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Least energy nodal solution of a singular perturbed problem
with jumping nonlinearity

EDWARD N. DANCER, SANJIBAN SANTRA AND JUNCHENG WEI

Abstract. In this paper we study the asymptotic behavior of the least energy
nodal solution of a problem with a jumping nonlinearity.
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1. Introduction

There has been a considerable interest to understand the asymptotic behavior of
positive solutions of the elliptic problem

?Au—u+ f(u)=0 inQ (L)
u=0 on 92 '

where ¢ > 0 is a parameter, f is a superlinear function, €2 is a smooth bounded
domain in RV, Let F(u) = fou f(¢)dt. In this paper, we consider the problem

2Au —rut +2u" 4+ fu) =0 inQ
ut £0 in Q (1.2)
u=~0 on 92

where A1 > 0, A2 > 0 with A| # Ap, and u® = max{=u, 0}. Let f:R— Rbea
continuously differentiable function satisfying:

(f1) f(t) =o(t)ast — 0;
(f2) {/(z) T 20(|t|l’) ast — oo for some p € (1, ¥3) if N > 3and p > 1 if
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(f3) there exists a constant & > 2 such that 6 F (t) < tf () where

t
F(t) = / f(s)ds;
0

(f4) |t|f'(t) > f(@)(sgn 1) forall t # 0.

Condition (f4) implies that % f (&)t —F(¢) is strictly increasing in (0, +00). Problem
(1.1) arises in various applications, such as chemotaxis, population genetic, chem-
ical reactor theory. Problem (1.2) arises in the study of population dynamics with
jumping nonlinearity [9]. It can also be considered as the limiting problem of the
following elliptic system

e2Au — hu + pu’ 4+ puv> =0 in Q
2Av — v+ v + o> =0 inQ
u,v>0 n
u=v=_0 on €2

(1.3)

The system (1.3) arises in the Bose-Einstein condenstates and nonlinear optics. An
important phenomena of (1.3) is the so-called phase separation. As B — —oo, the
components u, v separates and the difference function u — v approaches a solution
of (1.2) with f(u) = ului — pou. This has been proved for the least energy
solution of (1.3) in [5,7] and for radial solutions on two dimensional balls in [20].
We referto [1,2,4,5,8,10,14,19,20] and the references therein.

Existence and concentration of positive solution of this type of problems were
extensively studied by Ni-Takagi [16, 17], Ni-Wei [18], del Pino- Felmer [11].

Define

1 2 M 2
IMMQZERUVW|+7]MW’_RNHW)

and

1 2 M2 2
W= [ VWP S [ W | Faw),

Let W,,, be a least energy positive solution of

—Au+ru= fu) inRN
u>0 in RV (1.4)
ue H'(RN)

and W,, be a least positive solution of

—Au+rou=fw) inRN
u>0 in RN (1.5)
u e H'(@RN).



LEAST ENERGY NODAL SOLUTION 21

By Gidas, Ni and Nirenberg [13], it is well known that W), is radially decreasing
and decays as

: 1-N
W, (Ix]) ~ ef‘/m)"|x| 2 as |x| = +oo

for i = 1, 2. Throughout the course of the paper we will call W) an entire solution
or a ground state.

In this paper, we prove the existence of a least energy nodal solution and show
that for ¢ sufficiently small, the solution has a exactly one positive spike and one
negative spike and the spikes concentrate at two distinct points of €2, in other words
they repel each other. We define a function ¢ : 2 x Q@ — R by

L | Vi
¢(x,y) = min {ﬁ]d(x, 0R), v22d (y, 99)), T vide yl}.

Theorem 1.1. There exists g > 0 such that for every 0 < ¢ < &g, the least energy
nodal solution u, € HOl () of (1.2) having exactly one positive local maximum
(hence a global maximum) point PE1 and one negative local minimum (hence a
global minimum) point P? and

limg(P!, P2)= max ¢(x,y),
e—~>0 (x,7)eQxQ

with ug(Pl) — (—=1)'"'W;,(0) and u; — 0in CL_(Q\ {P]}, P?}).

