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Regularity for the CR vector bundle problem II

XIANGHONG GONG AND SIDNEY M. WEBSTER

Abstract. We derive a Ck+ 1
2 Hölder estimate for Pϕ, where P is either of the

two solution operators in Henkin’s local homotopy formula for ∂b on a strongly
pseudoconvex real hypersurface M in C

n , ϕ is a (0, q)-form of class Ck on M ,
and k ≥ 0 is an integer. We also derive a Ca estimate for Pϕ, when ϕ is of class

Ca and a ≥ 0 is a real number. These estimates require that M be of class Ck+ 5
2 ,

or Ca+2, respectively. The explicit bounds for the constants occurring in these
estimates also considerably improve previously known such results.

These estimates are then applied to the integrability problem for CR vector
bundles to gain improved regularity. They also constitute a major ingredient in a
forthcoming work of the authors on the local CR embedding problem.

Mathematics Subject Classification (2010): 32V05 (primary); 32A26, 32T15
(secondary).

1. Introduction

In this paper we will prove the following.

Theorem 1.1. Let n ≥ 4. Let M be a strongly pseudoconvex real hypersurface in
Cn of class C2. Let ω be an r × r matrix of continuous (0, 1)-forms on M . Assume
that ∂Mω = ω ∧ ω. Near each point of M , there exists a non-singular matrix A of
Hölder class C1/2 satisfying ∂M A = −Aω and

a) A ∈ Ca(M), if ω ∈ Ca(M), M ∈ Ca+2 and a > 0 is a real number;

b) A ∈ Ck+ 1
2 (M), if ω ∈ Ck(M), M ∈ Ck+ 5

2 and k > 0 is an integer.

If ω and A are of class C0, the identities ∂Mω = ω ∧ ω and ∂M A = −Aω are in
the sense of currents; see Section 3. This work is a continuation of [5]. For earlier
results see [23] and Ma-Michel [15].

We now describe the above result in terms of an integrability problem for CR
vector bundles ( [23]). Let E be a complex vector bundle of rank r over M with
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a connection D. For a local frame e = (e1, . . . , er ), Dei = ω
j
i e j , where ω =

(ω
j
i ) are connection 1-forms on M; by a frame change ẽ = Ae, Dẽ = ω̃ẽ with

ω̃ = (d A + Aω)A−1. The integrability problem is to find an A such that the new
connection forms ω̃ = (ω̃

j
i ) belong to the ideal J (M) generated by (1, 0)-forms

on M . The integrability condition is that the curvature 2-forms dω − ω ∧ ω belong
to J (M).

We want to mention a few ingredients in the proof. The integrability problem
is local. As in [5, 20], we will use the Henkin local homotopy formula. Let M ⊂
Cn be a graph over a domain D ⊂ R2n−1, given by yn = |z′|2 + r̂(z′, xn) with
r̂(0) = ∂r̂(0) = 0, where z = (z′, zn) are standard coordinates. Set Mρ = M ∩
{(xn)2 + yn < ρ2} and Dρ = π(Mρ). Suppose that Dρ0 ⊂ D and the C2-norm
‖r̂‖ρ0,2 of r̂ on Dρ0 is sufficiently small. For 0 < ρ ≤ ρ0 and n ≥ 4, we have the
Henkin homotopy formula

ϕ = ∂M Pϕ + Q∂Mϕ (1.1)

for (0, q)-forms ϕ on Mρ with 0 < q < n − 2. We will prove the following
estimates.

(i) Let a ≥ 0 be a real number. Then

‖Pϕ‖(1−σ)ρ,a ≤ Caρ
−s∗σ−s(‖ϕ‖ρ,a + ‖r̂‖ρ,a+2‖ϕ‖ρ,0

)
.

(ii) Let k ≥ 0 be an integer. Then

‖Pϕ‖
(1−σ)ρ,k+ 1

2
≤ Ckρ

−s∗σ−s((1+ ‖r̂‖
ρ, 52

)‖ϕ‖ρ,k + ‖r̂‖
ρ,k+ 5

2
‖ϕ‖ρ,0

);
‖Pϕ‖(1−σ)ρ,1/2 ≤ Cρ−1σ 1−2n‖ϕ‖ρ,0, k = 0, q = 1.

(See (10.16) for s, s∗.) We emphasize that the estimates hold for all 0 < ρ ≤ ρ0 ≤ 3
and 0 < σ < 1. Under the coordinates (z′, xn) of M , ‖ · ‖ρ,a denotes the standard
Ca-norm on the domain Dρ ⊂ R2n−1. The same estimates hold for Q; however,
the second estimate in (ii), based on a special property of the kernels for (0, 1)
forms, is not applicable to Q when it operates on (0, q + 1) form with q > 0. See
Romero [17] for estimates in Hölder norms for the Heisenberg group case and an
example showing necessity of blow-up constants.

The estimate (i) is proved in Proposition 10.1 and (ii) is in Proposition 11.1.
The above theorem and two estimates are our main results. With the estimates, we
will prove Theorem 1.1 by using a KAM rapid iteration argument as in [5], which
avoids the Nash-Moser smoothing techniques.

We now describe some ideas to derive the estimates. The integral operators
P, Q are estimated in the same way. Let us focus on P = P0 + P1, where P1
is an integral operator over ∂Mρ and P0 is over Mρ . Since we need estimates
only on shrinking domains, the boundary integral P1 can be treated easily. For the
interior integral P0, via cutoff, the difficulties lie in the case where the (0, q)-form
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ϕ = ∑
ϕJ dz

J has compact support. We will see that coefficients of (0, q−1)-form
P0ϕ are sums ofK f (z) = ∫

Mρ
f (ζ )k(ζ, z) dV (ζ ), where f (ζ ) = ϕJ (ζ )UJ (ζ ) and

UJ depend on derivatives of |ζ ′|2 + r̂(ζ ′, ξn) of order at most two, and

k(ζ, z) = rζ j − rz j

(rζ · (ζ − z))a(rz · (ζ − z))b
, a = n − q, b = q

for r(z) = −yn + |z′|2 + r̂(z′, xn); see Section 3 for details.
To deal with the singularity of the kernel along ζ = z, we fix z ∈ M and apply

the approximate Heisenberg transformation ζ → ζ∗ defined by

ψz : ζ ′∗ = ζ ′ − z′, ζ n∗ = −2irz · (ζ − z).

We will show that ζ ′∗, ξn∗ = 2 Im(rz · (ζ − z)) form coordinates of ψz(M), and under
this coordinate system the integral becomes

K f (z) =
∫

π(ψz(Mρ))

f (ψ−1
z (ζ∗))k∗(ζ ′∗, ξn∗ , z′, xn) dV (ζ ′∗, ξn∗ ).

Here

k∗(ζ ′∗, ξn∗ , z′, xn) =
∑
|I |=1

EI (ζ
′∗, ξn∗ , z′, xn)k̂ Iab(ζ ′∗, ξn∗ ),

k̂ Iab(ζ
′∗, ξn∗ ) = (ζ ′∗, ζ ′∗, ξn∗ )I

(|ζ ′∗|2 + iξn∗ )a(|ζ ′∗|2 − iξn∗ )b
, a + b = n,

where I = (i1, . . . , i2n−1) and we use standard multi-index notation. The coeffi-
cients EI (ζ ′∗, ξn∗ , ·) are of class Ca if (ζ ′∗, ξn∗ )(�= 0) is fixed and r̂ ∈ Ca+2. Since
f has compact support, one can take derivatives of K f directly onto f and onto
EI without disturbing the kernels k̂ Iab. The transformation ψz has been used by
other people. See Bruna-Burgués [1] and Ma-Michel [13]. To obtain estimate
(ii), we need to return to the original coordinates after differentiation. This will
give us another formula for the derivatives of K f , which allows us to reduce the

Ck+ 1
2 -estimates to the Hölder 12 -estimate for new kernels of the same type.
We would like to mention some methods to derive the fundamental 12 -estimate.

Kerzman [11] obtained Hölder α-estimates for all α < 1
2 for ∂-solutions, by esti-

mating a Cauchy-Fantappiè form. Folland-Stein [3] used non-isotropic balls and
piecewise smooth curves in complex tangential directions to obtain estimates in
their spaces on the real hyperquadric. Henkin-Romanov [8] obtained the 12 -estimate
for ∂-equations on strongly pseudoconvex domains via a type of Hardy-Littlewood
lemma (see also Henkin [7] for ∂b on strictly convex boundaries). Our estimate,
like the classical Hölder estimate for the Newtonian potential, is still based on a
decomposition of domain. However, we delete a cylinder about the pole, instead of
a (non-isotropic) ball. The radius of the cylinder is optimized for the 1

2 -exponent
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and is yet so large that, when estimating the Hölder 12 -ratio at two points, we can
ignore their non-isotropic distance and connect them with a line segment.

In the 5 dimensional case there is an extra term added to the right-hand side of
(1.1). As of this writing, it remains unclear whether such a more general homotopy
formula can be used. See [21] and Nagel-Rosay [16].

The 12 -estimate for a solution to ∂-equations for (0, 1)-forms on strictly pseu-
doconvex domains with C2 boundary is obtained by Henkin-Romanov [8]. For

Ck+ 1
2 -estimates for solutions of ∂-equations of degree (0, 1) on strictly pseudocon-

vex domains with Cm boundary (m ≥ k+4), see Siu [19]; for ∂-equations in higher
degree, see Lieb-Range [12]. The C0-estimate for a solution to ∂b-equations on Mρ ,
without shrinking Mρ , is given by Henkin [7]. For Ck-estimates for the homotopy
formula for ∂b operator on shrinking domains, see [21]. Michel-Ma [13] also ob-
tain Ck-estimates for a modified homotopy formula without shrinking domains, by
introducing an extra derivative via ∂b.

We want to mention that in estimating (i) and (ii) we need some Hölder in-
equalities. For the convenience of the reader, we present these inequalities in Ap-
pendix A, following the formulation and proofs of Hörmander [9].

The estimates (i) and (ii) will be used to improve regularity in the local CR
embedding problem in [6]. To limit the scope of this paper, we leave the estimates
in Folland-Stein spaces for future work.

2. Notation and counting derivatives

To simplify notation, set z′ = (z1, . . . , zn−1), z = (z′, zn), and

x = (Re z, Im z′) = π(z).

Analogously, ξ =(Re ζ, Im ζ ′). Denote by |·| the Euclidean norms onCn−1, Cn−1×
R=R2n−1 andCn . Our real hypersurface M ⊂ Cn is always a graph over a domain
in Cn−1 × R. Let Mρ = M ∩ {(xn)2 + yn < ρ2} and Dρ = π(Mρ). For the real
hyperquadric M : yn = |z′|2, π(Mρ) is exactly the ball Bρ = {x ∈ R2n−1 : |x | <

ρ}. On R2n−1, we will use the volume-form dV = dξ1∧ dη1∧ · · · ∧ dηn−1∧ dξn .
On ∂Dρ , we will need (2n − 2)-forms dV s = dξ1 ∧ · · · ∧ d ξ̂ s ∧ · · · ∧ dξ2n−1.

Let k ≥ 0 be an integer. Denote by ∂ I u a derivative of u of order |I |, where I
is a standard multi-index. Let ∂ku denote the set of the k-th order derivatives of u.
For a function u on D ⊂ R2n−1, define

‖∂ku‖D,0 = sup
x∈D,|I |=k

|∂ I u(x)|, ‖u‖D,k = max
0≤ j≤k

‖∂ j u‖D,0,

|u|D,α = sup
x,y∈D

|u(x) − u(y)|
|x − y|α , 0 < α < 1,

‖u‖D,k+α = max
{‖u‖D,k, |∂ I u|D,α : |I | = k

}
, 0 < α < 1.
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If A = (a ji ) is a matrix of Ck functions on D, we define ‖A‖D,k = maxi, j {‖a ji ‖D,k}.
Define ‖A‖D,k+α analogously.

To avoid confusion and in the essence of estimates (i)-(ii) in the introduction,
the Ca-norm of a function on Mρ is its Ca-norm on Dρ ⊂ R2n−1, defined above.
The Ca(Mρ) norm of a (0, q)-form ϕ = ∑

ϕI dz
′ I is the maximum of Ca-norms of

ϕI . The Ca-norm on Mρ will be denoted by ‖ · ‖Ca(Mρ) = ‖ · ‖Dρ,a , or simply by
‖ · ‖ρ,a when there is no confusion about M .

Throughout the paper, Ck denotes a constant dependent of k and this depen-
dence will not be expressed sometimes. Constants, such as C,C1,Ck, might have
different values when they reoccur. All constants are independent of M, r̂, ρ, ρ0.

Let M be defined by

r(z)
def== −yn + |z′|2 + r̂(x) = 0, x ∈ D, (2.1)

where r̂ ∈ C2(D). Throughout the paper, we make the basic assumption

Dρ0 ⊂ D, r̂(0) = r̂z(0) = 0, ε = ‖r̂‖ρ0,2 < C−1
0 . (2.2)

We emphasize that C0 is a large constant to be adjusted several times. However, it
will not depend on any quantity other than n.

Counting derivatives. We need to count derivatives efficiently and use the count
to estimate norms. Such a counting scheme is essentially in [9] and we specialize
it for two reasons. First, the homotopy formula involves two extra derivatives of the
defining function r of M; second, for each consecutive x-derivative on ϕJ ◦ ψ−1

z ,
the x-derivative which falls on ϕJ yields an extra factor ∂2r(z) via the chain rule
and ψz(ζ ) = (ζ ′ − z′,−i2rz · (ζ − z)). We illustrate below how to use the scheme
to cope with the two extra derivatives on r and the consecutive derivatives.

Recall that for l ≥ 1, ∂lr(z) = ∂lr(x) is the set of the l-th order derivatives of
r . Define

∂1∗r(ξ, x) = p
(
ξ, x, (1+ r̂xn r̂ξn )

−1, r−1
zn

, ∂r̂(ξ), ∂r̂(x)
)

,

∂2∗r(ξ, x) = p
(
ξ, x, (1+ r̂xn r̂ξn )

−1, r−1
zn

, ∂r̂(ξ), ∂2r̂(ξ), ∂r̂(x), ∂2r̂(x)
)

. (2.3)

Here and in what follows, p is a polynomial with constant coefficients. Its coeffi-
cients and degree are bounded in absolute values by a constant depending only on
fixed quantities, say k, n. Also, p might be different when it reoccurs. In general,
define

∂2+k∗ r(ξ, x) =
∑

∂2∗r(ξ, x)∂ I1r(ξ) · · · ∂ I j r(ξ)∂ J1r(x) · · · ∂ Jl r(x),
where the sum is over finitely many multi-indices Ii , Ji satisfying

j∑
i=1

(|Ii | − 2) +
l∑

i=1
(|Ji | − 2) ≤ k, |Ii | ≥ 2, |Ji | ≥ 2.
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We will write ∂2+k∗ r(ξ, x) = ∂2+k∗ r(x) when it depends only on x . With this abbre-
viation, we have simple relations

∂2+k∗ r∂2+ j∗ r = ∂
2+k+ j∗ r, ∂ J∂2+k∗ r = ∂

2+k+|J |∗ r. (2.4)

From [9, Corollary A.6] (see Proposition A.5 in Appendix A), we know that with
D2ρ = Dρ × Dρ ,

m∏
j=1

‖ f j‖D2ρ,k j+b j ≤ C|a|+|c|+mρ−b1−···−bm
( m∏
j=1

‖ f j‖D2ρ,k j+a j +
m∏
j=1

‖ f j‖D2ρ,k j+c j
)

for any non-negative integers k j and non-negative real numbers a j , c j such that
(b1, . . . , bm) is in the convex hull of (a1, . . . , am), (c1, . . . , cm). With the above
abbreviation, basic assumption (2.2), and 0 < ρ ≤ ρ0 ≤ 3, one obtains

‖∂2+k∗ r‖ρ,a ≤ Ca+kρ−a−k‖r‖ρ,2+k+a, ‖r‖ρ,2+k+a
def== 1+ ‖r̂‖ρ,2+k+a (2.5)

for all real numbers a ≥ 0 and integers k ≥ 0.
We will also need a chain rule. Recall thatψz : ζ ′∗ = ζ ′−z′, ζ n∗ = −2irz ·(ζ−z)

and define

�(ξ, x) = (πψz(ζ ), x), z = π |−1M (x), ζ = π |−1M (ξ).

