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Compact moduli for certain Kodaira fibrations

SÖNKE ROLLENSKE

Abstract. We explicitly describe the possible degenerations of a class of double
Kodaira fibrations in the moduli space of stable surfaces. Using deformation the-
ory we also show that under some assumptions we get a connected component of
the moduli space of stable surfaces.
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Introduction

It is a general fact that moduli spaces of nice objects in algebraic geometry, say
smooth varieties, are often non-compact. But usually there is a modular compact-
ification where the boundary points correspond to related but more complicated
objects.

Such a modular compactification has been known for the moduli space Mg of
smooth curves of genus g for a long time and in [17] Kollár and Shepherd-Barron
made the first step towards the construction of a modular compactification M for
the moduli space M of surfaces of general type via so-called stable surfaces; the
boundary points arise from a stable reduction procedure.

But even 20 years later very few explicit descriptions of compact components
of M have been published. The main idea in all approaches is to relate the compo-
nent of the moduli space one wishes to study to some other moduli space, where a
suitable compactification is known. Products of curves and surfaces isogenous to a
product of curves have been treated by van Opstall [20, 21], and a recent paper of
Alexeev and Pardini [4] studies Burniat and Campedelli surfaces relating them to
hyperplane arrangements in (a blow-up of) P2.

The aim of this paper is to study the irreducible respectively connected compo-
nents of the moduli space of stable surfaces containing very simple Galois double
Kodaira fibrations (see Section 1.3 for the precise definition) and we do this in two

Part of this work was written during a stay at the Imperial College in London supported by
a Forschungsstipendium of the DFG. The author was also supported by the Hausdorff Centre
for Mathematics in Bonn. The DFG-Forschergruppe “Classification of algebraic surfaces and
compact complex manifolds” made a visit to Bayreuth possible.

Received May 26, 2009; accepted in revised form December 10, 2009.
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steps: first we give an explicit description of the stable degenerations and then we
study their deformations to show if we get connected components of M.

The starting point of our study is a joint paper with Fabrizio Catanese where we
showed that the moduli space of such (and more general) surfaces can be identified
to the moduli space of certain curves with automorphisms and yields connected
components of the moduli space of surfaces of general type.

The surfaces we are interested in are ramified covers ψ : S → C1 × C2 of
products of curves and we have precise control over the branch divisor B. This
enables us to perform the stable reduction procedure explicitly, first for the pair
(C1 × C2, B) in Section 2.2 and then for the Kodaira fibrations themselves in Sec-
tion 2.3. It turns out that degenerations that occur are local complete intersections
and their normalisation is smooth (Theorem 2.7).

In Section 3 we use deformation theory to study the scheme structure of the
moduli space. We show that the deformations of standard Kodaira fibrations are
unobstructed and are exactly those described in [7] if some cohomology groups
naturally associated to the covering ψ vanish (Theorem 3.4). Under similar assump-
tions we are able to control all deformations of the degenerations (Theorem 3.11).
In a special case the assumptions are easy to check and we get:

Corollary 3.12 Let ψ : X → C × C be a smooth very simple Kodaira fibration
such that ψ is a simple cyclic covering and let N be the irreducible component of
the moduli space of surfaces of general type containing (the class of) X. Then the
closure of the component N ⊂ M is a connected component of M.

A rather different and less explicit approach to the construction of a compact
moduli space for fibred surfaces has been described by Abramovich and Vistoli [5].

ACKNOWLEDGEMENTS. Numerous people answered questions concerning partic-
ular parts of this article, including Paolo Cascini, Alessio Corti, Donatella Iacono,
Sándor Kovács, Michael Lönne and Thomas Peternell. Special thanks go to Fab-
rizio Catanese for suggesting Lemma 2.5. A request of the referee encouraged me
to push through the calculations in Section 3.2.2 that lead to Theorem 3.11.

1. Preparation

1.1. Stable surfaces and some other moduli spaces

We will start this section by listing some (coarse) moduli spaces that we will use
in the sequel, mainly to fix the notation, and give references to where a construc-
tion and more information can be found. The moduli space of (smoothable) stable
surfaces will be discussed a bit more in detail.

• Let Mg be the moduli space of smooth projective curves of genus g and Mg
the moduli space stable curve (see e.g. [13]).

• The corresponding moduli spaces Mg(G) and Mg(G) parametrising smooth
respectively stable curves together with a fixed group of automorphisms. The
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moduli space Mg(G) is finite over a closed subvariety of the moduli space of
curves and the tangent space at a point [C] is Ext1(�C ,OC )G (see [19] and
also [21, Proposition 2.9]).

• The quasi-projective coarse moduli space Ma,b of canonically polarised sur-
faces of general type with canonical singularities and fixed invariants a = K 2

S ,
b = χ(OS) constructed by Gieseker [9]. We denote by M the disjoint union of
all Ma,b.

• The moduli space of stable surfaces M = M
st

, which contains M as an open
(but not dense) subset. Its construction goes back to Kollár and Shepherd-Barron
[17], and we will give some more details below. We denote by M

sm
the closure

of M in M and call it the moduli space of smoothable surfaces of general type.

Note that, strictly speaking, a surface in M
sm

need not to be smoothable in the or-
dinary sense – we only ask that some small deformation has canonical singularities.

In analogy to the case of curves we need to define a class of singular surfaces
that is big enough to allow for compact moduli spaces. It is convenient to first recall
the definition of log-canonical singularity. We will need this notion also for pairs.

Definition 1.1. Let X be a normal surface and B ⊂ X a (possibly empty) Q-Weil-
divisor such that the log-canonical divisor K X + B is Q-Cartier. Let π : X̃ → X be
a log-resolution of singularities. In other words, X̃ is smooth and denoting the strict
transform of B with B̃ and the exceptional divisor with E = ∑

i Ei , the sum B̃ + E
is a global normal crossing divisor. Then the pair (X, B) is called log-canonical (lc)
respectively canonical if in the expression

K X̃ + B̃ ≡ π∗(K X + B) +
∑

ai Ei

all ai ≥ −1 respectively ai ≥ 0.

Canonical surface singularities without boundary are exactly rational double
points. The notion we are aiming at is some kind of non-normal analog of log-
canonical singularities.

Definition 1.2. Let S be a projective surface and B = ∑
bi Bi an effective Q-Weil

divisor on S with coefficients 0 < b j ≤ 1.
The pair (S, B) is said to have slc singularities if

(i) S is Cohen-Macaulay,
(ii) S has at most normal crossing singularities in codimension 1 and B does not

contain any component of the normal crossing locus,
(iii) KS + B is Q-Cartier,
(iv) denoting by ν : Xν → X the normalisation, the pair

(Xν, (double locus) + ν−1 B)

is log canonical. By double locus we mean the preimage of the 1-dimensional
part of Xsing, which outside a finite number of points coincides with the normal
crossing locus.
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The pair (S, B) is called stable if it has slc singularities and the Q-line bundle
KS + B is ample.

