simple compactness argument, recalling Remark 2.18, we find G1,...,Gk
such that for all G, ρ(G, Gi ) < s for some i = 1, . . . , k. The inclusion follows
easily from this, by definition of X (p, G, s).
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Lemma 2.31. Let G1, G2 be homogeneous subgroups of Hn, with dimension d and
metric dimension dm. Assume G1 �= G2 and let d̄ = dim (G1 ∩ G2) and d̄m be the
metric dimension of G1 ∩ G2. Then 0 ≤ d̄ ≤ d − 1 and, for 0 < s < 1, there is
δ(s) > 0 such that lims→0 δ(s) = 0 and the following holds:

for all p ∈ Hn, 0 < r < ∞ and 0 < s < 1,

B(p, r) ∩ X (p, G1, s) ∩ X (p, G2, s)

can be covered with k balls of radius δ(s)r , where k ≤ Cδ(s)−d̄m and C = C(n, d̄).

Proof. We can assume that p = e and r = 1. Since G1 �= G2, then 0 ≤ d̄ =
dim(G1 ∩ G2) ≤ d − 1. It follows that, for any 0 < t ≤ 1, B(e, 1) ∩ G1 ∩ G2 can
be covered with C1t−d̄m balls of radius t where C1 depends only on n and d̄m . Next
we observe that there is δ(s) > 0 with lims→0 δ(s) = 0 such that

B(e, 1) ∩ X (e, G1, s) ∩ X (e, G2, s) ⊂ (G1 ∩ G2)
(
δ(s)/2

)
,

where A(r) is defined in 2.17. If this were not true, we could find η > 0, q j ∈
B(e, 1), j = 1, 2 . . . , such that d(q j , Gi ) ≤ d(q j , e)/j ≤ 1/j, i = 1, 2, and
d(q j , G1 ∩ G2) ≥ η. By going to a suitable subsequence, we could also assume
that q j → q. Then q ∈ G1 ∩ G2 and d(q, G1 ∩ G2) ≥ η, which is impossible.
Combining the above two facts with t = δ(s)/2 we see that the lemma holds with
C = C12d̄m ≤ C12d .

Lemma 2.32. Let W ∈ G(Hn, d) with n < d ≤ 2n. Then there are unit vectors
ν1, · · · , ν2n+1−d ∈ h1, such that

V := exp
(
span{ν1, · · · , ν2n+1−d}) ∈ G(Hn, 2n + 1 − d),

is (a horizontal subgroup) complementary to W. The vectors ν j can be chosen con-
tinuously dependent on W in sufficiently small neighborhoods in G(Hn, d). More-
over, W = ⋂2n+1−d

j=1 N(ν j ), and, for all p ∈ Hn,

X (p, W, s) ⊂
2n+1−d⋂

i=1

X (p, N(νi ), s). (2.26)

Proof. The existence of a horizontal subgroup V, complementary to W, is the con-
tent of [17, Lemma 3.26]. Moreover, from the proof of that lemma, it follows that
V depends continuously on W. Hence, we can choose ν1, · · · , ν2n+1−d as an or-
thonormal basis of V, continuously dependent on W.

Let w ⊂ h be the Lie algebra of W and let wi be the subalgebra generated
by w, ν1, . . . , νi , νi+1, . . . , ν2n+1−d , for i = 1, . . . , 2n + 1 − d . Each wi is a
subalgebra of h, hence N(νi ) = exp(wi ) ∈ G(Hn, 2n) and W = ⋂

i N(νi ). Finally,
because d(p, N(νi )) ≤ d(p, W), also X (p, W, s) ⊂ X (p, N(νi ), s) and (2.26)

follows.
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3. Rectifiable sets and measures in Hn

3.1. Measures, densities and tangent measures

Let µ be an outer measure in Hn . The image f#µ under a map f : Hn → Hn is the
measure on Hn defined by

f#µ(A) = µ
(

f −1(A)
)
, for all A ⊂ H

n.

For a ∈ Hn and r > 0, Ta,r : Hn → Hn is defined, for all p ∈ Hn , as

Ta,r (p) := δ1/r (a
−1 · p).

Definition 3.1. Let µ be a Radon measure on Hn . We say that ν is a tangent mea-
sure of µ at a ∈ Hn if ν is a Radon measure on Hn with ν(Hn) > 0 and there are
positive numbers ci and ri , i = 1, 2, . . ., such that ri → 0 and

ci Ta,ri #µ ⇀ ν, weakly as i → ∞.

We denote by Tan(µ, a) the set of all tangent measures of µ at a.

The numbers ci are normalization constants which are needed to keep ν non-
trivial and locally finite. Often, as below, one can use ci = µ

(
B(a, ri ))

−1.

Definition 3.2. Let µ be a Radon measure on Hn . We say that µ has a unique
tangent measure ν at a if ν is a Radon measure on Hn such that

Tan(µ, a) = {c ν : 0 < c < ∞}.
Of course, such a ν is unique only up to multiplication by positive constants.

The following theorem was recently proved in [24] in a much more general
setting, i.e., inside locally compact metric groups with dilations.

Theorem 3.3. Let µ be a Radon measure on Hn. Then the following two conditions
are equivalent:

(1) µ has a unique tangent measure νa at µ-a.e. a ∈ Hn.
(2) For µ-a.e. a ∈ Hn there exists a closed homogeneous subgroup Ga of Hn for

which
Tan(µ, a) = {cλa : 0 < c < ∞}

where λa is a left Haar measure of Ga.