Let 0 < ρ ≤ ρ0 ≤ 3. We will show that Bρ/2 ⊂ Dρ ⊂ B2ρ and

Wρ = �(Dρ × Dρ) ⊂ B9ρ × Dρ.

(See Lemmas 5.1-5.2.) The Jacobean matrix of � depends only on derivatives of
r of order ≤ 2 and has determinant 1+ r̂xn r̂ξn (by (6.2)). Then the chain rule takes
simple forms. Let (�−1) j be the j-th component of �−1. Then

∂ I {(�−1) j } = ∂2∗r ◦ �−1, |I | = 1;
∂K ( f ◦ �−1) =

∑
|L|≤|K |

(∂L f ∂2+|K |−|L|∗ r) ◦ �−1. (2.6)

We will show that the Lipschitz constant of �−1 on Wρ is bounded by C (see
Lemma 5.2). Then taking Hölder ratio in (2.6) with k = [a] gives us

‖ f ◦ �−1‖Wρ,a ≤ Ckρ
−a(‖ f ‖Dρ×Dρ,a + ‖ f ‖Dρ×Dρ,0‖r‖ρ,2+a). (2.7)

Note that the above mentioned ϕJ ◦ ψ−1
z is a special case.

The above counting scheme via (2.4)-(2.7) and its variants will be used sys-
tematically.



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 135

3. The Henkin homotopy formula

In this section we recall the homotopy formula by following the formulation in [21].
We discuss the formula for differential forms of low regularity.

Let M ⊂ Cn : r = 0 be given by (2.1)-(2.2). We first recall a representative
∂M for the ∂b-operator. By definition, a (p, q)-form ϕ of class Ca on M is the
restriction of some (p, q)-form ϕ̃ of class Ca in a neighborhood of M . If a ≥ 1, we
define ∂bϕ to be the restriction of ∂ϕ̃ to M . Notice that on M , θ = −2i∂r = θ and
that ∂bϕ is well-defined modulo ∂r when 0 ≤ p < n, and it is actually well-defined

when p = n. By a tangential (0, q)-form ϕ, we mean a form ϕ = ∑
|I |=q ϕI dz

′ I

with dz′ = (dz1, . . . , dzn−1). A continuous (0, q)-form ϕ can be written uniquely
as ϕ′ + ϕ′′ ∧ θ for some tangential forms ϕ′, ϕ′′. Define

Xα = ∂zα − rzα
rzn

∂zn , ∂Mϕ = ∂Mϕ′ =
∑
|I |=q

∑
1≤α<n

Xαϕ′
I
dzα ∧ dz′ I .

Then a straightforward computation shows that

∂bϕ = ∂Mϕ mod θ.

Each (n, q)-form on M can be written as ϕ′′ ∧ dz1 ∧ · · · ∧ dzn−1 ∧ θ where ϕ′′ is
tangential. If ϕ′′ ∈ C1, then

∂b(ϕ
′′ ∧ dz1 ∧ · · · ∧ dzn−1 ∧ θ) = ∂Mϕ′′ ∧ dz1 ∧ · · · ∧ dzn−1 ∧ θ. (3.1)

Let ϕ be a continuous (0, q)-form on a domain U ⊂ M , and φ be a continuous
(0, q − 1)-form. Suppose that q ≥ 1. We say that ∂bφ = ϕ mod θ holds on U as
currents, if

∫
M φ ∧ ∂bψ = (−1)q ∫

M ϕ ∧ ψ for all C1-smooth (n, n− q − 1)-forms
ψ with compact support in U .

Write rz = rz(z) and rζ = rζ (ζ ). Set N0(ζ, z) = rζ · (ζ − z), S0(ζ, z) =
rz · (ζ − z) and

�+−
0,q−1(ζ, z) = ∂ζ r ∧ (rz · dζ ) ∧ (∂ζ ∂ζ r)n−1−q ∧ (∂zrz ∧ dζ )q−1

Nn−q
0 (ζ, z)Sq0 (ζ, z)

, (3.2)

�0+−
0,q−1(ζ, z) = dζ n ∧ ∂ζ r ∧ (rz · dζ ) ∧ (∂ζ ∂ζ r)n−2−q ∧ (∂zrz ∧ dζ )q−1

(ζ n − zn)Nn−q−1
0 (ζ, z)Sq0 (ζ, z)

. (3.3)

Note that θ(ζ ) annihilates �+−
0,q−1(ζ, z) and �0+−

0,q−1(ζ, z). Let n ≥ 4 and 0 < q <

n − 2. For a tangential (0, q)-form ϕ on Mρ , we have the homotopy formula

ϕ = ∂M(P ′
0 + P ′

1)ϕ + (Q′
0 + Q′

1)∂Mϕ, z ∈ Mρ. (3.4)
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Here P ′
0, P

′
1, Q

′
0, Q

′
1 are tangential parts of

P0ϕ(z) = c1
∫
Mρ

ϕ ∧ �+−
0,q−1(ζ, z), P1ϕ(z) = c2

∫
∂Mρ

ϕ ∧ �0+−
0,q−1(ζ, z),

Q0ψ(z) = c3
∫
Mρ

ψ ∧ �+−
0,q (ζ, z), Q1ψ(z) = c4

∫
∂Mρ

ψ ∧ �0+−
0,q (ζ, z).

(3.5)

From now on, all (0, q)-forms ϕ on M are tangential. By ‖ϕ‖ρ,a , we mean the
norm ‖ϕ′‖ρ,a as defined in Section 2, where ϕ′ = ϕ mod θ and ϕ′ is tangential.
By ‖Pϕ‖ρ,a as used in the introduction, where P is either of solution operators in
the homotopy formula, we mean ‖P ′ϕ‖ρ,a . By an abuse of notation, ϕ stands for
forms on Mρ and Dρ = π(Mρ).

Next, we describe kernels of P ′
j , Q

′
j on domain Dρ via coordinates x . We have

rζ · dζ ∧ rz · dζ =
∑

1≤ j,l≤n
rζ l (rζ j − rz j )dζ j ∧ dζ l , (3.6)

rζ · dζ ∧ rz · dζ ∧ dζ n =
∑

1≤α,β<n

rζβ (rζα − rzα )dζα ∧ dζβ ∧ dζ n. (3.7)

Assume now that ζ, z ∈ Mρ . We compute dζ n and dzn in different ways. We keep
the latter a (0, 1)-form and find its tangential part. We have

dzn = − rz′
rzn

· dz′ mod θ(z), (3.8)

dζ n = (1+ i r̂ξn )dξn + i2Re{rζ ′ · dζ ′} = 2irζ n dξn + i2Re{rζ ′ · dζ ′}. (3.9)

Note that in (3.9), we have used r(ζ ) = −ηn + |ζ ′|2 + r̂(ξ) = 0. In (3.6)-(3.7) and
∂ zrz ∧ dζ , we use (3.8)-(3.9) to rewrite dzn and dζ n , respectively. In ∂ζ ∂ζ r , we use

(3.9) to rewrite dζ n, dζ n . From (3.2)-(3.3), we obtain on Mρ

P ′
0ϕ(x)=

∑
|I |=q−1

∑
|J |=q

∑
1≤ j≤n

dz′ I
∫
Dρ

A j J
I

(ξ, x)
ϕJ (ξ)(rζ j − rz j )

(Nn−q
0 Sq0 )(ζ, z)

dV (ξ), (3.10)

P ′
1ϕ(x)=

∑
|I |=q−1

∑
|J |=q

n−1∑
α,β=1

2n−1∑
s=1

dz′ I
∫

∂Dρ

Bαβ J
I s

(ξ, x)ϕJ (ξ)(rζα −rzα )rζβ

(ζ n− zn)(Nn−q−1
0 Sq0 )(ζ, z)

dV s(ξ).

(3.11)

Here A j J
I
and Bαβ J

I s
are polynomials in (rζ , rζ , rζζ , rz′, 1/rzn , rzz). We make a

remark for the case q = 1. In this case we need to remove
∑

|I |=0 in (3.10)-(3.11).
Also, A j J def== A j J

I
and Bαβ J

s
def== Bαβ J

I s
are independent of z. This observation will

play a role in the 12 -estimate of P
′ϕ when ϕ is a (0, 1)-form.

See also Chen-Shaw [2] for homotopy formulae. In this paper we replace the
strict convexity of defining function r in [2] by the condition (2.2) with 0 < ρ0 ≤ 3;
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see Appendix B for details. We remark that the homotopy formula (3.4) holds as
currents, when ϕ and ∂bϕ on Mρ admit continuous extensions to Mρ . See Ap-
pendix B for a proof by using the Friedrichs approximation theorem. Henkin [7]
formulated ∂b in the sense of currents. Shaw [18] also used the Friedrichs approx-
imation for ∂b-solutions.

4. Kernels and the approximate Heisenberg transformation

In this section, we will describe briefly the new kernels when the approximate
Heisenberg transformation is applied. The contents of next few sections are in-
dicated at the end of this section.

Recall that in (3.10) functions A j J
I
have the form ∂2∗r . Hence coefficients of

P ′
0ϕ are sums over |J |=q and 1 ≤ j ≤ n ofKϕJ (x) = ∫

Dρ
ϕJ (ξ)k jab(ξ, x) dV (ξ).

Here ζ, z ∈ M and

k(ξ, x) = k jab(ξ, x) = ∂2∗r(ξ, x)(rζ j − rz j )

(rζ · (ζ − z))a(rz · (ζ − z))b
, a = n − q, b = q.

To understand the kernel, let us compute its denominator. Set r̂(z) = r̂(x). On
M × M we have

rz · (ζ − z) = z′ · (ζ ′ − z′) + i

2
(ζ n − zn) + r̂z · (ζ − z)

= z′ · (ζ ′ − z′) − 1

2
(|ζ ′|2 − |z′|2) + i

2
(ξn − xn)

− 1

2
(r̂(ζ ) − r̂(z)) + r̂z · (ζ − z)

= i Im(rz · (ζ − z)) − 1

2
|ζ ′ − z′|2

− 1

2
(r̂(ζ ) − r̂(z)) + Re(r̂z · (ζ − z)).

Also

rζ · (ζ − z) = rz · (ζ − z) + (rζ − rz) · (ζ − z)

= i Im(rz · (ζ − z)) + 1

2
|ζ ′ − z′|2 + (r̂ζ − r̂z) · (ζ − z)

− 1

2

{
r̂(ζ ) − r̂(z) − 2Re(r̂z · (ζ − z))

}
.

The first two terms in rz · (ζ − z) and rζ · (ζ − z) can be simplified simultaneously.
Define

N (ζ, z)
def== |ζ ′ − z′|2 + 2i Im(rz · (ζ − z)). (4.1)
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Then we arrive at the basic relations

−2rz · (ζ − z) = N (ζ, z) + A(ζ, z), 2rζ · (ζ − z) = N (ζ, z) + B(ζ, z)

with

A(ζ,z)= r̂(ζ )−r̂(z)−2Re(r̂z · (ζ − z)), B(ζ,z)=2(r̂ζ −r̂z) · (ζ − z)−A(ζ, z).

By the condition (2.2) on r̂ , we will show that Dρ0 is convex and hence

|A(ζ, z)| ≤ Cε|ζ − z|2, |B(ζ, z)| ≤ Cε|ζ − z|2, ζ, z ∈ Mρ0 .

Wewill show that |N (ζ, z)| ≥ C−1|ζ −z|2 on Mρ0×Mρ0 . Consequently, the kernel
of P ′

0ϕ is factored as

k(ξ, x) = T1(ξ, x)−aT2(ξ, x)−b
∂2∗r(ξ, x)(rζ j − rz j )

Na(ζ, z)Nb(ζ, z)
,

T1(ξ, x) = 1+ N−1(ζ, z)B(ζ, z), T2(ξ, x) = 1+ N−1(ζ, z)A(ζ, z)

for ζ, z ∈ Mρ0 . Moreover, min{|T1(ξ, x)|, |T2(ξ, x)|} ≥ 1/4 when (ξ, x) is on
Dρ0 × Dρ0 and off its diagonal. Now, identity (4.1) suggests the following approx-
imate Heisenberg transformation

ψz : ζ ′∗ = ζ ′ − z′, ζ n∗ = −2irz · (ζ − z).

We will show that for fixed z ∈ Mρ0 , ζ
′∗ = ζ ′ − z′, ξn∗ = 2 Im(rz · (ζ − z)) indeed

form coordinates of Mρ0 . Thus, with ζ, z ∈ Mρ0

N (ζ, z) = |ζ ′∗|2 + iξn∗
def== N∗(ξ∗),

k(ξ, x) =
∑
|I |=1

EI (ξ∗, x)ξ I∗ N∗(ξ∗)−aN−b∗ (ξ∗), a + b = n.

When ϕ has compact support, the decomposition for k(ξ, x) allows us to take x-
derivatives of KϕJ (x) directly onto coefficients EI (ξ∗, x) and onto ϕJ (ψ

−1
z (ξ∗)),

without destroying the integrability of the kernels.
We now describe the contents of next few sections.
We will carry out the details of this section in Sections 5, 6, and 8. In Section 5

we will also study how domains Bρ , Dρ = π(Mρ) and πψz(Mρ) are nested. We
will need Hölder inequalities in Appendix A for domains Dρ . Therefore, we will
verify that under the basic assumption (2.2) and 0 < ρ ≤ ρ0 ≤ 3, Dρ is convex
and Bρ/2 ⊂ Dρ ⊂ B2ρ . In Section 6, we will also express the graph ψz(Mρ0) for
z ∈ Mρ0 as

ηn∗ =
∑
|I |=2

hI (ξ∗, x)ξ I∗ , ξ∗ = (Re ζ∗, Im ζ ′∗).
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The latter will be used to show |rz · (ζ − z)| ≥ C−1(ρσ)2 for z ∈ M(1−σ)ρ and
ζ ∈ ∂Mρ . In Sections 9 and 10, we derive the Ca-estimates. The 12 -estimate is in
Section 12, following a reduction for Ck+ 1

2 -estimates in Section 11.
We conclude this section with a lower bound for |ζ n − zn|. By the basic as-

sumption (2.2), Dρ0 is relatively compact in D and hence (xn)2+ yn = ρ2 on ∂Mρ

for 0 < ρ ≤ ρ0. Then the image of the projection of ∂Mρ in the zn-plane is con-
tained in the parabola (xn)2 + yn = ρ2. Therefore, for z ∈ M(1−σ)ρ and ζ ∈ ∂Mρ

with ρ ≤ ρ0(≤ 3), we obtain

|ζ n − zn| ≥ C−1ρ2σ. (4.2)

5. Domains and images under the transformation

Recall that our real hypersurface M is given by (2.1)-(2.2), and

Mρ = M ∩ {(xn)2 + yn < ρ2}, Dρ = π(Mρ) = {x ∈ D : |x |2 + r̂(x) < ρ2}.
Lemma 5.1. Let M satisfy (2.2). Suppose that 0 < ρ ≤ ρ0. Then Dρ is strictly
convex with C2 boundary. Also,

B(1−cε)ρ ⊂ Dρ ⊂ B(1+cε)ρ, C−1ρσ ≤ dist(∂D(1−σ)ρ, ∂Dρ) ≤ Cρσ.