The original definition was posed in [17, Section 4] where one can also find a
classification in the case B = 0.

In the construction of the moduli space, especially if one wants to parametrise
pairs, several technical issues arise, see [15] or [3] for an overview. In particular, it
turns out that one has to restrict the families that are allowed in the moduli-functor
if one wants the basic invariants to remain constant in a family. As usual, we denote
the reflexive powers of a sheaf F by F [n] := (F⊗ n)∗∗.

Definition 1.3. A morphism f : (X , B) → � is called a weakly stable family of
stable surfaces if

(i) f and f |B are flat and projective and f has connected fibres,

(ii) ωX /� + B is a relatively ample Q-line bundle,

(iii) For all t ∈ �, the fibre Xt is a stable surface.

If B = 0 and in addition we have

(iv) (Kollár’s condition) For all t ∈ �, k ∈ Z, taking reflexive powers commutes
with base-change, that is ω

[k]
X /�|Xt

∼= ω
[k]
Xt

,

then f : X → � is called admissible family of stable surfaces.

Since we are interested only in degenerations of smooth surfaces, we will usu-
ally assume that � is a smooth curve and that the general fibre of f is canonical.

A recent construction of M using stacks can be found in [1], including a proof
that M

sm
is projective. The bigger moduli space of stable surfaces should also be

projective but I do not know a suitable reference for this. In particular, stable reduc-
tion as explained in the next section seems not to be known for arbitrary admissible
families of stable surfaces.

1.2. Construction of the boundary points

We need to describe how to obtain surfaces corresponding to the boundary points
in M

sm \ M as degenerations of smooth surfaces. Let � be the unit disc and
�∗ = � \ {0}. We will need the construction also for of families of log-surfaces.

Suppose we have a family of log-surfaces f 0 : (X 0, B0) → �∗, that is, both
f 0 and f 0|B0 are flat, projective maps and for each t ∈ �∗ the fibre (X 0

t , B0
t ) is a

log-surface. Suppose in addition that

• all fibres X 0
t are canonical,

• KX 0/�∗ + B0 is a relatively ample Q-line bundle.
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Then one constructs the degeneration of this family in the following steps (see [14,
Theorem 7.62]):

(i) Choose any extension of f 0 to a projective morphism f : (X̄ , B̄) → �.
(ii) Apply the semi-stable reduction theorem to a log-resolution of (X̄ , B̄) obtain-

ing, possibly after a finite pullback ramified only over the central fibre and
normalisation, a family of log-surfaces (X̃ , B̃) → � such that the total space
is smooth, (X̃ , B̃+X̃0) is log canonical and KX̃ /�

+ B̃ is relatively big over �.

(iii) Now let f : (X , B) → � be the relative log-canonical model of (X̃ , B̃),
whose existence is guaranteed by the log-minimal model program.

The resulting family is, due to the possible pullback, not unique but the central fibre
is; we call it the stable degeneration of the family f 0.

If some of the coefficients of B are strictly smaller than 1 then there are exam-
ples due to Hassett [3, Example 5.1] which show that B0 can have embedded points
so we do not obtain a family of log-surfaces. These problems do not occur, if B is
an integral divisor [12] or if there is no boundary. More general results have been
obtained by Alexeev [3].

1.3. Very simple Galois Kodaira fibrations

We will now introduce the class of surfaces of general type that we are interested
in. In this section all surfaces and curves are smooth.

Definition 1.4. A Kodaira fibration is a smooth fibration ψ1 : S → C1 of a com-
pact complex surface over a compact complex curve, which is not a holomorphic
fibre bundle.

S is called a double Kodaira fibred surface if it admits a double Kodaira fibra-
tion, i.e., a surjective holomorphic map ψ : S → C1 × C2 yielding two Kodaira
fibrations ψi : S → Ci (i = 1, 2).

Let B ⊂ C1 × C2 be the branch divisor of ψ . If B is smooth and both projec-
tions prC j |B : B → C j are étale we call ψ : S → C1 × C2 a double étale Kodaira
fibration.

If the ramified cover ψ is Galois, i.e., the quotient map for the action of a finite
group, we call S a Galois double Kodaira fibration.

It is not difficult to see that if S → C1 × C2 is a double Kodaira surface then
the genus of Ci is at least 2 and thus S is a surface of general type. A situation in
which the branch divisor is particularly easy to handle is the following.

Definition 1.5. A double étale Kodaira fibration ψ : S → C1 × C2 is called very
simple if C1 = C2 = C and the branch divisor is a disjoint union of graphs of
automorphisms of C . It is called standard, if there is an étale map φ : C × C →
C1 × C2 such that φ∗S → C × C is very simple.

Remark 1.6. It is yet unclear whether every double étale Kodaira fibration is stan-
dard: let B ⊂ C1 × C2 be a divisor in a product of 2 curves mapping étale to both
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sides. By taking C̃1 → C1 to be a Galois cover dominating all components of B
we obtain after pullback that B̃ ⊂ C̃1 × C2 is composed of graphs of étale maps.
But it is not at all clear that after further pullback we can arrive at graphs of auto-
morphisms. On the other hand we do not know of an explicit example where this is
not possible.

In [7] we described an effective method of construction for Galois double Ko-
daira fibrations. Essentially, given two curve C1, C2 and a branch divisor B ⊂
C1 ×C2 mapping étale to both curves we can construct plenty of Galois double Ko-
daira fibration (after finite étale pullback). This generalises a classical construction
used by Kodaira and Atiyah to give examples of fibre bundles where the signature
is not mutliplicative (see [6, Section V.14]). The basic idea is as follows: assume
that we have a curve C of genus at least 2 and a group H acting on C without fixed
points. Then the graphs of the automorphisms do not intersect and B = ⋃

φ∈H 	φ

is a smooth divisor in C × C . After a suitable pullback π : C̃ × C → C × C
the divisor π∗B will be divisible in Pic(C̃ × C) and we get a Kodaira fibration as
a cyclic covering. With a further pullback we can make the branch divisor into a
union of graphs of automorphisms again, obtaining a very simple Kodaira fibration.

We were able to give a very explicit description of the moduli space of such
surfaces. Let MK F ⊂ M be the subset of the moduli space of surfaces of general

type containing very simple Galois Kodaira fibrations and M
K F

its closure in the
moduli space of stable surface. If S is a very simple Kodaira fibration then we
denote by MK F

S the connected component of MK F containing (the class of) S.