Note that for sufficiently small ¢ > 0, the least energy positive solution to the

problem (1.1) has a unique maxima Pg; u, decays exponentially away from P

and d(P,, 0Q2) — Iglaéd (P, 0L2) as ¢ — 0, which implies that the solution con-
€

centrates at an interior point furthest from the boundary of €2. This was studied
by Ni—Wei [15]. For the least energy nodal solution, the problem was studied by
Noussair—Wei [18] when A1 = A = 1 and f(u) = uP. They obtain the same results

as in Theorem 1.1. In addition, they prove that u.(x) = W()ﬁf’s1 )— W(x;—&z) + g,
where ||vg || Lo(@) — 0 as e — 0 and W is the unique solution of the limiting prob-
lem. The study of asymptotic behavior involves the uniqueness and non-degeneracy
of solution of the limiting problem. Then using the expansion, an asymptotic ex-
pansion of the energy is obtained. This approach does not work here since u and
u_ are not differentiable. Neither we have uniqueness nor nondegeneracy of the
ground state. There is another approach by del Pino and Felmer [11] where they
used variational characterizations of positive solutions and symmetrization tech-
nique. However their approach works well for positive solutions but does not work
for sign-changing solutions. We shall modify the approach of del Pino and Felmer.
The problem here is more complicated since the solution is sign-changing and we
have to estimate the interaction of the positive and negative components.
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2. Preliminaries

Without loss of generality, we consider 0 < A; < A,. The associated functional to
the problem (1.2) is

Eg(u>:f ( WVl + 2wty + z(u_)z—F(u))dx.
Q 2

Note that from (f3), E¢ € CI(HO1 (), R). Moreover, if u, € HO1 (£2) is a critical

point of E,, then u, € C%(Q2) N C(Q) and hence u, is a classical solution of (1.2).
Note that E;(u) = E¢ , (u) + E¢ 5, (1) where

2
e A
Ee, (u) = / (7|w+|2 + —2‘ wh)? — F(»ﬁ))dx,
Q

Em(u):/ <—|v 12 + (u )2 — F(u))dx.
Q

Define the Nehari set as

A@:{ueH&(Q):ui;—éO,s:z/ |Vu+|2+x1/(u+)2=f fwhHut;
Q Q Q

82/ |Vu|2+/\2f(u)2:/ f(u)u}.(2.l)
Q Q Q

Define the positive and negative Nehari set as
/\/j:{ueHol(Q):( Ml(u) u) =0;u £0and u > 0} (2.2)
and
/\/’;:{ueHOl(Q): ( ;’M(u),u)=0;u§é0and —u >0} (2.3)

respectively. Note that any u belonging to N is sign-changing. Moreover, all the
sign-changing solutions of (1.2) are contained in N;. Also note that N;" NN = @.
Let

Ce = 1nf E.(u). 2.4)

ueN;

Remark 2.1. The set V; is not a manifold in HO1 (€2) due to the lack of differentia-
bility of the map u u®. In fact, V; N H*() is a C' manifold of codimension 2
in H%(), see [1]. Hence it is not clear whether a minimizer of E, on N, is indeed
a solution of (1.2).

Remark 2.2. Define h*(t) = E.(tu). Note that ™ is strictly increasing for ¢ €

(0, 1) and strictly decreasing in ¢ € (1, 400). This implies that maxo<;<+oco h*(1)
exists and occurs at r = 1.
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We will show that there exists u, € N; such that ¢, = E.(u;), and that u, is a
least energy sign-changing solution. We state some elementary lemmas,

Lemma 2.3. Forall ¢ > 0, N;" and N are closed subsets of Hy ().

0< c;' = inf Eg,,(u) = inf max E; ), (tu)
ueN: ueH; (Q),u#0 =0
and
0<c, = inf Eg;,(u) = 1r1f max Eg ;,(tu).
ueNy ueH; (Q),u#0 =0

Moreover, N * is a C' manifold of codimension 1 and every minimizer u of E, on
N is positive.

Proof. This follows trivially by using (f1) and Sobolev embedding theorem. See
[15]. J\/gjE is a C! manifold of codimension 1 follows from [3]. L]

Lemma 2.4. There exists some ug € N, such that c, is achieved. Moreover, u, is
a weak solution and hence a classical nodal solution of (1.2).