Moreover, if these conditions hold, it is possible to choose λa such that

1

µ(B(a, r))
Ta,r#µ ⇀ λa, weakly as r → 0.
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Notice that the subgroups Ga of Theorem 3.3 are not necessarily in G(Hn). The
easiest example being µ := S2 T: in this case, µ is invariant by dilations and µ is
its own tangent measure at any point a ∈ T. More generally, if γ ⊂ H1 is any non
horizontal C1 curve, and µ := S2 γ , then once more the unique tangent measure
to µ in any point a ∈ γ is the measure ν := S2 T.

Any measure Sdm S, with S H-regular surface, has, at each point p ∈ S,
a unique tangent measure in the sense of Definition 3.2; this tangent measure is
always supported on TH S(p), hence it is supported on a subgroup in G(Hn) (see
[14, 16, 26]). Indeed we have

Theorem 3.4. Let S ⊂ Hn be a d-dimensional H-regular surface. Then S has
Hausdorff dimension dm (remember (2.13)) and, denoting

Sp0,r :=
{

p ∈ H
n : p0 · δr (p−1

0 · p) ∈ S
}

,

for p0 ∈ Hn and r > 0, we have

lim
r→0

Sdm (Sp0,r ∩ U (0, 1))

αdm rdm
= Sdm (TH S(p0) ∩ U (0, 1))

αdm

= Hd
euc(TH S(p0) ∩ U (0, 1))

αdm

= 1.

Moreover,
1

rdm
Tp0,r#(Sdm S) ⇀ Sdm TH S(p0), (3.1)

as r → 0, weakly in the sense of measures, whence

Tan(Sdm S, p0) = {cSdm TH S(p0) : 0 < c < ∞}.
Following [23] we define

Definition 3.5. Let µ be a Radon measure in Hn and m > 0. We define the upper
and lower m-densities of µ at p ∈ Hn as

�∗ m(µ, p) := lim sup
r→0

µ(B(p, r))

αm rm

and

�m∗ (µ, p) := lim inf
r→0

µ(B(p, r))

αm rm
,

where αm is defined in (2.3). In particular, if E ⊂ Hn is Sm measurable with
Sm E locally finite, we define the upper and lower m-densities of E at p ∈ Hn as

�∗ m(E, p) := lim sup
r→0

Sm(E ∩ B(p, r))

αm rm
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and

�m∗ (E, p) := lim inf
r→0

Sm(E ∩ B(p, r))

αm rm
.

If they agree their common value

�m(E, p) = �∗ m(E, p) = �m∗ (E, p)

is called the m-density of E at p.

Lemma 3.6. Let E ⊂ Hn be Sm measurable with Sm(E) < ∞. Then

(i) 2−m ≤ �∗m(E, p) ≤ 1, for Sm-a.e. p ∈ E;
(ii) �∗m(E, p) = 0, for Sm-a.e. p ∈ Hn \ E;

Proof. All the statements follow from general results on densities of spherical
Hausdorff measures in metric spaces (see [23, Theorem 6.2] and [12, 2.10.19]).

Following [23] we define the approximate tangent group apTand
H
(E, p) of E

at p ∈ Hn , as follows

Definition 3.7. Let E ⊂ Hn be Sdm measurable. We say that the homogeneous
subgroup Tp, of dimension d and metric dimension dm , is a (d, H)-approximate
tangent group to E at p if �∗dm (E, p) > 0 and

lim
r→0

Sdm
(
E ∩ B(p, r) \ X (p, Tp, s)

)
rdm

= 0, (3.2)

for all 0 < s < 1. We write apTand
H
(E, p) for the set of all (d, H)-approximate

tangent groups to E at p. If there is only one subgroup Tp ∈ apTand
H
(E, p) we

write Tp = apTand
H
(E, p).

Remark 3.8. Let 1 ≤ d ≤ n, B be a Borel subset of Rd and f : B → Hn be a
Lipschitz function. If E = f (B) and if f is Pansu differentiable at x0 ∈ B with
injective Pansu differential dH fx0 then, at p0 = f (x0),

apTand
H
(E, p0) = dH fx0(R

d) = Tand(E, p0),

where Tand(E, p0) is the approximate tangent space introduced in [2, Definition
5.5], and, see Proposition 2.8,

f (x0) · apTand
H
(E, p0) = f (x0) + Tand(E, p0).

The proof of the first equality is given in the first part of the proof of Lemma 2.28.
The second equality follows from the following considerations.
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If f : B ⊂ Rd → Hn is Lipschitz and if B is bounded then f is also Eu-
clidean Lipschitz from B to R2n+1. For a Euclidean Lipschitz function f , in a
differentiability point x0 of f , we have

Tand( f (B), f (x0)) = d fx0(R
d).

where Tand( f (B), f (x0)) is the approximate tangent space of [2] and d fx0 is the
usual differential of f . Then the second equality follows from Proposition 2.8.

Finally notice that, for 1 ≤ d ≤ n, also the tangent group TH S(p) to an H-
regular surface S coincides with the approximate tangent space Tand(S, p).

Approximate tangent groups are unique almost everywhere. Indeed we have:

Proposition 3.9. Let E ⊂ Hn be Sdm measurable, with Sdm (E) < ∞, and let A be
the set of those p ∈ E for which E has some (d, H)-approximate tangent subgroup
at p of metric dimension dm. Then

(i) A is Sdm measurable,
(ii) E has a unique (d, H)-approximate tangent subgroup Gp at Sdm -a.e. p ∈ A,
(iii) the mapping p �→ Gp is Sdm measurable.

