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Orders of CM elliptic curves modulo p
with at most two primes

HENRYK IWANIEC AND JORGE JIMÉNEZ URROZ

Abstract. In this paper of 1988 N. Koblitz conjectured that given an elliptic
curve E over the rationals, the order of the group of Fp points of its reduction
modulo p, |E(Fp)|, is a prime number for infinitely many primes p. Since then
a wide number of research articles has been dedicated to understand and solve
this conjecture. In this paper we give the best result known nowadays. We can
prove quantitatively that for infinitely many primes p the reduction of the curve
y2 = x3 − x modulo p has order which is eight times an almost prime number.
The problem turns out to be the equivalent to the twin prime conjecture in the
Gaussian domain. The result could be extended to any CM curve with certain
considerations. We also point out the relation of the result with certain considera-
tions. We also point out the relation of the result with the cyclicity of E(Fp), and
the Lang Trotter conjecture.

Mathematics Subject Classification (2010): 11N36 (primary); 11G07, 14G50
(secondary).

1. Introduction and statement of results

Let E/Q be an elliptic curve defined over Q. There is a huge variety of papers
dedicated to the study of this object, and we can safely say that the main interest
to do so is that, in fact, apart from an algebraic curve, it can be equiped with a
compatible structure as a finitely generated Abelian group. For example, we know
that E(Q), the set of Q-rational points of E , can be seen as the direct product
E(Q) � Etors(Q) ⊕ Zr . Let us mention here that, while the torsion is very well
understood, the mathematical community is making a great effort in trying to un-
derstand the rank r of this group with certain generality.

Since the operations of the group are algebraic functions defined over the same
field as the curve, we can also consider the structure of the set of points, not over
Q, but over different fields of interest. In this sense, let N be the conductor of the
curve and p be a prime of good reduction for E (that is, p � N ). We denote by E p
the reduction of E modulo p. This is an elliptic curve defined over Fp and, as in
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the rational case, we are interested in the study of the structure of the group E(Fp)

of Fp-rational points of E p. Again it is well known that in this case it is the product
of two cyclic finite groups

E(Fp) � Z/dpZ ⊕ Z/epZ

with dp|ep. However, the behaviour of the invariants dp and ep, when varying the
prime p, or the elliptic curve E/Q, are highly mysterious and its study comes from
very many different perspectives.

Computations of Borosh, Moreno and Porta in 1975 [1] showed that for many
primes p one has, dp = 1, i.e. the group E(Fp) is cyclic. This fact, still open, was
proved by Serre [19] under GRH three years later. But even more is expected to be
true. In their 1977 paper [16] Lang and Trotter conjectured that the elliptic curve
analogue of Artin’s primitive root conjecture should be true: given an elliptic curve
E/Q and a nontorsion point a ∈ E(Q), the density of primes for which a generates
E(Fp) exists. In particular, if this density is nonzero, for a positive proportion of
primes the group E(Fp) is cyclic. Since then, there has been an extensive study,
both of the conjecture itself, and of the cyclicity of the group of Fp-points. A few
examples can be found in [1, 3, 7, 16] and [19].

In 1988 N. Koblitz [15] was also considering the structure of the group of
Fp-points of the reduced curve, but this time for its cryptographical implications.
Nowadays the security of cryptosystems is based in certain difficult mathemati-
cal assumptions, and the Diffie-Hellman assumption regarding the computation of
logarithms in finite fields is one of the most famous ones. It is also well known
that elliptic curves provide good examples of representations of Abelian groups re-
ducing the size of keys needed to guarantee the same level of security as in the
finite-field case. However, to perform elliptic logarithms which are considered to
be computationally secure one needs to find a finite field, Fp, and one curve E/Fp,
defined over the field, such that the size of the group of Fp-points, |E(Fp)|, has a
prime factor as large as possible. One problem arises naturally from above:

Problem 1.1. Let x be a positive number, E/Q be an elliptic curve over the ratio-
nals, and consider the sequence Â(x) = {|E(Fp)| : p ≤ x}. How many elements
a ∈ A(x) have a large prime factor?

Before we start, an observation is needed. Since the reduction modulo p injects
E(Q)tors into E(Fp) for almost all primes p (in what follows we will always be
considering only primes of good reduction), if the curve has rational torsion, then
all the elements in Â = Â(∞) have a non-trivial common factor. In this sense, if
dE is the greatest common divisor of all the elements in Â, it is more convenient to
consider the sequence A = { 1

dE
|E(Fp)| : p prime}.