Moreover, constants C0, c,C are independent of ρ and r̂ .

Proof. Let ε = ‖r̂‖ρ0,2 < C−1
0 . The strict convexity follows from the positivity

of the Hessian of φ(x) = (xn)2 + yn = |x |2 + r̂(x) on Dρ . Since 0 ∈ Dρ , then
|r̂(x)| ≤ Cε|x |2 on Dρ . Now,

(1− Cε)|x |2 ≤ φ(x) ≤ (1+ Cε)|x |2.
In particular, for a possibly larger C , we have B(1−Cε)1/2ρ ⊂ Dρ ⊂ B(1+Cε)1/2ρ ,
since Dρ0 ⊂ D implies that φ = ρ2 on ∂Dρ for all 0 < ρ ≤ ρ0.

Let x ∈ ∂D(1−σ)ρ . Then φ(x) = ((1 − σ)ρ)2 and 1
2 (1 − σ)ρ < |x | <

2(1− σ)ρ. For y ∈ Dρ , we have |φ(y) − φ(x)| ≤ C‖∂1φ‖ρ,0|y − x |. We get
|φ(y)| ≤ (1− σ)2ρ2 + C‖∂1φ‖ρ,0|y − x | ≤ (1− σ)2ρ2 + Cρ|y − x |.

Hence, φ(y) < ρ for |y − x | ≤ C−1ρσ . This shows that dist(∂D(1−σ)ρ, ∂Dρ) ≥
C−1ρσ . On the other hand, if y = (1 + t)x ∈ Dρ and t > 0, applying the mean-
value-theorem to φ((1+ s)x) for 0 ≤ s ≤ t yields

φ(y) ≥ ((1− σ)ρ)2 + x · (y − x) − Cε|y||y − x |
≥ ρ2(1− σ)2 + t |x |2 − C ′ερt |x |
≥ ρ2{(1− σ)2 + 1

4
t (1− σ)2 − 2C ′′εt}.
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This show that φ((1 + t)x) > ρ2 if (1 + t)x ∈ Dρ and t > Cσ , a contradiction.
Therefore, dist(∂D(1−σ)ρ, ∂Dρ) ≤ Cρσ .

Recall the approximate Heisenberg transformation

ψz : ζ ′∗ = ζ ′ − z′, ζ n∗ = −2irz · (ζ − z).

Before applying ψz to kernels k
j
ab(ζ, z), we need to know how it transforms Mρ .

Recall our notation x ∈ R2n−1 and ξ ∈ R2n−1. Define a map ψ̃x by relations

ξ∗ = ψ̃x (ξ) = πψz(ζ ), ζ, z ∈ Mρ0 .

Set �(ξ, x) = (ψ̃x (ξ), x). We have the following.

Lemma 5.2. Let M : yn = |z′|2 + r̂(z′, xn) satisfy (2.2) with 0 < ρ0 ≤ 3. There
exist constants C,Cm , independent of r̂ , ρ and ρ0, such that the following hold.

(i) If x ∈ Dρ and 0 < ρ ≤ ρ0 then

ψ̃x (Dρ) ⊂ B9ρ, �(Dρ × Dρ) ⊂ B9ρ × Dρ.

(ii) For u, v ∈ Dρ0 × Dρ0 ,

C−1|v − u| ≤ |�(v) − �(u)| ≤ C|v − u|.
In particular, if z ∈ Mρ0 then ψz(Mρ0) is a graph over πψz(Mρ0).

Proof. Let R(x) = |z′|2 + r̂(x). By (2.2), Dρ0 ⊂ D and ε = ‖r̂‖ρ0,2 < C−1
0 . For

brevity, set M = Mρ0 .

(i). Assume that 0 < ρ ≤ ρ0. Since Dρ0 is convex, we have |r̂(x)| ≤ Cε|x |2 on
Dρ0 . The map ψ̃x is defined by ζ ′∗ = ζ ′ − z′ and

ξn∗ = ξn − xn + r̂xn (R(ξ) − R(x)) + 2 Im[Rz′ · (ζ ′ − z′)]
= ξn − xn + 2 Im (z′ · ζ ′) + r̂xn (R(ξ) − R(x)) + 2 Im[r̂z′ · (ζ ′ − z′)]. (5.1)

Let ξ, x be in Dρ . Recall that Dρ ⊂ B(1+Cε)ρ . We have

|x | < (1+ Cε)ρ, |ξ | < (1+ Cε)ρ, |r̂xn | ≤ ε, |r̂z′ | ≤ ε,

|R(ξ)| ≤ |ζ ′|2 + Cε|ξ |2 < (1+ C ′ε)ρ2.

Thus, |ζ ′∗|2 = |ζ ′ − z′|2 ≤ 2|ζ ′|2 + 2|z′|2 < 4(1 + Cε)ρ2; by (5.1), |ξn∗ |2 ≤
(2ρ + 2ρ2 + Cερ)2. Since 2ρ2 ≤ 6ρ then

|ζ ′∗|2 + |ξn∗ |2 ≤ 4(1+ Cε)ρ2 + (2ρ + 2ρ2 + Cερ)2 < (9ρ)2,

if ε is sufficiently small. We get ψ̃x (Dρ) ⊂ B9ρ .
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(ii). It is obvious that the Lipschitz constant of � on the convex domain Dρ0 × Dρ0

is bounded by some C . Let ξ, x, ξ̃ , x̃ be in Dρ0 . We need to show that |�(ξ̃, x̃) −
�(ξ, x)| ≥ C−1|(ξ̃ , x̃) − (ξ, x)|. Write ξ = (ζ ′, ξn), x = (z′, xn). Then

|�(ξ̃, x̃) − �(ξ, x)| ≥ |(ζ̃ ′ − z̃′ − ζ ′ + z′, x̃ − x)| ≥ |(ζ̃ ′ − ζ ′, x̃ − x)|/C.

Set ξ̃∗ = ψ̃x̃ (ξ̃ ) and ξ∗ = ψ̃x (ξ). It suffices to show that

|ξ̃n∗ − ξn∗ | ≥ |ξ̃n − ξn|/C
if |(ζ̃ ′ − ζ ′, x̃ − x)| < 1

48 |ξ̃n − ξn|. Assume that the latter holds. Recall that
0 < ρ0 ≤ 3 and Dρ0 ⊂ B2ρ0 . We have max{|z′|, |ζ̃ ′|} < 2ρ0. Now the second
identity in (5.1) implies that

|ξ̃n∗ −ξn∗ |≥|ξ̃n−ξn|−|x̃n−xn|−2|ζ̃ ′||z̃′−z′|−2|z′||ζ̃ ′−ζ ′|−Cε|(ξ̃ − ξ, x̃ − x)|
≥ (1− 1

48
)|ξ̃n − ξn| − 8ρ0(|ζ̃ ′ − ζ ′| + |z̃′ − z′|) − C ′ε|ξ̃n − ξn|.

Thus, |ξ̃n∗ − ξn∗ | ≥ (1− 1
48 − 8·3·√2

48 − C ′ε)|ξ̃n − ξn| ≥ |ξ̃n − ξn|/4.
That ψz(Mρ0) is a graph follows from the injectivity of �.

6. Estimates on rz · (ζ − z), rζ − rz and ψz(M) via Taylor’s theorem

To transform k(ζ, z) via ψz , we need expansions of rz · (ζ − z), rζ · (ζ − z) and
rζ j − rz j in new variables ξ∗. We will find these expansions via Taylor’s theorem.

Let us recall Taylor’s theorem. Assume that 0 < ρ ≤ ρ0 ≤ 3 and r̂ satisfies
(2.2). So Dρ is strictly convex. If f is a complex-valued function on the convex set
Dρ , we defineRk f andRI f on Dρ × Dρ by

Rk f (y, x) ≡ f (y) −
∑

0≤ j≤k−1

1

j !∂
j
t |t=0 f (x + t (y − x))

= 1

(k − 1)!
∫ 1

0
(1− t)k−1∂kt f (x + t (y − x)) dt

=
∑
|I |=k

RI f (y, x)(y − x)I .

Denote by Rk f the set of coefficients RI f with |I | = k. For any real number
a ≥ 0,

‖RI f ‖Dρ×Dρ,a ≤ Ca+|I |‖ f ‖ρ,a+|I |. (6.1)

We will also need to express the remainders in ξ∗ = (Re ζ∗, Im ζ ′∗). Let z ∈ Mρ0

and π(z) = x ∈ Dρ0 . By Lemma 5.2, ψz(Mρ0) is a graph

ηn∗ = h(ξ∗, x), ξ∗ ∈ ψ̃x (Dρ0).
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By ζ ′ − z′ = ζ ′∗ and ζ n∗ = −2irz · (ζ − z), we have

ζ n∗ = ζ n − zn − i r̂xn (ζ
n − zn) − 2i Rz′ · ζ ′∗.

Here R(x) = |z′|2 + r̂(x). Computing the real and imaginary parts, we get

ξn∗ = ξn − xn + r̂xn (R(ξ) − R(x)) + 2 Im(Rz′ · ζ ′∗), (6.2)

ηn∗ = |ζ ′∗|2 + r̂(ξ) − r̂(x) − r̂xn (ξ
n − xn) − 2Re(r̂z′ · ζ ′∗). (6.3)

In (6.2), replace R(ξ) − R(x) by∑
|I |=1

RI R(ξ, x)(ξ − x)I =
∑
|I |=1

RI R(ξ, x)(ξ ′∗, ξn − xn)I

and then solve for ξn − xn . We get

ξn − xn =
∑
|I |=1

pI (ξ, x)ξ I∗ , (6.4)

where pI (ξ, x) are of the form

p
(
ξ, x,

1

1+ r̂xnR(0′,1)r̂(ξ, x)
, ∂r̂(x),R1r̂(ξ, x)

)
for some polynomials p. With these polynomials p, introduce notation

Ri∗g =
∑
|I |=i

p
(
ξ, x,

1

1+ r̂xnR(0′,1)r̂(ξ, x)
, ∂r̂(x),R1r̂(ξ, x)

)
RI g(ξ, x). (6.5)

Note that reappearing p,Ri∗g may be different. We now express Taylor remainders
in variables ζ ′∗, ξn∗ as follows

Rk f (ξ, x) =
∑

|L|=k
RL f (ξ, x)(ξ − x)L =

∑
|L|=k

Rk∗ f (ξ, x)ξ L∗ , (6.6)

|Rl∗r̂(ξ, x)| ≤ C‖r̂‖ρ0,2, l ≤ 2, ξ, x ∈ Dρ0 .

We now apply notation (6.5). Using (6.4) in (6.3) we get

ηn∗ = |ζ ′∗|2 +
∑
|I |=1

R1∗r̂(ξ, x)ξ I∗ , (6.7)

ηn∗ = |ζ ′∗|2 + R2r̂(ξ, x) = |ζ ′∗|2 +
∑
|I |=2

R2∗r̂(ξ, x)ξ I∗ . (6.8)

Set r(z) = −yn + |z′|2 + r̂(z′, xn).We have defined

N (ζ, z) = |ζ ′ − z′|2 + 2i Im(rz · (ζ − z)), N∗(ξ∗) = |ζ ′∗|2 + iξn∗ .
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Recall that for (ζ, z) ∈ Mρ0 × Mρ0 we have

−2rz · (ζ −z)=N (ζ, z) + R2r̂(ξ,x), 2rζ · (ζ − z)=N (ζ,z) + B(ζ,z), (6.9)

B(ζ, z) = 2(r̂ζ − r̂z) · (ζ − z) − R2r̂(ξ, x). (6.10)

Define
Ri∗∂r̂ =

∑
1≤ j≤n

Ri∗r̂x j +
∑
1≤ j<n

Ri∗r̂y j . (6.11)

We have

(r̂ζ − r̂z) · (ζ − z) =
∑

|K |=2
R1∗∂r̂(ξ, x)ξ K∗ ,

B(ζ, z) =
∑

|L|=2
(R2∗r̂(ξ, x) + R1∗∂r̂(ξ, x))ξ L∗ . (6.12)

For the numerator of the kernel, we have

rζ − rz = (ζ ′∗, 0) +
∑
|I |=1

(R1∗∂r̂, . . . ,R1∗∂r̂)(ξ, x)ξ I∗ . (6.13)

In summary, we have proved the following expansions.

Lemma 6.1. Let M : yn = |z′|2 + r̂(z′, xn) satisfy (2.2) with 0 < ρ0 ≤ 3. Suppose
that ζ, z ∈ Mρ0 and ζ∗ = ψz(ζ ). Then ψz(Mρ0) is given by ηn∗ = |ζ ′∗|2 + h(ξ∗, x).
Moreover,

h(ξ∗, x) =
∑
|I |=1

R1∗r̂(ξ, x)ξ I∗ =
∑
|I |=2

R2∗r̂(ξ, x)ξ I∗ ,

−2rz · (ζ − z) = |ζ ′∗|2 − iξn∗ +
∑
|I |=2

R2∗r̂(ξ, x)ξ I∗ ,

2rζ · (ζ − z) = |ζ ′∗|2 + iξn∗ +
∑
|I |=2

(R2∗r̂(ξ, x) + R1∗∂r̂(ξ, x))ξ I∗ ,

rζ − rz = (ζ ′∗, 0) +
∑
|I |=1

(R1∗r̂z1, . . . ,R1∗r̂zn )(ξ, x)ξ I∗ .

We emphasize thatRi∗g,Ri∗∂r̂ , defined by (6.5) and (6.11), might be different when
they reoccur.

Remark 6.2. Notice that (6.2)-(6.8) are valid if we fix ζ ∈ Mρ0 and vary z ∈ Mρ0 .
Therefore, the image of Mρ0 under the map z → ψz(ζ ) is still given by (6.7) and
(6.8), where z varies in Mρ0 .

Here are immediate consequences of the above expansions:∣∣∣2rζ · (ζ − z)

N (ζ, z)
− 1

∣∣∣ <
1

2
,

∣∣∣2rz · (ζ − z)

N (ζ, z)
+ 1

∣∣∣ <
1

2
,

|N (z, ζ )|
|N (ζ, z)| < 4 (6.14)

for ζ, z ∈ Mρ0 with ζ �= z and ρ0 ≤ 3.
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Lemma 6.3. Let M satisfy (2.2) and let 0 < ρ ≤ ρ0 ≤ 3. Set d(ζ, z) = |rz ·(ζ−z)|.
Then

C−1|ζ − z|2 ≤ d(ζ, z) ≤ C(d(ζ, v) + d(v, z)), ζ, z, v ∈ Mρ0;
d(ζ, z) ≥ C−1ρ2σ 2, z ∈ M(1−σ)ρ, ζ ∈ ∂Mρ, 0 < σ < 1.

Proof. M is defined by r = −yn + |z′|2 + r̂(z′, xn) = 0 and ε = ‖r̂‖ρ0,2 < C−1
0 .