Proof. Let ¢ > 0 be fixed. We use the argument by Bartsch, Weth and Willem [2].
Since ¢, = inf,cn;, E:(u), there exists a minimizing sequence u , € N, such that
E¢(uen) = cc asn — +o0o. Note that by (f3), E, is coercive on N, as

1 1 2 2 2

Ea(”s,n) = E - 5 £ |vu8,n| + )\'l(ug n) + )LZ(” (2.5)
Q

and hence there exist b(¢) > 0,d(e) > 0 independent of n such that b(g) <

luE, | mi@ = d(e). Therefore there exist uf € Hj(Q) such that uf, — uf

as n — +o0o and by the Rellich Lemma usin — u in L4(2) for ¢ e (1, Ao 2)

This implies that u > 0 and u = 0 since u+ g, = 0. Thus uE are indeed
the positive and negative part of U = u — From the fact that (2 2) and (2.3)
we have ||u . |lLa(e) has a positive lower bound and this implies u # 0. But also
we have

Jim [k, = [ o 2.6)
and
lim | FQui,) = f F(u). 2.7)
n—oo Q Q

From (2.6) using Fatou’s lemma we have

Iy oy = [ F
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By a variant Remark 2.2 there exist s, ¢ € (0, 1] such that

2 _ o
Iy 0y = [ 00

and
lsuz g1 ) = /Q flsul)su; .
This implies ru}” — su; € N, and hence

Eg(tul —su;) = Eg 3, (tul) + Eg ,(suy)

) . _ 2.8)
S nll)rgo EE,)\.] (u;“’:n) + nll)rgo ES,)\Q (ua,n) = CS'

Note that we have used the fact (f4), (2.6), (2.7) to obtain

Eep (tuf) < lim Ej, (uf) and Egp,(sug) < Hm Eej, ().

Hence we have ¢, < E(tu;” — su;) < ¢, and indeed tu — su is a minimizer in
Ne.

By Remark 2.1 we want to show that v, := tu — su; is a critical point of E.
If possible, let E,(ve) # 0 and then there exist § > 0 and A > 0 such that

|EL(w)|| > A whenever [[v, — w]|| <3§. (2.9)

Define a square S = (%, %) X (%, %) and for any (m, n) € §

+

e — N

Y(m,n) =mv . -

Then from (2.8) we have

Ce = rr(%%x E.(Y) < ce. (2.10)

Indeed our earlier comments, E.({¥) < ¢, on S except at (1, 1). Choose T =
min{%, %‘3} and B(v,, §) be ball centered at v;. Then by Willem [21, Lemma
2.3, page 38], there exist a deformation n € C([0, 1] x HO1 (R); HO1 (£2)) such that
@nit,w)y=wift =0orifw € E;l(cg — 21, ¢ + 21),
() n(1, E&° N B(ve, 8)) C E¢ T,
© E.:(n(1,w)) < E.(w),Vw € HO1 (€2). Moreover, by our remarks and results
in [21], we have

max_ E.(n(l, ¥ (m,n)) < cg. 2.11)

(m,n)es
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The idea of the proof is to obtain a contradiction. To this end we claim that
n(1, ¥(S)) N Ne # 8. Define h(m, n) = n(1, y(m, n)) and

I (m,n) = (Eé(mv;“)v;“, E;(nvg)v€>
I,(m, n) = <%E;(h+(m, n)ht(m, n), %E;(h_(m, n))h~ (m, n)).

Note that the first component of IT;(m, n) is positive if m < 1 and is negative
if m > 1 with an analogous property for the second component. Hence by the
product rule for degree theory we have deg(I1;, S,0) = 1. Moreover, as ¢ = h
on 95 (by our choice of T and the property (a) of the deformation) we must have
deg(I1y, S,0) = deg(I1,, S, 0). Hence there exists a tuple (mg, ng) € S such that
I, (mg, no) = 0 which implies i (mg, ng) = n(1, ¥ (mo, no)) € Ne. O

Lemma 2.5. Let w; , and wg ), be the least energy solutions of

—&?Au+ru= f(u) in B.(0)
u>0 in B, (0) (2.12)
u=0 on d B, (0)