In his paper [15] Koblitz conjectured that for any elliptic curve over the ra-
tionals, the elements in A not only have a big prime factor very frequently, but in
fact are infinitely often primes themselves. Concretely if we denote by �E (x) the
function which counts the number of a ∈ A, a ≤ x , that are primes, then he claims
that for curves without rational torsion there exist a constant c, depending on the
curve, such that �E (x) ∼ cx/(log x)2 as x → ∞.
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Observe that both problems, to find lower bounds for the prime factors of
|E(Fp)|, either for cryptographical purposes or towards Koblitz’s conjecture, and
to ensure cyclicity of the group, can be studied at the same time. In particular if
we are able to prove that many elements in A are squarefree, then automatically,
at least when dE = 1, the corresponding group will be cyclic. But if we are able
to also say that the number of its prime factors is small, then one of them has to
be big in comparison with the size of the element. Hence, to attack both problems,
we want to find squarefree elements in A with few prime factors. We are in a good
position to understand our question as part of a general framework, namely inside
sieve theory. Let us say that an integer n is Pr if it is squarefree with at most r
prime factors. If r = 2 we say our number is almost prime. In these terms we are
interested in locating many Pr among the elements of A with as small r as possible.
In particular Koblitz’ conjecture deals with the case r = 1.

Although the most efficient techniques known at present to attack this kind of
problems are sieve methods, it is however important to note that, unfortunately, at
least considered in its classical way, the sieve can not provide us with lower bounds
for the number of primes in certain sequences due to the parity problem. In fact
when r = 1 there is not a single example of a curve for which the asymptotics
predicted by Koblitz have been proved.

For r > 1 the situation is not much more promising although now, with sieve
methods, one can accomplish something. Miri and Murty in [17] proved, assuming
the Grand Riemann Hipothesis, GRH, that for curves without complex multipli-
cation |{P16 ∈ A(x)}| � x/(log x)2. In [20, 21] Steuding and Weng improved
the previous result giving |{P6 ∈ A(x)}| � x/(log x)2 for non-CM curves. They
also proved |{P4 ∈ A(x)}| � x/(log x)2 in the CM case, but always under GRH.
Very recently, Cojocaru in [4] proved unconditionally that for CM elliptic curves
|{P5 ∈ A(x)}| � x/(log x)2.

In this paper we will also be considering curves with complex multiplication,
focusing on the non-supersingular case. We shall improve the previous works un-
conditionally. For simplicity, we will restrict our arguments to the curve E :=
y2 = x3 − x , although the general CM case could be treated in a similar way.
Note that any elliptic curve over Q can only have complex multiplication by an
order of an imaginary quadratic field of class number one. In our case the ordi-
nary primes are p ≡ 1 (mod 4) and, for these, |E(Fp)| = p + 1 − 2a where
p = a2 + b2, and a + ib ≡ 1 (mod 2(1 + i)) and so we deduce that 8 always
divides |E(Fp)| = (a − 1)2 + b2.

Theorem 1.2. For x ≥ 5 we have∣∣∣∣{p ≤ x , p ≡ 1(mod 4) : 1

8
|E(Fp)| = P2

}∣∣∣∣ � x/(log x)2.

It is important to note that for these primes p in Theorem 1.2 of size about x one of
the prime divisors of the P2 has to be of order at least

√
x .

Several remarks are needed. First of all, as we have mentioned, although this
theorem is stated for the particular case of the curve y2 = x3 − x , a completely
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analogous result holds for any curve E/Q with complex multiplication. However,
just to understand the sequence A(x) in full generality, one must control the inte-
ger dE , i.e. the common factor of the elements |E(Fp)|, attached to the curve. In
general this integer will not be trivial. Indeed, we have already mentioned that the
torsion of the curve will be part of dE and recall for example that curves with CM
by Q(

√−7) always have nontrivial rational 2-torsion. But, in general, it could ap-
pear something else and, in this way, a quite interesting study of the corresponding
integers dE appears. The nature of this study is, on one hand more algorithmic and,
in any case, far apart from the main lines of discussion for the proof of Theorem 1.2.
These reasons lead us to restrict ourselves to the case under discussion. A general
statement about CM curves, with a sketch of the proof following the proof of Theo-
rem 1.2, along with the complete study of the integers dE that appear in each case,
and some applications, can be found in [13].

More remarks should be given concerning the particular statement of Theo-
rem 1.2. First we see that we have supersingular reduction for any prime p ≡
3 (mod 4). Although this case might be of less interest for cryptographic purposes,
it is interesting to see what happens. Now |E(Fp)| = p + 1 is always divisible by
d = 4 and, if we ask whether or not those elements of A can be prime, we will be
asking for primes q such that p + 1 = 4q for some prime q, and this is well known
to be essentially equivalent to the Twin Prime Conjecture, so the best one can hope
for is a result analogous to Chen’s [2] for this problem.

We have already mentioned that, when p ≡ 1 (mod 4), p = a2 + b2 for some
integers a, b which, looking at the problem in the Gaussian domain, is just saying
that p splits in Z[i] as p = ππ for π = a + bi . If we take π to be primary,
i.e. π ≡ 1 (mod 2(1 + i)), then |E(Fp)| = N (π − 1) ≡ 0 (mod 8), and so those
elements of the sequence A will be prime if and only if there exists a prime π̂ such
that π − 1 = 2(1 + i)επ̂ , for some unit ε = ±1, ±i . In other words, the problem
for p ≡ 1 (mod 4) is also equivalent to the Twin Prime Conjecture, but now in the
Gaussian domain.