Proof. By Borel regularity we may assume that E is a Borel set. We shall show that
then A is a Suslin set (see [12, Section 2.2] for the required facts on Suslin sets).
Define for r > 0, i = 1, 2 . . . , p ∈ E and G ∈ H(Hn, d, dm),

fi,r (p, G) = r−dmSdm (E ∩ B(p, r) \ X (p, G, 1/ i)),

fi (p, G) = lim sup
r→0

fi,r (p, G).

One checks easily that fi,r is upper semicontinuous and the upper limit can be taken
through rational values of r , whence fi is a Borel function. Let B be the set of those
(p, G) ∈ E ×H(Hn, d, dm) such that G is a (d, H)-approximate tangent subgroup
of E at p. Then

B =
∞⋂

i=1

{(p, G) : fi (p, G) = 0},

and so B is a Borel set. Clearly A is the projection on E of B, consequently A is a
Suslin set. This proves (i).

For Borel sets F ⊂ E we have, for Sdm -a.e. p ∈ F , that G is a (d, H)-
approximate tangent subgroup of F at p if and only is G is a (d, H)-approximate
tangent subgroup of E at p. This follows from the fact that �∗dm (E \ F, p) = 0 for
Sdm -a.e. p ∈ F , recall Lemma 3.6. Since �∗dm (E, p) ≤ 1 for Sdm -a.e. p ∈ F , we
may assume that

Sdm (E ∩ B(p, r)) ≤ 2αdm rdm for all p ∈ E, r > 0,
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whence

Sdm (E ∩ B(p, r)) ≤ 21+dm αdm rdm for all p ∈ H
n, r > 0, (3.3)

by decomposing E as a countable union of sets of this type and a set of measure 0.
By Lemma 2.31 for G1, G2 ∈ H(Hn, d, dm) with G1 �= G2 and for 0 < s <

1, there is δ(s) > 0 such that lims→0 δ(s) = 0 and the following holds: for all
p ∈ Hn, 0 < r < ∞ and 0 < s < 1, B(p, r) ∩ X (p, G1, s) ∩ X (p, G2, s) can be
covered with k balls of radius δ(s)r where k ≤ Cδ(s)1−dm . Then by (3.3)

Sdm (E ∩ B(p, r) ∩ X (p, G1, s) ∩ X (p, G2, s)) ≤ 21+dm Cδ(s)αdm rdm .

If G1 and G2 are (d, H)-approximate tangent subgroups of E at p, then

lim
r→0

r−dmSdm
(
E ∩ B(p, r) \ (X (p, G1, s) ∩ X (p, G2, s))

) = 0,

so �∗dm (E, p)≤21+dm Cδ(s). This concludes the proof of (ii), since by Lemma 3.6,
�∗dm (E, p) ≥ 2−dm for Sdm -a.e. p ∈ E .

By (i) and (ii) the set C of those p ∈ A for which E has a unique (d, H)-
approximate tangent subgroup Gp at a is Sdm measurable. So to prove (iii), it is
enough to show that for every Borel set D ⊂ C the map p �→ Gp, p ∈ D, is Borel
measurable. Let F = B ∩(D×H(Hn, d, dm)) where B is the Borel set of the proof
of (i). Then F is a Borel set and the projection � : F → D is 1-1. Thus �(H) is
a Borel set for every Borel set H ⊂ F , (see [12], p. 67). Let f = �−1 : D → F ,
that is f (p) = (p, Gp). Then for every Borel set H ⊂ F , f −1(H) = �(H) is
a Borel set and so f is Borel measurable. Thus also p �→ Gp, p ∈ D, is Borel
measurable.

We shall now give a general result in the spirit that approximate tangent group
properties imply positive lower density. This will allow us to prove the main result
without positive lower density assumption in low dimensions.

Theorem 3.10. Let 1 ≤ d ≤ n. There exists η, 0 < η < 1, depending only on n
and d with the following property. Let E ⊂ Hn be Sd measurable with Sd(E) < ∞
such that for Sd-a.e. p ∈ E there exists a horizontal subgroup Vp ∈ G(Hn, d) for
which

lim
r→0

r−dSd(E ∩ B(p, r) \ X (p, Vp, η)) = 0. (3.4)

Then
θd∗ (E, p) > 0 (3.5)

for Sd-a.e. p ∈ E.

Proof. Denote µ = Sd E . Then, by Lemma 3.6, for Sd -a.e. p ∈ E ,

θ∗d(µ, p) ≥ 2−d . (3.6)
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Let A be a Borel subset of E such that for p ∈ A (3.6) and (3.4) hold and

θd∗ (µ, p) = 0. (3.7)

We need to show that µ(A) = 0. By decomposing µ almost all of A into countable
unions we shall make various reductions of the problem. First, by (3.6), we may
assume that

θ∗d(µ, p) > 2−d−1 for p ∈ A. (3.8)

Let c2 be as in Lemma 2.25 and let C = 2(1 + c2)d, c = (26 · C)−dαd , s =
(2C)−1, δ = δ(1/2, s) > 0 as in Lemma 2.24 and η = δs/6. Let 0 < ε < c.
We can assume that A ⊂ B(e, 1/2). By Lemma 2.30 we may assume that there is
V ∈ G(Hn, d) such that for p ∈ A,

X (p, Vp, δs/6) ⊂ X (p, V, δs/2),

whence for r > 0,

B(p, r) ∩ X (p, Vp, η) ⊂ {q ∈ H
n : d(q, p · V) < δsr/2} = p · V(δsr/2),

and so by (3.4)
lim
r→0

r−dµ(B(p, 2r) \ p · V(δsr)) = 0.