Let ζ, z, v be in Mρ0 . Set ζ
′∗ = ζ ′ − z′, ζ n∗ = −2irz · (ζ − z). Recall that Dρ0 is

convex.

(i). By definition,

N (ζ, z) = |ζ ′ − z′|2 + 2i Im(rz · (ζ − z)) = |ζ ′∗|2 + iξn∗ .

By Lemma 6.1, we have

ψzMρ0 : ηn∗ = |ζ ′∗|2 +
∑
|I |=2

R2∗r̂(ξ, x)ξ I∗ .

On Dρ0 × Dρ0 , |R2∗r̂ | ≤ Cε, and |ξ∗| < C . Then |ζ n∗ |2 = |ξn∗ |2 + |ηn∗|2 ≤ C ′
0|ξ∗|2.

Therefore, |ζ n − zn|2 = | i
2rzn

ζ n∗ − r ′
z

rzn
· ζ ′∗|2 ≤ C|N (ζ, z)|. Also, |ζ ′ − z′|2 ≤

|N (ζ, z)|. We conclude that |N (ζ, z)| ≥ C−1|ζ − z|2 for ζ, z ∈ Mρ0 . By (6.14) we
have d(ζ, z) ≥ |ζ − z|2/C . Now
|rζ · (ζ − z)| ≤ |(rζ − rv) · (z − v)| + |rv · (z − v)| + |rζ · (v − ζ )|

≤ |rζ − rv|2 + |z − v|2 + d(z, v) + d(v, ζ ) ≤ C(d(ζ, v) + d(v, z)).

Thus d(ζ, z) ≤ C ′(d(ζ, v) + d(z, v)).

(ii). By Lemma 5.1, dist(∂D(1−σ)ρ,∂Dρ) ≥ C−1ρσ . Then d(ζ, z) ≥ C−1(ρσ)2

follows from d(ζ, z) ≥ C−1|ζ − z|2.

7. Outline of Ca estimates

Let M satisfy (2.1)-(2.2) and let 0 < ρ ≤ ρ0 ≤ 3. Recall from (3.10)-(3.11) that

P ′
0ϕ(x)=

∑
|I |=q−1

∑
|J |=q

∑
1≤ j≤n

dz′ I
∫
Dρ

A j J
I

(ξ, x)
ϕJ (ξ)(rζ j − rz j )

(Nn−q
0 Sq0 )(ζ, z)

dV (ξ),

P ′
1ϕ(x)=

∑
|I |=q−1

∑
|J |=q

n−1∑
α,β=1

2n−1∑
s=1

dz′ I
∫

∂Dρ

Bαβ J
I s

(ξ, x)ϕJ (ξ)(rζα −rzα )rζβ

(ζ n−zn)(Nn−q−1
0 Sq0 )(ζ, z)

dV s(ξ).

Here ζ, z ∈ Mρ , and A
j J
I
, Bαβ J

I s
are polynomials in (rζ , rζ , rζζ , rz′, r

−1
zn

, rzz).
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We emphasize that norms are defined on Dρ = π(Mρ) via coordinates x . Let
us indicate how to obtain Ca estimates. We will give estimates on shrinking domains
M(1−σ)ρ . For ζ ∈ ∂Mρ and z ∈ M(1−σ)ρ , we obtain min{|rζ ·(ζ−z)|, |rz ·(ζ−z)|} ≥
C−1(ρσ)2 by Lemma 6.3 and |ζ n − zn| ≥ C−1ρ2σ by (4.2). This will allow us
to estimate the Ca-norm of boundary integral P ′

1ϕ by passing derivatives over the
integral sign and differentiating the kernels directly.

We now deal with the interior integrals P ′
0ϕ. Using a partition of unity, we can

find a smooth function χ = χσ,ρ , which is 1 on Dρ(1−σ/2) and zero off Dρ(1−σ/4),
such that ‖χ‖ρ,a ≤ Ca(ρσ)−a . On Dρ , decompose

ϕ0 = χϕ, ϕ1 = ϕ − ϕ0, P ′
0ϕ = P ′

0ϕ0 + P ′
0ϕ1.

Now P ′
0ϕ1 can be estimated on M(1−σ)ρ by differentiating the kernels directly, since

ϕ1 is supported in Mρ \ M
(1− 1

2σ)ρ
. The only non-trivial integral is P ′

0ϕ0, for which
ϕ0 has compact support in M

(1− 1
4σ)ρ

. To estimate the latter, we will apply the
transformation ψz for the integral and then differentiate the new integral.

The estimate for P ′
0ϕ0 is the most technical part. We deal with this estimate first

in Sections 8 and 9. The estimates for boundary and cutoff terms are in Section 10.
We now conclude this section with estimates of some integrals.

Lemma 7.1. Let n ≥ 2. Let a be a real number, and J = ( j1, . . . , j2n−1) be a
multiindex of non-negative integers. Let β = ( j2n−1 + |J | − 2a) + 2n − 1 and
0 < ρ1 ≤ ρ0 < ∞. Then∫

|z′|≤ρ1,|xn |<ρ0

|(z′, z′, xn)J |
||z′|2 + i xn|a dV ≤

{
Cρ

1+β

1 , −1 < β < 2n − 3,
C̃ρ2n−21 log(2+ ρ0

ρ21
), β ≥ 2n − 3;

∫
ρ1≤|z′|≤ρ0,|xn |<ρ0

|(z′, z′, xn)J |
||z′|2 + i xn|a dV ≤

⎧⎪⎨⎪⎩
C|ρ1+β

1 − ρ
1+β

0 |, β �=1, β < 2n−3,
C log(ρ0/ρ1), β = −1,
C̃(ρ0 − ρ1), β ≥ 2n−3.

Here C depends only on n and β, and C̃ depends on ρ0 too.

Proof. Using |xn| ≤ |z′|2 + |xn| and |z j | ≤ (|z′|2 + |xn|)1/2, we may assume,
without changing β, that J = 0 and

b(z′, xn) = |(z′, z′, xn)J |
||z′|2 + i xn|a = 1

(|z′|2 + |xn|)a .

Assume first that β = 2n − 1− 2a < 2n − 3, i.e. a > 1. Using polar coordinates,
we get∫

|z′|≤ρ1,|xn |≤ρ0

b(z′, xn) dV ≤ C
∫ ρ1

0
dr

∫ ρ0

0

r2n−3 dxn

(r2 + |xn|)a ≤ C ′
∫ ρ1

0
rβ dr.
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Also,
∫
ρ1≤|z′|≤ρ0,|xn |<ρ0

b(z′, xn) dV ≤ C ′ ∫ ρ0
ρ1
rβ dr . The estimates in this case

follow.
Assume now that β ≥ 2n − 3, i.e. a ≤ 1. Reducing it to a = 1 via C̃ , we get∫

|z′|≤ρ1,|xn |≤ρ0

b(z′, xn) dV ≤ C̃
∫ ρ1

0
r2n−3 log

(
1+ ρ0

r2

)
dr.

Also,
∫
ρ1≤|z′|≤ρ0,|xn |<ρ0

b(z′, xn) dV ≤ ∫ ρ0
ρ1
C̃ dr . The estimates are obtained by a

simple computation.

8. New kernels and two formulae for derivatives

In this section we express the kernels by using Lemma 6.1 and derive two formulae
for derivatives of P0ϕ, where ϕ has compact support in Dρ . The first formula will

be used for Ca estimates and the second is for Ck+ 1
2 estimates.

Recall that with ζ, z ∈ Mρ the coefficients of P ′
0ϕ(x) are sums of

I(x) =
∫
Dρ

ϕJ (ξ)
∂2∗r(ξ, x)(rζ j − rz j )

(Na
0 S

b
0 )(ζ, z)

dV (ξ)

over 1 ≤ j ≤ n and |J | = q, where a = n − q and b = q. Set f (ξ, x) = ϕJ (ξ).
We have defined ∂2+k∗ r in Section 2. Now, CHANGE NOTATION and let

∂2∗r= p
(
ξ, x, (1+r̂xn r̂ξn )−1, r−1

zn
, (1+r̂xnR(0′,1)r̂(ξ, x))−1, ∂r̂(x),∂r̂(ξ),Q(ξ,x)

)
,

Q(ξ, x) =
(
∂2r̂(x), ∂2r̂(ξ),R1∗∂r̂(ξ, x),R1∗r̂(ξ, x),R2∗r̂(ξ, x)

)
,

where p is a polynomial. Again, R1∗∂r̂,R2∗r̂ , defined by (6.11) and (6.5), and p
might be different when they reoccur; for instance, (R1∗r)2 may be the product of
two differentR1∗r’s. Define

∂2+k∗ r(ξ, x) =
∑

∂2∗r · ∂ I1Q1(ξ, x) · · · ∂ I jQ j (ξ, x), j ≥ 0,

∂2∗ r̂(ξ, x) =
∑

∂2∗r · Q1(ξ, x) · · ·Q j (ξ, x), j ≥ 1,

where
∑ j

l=1 |Il | ≤ k, Ql ∈ Q and both sums have finitely many terms. Hence, we
have simple relations

∂2+k∗ r∂2+ j∗ r = ∂
2+k+ j∗ r, ∂ J∂2+k∗ r = ∂

2+k+|J |∗ r.

The chain rule takes the form

∂ Iξ∗,x�
−1 = ∂2∗r ◦ �−1, |I | = 1,

∂ Jξ∗,x {( f ∂2+k∗ r) ◦ �−1} =
∑

|L|≤|J |
(∂L f · ∂2+k+|J |−|L|∗ r) ◦ �−1. (8.1)
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New kernels. Set (ξ∗, x) = �(ξ, x) with ζ, z ∈ Mρ0 . Recall that N∗(ξ∗) =
|ξ ′∗|2 + iξn∗ . By Lemma 6.1,

N0(ζ, z) ≡ 2rζ · (ζ − z) = N∗(ξ∗)T̂1(ξ∗, x),
S0(ζ, z) ≡ −2rz · (ζ − z) = N∗(ξ∗)T̂2(ξ∗, x),

T̂1(ξ∗, x) = T1 ◦ �−1(ξ∗, x) = 1+
∑
|J |=2

∂2∗ r̂ ◦ �−1(ξ∗, x)N−1∗ (ξ∗)ξ J∗ , (8.2)

T̂2(ξ∗, x) = T2 ◦ �−1(ξ∗, x) = 1+
∑
|J |=2

∂2∗ r̂ ◦ �−1(ξ∗, x)N−1∗ (ξ∗)ξ J∗ , (8.3)

∂2∗r(ζ, z)(rζ j − rz j ) =
∑
|I |=1

∂2∗r ◦ �−1(ξ∗, x)ξ I∗ .

Note that |∂2∗ r̂ | ≤ Cε and |T̂ j (ξ∗, x) − 1| < 1/2 when ξ∗ �= 0. Thus, we obtain

∂2∗r(ζ, z)(rζ j − rz j )

(Na
0 S

b
0 )(ζ, z)

=
∑
|I |=1

{
∂2∗r ◦ �−1 · T̂−a

1 T̂−b
2

}
(ξ∗, x)k̂ Iab(ξ∗), (8.4)

k̂ Iab(ξ∗) = ξ I∗ N−a∗ (ξ∗)N−b∗ (ξ∗), a = n − q, b = q. (8.5)

First formula of derivatives of I. Recall that �(ξ, x) = (ψ̃x (ξ), x), ξ∗ = ψ̃x (ξ)

and (ψ̃∗
x dV )(ξ∗) = (∂1∗r) ◦ �−1(ξ∗, x)dV (ξ∗). By (8.4) and ∂2∗r∂1∗r = ∂2∗r , we

obtain

I(x) =
∑
|I |=1

∫
ψ̃x (Dρ)

{
( f ∂2∗r) ◦ �−1 · T̂−a

1 T̂−b
2

}
(ξ∗, x)k̂ Iab(ξ∗) dV (ξ∗), (8.6)

where a = n− q, b = q. By Lemma 7.1 with β ≥ 0, k̂ Iab ∈ L1loc. For each x ∈ Dρ ,
the integrand has compact support in ψ̃x (Dρ) ⊂ B9ρ . To compute ∂kI(x), we
extend the integrand of I(x) to be zero on B9ρ \ ψ̃x (Dρ). The integral is over the
fixed domain B9ρ . So we can interchange the integral sign with ∂x . The derivatives
of I have the form

∂KI(x) =
∑

j+k′+l+m=|K |

∑
|J |= j

∑
|K ′|=k′

∑
|L|=l

∑
|I |=1

(8.7)∫
B9ρ

{
(∂L f ∂2+m∗ r) ◦ �−1 · ∂ Jx T̂−a

1 · ∂K ′
x T̂−b

2

}
(ξ∗, x) · k̂ Iab(ξ∗) dV (ξ∗).

By (8.2), the first-order x-derivatives of T̂−a
1 have the form

∂ Ix T̂
−a
1 (ξ∗, x) =

∑
|J ′|=1

∑
|L ′|=2

{T̂−a−1
1 ∂ J

′
x (∂2∗r ◦ �−1)}(ξ∗, x)N−1∗ (ξ∗)ξ L

′
∗

=
∑

|L ′|=2
(∂3∗r ◦ �−1T̂−a−1

1 )(ξ∗, x)N−1∗ (ξ∗)ξ L
′

∗ .
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Take derivatives consecutively and use the product rule. We can write

∂ Jx T̂
−a
1 (ξ∗, x) =

∑
s≤|J |

∑
|L ′|=2s

{
(∂
2+|J |∗ r) ◦ �−1 · T̂−a−s

1

}
(ξ∗, x)

ξ L
′

∗
Ns∗(ξ∗)

. (8.8)

Analogously, ∂K
′

x T̂−b
2 (|K ′| = k′) can be written as

∂K
′

x T̂−b
2 (ξ∗, x) =

∑
t≤|K ′|

∑
|L ′′|=2t

{
(∂
2+|K ′|∗ r) ◦ �−1 · T̂−b−t

2

}
(ξ∗, x)

ξ L
′′

∗
Nt∗(ξ∗)

. (8.9)

Let I ′ = I + L ′ + L ′′, a′ = a + s, b′ = b + t . We have

N−s∗ (ξ∗)ξ L
′

∗ N−t∗ (ξ∗)ξ L
′′

∗ k̂ Iab = k̂ I
′
a′b′, 2a′ +2b′ −|I ′| = 2n−1, a′ +b′ ≤ n+|K |.

By (8.8)-(8.9), we get

∂KI(x) =
∑

|L|≤|K |

∑
a≤a′≤a+|K |

∑
b≤b′≤b+|K |

∑
2a′+2b′−|I ′|=2n−1

(8.10)

∫
B9ρ

(∂L f ∂2+|K |−|L|∗ r) ◦ �−1(ξ∗, x)
(T̂ a

′
1 T̂

b′
2 )(ξ∗, x)

k̂ I
′
a′b′(ξ∗) dV (ξ∗).

Recall that f (ξ, x) = ϕJ (ξ) has compact support in Dρ . Since |I ′| = 2a′ +
2b′ − 2n + 1, Lemma 7.1 with β ≥ 0 implies k̂ I

′
a′b′ ∈ L1loc. By the dominated

convergence theorem, we see that ∂kI are continuous. Note that this also implies
that if r̂ ∈ Ck+2(Dρ0) and ϕ ∈ Ck(Dρ0), then P

′ϕ ∈ Ck(Dρ0).