For the proof of Theorem 1.2 we will apply techniques similar to those of
Chen, but in the domain of Gaussian integers. First we will need two different
extensions of the Bombieri-Vinogradov theorem. The first generalization needed is
the analogous result for the field Q(i). Among many generalizations that occur in
the literature in this direction, we appeal to [14], which is suitable to our particular
case. The second generalization is a Bombieri-Vinogradov type theorem, not for
primes, but rather for Gaussian P3 type numbers.

To improve the previous results in [17, 20], and [4], apart from the Bombieri-
Vinogradov theorem, which in this context is even more efficient than any version
of the Riemann Hypothesis, one has to apply the switching principle (see Section 5).
In order to make it effective one first needs to increase the level of distribution in the
sequence by discarding the inert primes, which contribute as squares (see formulas
(3.8) and (3.9) below).

Finally, a question that naturally arises from the previous study is what happens
for CM elliptic curves over number fields. Let us note that, first of all, the proof
of Theorem 1.2 (or [13, Theorem 1]), heavily relies on a very precise formula for
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the number of points over Fp of a curve E/Q with CM. This type of formulas for
a general CM curve over a number field is presented in [18], however it remains to
be seen what are the consequences of their formulation for this problem. Moreover,
another key fact to carry out the rational case is that any CM elliptic curve with
rational coefficients has a quadratic imaginary field of class number one as the CM
field. Hence, the present method would not apply directly to CM curves defined
over number fields and higher class numbers.

ACKNOWLEDGEMENTS. We would like to thank Nathan Jones for a careful reading
of a previous version and for many helpful comments and suggestions for the final
presentation of the paper.

2. A weighted sum for the sieve problem

Let us introduce the notation we will need afterwards. The functions τ(·), µ(·)
and φ(·), will denote the divisor, Möbius and Euler’s phi function respectively, and
γ will be the Euler-Mascheroni constant. As usual for any sequence of rational
integers, C , and positive number x , we will denote C(x) = {c ∈ C : c ≤ x}, and
|C(x)| the number of elements in the set. Given an integer d, the set Cd = {c ∈ C :
d|c} consists of the elements of C which are multiples of d and S(C, d) = |{c ∈ C :
(c, d) = 1}| counts the number of elements in C coprime with d. Analogously we
define Cδ and S(C, δ) for C ⊂ Z[i] and δ ∈ Z[i]. We will also make several useful
conventions. From now on λ, λ1, λ2, . . . , denote primes in Z[i] and l, l1, l2, . . . the
rational primes below them. Furthermore p, p0, p1, p2, p3 will be rational primes
splitting in Z[i], and π, π0, π1, π2, π3 will denote primary Gaussian primes above
them. On the other hand q will be a rational prime inert in the domain. We put

P(z) = {p ≡ 1 (mod 4) : p ≤ z}, and P(z) =
∏

p∈P(z)

p,

and on the other hand,

Q(z) = {q ≡ 3 (mod 4) : q ≤ z}, and Q(z) =
∏

q∈Q(z)

q.

In order to prove Theorem 1.2 we first translate the problem in terms of Gaussian
integers. Let

A(x) =
{

a = N
(

π−1
2(1+i)

)
, |π |2 ≤ x

}
,

and
S(x) =

∑
P2∈A(x)

1.

It is clear that S(x) is twice the left hand side of the inequality in Theorem 1.2 and,
therefore, it suffices to prove

S(x) � x/(log x)2. (2.1)
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A weighted sum will be considered to achieve this goal. In particular let

W (x) =
∑

a∈A(x)
(a,2P(z)Q(z))=1

1 −
∑
p0|a

z<p0≤y

1

2
−

∑
a=p1 p2 p3

z<p3≤y<p2<p1

1

2


=

∑
a∈A(x)

(a,2P(z)Q(z))=1

1 − 1

2

∑
z<p0≤y

∑
ap0∈A(x)

(a,2P(z)Q(z))=1

1 − 1

2

∑
z<p3≤y<p2<p1

p3 p2 p1∈A(x)

1

= W1(x) − 1

2
W2(x) − 1

2
W3(x),

(2.2)

where
z = x1/8 and y = x1/3. (2.3)

A similar sum was also used by Chen in his original article, [2], and is precisely
designed to detect P2 numbers. Indeed, since any integer less than x cannot have
more than three prime divisors bigger than y, any squarefree term of A(x) with
at least four prime divisors will be counted at least twice in the second sum of
W (x), meanwhile those with exactly three prime divisors will be counted, in the
worst case, at least once on each inner sum of W (x). Hence, any term with positive
weight in W (x) has to be either P2 or divisible by some nontrivial square. However,
the contribution to W (x) of non-squarefree elements is easily bounded by∑

p>z

∑
n≤x

n≡0(mod p2)

τ (n) 
 x log x

z log z
.