Hence we may assume that for some r0, 0 < r0 < 1/2,

µ(B(p, 2r) \ p · V(δsr)) < brd for p ∈ A, 0 < r ≤ r0, (3.9)

with b = 2−1 · C−dε. Finally, if µ(A) > 0, using the fact θ∗d(µ A, p) =
θ∗d(µ, p) for µ-a.e. p ∈ A (by Lemma 3.6), we may assume by (3.8) that for some
p0 ∈ A and with r0 as above

A ⊂ B(p0, (2
4 · C)−1r0) with µ(A) > crd

0 . (3.10)

We shall show that this leads to a contradiction.
Under the above assumptions we have that for all p ∈ Hn and 0 < r ≤ r0/2,

A ∩ B(p, r) ⊂ q · V(sr) for q ∈ A ∩ B(p, r). (3.11)

whenever µ(B(p, r)) ≥ 2brd .
To see this let q ∈ A∩B(p, r) and suppose there is q ′ ∈ A∩B(p, r)\q ·V(sr).

Then by Lemma 2.24

B(p, r) ⊂ (B(q, 2r) \ q · V(δsr)) ∪ (B(q ′, 2r) \ q ′ · V(δsr)),

whence by (3.9)

µ(B(p, r)) ≤ µ(B(q, 2r) \ q · V(δsr)) + µ(B(q ′, 2r) \ q ′ · V(δsr)) < 2brd

which is a contradiction and proves (3.11).
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We may assume that

V = {(p, t) ∈ H
n : pi = 0 for i > d and t = 0},

identified as Rd . Let k0 be the integer defined by C · 22−k0 ≤ r0 < C · 23−k0 and

Q0 = {(p1, . . . , pd) ∈ V : 0 ≤ pi < 2−k0}.
Let Q jk0

= Q0 and let Q jk0 ,..., jk , k = k0 + 1, k0 + 2, . . . , ji = 1, . . . , 2d , be the

cubes of side-length 2−k constituting the standard dyadic decomposition of Q0 in
such a way that Q jk0 ,..., jk+1 ⊂ Q jk0 ,..., jk . Let P : Hn → V be the natural projection
and set

S0 = P−1(Q0), S jk0 ,..., jk = P−1(Q jk0 ,..., jk ).

By translating A we may assume that A ⊂ S0 by (3.10) and the choice r0 < C ·
23−k0 . Let I be the set of those multi-indices ( jk0, . . . , jk) such that

µ(A ∩ S jk0 ,..., jk ) < ε2−kd = εLd(Q jk0 ,..., jk )

and
µ(A ∩ S jk0 ,..., jl ) ≥ ε2−ld

for all l < k, and let J be the set of those multi-indices ( jk0, . . . , jk) such that

µ(A ∩ S jk0 ,..., jl ) ≥ ε2−ld (3.12)

for all 1 ≤ l ≤ k.
Then the sets Sι, ι ∈ I , are disjoint. We shall prove that for each ι ∈ I∪J , ι =

( jk0, . . . , jk), there is pι ∈ A such that

A ∩ Sι ⊂ B(pι, C · 2−k). (3.13)

Then
A ⊂

⋃
ι∈I

Sι.

Otherwise there is p ∈ A and jk0, jk0+1, . . . , such that ι(k) = ( jk0, . . . , jk) ∈ J
and p ∈ A ∩ Sι(k) for every k. As

p ∈ A ∩ Sι(k) ⊂ B(pι(k), C · 2−k) ⊂ B(p, C · 21−k)

we get a contradiction from (3.7) and (3.12). Hence

µ(A) ≤
∑
ι∈I

µ(A ∩ Sι) ≤ ε
∑
ι∈I

Ld(Qι) ≤

εLd(Q0) = ε · 2−k0d < εrd
0 < crd

0 ,

which is a contradiction with (3.10), gives us that µ(A) = 0 and proves the theorem.



RECTIFIABLE SETS IN H
n 713

We prove (3.13) by induction on k starting with k = k0. This case is clear by
(3.10). Suppose k is such that (3.13) holds for all ι = ( j1, . . . , jl) ∈ I ∪ J , l < k.
Let κ = ( j1, . . . , jk) ∈ I ∪ J . Then ι = ( j1, . . . , jk−1) ∈ J and (3.13) holds for
pι ∈ A. So

A ∩ Sκ ⊂ A ∩ Sι ⊂ A ∩ B(pι, C · 21−k).

Since ι ∈ J , we have, by (3.12), that

µ(A ∩ B(pι, C · 21−k) ≥ µ(A ∩ Sι) ≥ ε2(1−k)d = 2b(C · 21−k)d ,

and so we have by (3.11), since C · 21−k ≤ r0/2, that

A ∩ Sκ ⊂ pι · V(sC · 21−k) ∩ Sι = pι · V(2−k) ∩ Sι.

As Qι is contained in a ball of radius d · 2−k , we have by Lemma 2.25

diam(pι · V(2−k) ∩ Sι) ≤ C · 2−k,

from which (3.13) follows for κ .

3.2. Intrinsic rectifiable sets

The notion of H-regular surfaces introduced in Definition 2.10 allows to give the
following definition of intrinsic rectifiable sets. This definition was given in [14],
for dimension 2n, to prove De Giorgi’s structure result for sets of finite perimeter
in Heisenberg groups, and later for any dimension in [17] and in Carnot groups
of [15, Step 2].