Theorem 1.7 ([7], Theorem 6.5). Let ψ : S → C × C be a very simple Galois
Kodaira fibration, S ⊂ Aut(C) such that the branch divisor B = ∑

σ∈S 	σ . Let
H be the subgroup of Aut(C) generated by S . Then MK F

S is a connected com-
ponent of the moduli space of surfaces of general type and there is a natural map
Mg(C)(H) → MK F

S that is an isomorphism on geometric points.

In other words, any actual family of curves with the prescribed automorphism
group gives rise to a family of Kodaira fibrations but we cannot detect obstructed
deformations, or additional automorphisms of S that do not preserve the map ψ .
The original theorem is formulated for standard Kodaira fibrations but we will only
need this simple form. The issue of the scheme structure of MK F will be addressed
in Section 3.

2. Degenerations of very simple Galois Kodaira fibrations

2.1. Quotient families

We start with some general considerations. Let f : X → Y be a Galois cover
with ramification divisor R ⊂ X and branch divisor B ⊂ Y . By the Hurwitz
formula we have K X = f ∗KY + ∑

i (νi − 1)Ri where νi is the ramification order
along Ri . Since the covering is Galois, two components of R that map to the same



COMPACT MODULI FOR CERTAIN KODAIRA FIBRATIONS 857

component of B have the same ramification order and thus we can write K X =
f ∗(KY + ∑

j
ν j −1
ν j

B j ). This allows us to compare the numerical properties of K X

and the Q-divisor KY + ∑
j

ν j −1
ν j

B j .

Lemma 2.1. Let � be a smooth curve, f : X → � be a flat, projective family of
surfaces together with an action of a finite group G preserving the fibres. Consider
the quotient family

X π ��

f
��

��
��

��
��

X /G = Y

g
������������

�

and let B ⊂ Y be the branch divisor, that is, the divisorial part of the branch locus,
with the appropriate multiplicities such that KX /� = π∗(KY/� + B).

If X → � is a weakly stable family of stable surfaces then so is (Y,B) → �.

Proof. Since G acts fibrewise, every irreducible component of X dominates � if
and only if every irreducible component of Y does and thus, by [10, Proposition
III.9.7], f is flat if and only if g is. The same is true for projectivity.

Let πt : Xt → Yt be the restriction of π to some fibre, x ∈ Xt and y = πt (x).
By construction we get an inclusion of local rings OYt ,y ↪→ OXt ,x . Indeed, if Gx

is the stabiliser of x in G then OYt ,y = OGx
Xt ,x

. Since we assumed Xt to be reduced
and Cohen-Macaulay the same holds for Yt where the second property is proved
via an averaging argument for a regular sequence.

In order to prove that g is a weakly stable family we also need to show that the
branch divisor B is flat over � which amounts to the fact that π is not ramified along
any irreducible component of any fibre. But for every t ∈ � the map Xt → Yt is
flat by base-change and since all fibres of f are reduced it can not be ramified along
any irreducible component by generic smoothness.

By [4, Lemma 4.3] the fibre Xt is slc if and only if the pair (Yt ,Bt ) is slc and
in particular it makes sense to ask if KY/� + B is relatively ample. This follows
from the Nakai-Moishezon criterion: if C is a curve contained in a fibre of g then

(KY/� + B).C = 1

|G|π
∗(KY/� + B).π∗C = 1

|G| KX /�.π∗C > 0

because KX /� is relatively ample. Also (KYt + Bt )
2 = 1/|G|K 2

Xt
> 0 and we see

that KY/� + B is relatively ample as well which concludes the proof. �

The above lemma enables us to relate degenerations of very simple Kodaira fibra-
tions to a situation we control better.

Proposition 2.2. Let �∗ be the pointed disk and let f 0 : X 0 → �∗ be an ad-
missible family of Galois double Kodaira fibrations with Galois group G. Then,
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possibly after a finite pullback, there are two families of curves Ci → �∗ fitting in
the diagram

X 0 π ��

f
���

��
��

��
� X 0/G = C1 × C2

g
�������������

�∗

.

Denoting by B0 ⊂ C1 × C2 the branch divisor of π (with the appropriate multiplic-
ities) the stable degeneration of f is a ramified cover of the stable degeneration of
the family of log-surfaces g : (C1 × C2,B0) → �∗.

Proof. Since the Galois group G is finite and its action on the differentiable mani-
fold underlying the fibres Xt (t 
= 0) is fixed, possibly after a finite étale pullback,
the action of G on the fibres extends to a fibrewise action of G on the whole family
X 0 such that the quotient is a family of products of curves g0 : C1 × C2 → �∗.

Now let f : X → � be a stable degeneration of f 0. Using the same argument
as in the proof of the separatedness of the moduli space (see e.g. [15, Corollary
5.15]) we see that the action of G on X 0 extends to the whole family X . By
Lemma 2.1 the quotient together with the branch divisor is a weakly stable family
g : (X /G,B) → � of stable log-surfaces. But by construction the families g
and g0 coincide (up to finite étale pullback) over �∗ and we get the claimed result
because the stable degeneration is unique by separatedness. �

2.2. Stable reduction of the family of pairs

We have seen above that in order to understand slc degenerations of very simple
Galois Kodaira fibrations we need to understand the stable reduction of families of
the following type.

Assumption 2.3. Let f : C → � be a family of stable curves over the unit disk
with smooth general fibre such that a group of automorphisms H acts fibrewise on
the fibration f . Let S ⊂ H be a subset and let

B =
∑

φ∈S
λφ	φ ⊂ Y := C ×� C

be the union of the (fibrewise) graphs of the automorphisms in S with some rational
coefficients 0 < λφ < 1. We further assume that on the general fibre the graphs of
two different automorphisms do not intersect.

We will now analyse the local structure of (Y,B) and see that while it is not
stable itself (as soon as the central fibre is singular) only a simple modification is
needed to stabilise it. Since the general fibre (Yt ,Bt ) consists of a smooth surface
containing a smooth Q-divisor we only have to consider the central fibre (Y0,B0).

If the boundary is empty then the central fibre is slc, the only singularities
except normal crossings being degenerate cusps:
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Lemma 2.4. Consider the degenerate cusp surface singularity 0 ∈ Z =Spec C[x1,

. . . , x4]/(x1x2, x3x4) given by the product of two 1-dimensional nodes. Let A be
a curve passing through 0 but not contained in the double locus. Then the pair
(Z , λA) is slc if and only if λ = 0.