Hence

S(x) ≥
∑

P2∈A(x)

(P2,2P(z)Q(z))=1

1 ≥ W (x) + O

(
x log x

z log z

)
,

and so, in order to prove the theorem we need the estimation

W (x) � x/(log x)2.

We will estimate W1(x), W2(x), W3(x) separately.

3. Lower bound for W1(x)

Let us first note that W1(x) = S(A(x), 2P(z)Q(z)) is the usual sum in sieve theory
which counts the elemets in the sequence A(x) coprime with a product of certain
primes, in this case 2P(z)Q(z). In order to estimate this sum we need to have some
control on Ad(x) = {a ∈ A(x) : d|a} for any d|2P(z)Q(z). We will write d
as d = 2ed1d2 such that d1|P(z) and d2|Q(z). For that purpose we will use the
following:
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Lemma 3.1. Let C be a sequence of integers. For x > 0 and d squarefree we have

|Cd(x)| =
∑
k|d

µ(k)S(C(x), k).

Proof. It follows by the Möbius inversion formula.

Now it is clear that for any squarefree integer k, and α ∈ Z[i] we have
(N (α), k) = 1 if and only if (α, κ) = 1 where

κ =
k if 2 � k

(1 + i)
k

2
if 2|k.

(3.1)

Hence, S(A(x), k) = S(A(x), κ), where

A(x) =
{

π − 1

2(1 + i)
: |π |2 ≤ x

}
,

and so, by Lemma 3.1,

|Ad(x)| =
∑
k|d

µ(k)S(A(x), κ). (3.2)

In order to estimate S(A(x), κ) we will use the inclusion-exclusion principle over
the ideals in Z[i]. In particular let us define the Möbius function

µ̂(d) =


1 if d =<1>

(−1)r if d = λ1 · · · λr , λi distinct,
0 if λ2|d.

It is easy to see that µ̂(·) is a multiplicative function over the ideals in Z[i] which
satisfies ∑

d|α
µ̂(d) =

{
1 α =<1>

0 otherwise,

and so for any κ ∈ Z[i] we have

S(A(x), κ) =
∑

α∈A(x)

∑
d|(α,κ)

µ̂(d) =
∑
d|κ

µ̂(d)|Ad(x)|. (3.3)

Hence, the problem reduces to computing |Ad(x)| for ideals d|(1+ i)P(z)Q(z). By
definition we have

|Ad(x)| = �(x; 2(1 + i)d, 1) =
�(x; d, 1) if (1 + i) � d,

1

2
�

(
x; d

(1+i)
, 1

)
+ Rd(x) if (1 + i)|d
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where, for a general ideal a ∈ Z[i], and Gaussian integer α, we write

�(x; a, α) =
∑

π≡α(mod a)

|π |2≤x

1,

and

Rd(x) = �(x; 2(1 + i)d, 1) − 1

2
�(x; 2d, 1),

because �(x; 2(1 + i)d, 1) = �(x; d, 1) for any d odd. Hence, to deduce our
bounds for W1(x), we can use Johnson’s generalization of the Bombieri-Vinogradov
theorem, Corollary in [14, page 203], to imaginary quadratic fields. In particular, if
we let �(x) be the number of splitting primary primes in Z[i] with norm up to x ,
we have:

Proposition 3.2. Let a run over the ideals of Z[i], and α run over the Gaussian
integers. We have∑

N (a)≤Q

max
(α,a)=1

∣∣∣∣�(x; a, α) − 1

�(a)
�(x)

∣∣∣∣ 
 x

(log x)A
(3.4)

where Q = √
x/(log x)B and �(a) = |(Z[i]/a)∗|. Here A is any positive number

and B and the implied constant depends only on A.

Proof. Immediate from the mentioned Corollary in [14].

In our case, a = δ/(1 + i)e, for e = 1 or 0 depending on wether (1 + i)|d or
not, hence

�(a) =
∏
π |d

(|π |2 − 1)
∏
q|d

(q2 − 1),

and so
|Ad(x)| = �(x)ĝ(d) + r̂d(x), (3.5)

where ĝ(·) is the multiplicative function over the ideals in Z[i] such that

ĝ(1 + i) = 1

2
, ĝ(π) = 1

|π |2 − 1
, ĝ(q) = 1

q2 − 1
.

By Proposition 3.2 the error terms satisfy∑
N (d)≤√

x/(log x)B

|̂rd(x)| 
 x

(log x)A
. (3.6)

Hence, by (3.2), (3.3) and (3.5) we get for d = 2ed1d2, d1|P(z), d2|Q(z) as above

|Ad(x)| =
∑
k|d

µ(k)(�(x)
∑
d|κ

µ̂(d)ĝ(d) +
∑
d|κ

µ̂(d)̂rd(x))

= �(x)
∑
k|d

µ(k)H(k) +
∑
k|d

µ(k)
∑
d|κ

µ̂(d)̂rd(x))



ORDERS OF CM ELLIPTIC CURVES MODULO p WITH AT MOST TWO PRIMES 823

where H(·) is the multiplicative function such that H(2) = 1
2 , H(p) = (1− ĝ(π))2

for splitting primes and H(q) = 1 − ĝ(q) for primes inert in Z[i]. Moreover, by
switching the order of summation, we easily get∑

k|d
µ(k)