Definition 3.11. We say that E ⊆ Hn is d-dimensional H-rectifiable, or E is
(d, H)-rectifiable, if there exists a sequence of d-dimensional H-regular surfaces
(Si )i∈N such that

Sdm

(
E \

⋃
i∈N

Si

)
= 0,

where dm = d if 1 ≤ d ≤ n and dm = d + 1 if n + 1 ≤ d ≤ 2n.

Remark 3.12. We recall that, for n + 1 ≤ d ≤ 2n, a d-dimensional Euclidean rec-
tifiable set E ⊂ R2n+1 ≡ Hn always is a (d, H)-rectifiable set, while the converse
is false. On the contrary, for 1 ≤ d ≤ n, a (d, H)-rectifiable set is d-dimensional
Euclidean rectifiable while the opposite is false (see [7], [15] and [17]).

At the moment we are unable to prove our main theorem for (d, H)-rectifiable
sets when 1 ≤ d ≤ n. Hence we give an alternative definition. In Euclidean spaces
these two definitions are equivalent and in fact the type of definition below was
the original definition of Federer and it has also often been used in general metric
spaces. We don’t know if they are equivalent in Hn . The problem is that we don’t
have a suitable Whitney extension theorem for maps f : F → Hn when F is a
closed subset of Rd .
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Definition 3.13. Let 1 ≤ d ≤ n. We say that E ⊂ Hn is (d, HL)-rectifiable if there
exist Lipschitz mappings fi : Ai → Hn, Ai ⊂ Rd , i = 1, 2, . . . , such that

Sd(
E \

⋃
i∈N

fi (Ai )
) = 0.

Note that we can always take the sets Ai to be compact since the Lipschitz maps fi
trivially extend to the closures of the sets Ai and closed sets are countable unions
of compact sets.

The domain of definition for the Lipschitz maps in the definition of (d, HL)-
rectifiability can be taken to be all of Rd , because of the Lipschitz extension results
proved in [6, 22] and [34].

Notice also that (d, H)-rectifiability implies (d, HL)-rectifiability, for 1 ≤ d ≤
n. Indeed, a continuous Pansu differentiable function ϕ : V ⊂ Rd → Hn is also
locally Lipschitz (see [17, Theorem 3.5]).

3.3. Main Theorem

Now we can state the main results of this paper.

Theorem 3.14. Let 1 ≤ d ≤ n be an integer and E ⊂ Hn be a Borel set such that
Sd E is locally finite. Then the following conditions are equivalent:

(i) E is (d, HL)-rectifiable.
(ii) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) with

1

rd
Tp,r#(Sd E) ⇀ Sd

Tp, as r → 0,

weakly in the sense of measures.
(iii) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) such that

Tp = apTand
H
(E, p).

(iv) For Sd-a.e. p ∈ E there is Tp ∈ G(Hn, d) such that

Tan(Sd E, p) =
{

cSd
Tp : 0 < c < ∞

}
.

Finally, if d = 1, (i) to (iv) are also equivalent with:

(v) for S1-a.e. p ∈ E there exists a Radon measure λp such that

Tan(S1 E, p) = {
c λp : 0 < c < ∞}

.

Notice that (v) does not imply the other conditions if d > 1. Indeed, for any 2 ≤
d ≤ n, take E a (d − 1)-dimensional vertical subgroup. Then Tan(Sd E, p) =
{cSd E, 0 < c < ∞} but E /∈ G(Hn, d − 1).
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Theorem 3.15. Let n + 1 ≤ d ≤ 2n be an integer and E ⊂ Hn be a Borel set such
that Sdm E is locally finite. Then the following conditions are equivalent:

(i) E is (d, H)-rectifiable.
(ii) For Sdm -a.e. p ∈ E there is Tp ∈ G(Hn, d) with

1

rdm
Tp,r#(Sdm E) ⇀ Sdm Tp, as r → 0,

weakly in the sense of measures.
(iii) For Sdm -a.e. p ∈ E, �

dm∗ (E, p) > 0 and there is Tp ∈ G(Hn, d) such that

Tp = apTand
H
(E, p).

(iv) For Sdm -a.e. p ∈ E, �
dm∗ (E, p) > 0 and there is Tp ∈ G(Hn, d) such that

Tan(Sdm E, p) =
{

cSdm Tp : 0 < c < ∞
}

.

(v) For Sdm -a.e. p ∈ E, �
dm∗ (E, p) > 0 and there exists a Radon measure λp

such that
Tan(Sdm E, p) = {

c λp : 0 < c < ∞}
.

Before proving the two main theorems we state the following corollary that gives
the Heisenberg version of a different easier characterization of rectifiable sets (see
for instance [1, Theorem 2.61]).

Corollary 3.16. Let d be an integer with 1 ≤ d ≤ 2n and dm as in (2.13). Let
E ⊂ Hn be a Borel set with Sdm (E) < ∞. Assume that for all p ∈ E there are
rp > 0, cp > 0 and Tp ∈ G(Hn, d) such that

E ∩ B(p, rp) ⊂ X (p, Tp, cp).

Then

(i) if 1 ≤ d ≤ n, E is (d, HL)-rectifiable
(ii) if n + 1 ≤ d ≤ 2n and �

dm∗ (E, p) > 0 for Sdm -a.e. p ∈ E, E is (d, H)-
rectifiable.