Proof. We work in the local model described above and consider the blow-up π :
Z̃ → Z in 0 inside C4 × P3. Since Z is a cone the exceptional divisor E a cycle of
4 lines in P3. Note that Z̃ is in fact semi-smooth and a good semi-resolution of Z
in the sense of [17].

We can choose A to be given by the ideal (x1, x2, x3 − x4) and see that its
strict transform Ã intersects E in a single point (0, (0 : 0 : 1 : −1)) and that
π∗ A = Ã + E . Let us now calculate discrepancies.

By the adjunction formula we have

0 = (K Z̃ + E).E = (π∗K Z + a0 E + E).E = (a0 + 1)E2,

thus a0 = −1, K Z̃ = π∗K Z − E and the singularity is slc if there is no boundary.
If we add the boundary divisor we see that

K Z̃ + λ Ã = π∗(K Z + λA) − (1 + λ)E

and the pair is not slc if λ 
= 0. �

It turns out that these are the only kind of non-slc points that can occur in the
chosen degeneration:

Lemma 2.5. In the situation of Assumption 2.3 assume that we have two automor-
phisms φ 
= φ′ ∈ S such that their graphs A := 	φ and A′ := 	φ′ intersect in a
point x = (p, q) ∈ C0×C0 = Y0. Then p and q are both nodes and (Y0, λA+λ′ A′)
is slc at x if and only if λ = λ′ = 0.

The automorphism φ′−1 ◦ φ preserves the local branches at p and the divisors
A and A′ intersect transversely on each irreducible component of the normalisation
of Y0.

For the last statement it is actually enough to look at the irreducible compo-
nents of a small analytic neighbourhood of (p, q).

Proof. By composing both automorphisms with φ′−1 we can assume that φ′ = id
and p = q. In other words, the automorphism φ has a fixed point at p. We first have
to show that p cannot be a smooth point of C0. Indeed, in that case the threefold Y
is smooth in a neighbourhood of (p, p) and the two divisors 	φ and 	id intersect in
a curve which is completely contained in the central fibre Y0 by our assumptions.
In other word φ acts as the identity on some irreducible component C′

0 of C0. Let
p be a node where C′

0 meets another component. Locally around p the total space
is described by the equation xy − tm = 0 in C3 where t is the coordinate on the
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base � of the fibration. The (linearised) action of φ is trivial on one component, say
t = y = 0, and preserves the fibres and therefore φ∗ acts trivially on both x and t .
Since it also has to preserve the equation it necessarily acts trivially on y and thus
also on the other component. Since the curve is connected φ = idC0 . But this is
a contradiction since a non-trivial automorphism cannot degenerate to the identity
and thus the graphs cannot meet in a smooth point of Y0.

So assume now that p is a node of C0 and that φ interchanges the local branches
at p. In the local model as above the (linearised) action is given by

(x, y, t) 
→ (ζ y, ζ−1x, t)

for some root of unity ζ 
= 1 because the group H acts fibrewise and thus leaves
t fixed while preserving the equation. But for small t 
= 0 there is a non-trivial
solution x to ζ−1x2 = tm and the point (x, ζ−1x, ζ−1x2) is a fixed point for the
action of φ which contradicts the assumption that the divisors are disjoint in the
general fibre. Thus φ = φ′−1 ◦ φ preserves the local branches at p.

When restricted to one of the irreducible components (either in a neighbour-
hood of (p, p) or on the normalisation) we are locally looking at the intersection of
divisors given by x − y and x − ζ y in C2 and thus their intersection is transverse.
The statement on the singularity not being slc has been proved in Lemma 2.4. �

We will now describe the stable reduction procedure (see Section 1.2) in the
local model where Y is given by (x1x2 − t, x3x4 − t) ⊂ C[x1, . . . , x4, t]; the total
space of C is smooth and the threefold Y has an isolated singularity at the point
x = (0, 0, 0, 0, 0). Blowing up this singular point we obtain a smooth threefold
Ỹ → Y . The central fibre is a normal crossing divisor, union of the blow-up of
Y0 described in the proof of Lemma 2.4 and the exceptional divisor Q ∼= P1 × P1,
which are glued together along a the exceptional cycle of four lines as depicted in
Figure 2.1.

Figure 2.1. Stable reduction at a degenerate cusp where 2 components of B0 meet.

We may assume that all components of B0 = A1 + · · · + Ak pass through x .
By Lemma 2.5 all corrresponding automorphisms preserve the local branches at
x and thus B0 is contained in the union of the components t = x1 = x3 = 0
and t = x2 = x4 = 0. When we only look at one irreducible component the Ai
meet transversely at x ; all branches get separated after the blow-up and the strict
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transform Ã intersect the double locus transversely; on the central component Q
we get several parallel lines.

Denoting by Ỹ0 the central fibre of Ỹ we see that the pair (Ỹ0, B̃) is slc and thus
by inversion of adjunction (Ỹ, B̃+ Ỹ0) is lc as required. In order to take the relative
canonical model over � we have to see on which curves in Ỹ0 the log-canonical
divisor KỸ0

+ B̃0 is not positive or equivalently we can look at the normalisation

Ỹν
0 → Ỹ0 and test the curves against the divisor KỸν

0
+ ν∗B̃0 + D where D is the

double locus.
Using that KY0 + B0 was ample we only need to look at the extra curves

obtained in the blow-up: the curves on the new component Q and on each of the
4 components of Y0 one exceptional curve coming from the blow up of a smooth
point.

Neglecting the boundary for a moment let E ′ be any component of the excep-
tional cycle of lines. Then by computing on any component of Ỹν

0 we see that KỸ0

trivial on E ′. So we see that E ′ will not be contrated on the log-canonical model if
and only if the boundary divisor B0 intersects E ′ non-trivially. Thus when going to
the canonical model, the central components Q will be contracted in one direction
to a P1 (see Figure 2.1).

The result in the more general case where the surface C has An singularities
can be obtained in a similar manner – the outcome is the same.

A posteriori we get the following description of the central fibre:

Proposition 2.6. Let (Yt ,Bt )t∈�∗ be a family as in Assumption 2.3. Then the stable
reduction (Y0,B0) of this family can be obtained by the following recipe:

• Let C0 be the stable degeneration of Ct in Mg(H), ν : C̃0 → C0 the normalisa-
tion and P ⊂ C0 the double points.

• Let D = C0 × P ∪ P × C0 be the double locus of the product C0 × C0 and
B′

0 = ∑
φ∈S λφ	φ ⊂ C0 × C0 be the degeneration of Bt .

• On each component of the normalisation C̃0 × C̃0 blow up the points where
D̄ = (ν × ν)∗D meets the strict transform of B′

0.

• To obtain Y0 glue everything together along the strict transform of D̄ together
with the exceptional curves, B0 is then the strict transform of B′

0.