∑
d|κ

µ̂(d)̂rd(x)) =
∑

ad=d

µ̂(d)̂rd(x)µ(ad),

where ad = 2ea1b2 whenever d = (1 + i)eα1b2 for N (α1) = a1, a1|d1 and b2|d2.
Hence we can use the approximation

|Ad(x)| = �(x)g(d) + rd(x), (3.7)

where g(·) is the multiplicative function such that g(l) = 1 − H(l) for any prime l,
and the error satisfies |rd(x)| ≤ ∑

ad=d |̂rd(x)| which gives us, by Proposition 3.2,∑
d=2ed1d2

2ed1d2
2 ≤√

x/(log x)B

|rd(x)| 
 x

(log x)A
. (3.8)

In order to make the level of distribution in the error term as large as possible, we
should control the contribution to the sum from moduli d with d2 large. These
terms can be easily estimated as follows. First, ignoring that the elements in A(x)

are parametrized by primes, we have

|Ad(x)| ≤
∑

u2+v2≤x/8
d|u2+v2

1 ≤
∑

u2+v2≤x/8d2
2

d1|u2+v2

1 
 τ(d1)
x

d1d2
2

.

On the other hand, since d is squarefree, we have

�(x)g(d) 
 τ(d1)

φ(d1)d2
2

x

log x
,

and so the total contribution to (3.8) from every d with d2 � (log x)A+1 is absorbed
by the right hand side. Hence, by changing B to B + A + 1, we can write (3.8) as∑

d≤√
x/(log x)B

|rd(x)| 
 x

(log x)A
. (3.9)

Now, a straightforward application of the prime number theorem for the arithmetic
progression p ≡ 1 (mod 4) allows us to see that the density function g(·) verifies
the linear sieve assumption(

log z

log w

) (
1 − L1

log w

)
≤

∏
w≤p<z

(1−g(p))−1 ≤
(

log z

log w

) (
1 + L2

log w

)
, (3.10)
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for some constants L1, L2, and so by (3.9) and (3.10) we can apply a linear sieve
to A(x) with level of distribution D(x) = √

x/(log x)B to deduce, by the Jurkat-
Richert theorem (see [9, Theorem 8.4, page 236]) that

W1(x) ≥ �(x)V (z) f (s) {1 + o(1)} , (3.11)

where
V (z) =

∏
p≤z

(1 − g(p)), (3.12)

s = log D(x)
log z , and f (s) = 2eγ log(s−1)

s for 2 ≤ s ≤ 4, by (2.8) and (2.9) of [9, pages
226 and 227]. (See also [11, Chapter 5]). In particular, with our selection in (2.3)
of z = x1/8 and D(x) above we get s = 4 − 8B log log x

log x , f (s) = eγ

2 log 3 + o(1),
and we get the lower bound

W1(x) ≥
(

1
2

eγ log 3 + ε
)

�(x)V (z), (3.13)

valid for any ε > 0 and for x sufficiently large in terms of ε.

4. Upper bound for W2(x)

We now proceed to bound W2(x) from above. Here instead of A(x), the sets to
consider in the sieve process are

Ap0(x) = {a ∈ A(x) : p0|a},
for each prime p0 in the interval (z, y]. In this case the number of elements in Ap0

divisible by d is precisely∣∣Adp0(x)
∣∣ = �(x)g(dp0) + rdp0(x)

for g(·) and r(·) as in (3.7), and so we can apply the upper-bound linear sieve of
Jurkat and Richert, now with level of distribution D(x)/p0, to find∑

a∈Ap0 (x)

(a,2P(z)Q(z))=1

1 ≤ �(x)V (z)g(p0)
{

F
(
sp0

) + o(1)
} +

∑
d≤D(x)/p0
d|2P(z)Q(z)

∣∣rdp0(x)
∣∣ , (4.1)

where V (z) is given in (3.12), sp0 = log(D(x)/p0)/ log z, and F(s) = 2eγ s−1

for any 1 ≤ s ≤ 3 by [9, equation (2.8)] (also [11, equation (3.76)]). In our case,
z < p0 ≤ y, and so F(sp0) = eγ

2
log x

log(x/p2
0)

+ o(1). Hence, summing over all the

primes p0 in the interval we get

W2(x) ≤ �(x)V (z)

{ ∑
z<p0≤y

F(sp0)g(p0) + o(1)

}
, (4.2)
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since
∑

z<p0≤y g(p0) = 2
∑

z<p0≤y
1

p0−1 = O(1), and the absolute error terms
satisfy ∑

z<p0≤y

∑
d≤D(x)/p0
d|2P(z)Q(z)

∣∣rdp0(x)
∣∣ 
 x/(log x)A,

by (3.9). Partial summation and (3.10) allow us to obtain

W2(x) ≤ �(x)V (z)
eγ

2

∫ y

z

log x

log(x/t2)t log t
dt + o(1).