Second formula of derivatives of I. We return to the original coordinates by
letting (ξ∗, x) = �(ξ, x) and ζ, z ∈ Mρ . So dV (ξ∗) = ∂1∗r dV (ξ). Also

T̂−a′
1 ◦ �(ξ, x) = Na′

(ζ, z)N−a′
0 (ζ, z), T̂−b′

2 ◦ �(ξ, x) = Nb′
(ζ, z)S−b′

0 (ζ, z),

k̂ I
′
a′b′ ◦ ψ̃x (ξ) = (Re(ζ ′ − z′), Im(ζ ′ − z′), 2 Im(rz · (ζ − z)))I

′

N (ζ, z)a′Nb′
(ζ, z)

.

Multiply the same sides of the three identities and expand the last numerator. Then
{T̂−a′
1 T̂−b′

2 k̂ I
′
a′b′ } ◦ � is a linear combination of

k I
′′
a′b′(ξ, x)

def== (ζ ′ − z′, ζ ′ − z′, Im(rz · (ζ − z)))I
′′

Na′
0 (ζ, z)Sb

′
0 (ζ, z)

.

Since |I ′′| = |I ′| = 2a′ + 2b′ + 1− 2n, then

|I ′′| − 2a′ − 2b′ − 1+ 2n = 0, |I ′′| ≤ 2|K | + 1, a′ + b′ ≤ n + |K |. (8.11)
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By (8.10), derivatives of I(x) have the form

∂KI(x) =
∑

|L|≤|K |

∑
a≤a′≤a+|K |

∑
b≤b′≤b+|K |

∑
1+2a′+2b′−2n≤|I ′′|≤2|K |+1

(8.12)∫
Dρ

∂LϕJ (ξ)∂
2+|K |−|L|∗ r(ξ, x)k I

′′
a′b′(ξ, x) dV (ξ).

Here ϕJ has compact support in Dρ . Obviously, the ∂LϕJ in (8.12) do not depend
on x . This simple observation will be crucial for the 12 -estimate.

The reader might want to acquaint with the counting scheme in Section 2 and
Hölder inequalities on domains Dρ in Appendix A; see Proposition A.5.

9. Ca-estimates, case of compact support

In this section, we derive the Ca-estimate for P0ϕ0 where
ϕ0 = χϕ, ‖χ‖ρ,a ≤ Ca(ρσ)−a (9.1)

and χ is supported in Dρ . We also derive an estimate for P0ϕ when ϕ itself has
compact support in Dρ .

Proposition 9.1. Let k ≥ 0 be an integer and 0 ≤ α < 1. Let M : yn = |z′|2 +
r̂(z′, xn) satisfy (2.2) and 0 < ρ ≤ ρ0 ≤ 3. Let ϕ0 be a tangential form as in (9.1).
Then

‖P ′
0ϕ0‖ρ,k+α ≤ Ckρ

1−k−ασ−k−α
(‖ϕ‖ρ,k+α + ‖ϕ‖ρ,0‖r̂‖ρ,k+2+α

)
. (9.2)

If ϕ has compact support in Dρ and is tangential, then

‖P ′
0ϕ‖ρ,k+α ≤ Ckρ

1−k−α
(‖ϕ‖ρ,k+α + ‖ϕ‖ρ,0‖r̂‖ρ,k+2+α

)
. (9.3)

The same estimate holds for Q′
0.

Proof. Recall that by applying (8.10) to f = χϕL , k-th derivatives of a coefficient
of P ′

0ϕ0 are sums of finitely many

Ik(x) =
∫
B9ρ

u ◦ �−1(ξ∗, x)
T̂ a

′
1 T̂

b′
2 (ξ∗, x)

k̂ I
′
a′b′(ξ∗) dV (ξ∗).

Here a = q, b = n − q, a ≤ a′ ≤ a + k, b ≤ b′ ≤ b + k and

u(ξ, x)
def== ∂ Iχ(ξ)∂ JϕL(ξ)∂2+l∗ r(ξ, x), |I | = i, |J | = j, i + j + l = k,

k̂ I
′
a′b′(ξ∗) = N−a′

(ξ∗)N−b′
(ξ∗)ξ I

′
∗ , 2a′ + 2b′ = |I ′| + 2n − 1.

To obtain (9.2), we estimate the Cα-norm of Ik .
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By the definition of ∂2+l∗ r , we have

‖∂2+l∗ r‖ρ,α ≤ C
∑

l1+···+lt≤l
‖r‖2+l1+α · · · ‖r‖2+lt .

Thus

‖∂ iχ‖ρ,0‖∂ jϕL‖ρ,0‖∂2+l∗ r‖ρ,α

≤ C(ρσ)−i
∑

l1+···+lt≤l
‖ϕL‖ρ, j‖r‖2+l1+α · · · ‖r‖2+lt

≤ C ′(ρσ)−iρ−l− j−α(‖ϕL‖ρ,l+ j+α + ‖r‖2+l+ j+α‖ϕL‖ρ,0).

Here the last inequality is obtained by Proposition A.5. Also

‖∂ iχ‖ρ,α‖∂ jϕL‖ρ,0‖∂2+l∗ r‖ρ,0

≤ C(ρσ)−i−αρ−l− j (‖ϕL‖ρ,l+ j + ‖r‖2+l+ j‖ϕL‖ρ,0),

‖∂ iχ‖ρ,0‖∂ jϕL‖ρ,α‖∂2+l∗ r‖ρ,0

≤ C

(ρσ)iρl+ j+α
(‖ϕL‖ρ,l+ j+α + ‖r‖2+l+ j+α‖ϕL‖ρ,0).

Therefore,

‖u‖D2ρ,α ≤ Ckρ
−k−ασ−k−α(‖ϕ‖ρ,k+α + ‖r‖ρ,k+2+α‖ϕ‖ρ,0), (9.4)

‖u‖D2ρ,0‖r‖ρ,2+α ≤ Ckρ
−k−ασ−k(‖ϕ‖ρ,k+α + ‖r‖ρ,k+2+α‖ϕ‖ρ,0). (9.5)

By Lemma 5.2, we know that Wρ = �(Dρ × Dρ) ⊂ B9ρ × Dρ and

|�−1(v) − �−1(u)| ≤ C|v − u|, u, v ∈ Wρ. (9.6)

Assume that 0 ≤ α < 1. Fix ξ∗ ∈ B9ρ \ {0} and x1, x2 ∈ Dρ . Assume first that
ξ j = ψ̃−1

x j (ξ∗) are in Dρ for j = 1, 2. First, by (9.6)

|ξ2 − ξ1| ≤ C|x2 − x1|.
Now by (8.2)-(8.3), we obtain |T̂ j (ξ∗, x)| ≥ 1/4 and

|T̂ j (ξ∗, x2) − T̂ j (ξ∗, x1)| ≤ C|∂2∗r(ξ2, x2) − ∂2∗r(ξ1, x1)| ≤ ‖r‖ρ,2+α|x2 − x1|α.

Thus

� = |�(x2) − �(x1)| def==
∣∣∣∣∣u ◦ �−1(ξ∗, x2)
T̂ a

′
1 T̂

b′
2 (ξ∗, x2)

− u ◦ �−1(ξ∗, x1)
T̂ a

′
1 T̂

b′
2 (ξ∗, x1)

∣∣∣∣∣
≤ C‖u‖ρ,α|x2 − x1|α + C|u(ξ2, x2)((∂2∗r)(ξ2, x2) − (∂2∗r)(ξ1, x1))|
≤ C(‖u‖ρ,α + ‖u‖ρ,0‖r̂‖ρ,2+α)|x2 − x1|α.
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By (9.4)-(9.5) we get

� ≤ Ckρ
−k−ασ−k−α(‖ϕ‖ρ,k+α + ‖r‖ρ,k+2+α‖ϕ‖ρ,0)|x2 − x1|α. (9.7)

The above holds trivially if ξ1, ξ2 are both not in Dρ , in which case � = 0. If
ξ2 ∈ Dρ and ξ1 �∈ Dρ , we replace x1 by a point x3 in the line segment [x1, x2], for
which ξ3 = ψ̃−1

x3 (ξ∗) ∈ ∂Dρ . Then � = |�(x2)| = |�(x2) − �(x3)| and (9.7)
still holds. By Lemma 7.1 (with ρ1 = ρ0 = 9ρ and β ≥ 0),

∫
B9ρ

|k̂ I ′a′,b′ |dV ≤ Cρ.

Combining the above estimates yields (9.2).
The case that ϕ0 = ϕ is simpler, and it does not involve σ . So we can remove

all powers of σ in (9.4)-(9.5), (9.7), and (9.2). The latter becomes (9.3).

We compute the C 1
2 norm of ∂ Iχ∂ JϕL∂

2+l∗ r for a later use. Here it is crucial
to avoid the Hölder 12 -norm of ∂

JϕL .

Proposition 9.2. Let u(ξ, x) = ∂ Iχ(ξ)∂ JϕL(ξ)∂2+l∗ r(ξ, x) where χ has compact
support in Dρ and satisfies ‖χ‖ρ,a ≤ C(ρσ)−a . Let |I | + |J | + l = k. Then

‖u(ξ, ·)‖
ρ, 12

≤ Ck(ρσ)−k−
1
2
(‖ϕL‖ρ,k‖r‖ρ, 52

+ ‖ϕL‖ρ,0‖r̂‖ρ,k+ 5
2

)
. (9.8)

Proof. Fix ξ ∈ Dρ . The ϕL appearing in u(ξ, x) depends only on ξ . Therefore, for
‖u(ξ, ·)‖ρ,1/2, we only use the sup norm of ∂ JϕL(ξ). Then

‖u(ξ, ·)‖ρ,1/2 ≤ Ck((ρσ)−i−
1
2 ‖ϕL‖ρ, j‖r‖ρ,l+2 + (ρσ)−i‖ϕL‖ρ, j‖r‖ρ,l+ 5

2
)

≤ C ′
k(ρσ)−i−

1
2ρ− j−l(‖ϕL‖ρ, j+l + ‖ϕL‖ρ,0‖r‖ρ,2+ j+l)

+ C ′
k(ρσ)−iρ− j−l− 1

2 (‖ϕL‖ρ,0‖r‖ρ, j+l+ 5
2

+ ‖ϕL‖ρ, j+l‖r‖ρ, 52
),

where |I | = i , |J | = j , |L| = l and the last two terms are obtained by Proposi-
tion A.5 in which we take d1 = 0 and d2 = 5

2 . Simplifying yields (9.8).

10. Boundary integrals, end of Ca-estimates

In this section we will estimate the boundary integrals P ′
1ϕ and cutoff term P ′

0ϕ1,
where ϕ1 vanishes on D(1− 1

2σ)ρ
. Estimates (10.14) and (10.15) below will be used

again for the Ck+ 1
2 estimate.

Recall (3.10)-(3.11) that for ζ, z ∈ Mρ

P ′
0ϕ(x) =

∑
|I |=q−1

∑
|J |=q

∑
1≤ j≤n

dz′ I
∫
Dρ

A j J
I

(ξ, x)
ϕJ (ξ)(rζ j − rz j )

(Nn−q
0 Sq0 )(ζ, z)

dV (ξ),

P ′
1ϕ(x)=

∑
|I |=q−1

∑
|J |=q

n−1∑
α,β=1

2n−1∑
s=1

dz′ I
∫

∂Dρ

Bαβ J
I s

(ξ, x)ϕJ (ξ)(rζα −rzα )rζβ

(ζ n − zn)(Nn−q−1
0 Sq0 )(ζ, z)

dV s(ξ).
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Here A j J
I
and Bαβ J

I s
are polynomials in (rζ , rζ , rζζ , rz′, r

−1
zn

, rzz). And N0(ζ, z) =
rζ · (ζ − z), S0(ζ, z) = rz · (ζ − z). For ζ, z ∈ Mρ , set

k(ξ, x)
def== k j J

I
(ξ, x) = A j J

I
(ξ, x)

(rζ j − rz j )

(Na0
0 Sb00 )(ζ, z)

, a0 + b0 = n, b0 = q,

l(ξ, x)
def== lαβ J

I s
(ξ, x) = Bαβ J

I s
(ξ, x)

rζβ (rζα − rzα )

(ζ n − zn)(Na0−1
0 Sb00 )(ζ, z)

.

Recall that χ = χσ,ρ is a smooth function, which is 1 on Dρ(1−σ/2) and zero off
Dρ(1−σ/4), and ‖χ‖ρ,a ≤ Ca(ρσ)−a . On Dρ , set

ϕ0 = χϕ, ϕ1 = ϕ − ϕ0.

Assume that M satisfies (2.1)-(2.2). Thus ‖r̂‖ρ0,2 < 1/C0. Assume that 0 < ρ ≤
ρ0 ≤ 3. Set R = |z′|2 + r̂(x). Let πs be the projection from ∂Dρ into the subspace
ξ s = 0. Since Dρ is bounded and strictly convex, then πs is a 2-to-1 map from ∂Dρ

onto πs(∂Dρ) = π(Dρ). Actually, πs sends π−1
s (∂(πs(Dρ))) one-to-one and onto

∂(πs(Dρ)). Let vol(πs Dρ) be the volume of πs(Dρ) calculated via the volume-
form dV s . Recall that Dρ is contained in B2ρ . If f is a continuous function on Dρ ,
then∣∣∣∫

∂Dρ

f (ξ) dV s(ξ)

∣∣∣ ≤ 2 vol(πs Dρ)‖ f ‖ρ,0 ≤ 2 vol(B2ρ ∩ R
2n−2)‖ f ‖ρ,0

≤ Cρ2n−2‖ f ‖ρ,0.

(10.1)

Since the projection of ∂Dρ in any coordinate hyperplane is contained in a ball of
radius 2ρ, by the Fubini theorem one can verify that

vol (Dρ \ D
(1− 1

2σ)ρ
) ≤ (2n − 1) · Cρσ · ρ2n−2 ≤ C ′ρ2n−1σ. (10.2)

Let k ≥ 0 be an integer and 0 ≤ α < 1. Fix ζ ∈ Mρ \ M
(1− 1

2σ)ρ
and vary

z ∈ M(1−σ)ρ . By Lemma 6.3, we have

|rζ · (ζ − z)| ≥ C−1(ρσ)2, |rz · (ζ − z)| ≥ C−1(ρσ)2. (10.3)

We also have |rζ j − rz j | ≤ C‖ζ − z‖ ≤ C ′|rζ · (ζ − z)|1/2. Hence

|rζ j − rz j ||N0|−a|S0|−b ≤ C|N0| 12−a−b ≤ C ′(ρσ)1−2a−2b (10.4)

if a + b ≥ 1/2. Using | f (x2) − f (x1)| ≤ C‖ f ‖ρ,1|x2 − x1| ≤ C‖ f ‖ρ,1(|x2| +
|x1|)1−α|x2 − x1|α , we get

‖ f ‖ρ,α ≤ ‖ f ‖ρ,0 + C‖ f ‖ρ,1ρ
1−α.
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Therefore, for 1 ≤ j ≤ n and 0 < α < 1,

‖rζ j − rz j (·)‖ρ,α ≤ Cρ1−α, |rζβ | ≤ Cρ. (10.5)

Also for x1, x2 ∈ Dρ ,∣∣∣ 1

f (x2)
− 1

f (x1)

∣∣∣ = | f (x1) − f (x2)|1−α

| f (x2) f (x1)| | f (x1) − f (x2)|α

≤ C21−α‖1/ f ‖1+α
ρ,0 ‖ f ‖α

ρ,1|x2 − x1|α.