In short, each degenerate cusp that lies on B′
0 is replaces by a P1 containing two

singularities of local type {x1x2x3 = 0} ⊂ A3.

The local situation is schematically shown in Figure 2.2.

2.3. The structure of the degeneration

The results of the last subsection allow us to describe the degenerations of very
simple Galois Kodaira fibrations quite explicitly.
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Figure 2.2. Stable reduction via the normalisation at a degenerate cusp where two
components of B0 meet.

Theorem 2.7. The moduli space M
K F

is a union of irreducible components of

M
st

.
If X0 is a slc surface corresponding to a point in M

K F \ MK F then:

(i) There exists a stable curve C0 and two compact complex surfaces Y0, Z0 fitting
in a commutative diagram

X0
ψ

��

π̃

��

Y0

π

��

Z0
ψ̃

�� C0 × C0

such that:

• The surface Y0 has slc singularities and π is proper and birational. The
exceptional locus E of π is a disjoint union of P1 all of which map to
degenerate cusp points in C0 × C0.The map ψ is a ramified covering;

• The surface Z0 does not have slc singularities and the map ψ̃ is a ramified
covering. The map π̃ is proper and birational and contracts the pullback
of the exceptional divisor of π .

(ii) If n denotes the number of irreducible component of C0 then X0 has at least
n2 irreducible components. The normalisation of X0 is a union of smooth
surfaces, each of which is a (possibly) ramified cover of a product of smooth
curves blown up in a finite number of points.



COMPACT MODULI FOR CERTAIN KODAIRA FIBRATIONS 863

(iii) The singular points of X0 are locally isomorphic to one of the following 3
models:

• normal crossing in codimension 1,

• a degenerate cusp Spec C[x1, . . . , x3]/(x1x2x3),

• a degenerate cusp Spec C[x1, . . . , x4]/(x1x2, x3x4).

In particular X0 is a local complete intersection and hence Gorenstein.

Proof. The surface X0 is in the boundary of MK F , so can be obtained as the limit of
a family of smooth very simple Galois Kodaira fibrations {ψt : Xt → Ct × Ct }t∈�∗
with covering group G. We set C0 to be the limit of Ct in the moduli space of
stable curves. Then by Lemma 2.2 Y0 := X0/G is the stable reduction of the
family of log surfaces (Ct × Ct , Bt ) where Bt is the branch divisor of ψt with
appropriate multiplicities; Y0 has been explicitly described in Proposition 2.6 and
this description implies the first part of (i).

Denoting the complement of the degenerate cusp points in C0 × C0 with U the
G-cover ψ induces a G-cover over U . Then [4, Lemma 3.2] implies that we can
complete this to a G-cover ψ̃ : Z0 → C0 × C0. By Lemma 2.1 and Lemma 2.4
Z0 cannot have slc singularities since the ramification divisor necessarily passes
through at least one node. The map π̃ is given by the contraction of ψ∗E , the
pullback of the exceptional divisor of π .

Now we prove (ii). By Proposition 2.6 components of the branch divisor on
Y0 do not come together in the limit, are smooth when restricted to a component
of the normalisation, and do not pass through the degenerate cusps. Therefore also
the ramified coverings of the components of the normalisations are smooth and the
number of irreducible components of X0 is at least as big as for C0 × C0, hence at
least n2.

For (iii) we only have to note that ψ is étale near the degenerate cusps of Y0,
that have been described in Proposition 2.6. The ramification meeting the normal
crossing locus does not introduce more singularities; again we glue smooth compo-
nents along a smooth curve. �

Remark 2.8. By definition a very simple Galois Kodaira fibration is in particular a
surface fibred over a curve and our description shows that this remains true in the
limit. The composition X0 → C0×C0 → C0 realises X0 as a fibration over a stable
curve with fibres also stable curves. The combinatorial type of the fibres, e.g., the
number of irreducible components, remains constant on the connected components
of C0 \ Sing(C0) but can change when we pass through a node.

3. Deformations and the local structure of the moduli space

The germ of the moduli space of surfaces of general type at a point [S] is a quotient
of the versal deformation space DefS by Aut(S) (which may not act faithfully). Un-
fortunately the latter is very difficult to control so we will only be able to obtain
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information on DefS in some cases. As a warm-up we will first consider the case
of smooth double étale Kodaira fibrations before moving on to the stable degenera-
tions.

3.1. Deformations of S ∈ MK F

We start in a slightly more general setting. Let ψ : X → Y be a finite, surjective
map of degree d between smooth surfaces, B ⊂ Y the branch divisor of ψ and
R ⊂ X the ramification divisor. We assume that both R and B are smooth. Our
goal is to obtain information about the deformations of X comparing them to the
deformations of the map ψ and these in turn to deformations of Y and the pair
(Y, B).

As usual we denote the tangent (respectively obstruction) space to the defor-
mation functor with T1 (respectively T2). The infinitesimal automorphisms are
denoted by T0. For example, the infinitesimal deformations of X are classified by
T1

X = Ext1X (�X ,OX ) = H1(X,TX ) and the obstructions lie in T2
X = H2(X,TX ).

The main tool will be an exact sequence (see [18]) where all relevant deformation
spaces occur:

0 → T0
ψ → T0

X ⊕ T0
Y → Ext0ψ(�1

Y ,OX ) → T1
ψ → T1

X ⊕ T1
Y

→ Ext1ψ(�1
Y ,OX ) → T2

ψ → T2
X ⊕ T2

Y → Ext2ψ(�1
Y ,OX ) → 0.

(3.1)

The groups Extkψ(�1
Y ,OX ) can be computed as the limit of two spectral sequences

with E2-term Extp(Lqψ∗�1
Y ,OX ) or Extp(�1

Y , Rqψ∗OX ) and since the map ψ is
flat and finite we have equalities

Extkψ(�1
Y ,OX ) = ExtkOY

(�1
Y , ψ∗OX ) = Hk(Y,TY ⊗ ψ∗OX )

= ExtkOX
(ψ∗�1

Y ,OX ).

The first characterisation can be used to compare deformations of X and deforma-
tions of ψ : the push-forward of the structure sheaf of X is locally free of rank d on
Y and using the trace map we can split it as a direct sum

ψ∗OX = OY ⊕ Q, (3.2)

the trivial summand corresponding to functions on X which are pullback of func-
tions on Y .