By changing variables t = xu we get

W2(x) ≤
(

1
2

eγ log 6 + ε
)

�(x)V (z), (4.3)

for any ε > 0, and x sufficiently large depending on ε.

5. Upper bound for W3(x)

Finally we have to control W3(x) which counts the number of elements a in A(x)

such that a = p1 p2 p3 for splitting primes in a certain range. More precisely W3(x)

counts the total number of solutions to any of the four equations
π = 1 + (1 + i)3επ1π2π3 with ε ∈ {±1, ±i}, in primary primes such that

|π |2 ≤ x and z ≤ |π3|2 < y ≤ |π2|2 ≤ |π1|2.
For this purpose we will also use a linear sieve and the Jurkat-Richert theorem, not
directly, but using a switching device and changing the roles of primes π with the
triples π1, π2, π3. With this in mind let us again note that the condition |π |2 ≤ x
can be replaced by |π1π2π3|2 ≤ x/8 with a negligible error of O(

√
x). Let us now

consider the sequence

B(x) = {N (1 + ω) : ω ∈ �(x)},
where

�(x) = {ω = (1 + i)3επ1π2π3 : ε ∈ Z[i]∗,
|ω|2 ≤ x, z ≤ |π3|2 < y < |π2|2 < |π1|2}.

Then, W3(x) counts essentially the number of primes in B(x). In particular

W3(x) ≤
∑

b∈B(x)

(b,2P(
√

x)Q(
√

x))=1

1 + O(
√

x),

and the problem is ready to apply sieve theory to the sequence B(x), in this case
with new sieve parameter z0 = √

x . Again we need to estimate |Bd(x)|, the number
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of elements in B(x) divisible by d|P(
√

x)Q(
√

x). Observe that now, if 2|d, then
the set Bd(x) is trivially empty. As before, we will write d = d1d2 where d1|P(

√
x)

and d2|Q(
√

x). Again using Lemma 3.1 we get

|Bd(x)| =
∑
k|d

µ(k)S(B(x), k)

for κ given in (3.1) and

B(x) = {1 + ω : ω ∈ �(x)},
and in the same way we will obtain our estimates by aproximating S(B(x), κ) for
any κ|P(

√
x)Q(

√
x). For this purpose we note that, just as in Section 3,

|Bd(x)| =
∑

ω∈�(x)
ω≡−1(mod d)

1, (5.1)

and so, as in the previous cases, the key point to evaluate |Bd(x)|, and then |Bd(x)|,
relies on the existence of an analogous Bombieri-Vinogradov theorem for the num-
bers in the set �(x), which we now state. To ease notation we will denote the error
term in the approximation as

E(x; α, a) =
∑

ω∈�(x)
ω≡α(mod a)

1 − 1

�(a)

∑
ω∈�(x)
(ω,a)=1

1.

Proposition 5.1. Let the notation be as above, and x > 0. We have∑
N (a)≤Q

max
(α,a)=1

|E(x; α, a)| 
 x

(log x)A
, (5.2)

with Q = √
x/(log x)B. Here A is any positive number and B and the implied

constant depend only on A.

In order to prove the proposition we need some lemmata. The first is a general-
ization of Lemma 17.3 of [12], which will be crucial in the proof of the proposition.
Then, a large sieve inequality in the Gaussian domain will allow us to end the proof.

As usual ||̂a|| =
(∑

N (α)≤N |̂a(α)|2
)1/2

.

Lemma 5.2. Let d be an ideal in Z[i], ξ ∈ Z[i], (ξ, d) = 1 and â(α) ∈ C a se-
quence of complex numbers, indexed over Gaussian integers α, such that for any N∣∣∣∣∣∣∣

∑
N (α)≤N

α≡ξ(mod d)

â(α) − 1

�(d)

∑
N (α)≤N
(α,d)=1

â(α)

∣∣∣∣∣∣∣ ≤ ||̂a||N 1/2�9, (5.3)
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for some 0 < � < 1. Let M be an ideal in Z[i] and χ a non-principal character
modulo M. Then∣∣∣∣∣ ∑

(α,d)=1

â(α)χ(α)

∣∣∣∣∣ ≤ ||̂a||�3τ̂ (d)N (M)(N log N )1/2,

where τ̂ (d) counts the number of ideal divisors of d.

Proof. The proof will go along the lines of [12, Lemma 17.3]. In particular it is
easy to see that∑

(α,d)=1

â(α)χ(α)

=
∑
c|d

N (c)≤K

µ̂(c)
∑
e|c

µ̂(e)
∑

(α,e)=1

â(α)χ(α) +
∑
c|d

N (c)>K

µ̂(c)
∑

(α,d)=1
α≡0(mod c)

â(α)χ(α)

= S1 + S2,

where K will be chosen later. By splitting into classes modulo eM, and applying
(5.3) for each class we get

S1 
 ||̂a||N 1/2�9
∑
c|d

N (c)≤K

∑
e|c

|µ̂(e)|�(eM) ≤ K ||̂a||N 1/2�9 N (M)̂τ (d).