—&?Au+ rou = f(u) in B.(0)
tu>0 in B, (0) (2.13)
u=20 on 0B, (0)

respectively. Then for sufficiently small ¢ > 0, we have

2 /Ar(4o(1)
Ee,kl(ws,kl) = €N{IK1(WM) +e € }
2/Rar(1+o(1)
Eejy(0,) = &V {Ixz(sz) +e” e }
where 0o(1) — 0 as e — 0.
Proof. For the proof see [11]. O

Let A ={x € Q:/Ai|lx — Pi| =/ 2|x — P2l}.
Lemma 2.6. We have for ¢ > 0 sufficiently small

_2¢0(P1.Py)

N _2p(P|.Py)
ce <& 1L, (W) + L,(Wy,) +e e + o(e e ). (2.14)
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Proof. Let v, be a positive solution of

—&2Au+hu = f(u) in B, (P)
u>0 in B, (P1) (2.15)
u=20 on By, (Py)

where r; = min{d (P, 0€2), d(P1, A)}. Let w, be a positive solution of

—&2Au+ ru = f) in B, (P)
u>0 in By, (P>) (2.16)
u=20 on Brz(P2)

where rp = min{d (P>, 0S2), d(P>, A)}. Note that supp ve N supp we = ¥ and v, €
N and w, € N . Then we have v, — w, € N; and hence we have from (2.15)
and (2.16),

Ec(ve — wy)
Es,)\l (ve) + Es,)»z (we)

Ce =
=

IA

N _ _ _n _2
&€ {IM(WM)—i—e e+ L, (Wy,) +e = +o(e” &) +ole 8)}

Hence we have,

N _2min[r1,r2] _2min[r1,r2]
Cg <€ I}\] (W)n]) +e € + I)LQ(W)Q) + 0(6 €
(2.17)
N _2e(P.Py) _20(P.Py)
<e IM(WM)+IA2(W)Q)+6 € +0(€ € ) . O
Corollary 2.7. We also have c; > &V { Ly, (Wi, + L, (Wa,) + o(1) }
Proof.
ce = inf {Ee,kl (u) + Ee,kz(u)} > inf Es,)»l (u) + inf Ee,)\z(u)
ueN; ueNz ueNg
this implies the result. ]

Lemma 2.8. As¢ — 0,

d(P}, Q) oo d(P2,3Q) oo |P} — P2|
& & &

— +00.
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Proof. As e*Au.(P}) < 0 it implies that f(u.(P})) > Ajue(P}) which implies
that Cu? - (Pgl) > A1, hence there exists a positive constant S such that u g(Pgl) >
B and similarly we obtain that ug(sz) < —B. Also by Lemma 2.6,

2 / Vatel? 4 / WH? + A / Wo)? < ceV
Q Q Q

and hence by Moser iteration we obtain [|ug|| <) < C.

. d(P},0Q) . i
Suppose that hn}) ———— < C. By scaling v (x) = u.(ex + P,), then (1.2)
e— &

reduces to,

Avg — Ave +Aov, + f(ve) =0 in

vE#0 in Q, (2.18)

ve =0 on 02,

_pl

where Q, = = £P9. Note that from (2.6), ||vg||H0| @) = C; there exists W €

H'(RM) we have v, — W in H'(R") and by the Sobolev embedding theorem

we have v, — W in Lf; C(]RN ). Hence v, — W point-wise almost everywhere

in RV, Also by Schauder estimates, it follows that there exists C > 0 such that
l[vell 2.6 ®Y) = C for some 0 < B < 1. Hence by the Ascoli-Arzela’s theorem
loc

there exists W £ 0 such that
[[ve — W”cﬁm(RN) —0ase —>0
where W is a nontrivial solution satisfying
AW =MW+ f(W)=0 inRY
supW > B, W e H! (2.19)

W=0 on aRﬁ

where Rﬁ ={y : y» > —a}. Thenby aresultin [12] we obtain W = 0, a contradic-

d(P2,0Q P! — p?
tion. Similarly lim (b, 059 _ +00. Now we prove that lim e = Pl _ +00
e—0 € e—>0 €
By applying the Schauder estimates we obtain a C > 0 such that || Du.||p~ < C.
P — P

If possible let lim = § < 4o00. Then it easily follows that u S(Pgl) >B

e—0 &
and u;(P?) < —pB which implies that u;(P)) — us(P?) > 2p. Then

& &

1 2 |P} — P?|
2B < |ug(P;) —us(Py)| < el Duglloo————.
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P! —p?