Proof of Theorems 3.14 and 3.15. We shall prove both theorems simultaneously
making only the different arguments in appropriate places. The scheme of the im-
plications in the proof is the following: (i) ⇒ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i), and
(iv) ⇐⇒ (v).

1. Proof of (i) ⇒ (ii) We first prove the case n + 1 ≤ d ≤ 2n. By assumption

E = E0 ∪ (∪∞
i=1 Ei

)
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where Sdm (E0) = 0 and, for i ≥ 1, Ei ⊂ Si with Si is a d-dimensional H-regular
surface. By (3.1) for a fixed i ≥ 1, at each p ∈ Si ,

1

rdm
Tp,r#(Sdm Si ) ⇀ Sdm TH Si (p) as r → 0. (3.14)

On the other hand, by Lemma 3.6, for a fixed i and for Sdm -a.e. p ∈ Ei ,

�∗dm (E \ Ei , p) = 0 and �∗dm (Si \ Ei , p) = 0. (3.15)

Now observe that for p ∈ Ei and for ϕ ∈ C0
c (Hn),

1

rdm

∫
E

ϕ ◦ Tp,r dSdm =

= 1

rdm

∫
E\Ei

ϕ ◦ Tp,r dSdm + 1

rdm

∫
Si

ϕ ◦ Tp,r dSdm −
1

rdm

∫
Si \Ei

ϕ ◦ Tp,r dSdm .

(3.16)

Thus by (3.14) and (3.15) taking the limit as r → 0 in (3.16) we get that, for
Sdm -a.e. p ∈ E , (ii) holds with Tp ≡ TH Si (p) ∈ G(Hn, d).

Now we consider the case 1 ≤ d ≤ n. Since E is (d, HL)-rectifiable, there are
compact sets Ci ⊂ Rd and Lipschitz maps fi : Ci → Hn such that

Sd

(
E \

⋃
i∈N

fi (Ci )

)
= 0.

Using Theorem 2.6 and Propositions 4.3.3 and 4.3.1 in [21] we can further decom-
pose the sets Ci into null-sets and countable unions to obtain Borel sets Bi ⊂ Rd

and Lipschitz maps fi : Bi → Hn with the following properties:

(i) E = E0 ∪ ⋃
i∈N

Si with Si = fi (Bi ) and Sd(E0) = 0,
(ii) the sets Si are disjoint,

(iii) every x ∈ Bi is a Lebesgue point of J fi χBi ,

(iv) fi is Pansu differentiable and (dH fi )x is injective at every x ∈ Bi ,
(v) fi is bi-Lipschitz.

The Jacobian for a map f at a point x of differentiability is defined by

J f (x) = Sd(dH fx (Bd,euc(0, 1)))

Ld(Bd,euc(0, 1))
,

where Bd,euc is the Euclidean ball in Rd . This is as in [21, Definition 4.2.1], except
that we are using spherical Hausdorff measures instead of ordinary Hausdorff mea-
sures. It is easy to check from [21] that the area formula which we shall use with
J f is also valid for the spherical Hausdorff measure.
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We shall now verify that (3.14) holds at an arbitrary point p = fi (x) ∈ Si ,
x ∈ Bi , with TH Si (p) replaced by (dH fi )x (R

d). This will be enough since the
rest of the argument goes as in the case n + 1 ≤ d ≤ 2n. For simplicity write
f = fi , B = Bi and S = Si . Let ϕ ∈ C0

c (Hn). As dH fx is injective and f is bi-
Lipschitz, it follows that there is a positive number c such that ‖dH fx (y)‖ ≥ c|y|Rd

for y ∈ Rd and d( f (x), f (y)) ≥ c|x − y|Rd for y ∈ B. Let R > 0 be such that
sptϕ ⊂ B(0, R). Then

ϕ(δ1/r (p−1 · f (y))) = ϕ(dH fx ((y − x)/r)) = 0,

if |x − y|Rd ≥ Rr/c. Using this, the definition of dH fx and the fact that x is a
Lebesgue point of J f χB , one checks easily that

∫
B

ϕ(δ1/r (p−1 · f (y)))J f (y)dy − J f (x)

∫
B

ϕ(dH fx ((y − x)/r)))dy = o(rd)

as r → 0.
By a simple change of variable (note that Sd dH fx (R

d) is just the Lebesgue
measure on the d-plane dH fx (R

d)) we have, for any r > 0,

∫
Hn

ϕd(Sd dH fx (R
d)) =

∫
d fx (Rd )

ϕdSd

= r−d J f (x)

∫
Rd

ϕ(dH fx ((y − x)/r)))dy.

By the area formula, see [21, Corollary 4.3.6],

∫
B

ϕ(δ1/r (p−1 · f (y)))J f (y)dy =
∫

S
ϕ(δ1/r (p−1 · q))dSd(q)

=
∫

Hn
ϕd(Tp,r#(Sd S)).

Using these we get

∫
Hn

ϕ d
(
Sd dH fx (R

d)
)

= lim
r→0

r−d J f (x)

∫
ϕ (dH fx ((y − x)/r))) dy

= lim
r→0

1

rd

∫
B

ϕ
(
δ1/r (p−1 · f (y))

)
J f (y)dy

= lim
r→0

1

rd

∫
ϕd

(
Tp,r#(Sd S)

)
.

This completes the proof of the implication (i) ⇒ (ii).
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2. Proof of (ii) ⇒ (iv)

By definition, ν ∈ Tan(Sdm E, p) if there are positive sequences (ci )i and
(ri )i with limi ri = 0 such that

ci Tp,ri #(Sdm E) ⇀ ν, as i → +∞.