Lemma 3.1. If
ExtiY (�Y ,Q) = 0 for i = 0, 1 (3.3)

then T0
ψ = T0

X , T1
ψ = T1

X and T2
ψ ↪→ T2

X , thus Defψ → DefX is étale and every
deformation of X is induced by a deformation of the map ψ .
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Proof. The decomposition (3.2) induces a decomposition

Ext j
ψ(�1

Y ,OX ) = H j (Y,TY ) ⊕ Ext j
Y (�Y ,Q) = T j

Y ⊕ H j (Y,Q⊗TY )

that combined with (3.1) yields an exact sequence

0 → T0
ψ → T0

X → H0(Y,TY ⊗Q) → T1
ψ → T1

X → H1(Y,TY ⊗Q)

→ T2
ψ → T2

X → H2(Y,TY ⊗Q) → 0.
(3.4)

By assumption the fourth and the seventh term in the sequence vanish yielding
immediately the claimed relationship between Ti

ψ and Ti
X . The statement on defor-

mations then follows from [8, Lemma 6.1]. �

In order to compare further with deformations of Y we have to use the sec-
ond characterisation of Ext j

ψ(�1
Y ,OX ). The sheaf of relative differentials �X/Y ,

defined via the exact sequence

0 → ψ∗�1
Y → �1

X → �X/Y → 0, (3.5)

is supported on the ramification divisor R. We want to apply the functor
HomX (−,OX ) to this sequence.

Lemma 3.2. Let R = R1 + · · · + Rr be a decomposition of R into irreducible
components and let di ≥ 2 be the ramification order along Ri . Then

Ext j
X (�X/Y ,OX ) ∼=

r⊕

i=1

di⊕

k=2

H j−1(Ri ,ORi (k Ri )).

In addition, there is a natural inclusion

H j−1(B,OB(B)) ↪→ Ext j
X (�X/Y ,OX )

which in the case where ψ is induced by the action of a group G identifies H j−1(B,

OB(B)) with G-invariant elements in H j−1(R,OR(ψ∗B)).

Proof. The first claim is local along each component of R (recall that we assumed
R to be smooth) so that we may assume that R is irreducible and that ψ : X → Y is
simple cyclic of degree d, ramified along R. Let p be a point in R and let (x1, x2)

be local coordinates centred at p such that locally R = {x1 = 0} and ψ(x1, x2) =
(xd

1 , x2). Thus in a neighbourhood U around p the inclusion ψ∗�1
Y ↪→ �1

X in (3.5)
becomes

OU d(xd
1 ) ⊕ OU dx2 ↪→ OU dx1 ⊕ OU dx2.

In the second variable, i.e., in the cotangent direction along R, this is an isomor-
phism. In the first variable we get the structure sheaf of O(d−1)R (since d(xd

1 ) =
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xd−1
1 dx1) tensored with the conormal bundleN ∗

R/X = OR(−R). As an OR-module

O(d−1)R is generated by powers 1, x1, x2
1 , . . . , xd−2

1 of the local equation of R,
which are also local generators of OR(−k R). Thus

�X/Y ∼=
d−1⊕

k=1

OR(−k R).

To compute the Ext-groups we will use Grothendieck duality for the closed embed-
ding R ↪→ X and thus need the relative dualising sheaf

ωR/X = OR(K R) ⊗OX (−K X )|R = (OX (K X + R) ⊗OX (−K X )) |R = OR(R).

Then

Ext j
X (�X/Y ,OX ) = Ext j−1

R (�X/Y , ωR/X )

= Ext j−1
R (

d−1⊕

k=1

OR(−k R),OR(R))

= H j−1(R,

d⊕

k=2

OR(k R)).

For the second assertion note that ψ∗B = d R and thus ψ∗OB(B) = OR(d R).
Taking cohomology and using the above result we get

Ext j+1
X (�X/Y ,OX ) ⊃ H j (R,OR(d R)) = H j (B, ψ∗ψ∗OB(B))

= H j (B,OB(B) ⊗ ψ∗OR) ⊃ H j (B,OB(B))

where in the last step we used the trace map to split off a trivial summand from
ψ∗OR ; this corresponds to splitting off the part that is invariant under the mon-
odromy action which proves the last assertion. �

Proposition 3.3. Let V j := Ext j+1
X (�X/Y ,OX )/H j (B,OB(B)). There is a nat-

ural exact sequence

0 → T0
ψ → T0

(Y,B) →V0 →T1
ψ →T1

(Y,B) → V1 → T2
f → T2

(Y,B) → 0 (3.6)

which compares deformations of ψ and deformations of the pair (Y, B).

Proof. Both the sequence (3.1) and the long exact sequence obtained by applying
Hom(−,OX ) to (3.5) feature the spaces Extiψ and Ti

X . Comparing them, a simple
diagram chase allows to construct a third long exact sequence

0 → T0
ψ → T0

Y → Ext1X (�X/Y ,OX ) → T1
ψ → T1

Y

→ Ext2X (�X/Y ,OX ) → T2
ψ → T2

Y → 0.
(3.7)
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Using instead of a direct sum decomposition the short exact sequence

0 → H j (B,OB(B)) → Ext j+1
X (�X/Y ,OX ) → V j → 0

we can relate (3.7) to the deformations sequence of the pair (Y, B)

0 → T0
(Y,B) → T0

Y → H0(Y,OB(B)) → T1
(Y,B) → T1

Y

→ H1(Y,OB(B)) → T2
(Y,B) → T2

Y → 0.
(3.8)

obtaining the claimed sequence (3.6). �

Let us now apply the above to very simple Kodaira fibrations.

Theorem 3.4. Let ψ : X → Y := C × C be a very simple Kodaira fibration,
S ⊂ Aut(C) such that the branch divisor B = ∑

σ∈S 	σ . Let H be the subgroup
of Aut(C) generated by S . Assume further condition (3.3) holds.

Then DefX ∼= Def(C,H) is smooth of dimension dim H1(C,TC )H and the germ
of the moduli space at X (MK F

X , [X ]) is reduced with only finite quotient singular-
ities.

In particular this holds if ψ is a simple cyclic covering.

Remark 3.5. For sake of simplicity we stated the theorem only for very simple
Kodaira fibrations but with the necessary change of notation it holds for standard
Kodaira fibrations as well. It would be nice if we could improve Theorem 1.7 so far
as to say that the MX is isomorphic to Mg(C)(H) as a scheme but we do not have
sufficient control over the automorphism group of a (standard) Kodaira fibration.

Note that Kodaira fibrations behave quite differently from other ramified cover
constructions, say ramified covers of P2 or P1 × P1. In the latter cases all de-
formations are induced from deformations of the branch locus in a fixed ambient
space, while in our case the branch divisor is rigid in Y and all deformations of X
necessarily induce deformations of Y .