Suppose P, = . Then along a subsequence |P;| — § € (0, +00). Define
ve = ue(ey + P}). Then v, — W in C2_(R") and W satisfies

loc

— AW+ M WT =W~ = f(W) inRV

W(O) =8, W(P)=<-8 (2.20)
W e H'(RV)
1 2
where P = lim,_,¢ Fe ;PS which implies that W is a nodal solution of (2.20) and

hence a critical point of the functional
1 A A
Too(u) = / Vil + 2@t + 2w - Fu) )dx
BN \ 2 2 2
and in particular we have (I (W), W) =0and W € Ny where
Noo = {u e H'RY) : ut £ 0,/ |Vut|? +x1/ (ut)? :/ fwhHut;
RN RN RN

/ |W|2+x2/ (u)2=/ f(u)u}.
RN RN RN

But by (2.1) we know that e (I, (W) + L,(Wy,) + o(1)) > e¥N(Io(WH) +
Ioc(W™) + o(1)). This implies

IOO(W+) + IOO(W_) = IA.I(W)\.I) + I)\z(W)\z) =C)y + Chy
where c¢;, is a mountain pass critical value with respect to the functional 13, i.e.

Cr = inf Iki (u) (221)
ueHIRN),uz0, [pn [Vul24+1; [pn u?=[pn f)u

Also it easily follows that Io(WT) = I, (W) > ¢, Io(W™) = L,(W7)
Cy,. Since any minimizer cy,; is a weak solution, we have ¢, = I, (W), Chy
L,(W™). Thus Wt = W,,(x — R) and W~ = W,,(x — S) for some R, S in
R¥ . The first equality implies W > 0 on R" which contradicts that W changes
sign. O

v

Lemma 2.9. For sufficiently small ¢ > 0, uy has exactly one positive local maxi-
mum and one negative local minimum.

o(1)). Suppose it has two positive local maxima as P, and Q. and a negative local
minimum R. Then it follows similarly as in the proof of Lemma 2.8 one can show

Proof. Note that from Lemma 2.6, we obtain that ¢, < &V (L., (Wy) + L, (Wy,) +
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that % — 400, |Q5€j — +00 and @ — +o00 as ¢ — 0. Also note

that %f(ug)ue — F(ug) > 0 by assumption (f4), and thus

ce = Eg(ug) = / (lf(us)ua - F(”s)) dx
o \2

1 1
> / <§f(ua)”s - F(”e)) +/ (5][(”8)”8 - F(”s))
Ber(P) Ber(Qe) (2.22)

+/ (lf(ue)ua - F(”s))
Ber(Re) \2

> 8N (21}»1 (W)\.l) + I)Lz(W)Lz) + 0(1))

a contradiction to Lemma 2.6. Hence u, has exactly one positive maximum and
one negative minimum. O

Now let us define

MR
dg:min{ﬁld(P;,aQ),ﬁzd(Pf,aQ), ViR p! P2|}.

7| _
/—A1+ /—)L2 € €

Then by the above lemma df — 400 as ¢ — 0. Now let us re-scale the problem
by = d% and X = d.X. Then we have

—Q
Au—dut 4+ 2u” + f(u) =0in Q4 = - (2.23)

&

Lemma 2.10. For any 0 < §' < 1, there exists a constant C > 0 independent of §'
such that

_ A0=8) =P _ p0=8)x—P2|
& &

LR

u; <Ce andu, < Ce Vx € Q.