On the other hand, by assumption (ii), we know that

Tp,r#(Sdm E)/rdm ⇀ Sdm Tp, as r → 0.

Hence limi rdm
i ci exists and

ci Tp,ri #(Sdm E) ⇀

(
lim

i→+∞ rdm
i ci

)
Sdm Tp.

Moreover, (ii) implies easily that �dm (E, p) = 1 for Sdm -a.e. p ∈ E .

3. Proof of (iv) ⇒ (iii)
By our assumption and Theorem 3.3 we have for Sdm -a.e. p ∈ E that for some

positive number c,

1

Sdm (E ∩ (B(p, r))
Tp,r#(Sdm E) ⇀ cSdm Tp, as r → 0.

Since Sdm
(
Tp ∩ ∂(B(e, 1) \ X (e, Tp, s))

) = 0 for every s ∈ (0, 1), we infer

lim
r→0

Sdm E
(
B(p, r) \ X (p, Tp, s)

)
Sdm (E ∩ (B(p, r))

= lim
r→0

1

Sdm (E ∩ (B(p, r))
Tp,r#(Sdm E)

(
B(e, 1) \ X (e, Tp, s)

)
= Sdm Tp

(
B(e, 1) \ X (e, Tp, s)

) = 0.

Since by Lemma 3.6, �∗dm (E, p) > 0 for Sdm -a.e. p ∈ E , we obtain that Tp is an
approximate tangent subgroup. Almost everywhere uniqueness of the approximate
tangent subgroup follows from Proposition 3.9.

4. Proof of (iii) =⇒ (i)
Because d-dimensional H-regular surfaces are defined differently if d is

smaller or larger than n, we have to divide the proof of the implication (iii) =⇒ (i)
in two parts.

Assume n + 1 ≤ d ≤ 2n. By assumption, for Sdm -a.e. p ∈ E there are r(p),
l(p) > 0 and Tp = apTand

H
(E, p) ∈ G(Hn, d) such that, for 0 < r < r(p),

Sdm (E ∩ B(p, r)) > l(p)rdm , (3.17)
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and for all 0 < s < 1,

lim
r→0

Sdm E
(
B(p, r) \ X (p, Tp, s)

)
rdm

= 0. (3.18)

For i = 1, 2, . . . , let Ei be the set of those p ∈ E as above for which r(p) > 1/ i
and l(p) > 1/ i . Then Sdm (E \ E∗) = 0 where E∗ = ∪∞

i=1 Ei .
Recall now that, from Lemma 2.32, we have that for all p ∈ E∗, there are

2n + 1 − d horizontal unit vectors ν̃h(p) = νh(Tp) ∈ HHn
p, transversal to Tp, such

that
Vp := exp (span{ν̃1(p), · · · , ν̃2n+1−d(p)})

is a horizontal subgroup of Hn and Hn is the semi-direct product of Vp and Tp =
apTand

H
(E, p). Moreover, E∗ can be written as a countable union of Sdm mea-

surable sets Fj such each ν̃h|Fj is Sdm measurable. We get this using the con-
tinuity part of Lemma 2.32 and Proposition 3.9. We see then that the functions
ν̃h : E∗ → HHn are measurable sections of HHn , for each 1 ≤ h ≤ 2n + 1 − d.

Define for i, j = 1, 2 . . . , h = 1, . . . , 2n + 1 − d, and p ∈ E∗,

ρi,h, j (p) = sup

{
|〈ν̃h(p), π(p−1 · q)〉|

d(p, q)
: q ∈ Ei , 0 < d(p, q) < 1/j

}
.

We want to prove that for i = 1, 2 . . . , h = 1, . . . , 2n + 1 − d, and p ∈ E∗,

lim
j→∞ ρi,h, j (p) = 0 . (3.19)

Assume, by contradiction, that this fails. Then there is s > 0 and for all 0 < τ <

1/ i there is q ∈ Ei such that

|〈ν̃h(p), π(p−1 · q)〉| > s d(p, q) and 0 < d(p, q) < τ. (3.20)

Let r = d(p, q). Then, by (3.20), q ∈ B (p, r) \ X (p, N(ν̃h(p)), s). Hence, from
Lemma 2.29, we have

B (q, sr/2) ⊂ B (p, 2r) \ X (p, N(ν̃h(p)), s/3) . (3.21)

By (2.26), (3.21) and (3.17),

Sdm
(
E ∩ B(p, 2r) \ X (p, Tp, s/3)

) ≥
Sdm (E ∩ B(p, 2r) \ X (p, N(ν̃h(p)), s/3)) ≥
≥ Sdm (E ∩ B(q, sr/2)) ≥ (1/ i)(sr/2)dm .

This is a contradiction with (3.18) and proves (3.19).
Applying Lusin’s theorem to each ν̃h and Egoroff’s theorem to the sequences

(ρi,h, j ) j we can write Ei = Ei,0 ∪∞
k=1 Ki,k such that Sdm (Ei,0) = 0, the sets Ki,k
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are compact, each ν̃h|Ki,k is continuous and ρi,h, j → 0 as j → ∞ uniformly on
Ki,k . We can apply Whitney’s Extension Theorem (Theorem 2.9) with K ≡ Ki,k ,
f ≡ 0, k ≡ ν̃h getting the existence of a C1

H
function f̃i,k,h : Hn → R with

( f̃i,k,h)|Ki,k = 0, ∇H f̃i,k,h = ν̃h and |∇H f̃i,k,h | �= 0 on Ki,k .
Define Si,k,h := {p ∈ Hn : f̃i,k,h(p) = 0 , |∇H f̃i,k,h(p)|p �= 0}. Then Si,k,h

is a 1-codimensional H-regular surface and Ki,k ⊂ Si,k,h . Finally define

Si,k =
2n+1−d⋂

h=1

Si,k,h .