For the last inequality we have used that if e is a squarefree ideal, then �(eM) ≤
�(e)N (M) for any ideal M in Z[i], and that for any squarefree ideal c,

∑
e|c�(e) =

N (c). In order to get an upper bound for S2 we use the Cauchy-Schwarz inequality
twice to get

S2 ≤ τ̂ (d)1/2||̂a||
 ∑

c|d
N (c)>K

∑
N (α)≤N

α≡0(mod c)

1


1/2

≤ τ̂ (d)||̂a||(N log N )1/2K −1/2,

since ∑
N (α)≤N

α≡0(mod c)

1 ≤
∑

n≤N/K

∑
N (ξ)=n

1 ≤
∑

n≤N/K

τ(n) 
 1

K
N log N . (5.4)

The lemma follows by choosing K = �−6.

Lemma 5.3. For any arithmetic function f (n) such that f (nm) ≤ f (n) f (m) for
every pair of integers n, m we have

∑
n≤x

τ(n) f (n) ≤
(∑

n≤x

f (n)

)2

for any x > 0.
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Proof. Immediate by switching the order of summation.

Lemma 5.4. Let k be a positive integer, and x > 0. Then∑
n≤x

τ(n)k

φ(n)

 (log x)2k+1

.

Proof. Apply the previous lemma to τ(n)k−1/φ(n), induction, and the fact that∑
n≤x

1
φ(n)


 (log x)2, the last inequality being consequence of the trivial one
φ(n) � n/ log x for any n ≤ x .

Proof of Proposition 5.1. We first want to separate the variable π3 from the vari-
ables π1, π2 in the definition of the set �(x). To this end we split �(x) into subsets
�k(x) in which z(1 + δ)k ≤ |π3|2 < z(1 + δ)k+1, where δ is a small number
and 0 ≤ k ≤ K with K = [log(y/z)/ log(1 + δ)]. Note that the number of such
subsets �k(x) which cover �(x) is O(δ−1 log x). In each �k(x) we replace the
condition |ω|2 = 8|π1π2π3|2 ≤ x by the condition 8|π1π2|2z(1 + δ)k ≤ x and
we denote the resulting set by �′

k(x). The above modified partition covers the set
�(x) in a one-to-one fashion, except for the numbers ω = (1 + i)3επ1π2π3 with
x/(1 + δ) < 8|π1π2π3|2 < x(1 + δ) or y < |π3|2 ≤ (1 + δ)y, 8|π1π2π3|2 < x .
However these boundary terms contribute to (5.2) trivially O(δx(log x)C ), for some
constant C , so they can be ignored by choosing δ = (log x)−A−C . Therefore, it
suffices to show (5.2) for the restricted sets �′

k(x) separately with A replaced by
2A +C + 1. Put zk = z(1 + δ)k and let Ek(x; α, a) be the corresponding error term
for the set �′

k(x).
Summing over the non-principal characters of (Z[i]/a)∗ we get, by orthogo-

nality,

|Ek(x; α, a)| ≤ 1

�(a)

∑
χ �=χ0

∣∣∣∣∣∣
∑

ω∈�′
k(x)

χ(ω)

∣∣∣∣∣∣
≤ 4

�(a)

∑
χ �=χ0

∣∣∣∣∣∣∣∣∣
∑

zk≤|π3|2<zk(1+δ)

χ(π3)
∑

y≤|π2|2<|π1|2
|π1π2|2≤x/8zk

χ(π1π2)

∣∣∣∣∣∣∣∣∣ .
Summing over all ideals of norm up to Q, and splitting into primitive characters we
get, ∑

N (a)≤Q

max
(α,a)=1

|Ek(x; α, a)|



∑

N (a1)≤Q

1

�(a1)

∑
N (a2)≤Q

1

�(a2)

∗∑
χ(mod a2)

χ �=χ0

|Ak,a1(χ)Bk,a1(χ)|. (5.5)
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where

Ak,a1(χ) =
∑

(α,a1)=1

â(α)χ(α), Bk,a1(χ) =
∑

(β,a1)=1

b̂(β)χ(β),

for

â(α) =
{

1 if α = π3, zk ≤ |π3|2 < zk(1 + δ)

0 otherwise,

and

b̂(β) =
{

1 if β = π1π2, y ≤ |π2|2 < |π1|2, |β|2 < x/8zk

0 otherwise.