Combining it with Hölder ratio |1/ f a|ρ,α ≤ Ca‖1/ f ‖a−1ρ,0 |1/ f |ρ,α for a ≥ 1, we
get

‖1/ f a‖ρ,α ≤ ‖1/ f a‖ρ,0 + Ca‖1/ f ‖a+α
ρ,0 ‖ f ‖α

ρ,1, a ≥ 1. (10.6)

Now, by (10.3)

‖N0(ζ, ·)−a‖(1−σ)ρ,α + ‖S0(ζ, ·)−a‖(1−σ)ρ,α ≤ C(ρσ)−2(a+α), a ≥ 1. (10.7)

Note that A j J
I
has the form ∂2∗r . By Proposition A.5, we have

‖∂2∗r(ξ, ·)‖ρ,a · ‖∂2∗r(ξ, ·)‖ρ,b ≤ Ca,bρ
−a−b‖r‖ρ,2+a+b. (10.8)

We have

∂Kx k(ξ, x) =
∑

a+b+c+|L|=|K |

∑
|L|=0,1

∂2+c∗ r(ξ, x)∂Lx (rζ j − rz j )

(Na0+a
0 Sb0+b0 )(ζ, z)

,

where a0 + b0 = n. Fix ξ and vary x . For the summand, we estimate the Cα-norms
of two terms in the numerator by (10.3)-(10.5), and use (10.7) for the reciprocals of
two terms in the denominator. Set |K | = k and |L| = d. Recall that d = 0 or 1.
We get∥∥∥∥∥∂2+c∗ r(ξ, ·)∂Lx (rζ j − rz j (·))

(Na0+a
0 Sb0+b0 )(ζ, ·)

∥∥∥∥∥
(1−σ)ρ,α

≤ C

(ρσ)2(a+a0+b+b0)
{
(ρσ)1−dρ−c−α‖r‖ρ,2+c+α

+ ρ(1−d)(1−α)ρ−c−dα‖r‖ρ,2+c+dα + 2(ρσ)1−d(ρσ)−2αρ−c‖r‖ρ,2+c
}
.

The worst term in terms of powers of ρ, σ occurs when a + b = k, c = d = 0. We
see that

‖k(ξ, ·)‖(1−σ)ρ,k+α ≤ Ck(ρσ)−s1‖r‖ρ,k+2+α, ξ ∈ Dρ \ D
(1− 1

2σ)ρ
(10.9)

with s1 = 2n − 1+ 2k + 2α.
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To estimate the boundary term, by (4.2) we have

|ζ n − zn| ≥ C−1ρ2σ (10.10)

for z ∈ M(1−σ)ρ and ζ ∈ ∂Mρ . Using (10.6), we get for ζ ∈ ∂Mρ

‖(ζ n − zn(·))−a‖(1−σ)ρ,α ≤ C(ρ2σ)−a−α, a ≥ 1, 0 ≤ α ≤ 1. (10.11)

Note that Bαβ J
I s

has the form ∂2∗r . We have

∂Kx l(ξ, x) =
∑

a+b+d+c=|K |

∑
c1+|L|=c

∑
|L|=0,1

∂
2+c1∗ r · rζβ · ∂Lx (rζ j − rz j )

(ζ n − zn)1+d(Na0−1+a
0 Sb0+b0 )(ζ, z)

.

Set |K | = k and |L| = c2. We now estimate the Cα-norm in the x variables. Fix
ζ ∈ ∂Dρ . Using (10.3)-(10.5), (10.8) for three terms in the numerator and (10.7),
(10.10)-(10.11) for the reciprocals of three terms in the denominator, we obtain

‖l(ξ, ·)‖(1−σ)ρ,k+α ≤ Ck
∑

a+b+d+c1+c2=k

∑
c2=0,1

(ρσ)−2(a0+a+b0+b+d)σ 1+dρ·
(10.12)

·
{
(ρσ)1−c2ρ−c1−α‖r‖ρ,2+c1+α + ρ(1−c2)(1−α)ρ−c1−c2α‖r‖ρ,2+c1+c2α

+ ρ−c1(ρσ)1−c2((ρ2σ)−α + 2(ρσ)−2α)‖r‖ρ,2+c1
}
.

The worst term in terms of powers of ρ, σ occurs when c1 = c2 = d = 0, a+b = k.
This shows that for each ζ ∈ Mρ \ M

(1− 1
2σ)ρ

, we have

‖l(ξ, ·)‖(1−σ)ρ,k+α ≤ Ck(ρσ)−s2‖r‖ρ,k+2+α (10.13)

with s2 = 2(n + k − 1+ α).
By (10.1) and (10.13), we estimate the boundary term by

‖P ′
1ϕ‖(1−σ)ρ,k+α ≤ Ckρ

2n−2(ρσ)−s2‖r‖ρ,k+α+2‖ϕ‖ρ,0. (10.14)

Estimating the cutoff term by (10.9) and (10.2), we obtain

‖P ′
0ϕ1‖(1−σ)ρ,k+α ≤ Caρ

2n−1−s1σ 1−s1‖r‖ρ,k+2+α‖ϕ‖ρ,0. (10.15)

Define s
def== max{s1−1, s2, k+α} and s∗ def== max{s1−2n+1, s2−2n+2, k+α−1}.

Thus for a = k + α, we get

s = 2(a + n − 1), s∗ = 2a. (10.16)

Combining (9.2), (10.14)-(10.15), we get the following.
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Proposition 10.1. Let n ≥ 4, and let a ≥ 0 be a real number. Let M : yn =
|z′|2 + r̂(z′, xn) satisfy (2.2). Let P ′ be either of P ′, Q′ in the homotopy formula
ϕ = ∂M P ′ϕ + Q′∂Mϕ on Mρ . Assume that 0 < ρ ≤ ρ0 ≤ 3. Then for a tangential
form ϕ

‖P ′ϕ‖D(1−σ)ρ,a ≤ Caρ
−s∗σ−s(‖ϕ‖Dρ,a + ‖ϕ‖Dρ,0‖r̂‖Dρ,a+2),

where 0 < σ < 1, s, s∗ are given by (10.16).

11. Reduction of Ck+ 1
2 -estimates to C 1

2 -estimate. Summary

We want to prove the following Ck+ 1
2 estimates.

Proposition 11.1. Let n ≥ 4, and let k ≥ 0 be an integer. Let M : yn = |z′|2 +
r̂(z′, xn) satisfy (2.2). Let P ′ be one of P ′, Q′ in the homotopy formula ϕ =
∂M P ′ϕ + Q′∂Mϕ on Mρ . Then for 0 < ρ ≤ ρ0 ≤ 3, 0 < σ < 1, and a tan-
gential (0, q) form ϕ

‖P ′ϕ‖D(1−σ)ρ,k+ 1
2

≤ Ck
ρ2k+1σ 2n+2k−1

(‖r‖Dρ, 52
‖ϕ‖Dρ,k + ‖r̂‖Dρ,k+ 5

2
‖ϕ‖Dρ,0

)
,

‖Pϕ‖D(1−σ)ρ, 12
≤ Cρ−1σ 1−2n‖ϕ‖Dρ,0, q = 1.

Proof. Fix a positive integer k. To estimate the Ck+ 1
2 -norm of P ′ϕ = (P ′

0 + P ′
1)ϕ,

we first recall estimates (10.14) and (10.15) for the boundary and cutoff terms

‖(P ′
0ϕ1, P

′
1ϕ)‖

(1−σ)ρ,k+ 1
2

≤ Caρ
−s∗σ−s‖r‖

ρ,k+ 5
2
‖ϕ‖ρ,0. (11.1)

Here s = 2n + 2k − 1 and s∗ = 2k + 1 are computed by (10.16) for a = k + 1
2 .

It remains to estimate the Ck+ 1
2 -norm of P ′

0ϕ1, where ϕ1 = χϕ and χ has compact
support in Dρ and ‖χ‖ρ,a ≤ Ca(ρσ)−a . The proof will be completed later. For the
rest of proof, we reduce it to the special case of k = 0.

The second formula (8.12) says that the coefficients of ∂k P ′
0ϕ0 are sums of

Ku(x) =
∫
Dρ

u(ξ, x)k(ξ, x) dV (11.2)

with functions u(ξ, x) and kernels k(ξ, x) of the form

u(ξ, x) = ∂Eχ(ξ)∂FϕJ (ξ)∂2+l∗ r(ξ, x), |E | + |F | + l = k, (11.3)

k(ξ, x)
def== k Iab(ζ, z) = (ζ ′ − z′, ζ ′ − z′, Im(rz · (ζ − z)))I

(rζ · (ζ − z))a(rz · (ζ − z))b
, ζ, z ∈ Mρ. (11.4)
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Moreover, by (8.11), the non-negative integers a, b, I = (i1, . . . , i2n−1) satisfy

|I | − 2a − 2b ≥ 1− 2n, |I | ≤ 2k + 1, a + b ≤ n + k. (11.5)

By (9.8) in Proposition 9.2, we have

‖u(ξ, ·)‖
ρ, 12

≤ Ck(ρσ)−k−
1
2
(‖ϕ‖ρ,k‖r‖ρ, 52

+ ‖ϕ‖ρ,0‖r̂‖ρ,k+ 5
2

)
. (11.6)

In Section 12 we will prove that if u ∈ L∞(Dρ × Dρ) then

‖Ku‖Dρ,1/2 ≤ C sup
ξ∈Dρ

‖u(ξ, ·)‖Dρ,1/2. (11.7)

Combining it with (11.1) and (11.6) yields the first estimate in the proposition.
We now consider the case that ϕ is a tangential (0, 1)-form. We return to

(3.10)-(3.11) and look at a special property of the kernels of P ′ϕ. Recall that in this
case

P ′
0ϕ(x) =

∑
1≤γ<n

∑
1≤ j≤n

∫
Dρ

A jγ (ξ, x)
ϕγ (ξ)(rζ j − rz j )

(Nn−1
0 S0)(ζ, z)

dV (ξ),

P ′
1ϕ(x) =

∑
1≤α,β,γ<n

∑
1≤s<2n

∫
∂Dρ

Bαβγ
s (ξ, x)ϕγ (ξ)(rζα − rzα )rζβ

(ζ n − zn)(Nn−2
0 S0)(ζ, z)

dV s(ξ).

Here ζ, z ∈ Mρ . Also, A jγ and Bαβγ
s are polynomials in rζ , rζ , rζζ . In particular,

they are independent of z. Moreover, in the kernels there are only the first-order
derivatives rz j in the z variable. Then all norms of r in (10.12)-(10.14), in which
k = 0, can be replaced by ‖r‖ρ,2 < C and the estimate (10.14) for the boundary
term becomes

‖P ′
1ϕ‖(1−σ)ρ,α ≤ Cρ−2ασ 2−2n−2α‖ϕ‖ρ,0, 0 ≤ α ≤ 1.

Absorb A jγ
I (ξ) into ϕγ (ξ). With ζ, z ∈ Mρ the kernels of interior integral P ′

0ϕ

have the form

k(ξ, x) = rζ j − rz j

(rζ · (ζ − z))a(rz · (ζ − z))b
, a + b = n. (11.8)

We will show that (11.7) holds for this new kernel. Applying it to

u(ξ, x) = A jγ (ξ)ϕγ (ξ), ζ ∈ M

we obtain ‖P ′
0ϕ0,1‖ρ,1/2 ≤ C‖ϕ0,1‖ρ,0. This shows the second estimate of the

proposition.
The proof of Proposition 11.1 is thus complete, by assuming (11.7) in which

Ku, given by (11.2), has a kernel of the form (11.4)-(11.5) or (11.8).
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We want to unify the two kernels (11.4), which satisfies (11.5), and (11.8). For
(11.4), we write

Im(rz · (ζ − z)) = 1

2i
rz · (ζ − z) − 1

2i
rz · (ζ − z).

Then kernel (11.4) is a linear combination of

k(ξ, x)
def== (ζ − z, ζ − z, rζ − rz)I

(rζ · (ζ − z))a(rz · (ζ − z))b(rζ · (ζ − z))c (rz · (ζ − z))d
, (11.9)

where ζ, z ∈ M , a, b, c, d are now possibly negative integers, I is a (3n)-tuple of
nonnegative integers, and

|I |−2(a+b+c+d) ≥ 1−2n, |I | ≤ 2k+1, |a|+|b|+|c|+|d| ≤ n+3k+2. (11.10)
Indeed, the I = (i1, . . . , i2n−1) in (11.5) is a multi-index of nonnegative integers.
Hence, (11.5) and i2n−1 ≥ 0 implies (11.10). Obviously, (11.8) is of the form
(11.9). In Section 12, for the new kernel (11.9) with the condition (11.10) we will
prove (11.7), i.e.∥∥∥∫

Dρ

u(ξ, ·)k(ξ, ·) dV (ξ)

∥∥∥
Dρ,1/2

≤ C sup
ξ∈Dρ

‖u(ξ, ·)‖Dρ,1/2, (11.11)

where u ∈ L∞(Dρ × Dρ).

Summary. We would like to summarize our observations on Ck+ 1
2 -estimates to

explain how the general estimate (11.11) gives us an actual 12 -gain in special cases.

a) k ≥ 1 and q ≥ 1. In our applications of (11.11) to the Ck+ 1
2 -estimates,

u(ξ, x), arising from the k-th order derivatives of P ′
0ϕ after applying the approxi-

mate Heisenberg transformation, is of the form ∂k− jϕJ (ξ)∂
j+2∗ r(ξ, x) where ϕ has

compact support in Dρ ; see the second formula of the derivatives in Section 8.

In particular, the C 1
2 -norm of u(ξ, x) in x variables involves only ‖ϕ‖ρ,k (and

‖r‖
ρ,k+ 5

2
). Thus the estimate for ‖P ′

0ϕ‖
ρ,k+ 1

2
gains 12 in Hölder exponent from

‖ϕ‖ρ,k at the expense of two extra derivatives in ‖r‖
ρ,k+ 5

2
.

b) k = 0 and q = 1. Apply (11.11) to (0, 1) forms. In this case, we will
not need to differentiate the kernels and apply cutoff. Both simplify the estimate
considerably. However, it is crucial that when (11.11) is applied, u(ξ, x) has the
form A jγ (ξ)ϕγ (ξ); in particular, it is independent of x . Therefore, the 12 -estimate
of u in the x-variables and hence 12 -estimate of P

′
0ϕ only require r ∈ C2.

c) While the 1
2 -estimate of P

′
0ϕ is on the original domain (Proposition 12.1

below), the estimate for the boundary term P ′
1ϕ, which only requires r ∈ C2 for the

same reason as in b), is on shrinking domains.
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12. 12 -estimate

We will derive the 12 -estimate, by modifying a standard argument for Hölder esti-
mates. This will complete the proof of Proposition 11.1 via (11.6) and (11.11). We
restate the latter as the following.

Proposition 12.1. Let M be a real hypersurface of class C2 and satisfy (2.2). As-
sume that 0 < ρ ≤ ρ0 ≤ 3. Let a, b, c, d be (possibly negative) integers and I be a
(3n)-tuple of nonnegative integers. Suppose that |I | − 2(a + b+ c+ d) ≥ 1− 2n.
Let

k(ξ, x) = (ζ − z, ζ − z, rζ − rz)I

(rζ · (ζ − z))a(rz · (ζ − z))b(rζ · (ζ − z))c (rz · (ζ − z))d
, ζ, z ∈ M,

Ku(x) =
∫
Mρ

u(ξ, x)k(ξ, x) dV .