Recalling Remark 2.12 we have that Si,k is a d-dimensional H-regular surface and
Ki,k ⊂ Si,k (i = 1, 2, . . . ). Moreover

E ⊂ E0 ∪ (∪∞
i=1 ∪∞

k=1 Si,k
)

with E0 = (E \ E∗) ∪ ∪∞
i=1 Ei,0 and Sdm (E0) = 0.

Now we shall deal with the case 1 ≤ d ≤ n.
Let s and η be as in Lemma 2.23. Since, by Theorem 3.10, �d∗(E, p) > 0 and

E has an approximate tangent subgroup Tp for Sd -a.e. p ∈ E , we can write E
as the union of sets Ei , i = 0, 1, 2, . . . , with Sd(E0) = 0 and such that for i =
1, 2, . . . , with some positive numbers ci and ri , we have for p ∈ Ei , 0 < r < ri ,

Sd(E ∩ B(p, r)) ≥ cir
d (3.22)

and
Sd(E ∩ B(p, r) \ X (p, Tp, s/9)) < εi r

d

with εi = ci (s/4)d . Fix i and let T1, ..., Tk be the subgroups given by Lemma 2.30
and corresponding to s/9 in place of s. For every p ∈ Ei there is Tj =: Ti, j with

X (p, Tp, s/9) ⊂ X (p, Ti, j , s/3). (3.23)

Hence we can decompose Ei as a countable union of Borel sets Ei, j such that
diam(Ei, j ) < ri/2 and (3.23) holds for p ∈ Ei, j . Then for p ∈ Ei, j , 0 < r < ri ,

Sd(E ∩ B(p, r) \ X (p, Ti, j , s/3)) < εi r
d . (3.24)

We check now that
Ei, j ⊂ X (p, Ti, j , s) for p ∈ Ei, j . (3.25)

Suppose there were p, q ∈ Ei, j with q �∈ X (p, Ti, j , s). Then r = d(p, q) ≤
diam(Ei, j ) < ri/2. By Lemma 2.29, B(q, sr/2) ⊂ B(p, 2r) \ X (p, Ti, j , s/3).
Hence by (3.22),

Sd(E ∩ B(p, 2r) \ X (p, Ti, j , s/3)) ≥
Sd(E ∩ B(q, sr/2)) ≥ ci (sr/2)d = εi (2r)d .
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This contradicts with (3.24) and proves (3.25), which implies that d(p−1q, Ti, j ) <

s d(p, q) for p, q ∈ Ei, j and p �= q. Hence, by Lemma 2.23, the projection
Hn → Ti, j , restricted to Ei, j , is 1-1 with Lipschitz inverse. As Ti, j is isometric
with Rd , the rectifiability of E follows from this.

5. Proof of (iv) ⇒ (v)

It is immediate by definition.

6. Proof of (v) ⇒ (iv)

From (v) and Theorem 3.3 we get for Sdm -a.e. p ∈ E the existence of a ho-
mogeneous subgroup Tp of Hn such that λp is a left Haar measure of Tp and by
Proposition 2.20 we have with α = dimH Tp that

λp = cSα
Tp.

So for q ∈ Tp and r > 0,

λp(B(q, r)) = λp(B(e, 1))rα. (3.26)

For Sdm -a.e. p ∈ E we have, by (i) of Lemma 3.6, that

2−dm ≤ �∗dm (E, p) ≤ 1.

Hence for all sufficiently small r > 0,

Sdm (E ∩ (B(p, r)) ≤ 2αdm rdm ,

and for some sequence ri > 0, ri → 0,

Sdm (E ∩ (B(p, ri )) ≥ 2−dm−1αdm rdm
i .

Since λp(∂ B(e, ρ)) = 0 for all ρ > 0, we get thus by (3.26) and Theorem 3.3 that

λp(B(e, 1))ρα = lim
i→∞

Sdm (E ∩ (B(p, ρri ))

Sdm (E ∩ (B(p, ri ))
≤ 2dm+2ρdm .

Since this holds for all ρ > 0, we must have α = dm , whence λp = cSdm Tp,
and if d = 1 or d > n then Tp ∈ G(Hn, d).
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[10] J. CHEEGER and B. KLEINER, Differentiating maps into L1 and the geometry of BV func-
tions, Ann. of Math. 171 (2010), 1347–1385.

[11] G. CITTI and M. MANFREDINI, Implicit function theorem in Carnot Carathéodory spaces,
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Basel, 1996.

[20] B. KIRCHHEIM and F. SERRA CASSANO, Rectifiability and parameterization of intrinsic
regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004),
871–896.

[21] V. MAGNANI, “Elements of Geometric Measure Theory on Sub-Riemannion groups”, Edi-
zioni della Normale, Pisa, 2002.

[22] V. MAGNANI, Contact equations, Lipschitz extensions and isoperimetric inequalities,
preprint http://cvgmt.sns.it/cgi/get.cgi/papers/maga/ (2009).

[23] P. MATTILA, “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University
Press, 1995.

[24] P. MATTILA, Measures with unique tangent measures in metric groups, Math. Scand. 97
(2005), 298–308.
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