Proof. We have nearly everything in place. The assumptions of Lemma 3.1 are
satisfied and thus we can replace Ti

ψ by Ti
X in sequence (3.6). Since B is composed

of the graphs of the automorphisms in S and these generate the group H we can
also replace Ti

(Y,B) by Ti
(C,H).

For Kodaira fibrations V0 = Ext1X (�X/Y ,OX )/H0(B,OB(B)) = 0: let Ri
be a component of the ramification divisor mapping to Bi . Calculating intersection
numbers we see that R2

i = d B2
i = d(2 − 2g(Bi )) < 0 and thus for all k > 0

the degree of OR(k R) is negative on every component of R. In particular, none of
these line bundles has global sections and by Lemma 3.2 Ext1X (�X/Y ,OX ) = 0,
thus V0 = 0.

The remaining part of the sequence (3.6) is

0 → T1
X → T1

(C,H) → V1 → T2
X → T2

(C,H) → 0

and we see that T1
X injects into T1

(C,H).
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By [19] we know that Def(C,H) is smooth of dimension dim H1(C,TC )H

and the discussion in [7, Section 6] shows that every deformation of (C, H) (or
equivalently (Y, B)) induces a deformation of X . Thus we have T1

X
∼= T1

(C,H),
all infinitesimal deformations are unobstructed and DefX is smooth of dimension
dim H1(C,TC )H .

Locally the moduli space MX is obtained as a quotient of DefX by a subgroup
of Aut(X). The latter is finite since X is of general type and thus MX has only
finite quotient singularities.

That simple cyclic coverings satisfy (3.3) is the content of the next lemma. �
Lemma 3.6. If ψ : X → Y as in Theorem 3.4 is a simple cyclic covering, then
(3.3) holds.

Proof. The tangent bundle of Y = C × C is a direct sum of line bundles TY =
pr∗1TC ⊕ pr∗2TC . If ψ is simple cyclic of degree d then ψ∗OX ∼= ⊕d−1

i=0 L−i for

some line bundle L such that Ld ≡ OY (B), so Q = ⊕2
j=1

⊕d−1
i=1 L−i ⊗ pr∗jTC

and we can treat each of these line bundles separately. A simple calculation of in-
tersection numbers using the Nakai-Moishezon criterion shows that all line bundles
Li ⊗ pr∗j�C are ample for 1 ≤ i ≤ d − 1 and by Kodaira vanishing their inverses
do not have cohomology in degree 0 and 1. Thus the same holds for their direct
sum and (3.3) holds in this case. �

We believe that condition (3.3) holds in many more cases but have no conve-
nient vanishing result to prove this. For example, Q has been proved to be negative
when restricted to curves in Y (see [16]) but even if we could show that Q∗ ⊗ pr∗j�C

is ample this would not yet imply our condition (3.3).

3.2. Deformations of the degenerations

We can study the deformations of a stable degeneration X in the boundary M
K F \

MK F much in the same way as in the smooth case above but several additional
difficulties arise. We will need the explict description from Theorem 2.7 and some
additional notation: there is a diagram

X

ψ

��

E
� � r �� Y

π

��

B� �
j

��

��

C × C B0� �
j0��

where

• C is a stable curve,
• B0 = ⋃

i 	φi is a (not necessarily disjoint) union of graphs of automorphisms
of C ,
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• B is the proper transform of B0 and each connected component of B is isomor-
phic to C ,

• π is a birational map with exceptional divisor E = ⋃
i Ei and Ei ∼= P1,

• ψ is a ramified covering with Galois group G.

We denote by ν : Y ν → Y the normalisation, by D the double locus of Y and by
D̄ its pullback by ν. Each component of D̄ is a normal crossing divisor and its
singularities map to the degenerate cusps of Y .

Note that, since everything is a local complete intersection we still have T i
X =

Exti (�X ,OX ) and likewise for Y and C × C .

3.2.1. Comparing deformations of X and deformations of the pair (Y, B)

Let Q and Vi be defined as in Section 3.1.

Proposition 3.7. If Exti (�Y ,Q) = 0 for i = 0, 1 then we have an exact sequence

0 → T1
X → T1

(Y,B) → V1 → T2
X → T2

(Y,B) → 0.

The required vanishing holds if the cover ψ is simple cyclic.

This can be proved along the same lines as Theorem 3.4 checking that all
steps go through in the necessary generality. Both B and the ramification divisor
are Cartier divisors, and where they meet the singular locus they locally look like
V (z) ⊂ Spec C[x, y, z]/(xy). A local computation shows that the conclusion of
Lemma 3.2 still holds.

Since B is a Cartier divisor in Y and �Y has no torsion along B we also have
the standard exact sequence (3.8) for deformations of pairs [11, Proposition 3.1]
and also Proposition 3.3 generalises to this setting.

It remains to check the vanishings V0 = 0, and Exti (�Y ,Q) = 0 for i = 0, 1
for simple cyclic coverings. This can be done componentwise on the normalisation.

3.2.2. Comparing deformations of the pairs (Y, B) and (C × C, B0)

We start with some local computations:

Lemma 3.8. With π : Y → C × C as above we have

(i) π∗OY = OC×C and Rqπ∗OY = 0 for q > 0.
(ii) The sequence

0 → π∗�C×C → �Y → �Y/C×C → 0 (3.9)

is exact, �Y/C×C ∼= r∗�E and Lqπ∗�C×C = 0 for q > 0.

Proof. Both parts can be proved locally: let A = C[x1, . . . , x4]/(x1x2, x3x4),
V = Spec A and U = V (zx1 − yx3, zx4 − yx2) ⊂ P1

V . We get a diagram

U
� � ��

π

��

A4 × P1

��

V
� � �� A4
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The first part of (i) holds because C × C is Cohen-Macaulay, in particular S2. For
q ≥ 1 note that, V being affine, Rqπ∗OY is the sheaf associated to the A-module
Hq(U,OU ), which sits in an exact sequence

0 = Hq(A4 × P1,OA4×P1) → Hq(U,OU ) → Hq+1(A4 × P1,IU ).

Since A4 × P1 can be covered by 2 affine patches the Čech-complex for IU has
length 2 and thus Hq+1(A4 × P1,IU ) = 0 for q ≥ 1. So Hq(U,OU ) = 0 for
q ≥ 1 and (i) follows.

The proof of (ii) is a straightforward local computation: the sequence 0 →
IV /I2

V
∼= O⊕2

V
η→ �A4 |V → �V → 0 is a locally free resolution of �V . Taking

the pullback with π and restricting to the affine subset where (for example) y 
= 0
one only needs to check that π∗η is injective, its cokernel injects in �U and �U /

coker(π∗η) ∼= �π−1(0). �

Lemma 3.9. If L is a line bundle on Y then

ExtiY (�Y/C×C , L) ∼= Hi−1(E, r∗L).