Proof. Let vi(y) = ugc(ey + P!). Then v! — W;, in C2_(RV). Also we have

loc
Wi, (r) < Ce=V*7 forall r. Let R = ln% such that ¢ = Ce R, Then there exist
an gy > 0 such that v;“ (y) < Wy, (y) + ¢ < 2¢. Let us consider the domain Ql =
Q\ B R(Pgl) where R > 0 is large. Hence we can choose a ¢ > 0, independent of
& such that v} < C on 3 Bg(0). This implies that u}* < 2¢ on 3 Beg(P.). For any
0 <& < 1, choose ¢ in such a way that

Sue) ’
< &,
Aug
consider the equation with u, > 0
—ezAug + AMu, = f(ug)ug in Q.

Ug
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Then we obtain,

—&2Au; + (1 = 8)hu, <0 inQ!

0 in Q!
te = n 1 (2.24)
us <2¢ in 9B;r(P,)
u, =0 on 9€2.
. . ) NS )
Using a comparison argument we obtain u < Ce~ € . We obtain the
other estimate similarly. O

3. Lower bound of the energy expansion

In order to obtain the greatest lower bound of the energy E, we consider three cases.

Case 1. Suppose that

d,
fd(Pl,aQ)

— 1 ase —> 0.

Note that
Ce = lnf E¢j,(u)+ inf Eg;,®w).

ueN; ueN;

We use del Pino-Felmer’s symmetrization technique in [11] to conclude that

1, i@l sto)
Ee,M(”g—) ZgN{IM(WM)—i_Ee 2 ¢ }

We also deduce that
- 1 _,@sto))
Es,kz(ug ) = SN{I)Q(W)Q) + Ee 2 & }
and as d, = \/kld(PE], 0L2) + o(1), we have
N _2(dg+0(1))
> e\ Ly (Wy) + L,(Wy,) +e B . 3.1

Case 2. Suppose that

de
JAad (P2, 0Q)

Then we argue as in Case 1.

— 1 ase — 0.
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pl P’ ;2

VA lx = P!l =& |x = P

Figure 3.1. The region of intersection.

Case 3.
Suppose that
VAV
dy = 22\ pl_ p2|,
VAL A A
Then we can choose § > 0 such that d, > (1 + 58)«/)\1d(P€1, 0Q), d. > (1+
*
58)+/A2d (P2, 3K2). Furthermore, we define |P'— P}| = «/)»_:-E/E“Dsl — P =d. ;.
Then we have
VA1

P’ — P} = |P} — P2 =d.,.

VAL + VA2

We consider balls By, 1+8(Pgl) and Bd€,2+52(P82), where 0 < § < dg,1 is small and

8y ~ %8 is defined by

(e +8)* —dy | = (den +82)* — d . (3.2)

Define the intersection I', = Bdsleﬂg(Psl) N Bd€’2+5(P£2). Then the total volume of

. =~ 80(8%). Since I'y = (I'e N {u, = 0}) U (I'; N {ue, < 0}), we either have
ITe N {ue > 0} < 3ITe] or [T N {us < 0}] < 3IT].
Without loss of generality, let

1
ITe N {u, >0} < §|r8| .

Thus
1
|Ba, 1 +5(P)) N {ue > 0}| < |Bg, ,1+5(P)] — 5|l = 1B, (0)]
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where r. = (d1,¢ + 6)(1 — n) for some 0 < n < 1, where n ~ 8%. We define a
smooth function

1 if|x — P! 1+ 8 —
X(x):{ if |x — PY| < (dey +8)(1 — 1) a3

0 if|x— P/ = (de1 +6)

and 0 < x < land |Vy| < Then the support of uj x? is contained in

C
(de1+8)n "
By, , +s(P1). Multiplying (1.2) by u; x? we obtain

/ VUV (uf ) +mwH)x* = / fuu x>, (3.4)
Q Q

Now let us compute

/ezwewusz)=/ e2VulV(ul x?)