Then for u ∈ L∞(Dρ × Dρ),

‖Ku‖Dρ, 12
≤ C

(
ρ sup

ξ∈Dρ

‖u(ξ, ·)‖Dρ, 12
+ sup

ξ∈Dρ

‖u(ξ, ·)‖Dρ,0

)
.

Proof. Recall that Dρ is convex. It will be convenient to regard Ku as a function
on M . The 12 -Hölder ratios on Mρ and πMρ are equivalent, since |π(z2 − z1)| ≥
|z2− z1|/C for z1, z2 ∈ Mρ . By abuse of notation, we write u(ξ, x) as u(ζ, z) with
ζ, z ∈ M and apply the same change of notation to k(ξ, x), Ku(x).

Fix z1, z2 in Mρ . We have

Ku(z2) − Ku(z1) =
∫
Mρ

u(ζ, z2)
(
k(ζ, z2) − k(ζ, z1)

)
dV

+
∫
Mρ

(
u(ζ, z2) − u(ζ, z1)

)
k(ζ, z1) dV = I + I ′.

To estimate I ′, we need to estimate
∫
Mρ

|k(ξ, z1)| dV (ξ). So we apply the approx-
imate Heisenberg transformation ζ∗ = ψz1(ζ ). (However, we want to refrain from
use of Taylor remainder expansions, such as (8.4)-(8.5), for the kernel. This avoids
the requirement of r ∈ C5/2.) Let ζ ∈ Mρ . Using the fundamental theorem of
calculus, we get ηn − yn1 = A(ξ, x1) · (ξ − x1) with |A| < C . By (6.4), we have
ξn − xn1 = p(ξ, x1) · ξ∗ with |p| < C . Therefore,

|ζ − z1| ≤ C|ξ∗|.
By Lemma 6.1, we have

|rζ − rz1 | ≤ C|ξ∗|, 1/C ≤ |rz1 · (ζ − z1)|
||ζ ′∗|2 + iξn∗ | ≤ C, 1/C ≤ |rζ · (ζ − z1)|

||ζ ′∗|2 + iξn∗ | ≤ C.
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Therefore, for ζ ∈ Mρ

|k(ζ, z1)| ≤ C|ξ∗||I |
||ζ ′∗|2 + iξn∗ |a+b+c+d ≤

∑
|J |=|I |

C|ξ J∗ |
||ζ ′∗|2 + iξn∗ |a+b+c+d .

By Lemma 5.2, π(ψz1(Mρ)) ⊂ B9ρ . Applying Lemma 7.1 with ρ1 = ρ0 = 9ρ and
β ≥ 0, we get∫

Mρ

|k(ζ, z1)| dV ≤
∑

|J |=|I |

∫
B9ρ

C|ξ J∗ |
|ξn∗ + i |ζ ′∗|2|a+b+c+d

dV ≤ C ′ρ. (12.1)

Since u(ζ, z) is of class C1/2 in the z-variable, one gets
|I| ≤ C|z2 − z1|1/2ρ sup

ζ∈Dρ

‖u(ζ, ·)‖ρ,1/2.

To estimate the integral I ′, it suffices to show that∫
Mρ

|k(ζ, z2) − k(ζ, z1)| dV ≤ Cδ1/2, δ = |z2 − z1|.

As mentioned in the introduction we decompose Mρ into a cylinder and its comple-
ment. Consider the cylinder Mρ ∩ {|ζ ′ − z′1| < ρ1}, where ρ1 = min(9ρ,C∗|z2 −
z1| 12 ) with C∗ > 1 to be determined. Notice that the radius of cylinder is about
|z2 − z1|1/2, which is much large than |z2 − z1|, the Euclidean distance between
z1, z2.

We have ∫
Mρ

|k(ζ, z2) − k(ζ, z1)| dV ≤ I1 + I2 + I3,

I1 =
∫
Mρ∩{|ζ ′−z′1|<ρ1}

|k(ζ, z1)| dV, I2 =
∫
Mρ∩{|ζ ′−z′1|<ρ1}

|k(ζ, z2)| dV,

I3 =
∫
Mρ∩{|ζ ′−z′1|≥ρ1}

|k(ζ, z2) − k(ζ, z1)| dV .

By an analogy of (12.1), we have

I1 ≤
∑

|J |=|I |
C

∫
|ζ ′∗|<ρ1,|ζ∗|<9ρ

|ξ J∗ |
|ξn∗ + i |ζ ′∗|2|a+b+c+d

dV .

By Lemma 7.1 with β ≥ 0 and ρ0 = 9ρ and ρ1 = min(9ρ,C∗|z2 − z1| 12 ), we get
I1 ≤ Cρ1 ≤ CC∗|z2 − z1|1/2. Note that

Mρ ∩ {|ζ ′ − z′1| < ρ1} ⊂ Mρ ∩ {|ζ ′ − z′2| < ρ1 + |z2 − z1|}.
Applying the estimate for I1, we get I2 ≤ C(ρ1 + |z2 − z1|) ≤ C ′C∗|z2 − z1|1/2.
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With C∗ > 1 to be determined, we have I3 = 0 if ρ1 = 9ρ. Therefore, we
may assume that ρ1 = C∗|z2 − z1| 12 .

To estimate I3, we ignore any non-isotropic distance and connect (z′1, xn1 ) and
(z′2, x

n
2 ) by a line segment in the convex domain Dρ . Let z(t) be the graph of the

line segment in M . Let ζ be a point of Mρ which is not in the cylinder. Then

|ζ ′∗| = |ζ ′ − z′1| ≥ ρ1 = C∗|z2 − z1|1/2.
We have

|rz(t) · (ζ − z(t)) − rz1 · (ζ − z1)| ≤ C0|z2 − z1|,
|rz1 · (ζ − z1)| ≥ C1|ζ − z1|2 ≥ C1|ζ ′ − z′1|2 ≥ C1C

2∗|z2 − z1|,
where the second inequality comes from Lemma 6.3. We now fix C∗ > 1 such that

C1C2∗ > 2C0. (As remarked earlier, if C∗|z2−z1| 12 > 9ρ, we already have I3 = 0.)
We obtain

|rz1 · (ζ − z1)|/2 ≤ |rz(t) · (ζ − z(t))| ≤ 2|rz1 · (ζ − z1)|.

Recall that ζ∗ = ψz1(ζ ) and C−1||ζ ′∗|2 + iξn∗ | ≤ |rz1 · (ζ − z1)| ≤ C||ζ ′∗|2 + iξn∗ |.
Using |rz(t) · (ζ − z(t))|/C ≤ |rζ · (ζ − z(t))| ≤ C|rz(t) · (ζ − z(t))|, we get

C−1||ζ ′∗|2 + iξn∗ | ≤ |rζ · (ζ − z(t))| ≤ C||ζ ′∗|2 + iξn∗ |, (12.2)

C−1||ζ ′∗|2 + iξn∗ | ≤ |rz(t) · (ζ − z(t))| ≤ C||ζ ′∗|2 + iξn∗ |. (12.3)

Write k(ζ, z) = p(ζ,z)
q(ζ,z) with p(ζ, z) = (ζ ′ − z′, ζ ′ − z′, rζ − rz)I and

q(ζ, z) = (rζ · (ζ − z))a(rz · (ζ − z))b (rζ · (ζ − z))c (rz · (ζ − z))d .

For ζ ∈ Mρ and C∗ > 1 we have

|ζ − z(t)| ≤ |ζ − z1| + |z(t) − z1| ≤ |ζ − z1| + C|z2 − z1|
≤ |ζ − z1| + CC−2∗ |ζ ′ − z′1|2 ≤ C ′|ζ − z1|.

By (6.4), |ξn − xn1 | ≤ C|ξ∗|. Thus |ζ − z1| ≤ C|ξ∗|. Therefore, |ζ − z(t)| ≤ C|ξ∗|
and

|p(ζ, z(t))| ≤ C|ζ − z(t)||I | ≤ C ′|ξ∗||I |.
By (12.2)-(12.3), we have

|{q(ζ, z(t))}−1| ≤ C

||ζ ′∗|2 + iξn∗ |a+b+c+d .
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It is easy to see that |z′(t)| ≤ C|x2 − x1| ≤ C|z2 − z1|. Then |∂t q(ζ, z(t))−1| does
not exceed the sum of

C|z2 − z1|
|(rζ · (ζ − z(t)))a′

(rz(t) · (ζ − z(t)))b′
(rζ · (ζ − z(t)))c′ (rz(t) · (ζ − z(t)))d ′ |

,

where a′ + b′ + c′ + d ′ = a + b + c + d + 1. Applying the product rule, we get

|∂t p(ζ, z(t))| ≤ C|z2 − z1|
∑

|I ′|=|I |−1
|(ζ − z(t), ζ − z(t), rζ − rz(t))

I ′ |.

Therefore,

|∂t p(ζ, z(t))| ≤ C|z2−z1||(ζ ′∗, ξn∗ )||I |−1, ∣∣∂t 1

q(ζ,z(t))

∣∣ ≤ C|z2 − z1|
||ζ ′∗|2+ iξn∗ |a+b+c+d+1 .

By the mean-value-theorem, we get for ζ ∈ Mρ ∩ {|ζ ′ − z′| > ρ1}

|k(ζ,z2)− k(ζ,z1)|≤ C|z2−z1|
{ |ξ∗||I |
||ζ ′∗|2+ iξn∗ |a+b+c+d+1 + |ξ∗||I |−1

||ζ ′∗|2+ iξn∗ |a+b+c+d
}

≤ C ′|z2−z1| |ξ∗||I |
||ζ ′∗|2 + iξn∗ |a+b+c+d+1

≤
∑

|J |=|I |

C ′|z2 − z1||ξ J∗ |
||ζ ′∗|2 + iξn∗ |a+b+c+d+1 .

Applying Lemma 7.1 with ρ1 = C∗|z2 − z1|1/2 < 9ρ = ρ0 and β ≥ −2, we get
I3 ≤ C|z2 − z1|ρ−1

1 ≤ C|z2 − z1|1/2.

13. Proof of Theorem 1.1

We now prove Theorem 1.1, following a KAM argument in [5]. We restate the
theorem.

Theorem. Let M : r = 0 be a strongly pseudoconvex real hypersurface of class
C2 in Cn with n ≥ 4. Let ω be a continuous r × r matrix of (0, 1)-forms on M
satisfying the integrability condition ∂bω = ω ∧ ω mod ∂r . Near each point of M
there exists a non-singular matrix A ∈ C1/2(M) such that ∂b A = −Aω mod ∂r .
Moreover, if a is a positive real number, M is of class Ca+2 and ω ∈ Ca(M), there

is a solution A ∈ Ca(M); if k is a positive integer, ω ∈ Ck and M ∈ Ck+ 5
2 , there is

a solution A ∈ Ck+ 1
2 (M).

Note that not all solutions have the same regularity. If u is a continuous CR
function vanishing nowhere on M , then uA is still a solution.
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Non-isotropic dilations. The non-isotropic dilation Tδ : z → (
√

δz′, δzn) with
δ > 0 does not preserve the real hypersurface M . However, it is obvious that it
sends Mδ = T−1

δ M onto M . By abuse of notation, we will denote Tδ its restriction
to Cn−1 × R.

We want to show that M can be put in the form (2.1)-(2.2) after a second order
normalization and a non-isotropic dilation.

Let M be a graph yn = |z′|2 + r̂(z′, xn) over D. Recall that Mρ = M ∩
{(xn)2 + yn < ρ2} and

Dρ = π(Mρ) =
{
(z′, xn) ∈ D : |z′|2 + |xn|2 + r̂(z′, xn) < ρ2

}
.

Set r(z) = −yn + r̂(z′, xn). Define

r̂ δ(z) = δ−2r̂(δz′, δ2xn), r δ(z) = δ−2r(δz′, δ2xn).

Then Mδ = T−1
δ M is the graph over Dδ = T−1

δ D, given by

yn = |z′|2 + r̂ δ(z′, xn).

For 0 < δ < 1, we have

Mδ
ρ = Mδ ∩ {|xn|2 + yn < ρ2} ⊂ Mδ ∩ {δ2|xn|2 + yn < ρ2}.

So Dδ
ρ
def== π(Mδ

ρ) ⊂ T−1
δ Dρ for 0 < δ < 1.

In Theorem 1.1, we need a local solution A. By a change of local holomorphic
coordinates, we may assume that r̂(0) = ∂r̂(0) = ∂2r̂(0) = 0. Therefore

‖r̂ δ‖Dδ
1,2

< ε, Dδ
1 ⊂ Dδ,

if δ is sufficiently small.

Integrability conditions. We will find our solution through a sequence of frame
changes. We also need a small norm of initial ω via dilation. Therefore, we need to
verify that the integrability condition is preserved under dilation and frame changes.

Recall that for ϕ=∑
|I |=q ϕI dz

′ I , we define ∂Mϕ=∑
|I |=q,1≤α<n XαϕI dz

α ∧
dz′ I for Xα = ∂zα − rzα/rzn∂zn . A direct computation shows that δdT−1

δ Xα =
X δ

α ≡ ∂zα − r δ
zα

/r δ

zn
∂zn . Thus, T

∗
δ ∂M = ∂MδT ∗

δ . This shows that the formal integra-

bility condition is invariant under dilation, i.e. ∂Mδωδ = ωδ ∧ωδ . If ω = ∑
ϕJ dz

J

is a tangential (0, 1)-form on M , then T ∗
δ ω is a tangential (0, 1)-form on Mδ . More-

over, if ω ∈ Ca(M), then

T ∗
δ ω = δ

n−1∑
α=1

ϕα ◦ Tδ dzα, lim
δ→0

‖ωδ‖Ca(Dδ
1)

= 0. (13.1)

In other words, we have achieved the smallness of ω via dilation alone.
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We now consider the integrability condition under a frame change. We are
given an r × r matrix of continuous (0, 1)-forms ω on M . We assume that ∂bω =
ω ∧ ω mod ∂r . Without loss of generality, we may assume that ω are tangential.
The formal integrability condition is that as currents

∂Mω = ω ∧ ω. (13.2)

Recall that our goal is to find a non-singular matrix A which solves

∂M A + Aω = 0. (13.3)

We will consider only the solution A such that both A and ∂M A are continuous.
For any such A, the transformation ω → ω̃ = (∂M A + Aω)A−1 preserves the
integrability condition (13.2). Indeed, differentiating ω̃A = ∂M A + Aω and then
using ω = A−1ω̃A − A−1∂M A, ∂Mω = ω ∧ ω, we verify ∂M ω̃ = ω̃ ∧ ω̃ by

(∂M ω̃)A − ω̃ ∧ ∂M A = ∂M A ∧ ω + A∂Mω = ∂M A ∧ (A−1ω̃A − A−1∂M A)

+ (ω̃A − ∂M A) ∧ (A−1ω̃A − A−1∂M A)

= ω̃ ∧ ω̃A − ω̃ ∧ ∂M A.

Assume that the matrix ω is of class Ca . In what follows, all constants, including δ,
will depend on a. For simplicity this dependence will not be indicated sometimes.
However, constants C0, δ∗ and ε do not depend on a.

Proof of Theorem 1.1. We need to find a non-singular matrix A = I + B, defined
near the origin of M , such that

∂MB + ω + Bω = 0.

It suffices to find a δ > 0 and a non-singular matrix Aδ defined near 0 ∈ Mδ such
that ∂Mδωδ + Aδωδ = 0. Then Aδ ◦ T−1

δ is a solution to the original equation.