Proof. The inclusion r : E ↪→ Y factors over the normalisation ν : Y ν → Y by
choosing for each component of E one of its preimages in the normalisation, we
write r = ν ◦ r ′. Then by relative duality both for ν and r ′

ExtiY (�Y/C×C , L) = ExtiY (r∗�E , L) = ExtiY (ν∗r ′∗�E , L)

= ExtiY ν (r ′∗�E , ν∗L ⊗ ων) = ExtiY ν (r ′∗�E (D̄), ν∗L)

= ExtiE (�E (D̄), r∗L ⊗ ωr ′) = Exti−1
E (�E (D̄ − E), r∗L)

= Hi−1(E,OE (E − D̄ − KE ) ⊗ r∗L) = Hi−1(E, r∗L)). �

Proposition 3.10. All infinitesimal deformations of the pair (Y, B) induce non-
trivial deformations of C × C and thus of the pair (C × C, B0).

Proof. By Lemma 3.8 (i) the spectral sequence

Extp(�1
C×C , Rqπ∗OY ) ⇒ Extp+q

π (�C×C ,OY )

degenerates and Extiπ(�C×C ,OY ) = ExtiC×C (�C×C ,OC×C ) = Ti
C×C . Plugging

this in the sequence (3.1) we get isomorphisms T i
π

∼= T i
Y for all i .

By Lemma 3.8 (ii) the spectral sequence

Extp(Lqπ∗�1
C×C ,OY ) ⇒ Extp+q

π (�C×C ,OY )
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degenerates as well and we get a long exact sequence as in (3.7) for the map π .
Using the isomorphism Ti

π
∼= Ti

Y there is a diagram with exact rows and columns

Ext1Y (�Y/C×C ,OY )

��

δ

����������������

0 �� T1
(Y,B)

��

��

T1
π

��

��

H1(B,OB(B))

T1
(C×C,B0)

�� T1
C×C .

We claim that the map δ is injective. Assuming this, every infinitesimal deformation
of the pair (Y, B) induces a non-trivial deformation of C × C and, by composition
with π a deformation of (C × C, B0).

The map δ can be factored δ = β ◦ α in the diagram

Ext1Y (�Y/C×C ,OY ) ��

α

��

Ext1Y (�Y ,OY )

��

Ext1Y (�Y/C×C , j∗OB) �� Ext1Y (�Y , j∗OB) Ext1B( j∗�Y ,OB)

��

Ext1B( j∗r∗�E ,OB)
β

�� Ext1B(OB(−B),OB).

The vanishing of the higher derived pullbacks Li j∗�Y and Li j∗r∗�E for i ≥ 1,
needed to make adjunction work, can easily be checked in the local model.

The kernel of α is a quotient of

Ext1Y (�Y/C×C ,OY (−B)) = H0(E,OE (−B)) = 0 (Lemma 3.9)

so α is injective.
Now we analyse β: let D = ∑

Pi be the Weil-divisor of nodes on B, ν : B̃ →
B the normalisation and D̄ = ν∗D. Note that OB(−B) is ample on B.

Then j∗r∗�E ∼= OD and β arises by applying ExtiB(−,OB) to the exact se-
quence

0 → ID ⊗OB(−B) → OB(−B) → OD → 0.

By Serre duality this Ext-sequence is the dual of the long exact sequence in coho-
mology associated to

0 → ID ⊗ ωB(−B) → ωB(−B) → OD → 0
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and the map β is injective if and only if

β∨ : H0(B, ωB(−B)) → H0(OD)

is surjective if and only if H1(B,ID ⊗ ωB(−B)) = 0 because H1(B, ωB(−B))

vanishes.
Local computations at one node yield 2 exact sequences

0 → ID ⊗ ωB(−B) → ν∗ν∗(ID ⊗ ωB(−B)) → O⊕2
D → 0,

0 → OD̄ → ν∗(ID ⊗ ωB(−B)) → ID̄ ⊗ ν∗ωB(−B) → 0.

Since H1(B̃,OD̄) = 0 = H1(B̃, ν∗ωB(−B)) = H0(B̃,OB̃(−D̄) ⊗ ν∗OB(B))∨
we also have H1(B̃, ν∗(ID ⊗ ωB(−B))) = 0.

Combining both sequences to a diagram with exact row and column

0

��

H0(B̃,OD̄)

��

η

		��������������

H0(B̃,ν∗(ID⊗ ωB(−B)))
γ

�� H0(B,O⊕2
D ) �� H1(B, ID ⊗ ωB(−B)) �� 0

we see that the composition η is an isomorphism, thus γ is surjective and
H1(B,ID ⊗ ωB(−B)) = 0. Therefore β and hence δ are injective, which con-
cludes the proof. �

We can finally prove the main result of this section where we use the same
notation as above.

Theorem 3.11. Let N be a connected component of MK F and N be its closure in
the moduli space of stable surfaces. If for all degenerations X in N \ N we have
Exti (�Y ,Q) = 0 for i = 0, 1 then N is a connected and irreducible component of
the moduli space of stable surfaces.

Proof. Combining Proposition 3.7 and Proposition 3.10 we see that for every
degeneration X we get T1

X ↪→ T1
C×C,B0

= T1
(C,H). By our previous study of

degenerations this implies T1
X = T1

(C,H) and all deformations of X are in fact
degenerations of smooth Kodaira fibrations as described in Theorem 2.7. �

Since simple cyclic coverings satisfy the assumptions of the theorem, we get:

Corollary 3.12. If ψ : X → C × C is a smooth very simple Kodaira fibration

such that ψ is a simple cyclic covering then M
K F
X is an irreducible and connected

component of the moduli space of stable surfaces.
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Remark 3.13. The vanishing conditions we require are not strictly necessary for
our result. But if we relax them it might well happen that either there are infini-
tesimal deformations of X that do not give rise to infinitesimal deformations of ψ

or that some infinitesimal deformation of both X and ψ is obstructed for ψ but not
for X . Does such a behaviour actually occur for double Kodaira fibrations or their
degenerations?
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[14] J. KOLLÁR and S. MORI, “Birational Geometry of Algebraic Varieties”, Cambridge Tracts
in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998. With the collab-
oration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
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[17] J. KOLLÁR and N. SHEPHERD-BARRON, Threefolds and deformations of surface singu-
larities, Invent. Math. 91 (1988), 299–338.

[18] Z. RAN, Deformations of maps, In: “Algebraic Curves and Projective Geometry”, Trento,
1988, Vol. 1389, Lecture Notes in Math., Springer, Berlin, 1989, 246–253.
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