Observe that, in particular, b̂(β) = 0 if |β|2 > x/8zk .
We now want to use Lemma 5.2 in (5.5). For this purpose we split the sum in

(5.5) into two, depending on whether N (a2) ≤ R or N (a2) > R. Let us call D1
and D2 each of these two sums respectively. Since ||̂a|| ≤ (2zk)

1/2, and ||̂b|| ≤
(x/(8zk))

1/2, we just have to use Lemma 5.2 and Cauchy-Schwarz to get

D1 ≤ (x log x)�3
∑

N (a1)≤Q

τ̂ (a1)

�(a1)

∑
N (a2)≤R

N (a2),

where � will be chosen so that â satisfies (5.3) (which is possible by Proposi-
tion 3.2). It is now immediate, from Lemmas 5.3 and 5.4 that

D1 
 x log x�3 R2(log R)(log Q)8, (5.6)

since (see (5.4)) ∑
N (a2)≤R

N (a2) ≤ R
∑

N (a2)≤R

1 
 R2 log R,

and, if N (c) = n, then �(c) ≥ φ(n), and so∑
N (a1)≤Q

τ̂ (a1)

�(a1)
=

∑
n≤Q

∑
N (a1)=n

τ̂ (a1)

�(a1)
≤

∑
n≤Q

τ(n)
∑

N (a1)=n

1

�(a1)
≤

∑
n≤Q

τ(n)2

φ(n)
.

(5.7)
Finally we need to estimate D2. A direct application of Cauchy-Schwarz gives us

D2 ≤
[log(Q/R)]−1∑

j=0

∑
N (a1)≤Q

1

�(a1)
(A j B j )

1/2

where

A j =
∑

e j R≤N (a2)≤e j+1 R

1

�(a2)

∗∑
χ(mod a2)

χ �=χ0

Ak,a1(χ)2,

B j =
∑

e j R≤N (a2)≤e j+1 R

1

�(a2)

∗∑
χ(mod a2)

χ �=χ0

Bk,a1(χ)2.
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The estimate of A j , B j is straightforward from the following large sieve inequality
in the Gaussian domain:

Lemma 5.5. Let d be an ideal in Z[i], â(α) a sequence of complex numbers sup-
ported on Gaussian integers with N (α) ≤ N, and Q ≥ 1. Then

∑
N (a)≤Q

N (a)

�(a)

∗∑
χ(mod a)

χ �=χ0

∣∣∣∣∣ ∑
(α,d)=1

â(α)χ(α)

∣∣∣∣∣
2


 (Q2 + N )||̂a||2.

Proof. This is a consequence of [10, equation (3.1), page 180].

We can use the previous lemma to bound A j , B j and, in this way, deduce that

D2 
 x1/2
∑

N (a1)≤Q

1

�(a1)

×
[log(Q/R)]∑

j=0

1

e j R
(e j+1 R + (zk)

1/2)(e j+1 R + (x/8zk)
1/2)


 x1/2(log x)6(Q + (x/z)1/2 + y1/2 + x1/2/R),

(5.8)

since ∑
N (a1)≤Q

1

�(a1)
≤ (log Q)4,

by Lemma 5.4, as in (5.7). Now Proposition 5.1 follows choosing Q = x1/2/(log x)B

for B given by Proposition 3.2, � = (log x)−2A−2013, and R = �−1.

It is straightforward to go from the previous proposition to the estimate∑
d≤√

x/(log x)B

d odd

| |Bd(x)| − |�(x)|g(d)| 
 x

(log x)A
. (5.9)

Indeed, first note that in our case we have, by (5.1), a = d1d2 with d1, d2 as
mentioned above. Then, to get (5.9) first remove the condition (ω, a) = 1 by
noting that the elements in �(x) only have divisors |π |2 > x1/8 and so if one
of them is fixed (dividing certain ideal a), then we will trivially have less than
x7/8 log x elements left, which will be absorbed by the error term. Second, change
the summation over ideals by the more convenient over integers. The argument to
do so is the same as the one done to go from (3.8) to (3.9). Observe that, in this
case, we have the extra condition d odd since all the elements in �(x) are divisible
by 2. Equation (5.9) allows us to apply a linear sieve to the sequence B(x) with
level of distribution D(x), and again Jurkat-Richert theorem to obtain

W3(x) ≤
∏

2<p<
√

x

(1 − g(p))|�(x)| {F(1) + o(1)} = eγ V (z)|�(x)|{1 + o(1)},
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since F(s) = 2eγ s−1 as in (4.1), and
∏

2<p<
√

x (1 − g(p)) = 1
2 V (z)(1 + o(1)) by

(3.10). To finish the proof we just have to compare |�(x)| with �(x) appearing in
(3.13) and (4.3). By definition we have

|�(x)| ≤ 4
∑

z≤|π3|2<y

∑
<|π2|2<√

x/|π3|
�(x/(8|π3π2|2)

∼ 1
2
�(x)

∑
z≤|π3|2<y

∑
<|π2|2<√

x/|π3|

log x

log(x/(|π3π2|2) .

A new application of partial summation, together with a change of variables, as in
the deduction of (4.3), gives

|�(x)| ≤ 1
2
�(x)

∫ 1
3

1
8

∫ 1−v
2

1
3

1

1 − u − v

dudv

uv
= 1

2
c�(x),

for some c < 0.36308373. We just have to combine the previous results to get

W3(x) ≤
(

1

2
eγ c + ε

)
�(x)V (z). (5.10)

Theorem 1.2 follows by plugging (3.13), (4.3), and (5.10) into (2.2).
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