Q

82Vuj{XV(ujx) +quVX}

2L (V) —uf Vv x) + uixvxvu:}

)

2 |V(ujx)|2—uijV(ujx)+quvvaj} (3.5)

eIV 0P —uf xVxVul — @hH? vy

S5 5TS 53

+uixVxW§r}

=82/ |V(u:x>|2—82/(u:)2|w|2
Q Q

where
21— 3)(dg 1 +8)
€

82/ W Vy? < CceNevVh (3.6)
Q

On the other hand
fQ Fluouty? = /Q Fud 0wty + fQ o — fuoxutx

(P+D)/21 g 1 +8)(1—T)
= / fufoufx+o0 (s”e‘ : . ) (3.7
Q

Note that in order to derive (3.6), we use the assumption ( f>), Lemma 2.10, (3.3)

_\/ﬂa—i'n.x—PgH S N
’ 2(1—=m)’

o

u <Ce
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and |Vy| # 0if [x — Ps,| > (de,1 + 8)(1 — ). Moreover, note that {f(u] x) —
flug)xufx =0if x = 1. When (de,1 +8)(1 — ) < |x — P}| < (d¢,1 + ) using
(f2) we obtain

NS
[Futn) — fuxufx < Cem P

and hence

_ /Al(p+1)(d&|+§)(175,)
&

/Q{f(ujx) — fu)xfufx <CeVe

N /i (p+1)(dg 1 +8)(1-3)
< Ce'e” B .

Hence combining (3.4), (3.5) and (3.7) we have
& [ 1vaor v [ wio?
Q Q

2/M(dg 1 +8)(1=1)
=/ f(ujx)ujx—f—O(eNe_ € ’ )
Q

Let v, = t.u x where 7, is such that

82/ |Vv8|2+A1/ v§=/ £ (ve)ve.
Q Q Q

/A=), +6)
te=1+0]e & .

(3.8)

Now we claim that

Define 6 : [0, +00) x [0, 8*) — R such that
5.9 = [ fetouta = [ fotoutx=p [ 7t ot o’
for some * > 0. Then 6 € C!. Note that 5 (1, 0) = 0 and
50,0 = [ 0w a? ~0.

Hence by implicit function theorem, there exists a C! function g +— ¢(8) such that
o(t(B), B) =0, for small B and 7(0) = 1. Letting r, = 1 + B, we have from (3.8)

2 f IV P fput0? — [ S u

P~ o Jo IVud x 12+ a1 [oud )2 — [o FruHwd x)?
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Hence

2 /M dg 1 +8)(1-3)
0] (eNe_ e

Jo F@0Ou x — fo f/ @ 0w x)?
zx/ﬂaff)(dg 1+8)

ﬂ/\/

which implies 8 = O(e™
&2 2

£
> Voo = 3/ VG 0P
By j+5(PD) By +5(P})

+e%p f oy VAT F OB,
d| ¢+3

). Then we obtain,

ﬁ/ U2 — ﬁ (u+X)2
£ £
2 JBay 15D 2 JB4y 5(Ph

+ 0B Wl x)*+ o),
Bay +5(P))

and

f F(uy) = / Ft)+8 Futut x+0(8%N).
Bay +5(P}) By +5(P¢) By +5(P¢)

Also we have

52 / Vit x P+ / WP~ / Flut ut x=0(eM).
Bay ,+5(P}) B ! By +5(P))

) o +5(Pg)
Using the above facts we have,
2

e 2 Al 2
> [Vue|” + >  — F(ve)
By, ,+s(PD) By +5(PD) By ,+5(PD)

g A
3/ \Vuf x>+ 7/ i x)?
By ,+5(PD) By +5(PD)

—f Fulx)+ 0N — 1%
4y o+ (P

- fB 1) (%f(”;—)()u;‘)( - F(ujx)) + 0N — 1) (3.9)
d| ¢+

= [ (Gradu: - ran)

N ) D=, +9)
+0(e"|te — 1" +e €

" N A @+0)dg, 1 +)
=E€,)\|(u5)+8 O e ¢
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for some o € (0, min(1, p — 1)). Thus we have

n . N N P1CF0) e 1 +9)
ES,M(”g ) > /1\1/"1£ ES’A'l?Bdg‘F(S(Pgl)(v) —Ce"e €

&

N 2D +) N - 1CH0 e +)
> eV L, (Wy,) +e € —Ce"e E

N 1 206 td)
> ¢ I)xl(W)\l)_l_ie ¢

N 1 _2(1—%)(dg+5)
> eV 1L, (Wy) + Ee € .

Similarly we obtain the estimate for E; »,(u, ). This proves the result.

Proof of Theorem 1.1. This follows from Lemma 2.6 and Section 3. O
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