Take ρ0 = 1, σ j = 2− j−1 and ρ j+1 = (1− σ j )ρ j . Then ρ∞ = lim j→∞ ρ j >

0. We will assume that 0 < δ ≤ δ∗. We want to apply our estimates for P ′ and
Q′. So we choose δ∗ ∈ (0, 1] such that the homotopy formula holds on Mδ

ρ for
ρ ∈ (0, 1] and δ ∈ (0, δ∗]. For ρ∞ < ρ ≤ 1 we have

‖P ′ϕ‖Ca(Mδ
(1−σ)ρ

) ≤ Cσ−s‖ϕ‖Ca+2(Mδ
ρ), (13.4)

where P ′ is either of operators P ′, Q′ in the homotopy formula on Mδ
ρ . We em-

phasize that the constant Ca is independent of δ ∈ (0, ρ∗) and ρ ∈ (ρ∞, 1]. We
have also absorbed ‖r δ‖Ca+2(Dδ

ρ j
) into Ca , since r̂

δ(z′, xn) = δ−2r̂(δz′, δ2xn) and
r̂(0) = ∂r̂(0) = 0 imply that

‖r̂ δ‖Ca+2(Dδ
ρ j

) ≤ C‖r̂‖C2(Dδρ0 )
+ δa‖r̂‖Ca+2(Dδρ0 )

< Ca, 0 < δ < δ∗.
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Set Mj = Mδ
ρ j
and ‖ · ‖ρ j+1,a = ‖·‖Ca(Mj+1). We have Mj+1 ⊂ M0. Let ω0 =

T ∗
δ ω, restricted on M0. On Mj we have the homotopy formula ϕ = ∂Mδ P ′

jϕ +
Q′
j∂Mδϕ, where P ′

j = P ′
Mj
and Q′

j = Q′
Mj
.

Using ∂Mδω0 = ω0 ∧ ω0, we arrive at the equation

∂Mδ (B0 + P ′
0ω0) + Q′

0(ω0 ∧ ω0) + B0ω0 = 0,

where P ′
0, Q

′
0 are applied entrywise to the matrices. We use the approximate solu-

tion
B0 = −P ′

0ω0.

Assume that A0 = I + B0 is invertible. We repeat this procedure and get Bj =
−P ′

jω j and

ω j+1=(∂M A j + A jω j )A
−1
j ={Q′

j (ω j ∧ ω j ) − (P ′
jω j )ω j }(I − P ′

jω j )
−1. (13.5)

Here, we need all A j = I + Bj to be non-singular on Mj . We want to show that
lim j→∞ A j A j−1 · · · A0 is a solution.

We now estimate ‖Bj‖ρ j+1,a and ‖ω j+1‖ρ j+1,a .

For an r × r matrix B = (b ji ) of functions on Mρ we define ‖B‖ρ,a =
max{‖b ji ‖ρ,a}. If B, D are two such matrices, we have

‖DB‖ρ,0 ≤ r2‖D‖ρ,0‖B‖ρ,0, ‖Bl‖ρ,0 ≤ rl‖B‖lρ,0.

Assume that ρ∞ < ρ ≤ ρ0. We want to show that if ‖B‖ρ,0 ≤ 1
2r , then

‖D‖ρ,a ≤ ca‖B‖ρ,a, 0 ≤ a < ∞, (13.6)

where ca > 1 depends on a, r, n. Let A−1 = I + D. We know that D =∑
l≥1(−1)l Bl and

‖D‖ρ,0 ≤ r‖B‖ρ,0

1− r‖B‖ρ,0
≤ 2r‖B‖ρ,0,

which is (13.6) with a = 0. Since I is constant, then

D(z2) − D(z1) = A(z2)
−1 − A(z1)

−1 = A(z1)
−1(A(z1) − A(z2))A(z2)

−1

= A(z1)
−1(B(z1) − B(z2))A(z2)

−1.

Using (13.6) with a = 0, we get ‖D‖ρ,a ≤ C‖B‖ρ,a if 0 < a ≤ 1. Assume
that (13.6) holds when [a] < k. Let [a] = k ≥ 1. Applying the product rule to
(I + B)D = −B and multiplying from left by (I + B)−1 = I + D, we get

∂D = (I + D)(∂B)D − (I + D)∂B.
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By Proposition A.4 and the induction assumption, we obtain

‖D‖ρ,a ≤ Ca{(1+ ‖B‖ρ,a−1)‖B‖ρ,1 + ‖B‖ρ,a} ≤ C ′
a‖B‖ρ,a,

which proves (13.6).
Since Bj = −P ′

jω j , by (13.4) we have

‖Bj‖ρ j+1,a ≤ c∗aσ
−sa
j ‖ω j‖ρ j ,a, c∗a > 1. (13.7)

We want to achieve ‖Bj‖ρ j+1,0 ≤ 1
2r . So it suffices to obtain

‖ω j‖ρ j ,a ≤ σ
sa
j

2rc∗aca
= b j , j = 0, 1, 2, . . . . (13.8)

By (13.6)-(13.8), we have ‖(I+B)−1‖ρ j ,a ≤ 1+‖D‖ρ j ,a ≤ 2. Using (13.4)-(13.5)
and the estimates on matrix products, we get

‖ω j+1‖ρ j+1,a ≤ 2 · r2{‖Q′
j (ω j ∧ ω j )‖ρ j+1,a (13.9)

+r2‖Bj‖ρ j+1,a‖ω j‖ρ j+1,a
} ≤ C∗

aσ j
−sa‖ω j‖2ρ j ,a.

Assume that ‖ω0‖ρ0,a �= 0. Otherwise the theorem holds trivially. Define

b̂ j+1 = C∗
aσ j

−sa b̂2j , b̂0 = ‖ω0‖ρ0,a.

By (13.1), we choose a dilation Tδ with δ ∈ (0, δ∗] such that ω0 = Tδω satisfies

b̂0 = ‖ω0‖ρ0,a ≤ b0.

Then r j = b̂ j+1/b̂ j satisfies

r0 = C∗
aσ0

−sa b̂0, r j = 2sa (r j−1)2,
r1/r0 = 2sar0, r j+1/r j = (r j/r j−1)2.

This shows that r j+1/r j , and hence r j , b̂ j , converge rapidly, if b̂0 is sufficiently
small. Specifically,

r j+1/r j = (r1/r0)
2 j , r j = r0(r1/r0)

2 j−1, b̂ j = b̂0r
j
0 (r1/r0)

2 j− j−1.

Recall that σ j = 2− j−1. Clearly, ‖ω j‖ρ j ,a ≤ b̂ j ≤ b̂0r
j
0 ≤ 2−sa

2rc∗aca
(2−sa ) j = b j ,

provided

b̂0 ≤ 2−sa
2rc∗aca

, r0 ≤ 2−sa , r1/r0 = 2sar0 ≤ 1

2
.



166 XIANGHONG GONG AND SIDNEY M. WEBSTER

Therefore, we have shown that if ω ∈ Ca and M ∈ C2+a then (I + Bj ) · · · (I + B0)
converges in Ca-norm on ∩Dδ

ρ j
to an invertible matrix A∞. When a = k is an

integer and M ∈ Ck+5/2, or when M ∈ C2 for k = 0, we have

‖Bj‖ρ j+1,k+1/2 ≤ ckσ
−sk
j ‖ω j‖ρ j ,k .

Since ‖ω j‖ρ j ,k tends to zero rapidly, it is obvious that Bj converges to 0 rapidly in

Ck+1/2 on ∩D j
ρ j . This shows that A

∞ is of class Ck+1/2.
To complete the proof, we check that ∂Mδ A∞ + A∞ω0 = 0. Recall that for

A j = I + Bj , we have ∂Mδ A j + A jω j = w j+1A j . Thus

ω j+1A j A j−1 = (∂Mδ A j )A j−1 + A jω j A j−1
= (∂Mδ A j )A j−1 + A j (∂Mδ A j−1 + A j−1ω j−1)
= ∂Mδ (A j A j−1) + A j A j−1ω j−1.

Inductively, we get ∂Mδ (A j · · · A0) + A j · · · A0ω0 = ω j+1A j · · · A0. Taking the
limits, we get ∂Mδ A∞ + A∞ω0 = 0 on Mδ

ρ∞ . When k = 0, the derivatives in the
sense of currents are continuous and the above computation is valid as currents.

In the above argument, we obtain the rapid convergence of Bj , ω j in Ca norm
in one step when a is finite. One can also establish a rapid convergence of ω j , Bj
first in C0-norm and then in higher order derivatives. See [23], [5] for details.

Appendix

A. Hölder inequalities

The main purpose of this appendix is to present some Hölder inequalities on do-
mains in Rm . We do not claim any originality in deriving these inequalities. In fact,
we will just modify formulation and proofs of Hörmander [9]. The inequalities
in [9] are for a fixed convex domain. In our applications, we need to allow the
domain Dρ to vary. Therefore, we will derive them in full details and omit simple
repetitions only.

We say that a domain D in Rm has the cone property if the following hold: (i)
Given two points p0, p1 in D there exists a piecewise C1 curve γ (t) in D such that
γ (0) = p0 and γ (1) = p1, |γ ′(t)| ≤ C∗‖p1 − p0‖ for all t except finitely many
values. The diameter of D is less than C∗. (ii) For each point x ∈ D, D contains a
cone V with vertex x , opening θ > C−1∗ and height h > C−1∗ .

We will denote C∗(D) a constant C∗ > 1 satisfying (i) and (ii).
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In this appendix, by a cone V = V (θ, h, v) with vertex at the origin, opening
θ > 0 and height h > 0, and centered at positive v axis where v is a unit vector, we
mean

V = {t ∈ R
m : v · t > θ−1‖t − (v · t)v‖, v · t < h}, (A.1)

where ‖t‖ = (|t1|2 + · · · + |tm |2) 12 . Note that x + V is a cone with vertex at x .
Note that each cone satisfying (ii) contains a ball of radius at least C∗(D)/C . Let
D1, D2 be domains of the cone property, and let V1, V2 be cones in (ii) for D1, D2
respectively. Assume that the vertex of Vi is pi . Then D1× D2 contains the convex
hull of (p1, p2) and a ball of radius depending only on C∗(D1),C∗(D2). Therefore,
D1 × D2 still has the cone property.

For the rest of the appendix, until Proposition A.5, we assume that the domain
D has the cone property unless stated otherwise. The constants in all Hölder in-
equalities will depend on m and C∗(D). For simplicity this dependence will not be
expressed sometimes.

Let k ≥ 0 be an integer. For a complex-valued function u on D ⊂ Rm , define

‖∂ku‖D,0 = sup
x∈D,|I |=k

|∂ I u(x)|, ‖u‖D,k = max
0≤ j≤k

‖∂ j u‖D,0,

|u|D,α = sup
x,y∈D

|u(x) − u(y)|
|x − y|α , 0 < α ≤ 1,

‖u‖D,k+α = max{‖u‖D,k, |∂ I u|D,α : |I | = k}, 0 < α < 1.

If A = (a ji ) is a matrix of functions on D, we define ‖A‖D,k+α = max{‖a ji ‖D,k+α}.
We also define

|u|D,k+α = max|I |=k |∂ I u|D,α, 0 < α ≤ 1.

By (i) of the cone property and the fundamental theorem of calculus

C−1
0 |u|D,k ≤ ‖∂ku‖D,0 ≤ |u|D,k, k = 1, 2, . . . , (A.2)

provided that u ∈ Ck(D). It will be convenient to use both |u|D,k and ‖∂ku‖D,0.

Lemma A.1. Let D ⊂ Rm satisfy (i) of the cone property. Let f be a C1 map from
D intoRm . There exists a constant C0 > 1 such that if | f ′− I | < C−1

0 on D, then f
is a C1 diffeomorphism from D onto D′. Moreover, ‖ f −1− I‖D′,1 ≤ C‖ f − I‖D,1.

Proof. Take two points p0, p1 in D. By assumption there exists a piecewise C1

curve γ in D such that γ (0) = p0, γ (1) = p1, and |γ ′(t)| ≤ C∗‖p1 − p0‖. Write
f = I + f̃ . We have

f (p1) − f (p0) = p1 − p0 −
∫ 1

0
∇ f̃ (γ (t)) · γ ′(t) dt.
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Since ‖ f̃ ′‖D,0 < C−1
0 , then for C0 sufficiently large we get

1

2
‖p1 − p0‖ ≤ ‖ f (p1) − f (p0)‖ ≤ 2‖p1 − p0‖. (A.3)

Now it is obvious that f is a C1 diffeomorphism from D onto D′ and that D′
satisfies (i) of the cone property. Let g̃ = f −1− I . Then g̃ ◦ f = − f̃ . In particular,
‖g̃‖D′,0 ≤ ‖ f̃ ‖D,0, and by (A.3), |g̃|D′,1 ≤ C| f̃ |D,1.

We are ready to derive Hölder inequalities. We start with two lemmas in [9]
for our domains.

Lemma A.2. Let 0 < a < b. Let D satisfy the cone property. If |u|D,a ≤ 1 and
|u|D,b ≤ 1 then |u|D,c ≤ C for a < c < b, where C depends only on a, b and
C∗(D).

Proof. For simplicity, denote |u|D,a by |u|a . Since the diameter of D is bounded by
some constant C , it is obvious that |u|c ≤ C ′|u|c′ if k < c < c′ ≤ k+ 1. Therefore,
it suffices to prove the inequality when c is an integer.

Let V ⊂ D be a cone as stated in the cone property. We may assume that
0 ∈ V .

If a is an integer, we get |∂au| ≤ 1 on V . If a is not an integer, let P be its
Taylor polynomial of degree [a] at 0. Set v = u − P . Since ∂ I P are constants
for all |I | ≥ [a], then |v|c′ = |u|c′ for all c′ > [a]. Therefore, we may assume
that ∂ I u(0) = 0 for all |I | = [a]. Now |u|a ≤ 1 implies that |∂ I u| < C0 for all
|I | = [a].

We want to use the mean-value-theorem repeatedly. Let us first look at the
one-variable case. When f is Ck on [0, 1] and ‖ f ‖0 ≡ ‖ f ‖[0,1],0 < C0, there is
a point t in [0, 1] such that | f ′(t)| ≤ 2C0. One can divide [0, 1] into a sufficient
number of equal parts and find a point t j ∈ [0, 1] such that | f ( j)(t j )| < C ′ for j =
1, . . . , k. If | f |a ≤ 1 for some a ∈ (k, k + 1], we obtain further that ‖ f (k)‖0 < Ck .
Consequently, ‖ f ( j)‖0 < C j hold for j = k, k − 1, . . . , 0.

Return to our case. Fix a polydisc �m in V with side larger than C−1. Fix
I with |I | = [a]. Using |∂ I u| < C0 for |I | = [a] and |u|b ≤ 1, by the one-
variable argument we obtain |∂ j∂ I u| < C on�m for j = [b]−[a], . . . , c−[a]. So
|∂ j u| < C on�m for j = c, . . . , [b]. If [b] < b, |u|b ≤ 1 implies that |∂ [b]u| < C ′
on D. If b = [b] the assumption and (A.2) implies |∂bu| ≤ 1. Using a path
connecting a point in D to �m and |∂ j u| < C on �m for j = [b], . . . , c, we get
|∂ j u| ≤ C ′′ on D for j = [b] − 1, . . . , c. Using (A.2) again, we get |u|c ≤ C .

Example. Let f (x) = x + x3 and D = [0, ε]. Then f ′(0) = f ′(x) − ∫ x
0 f ′′(t) dt

and

ε f ′(0) =
∫ ε

0
f ′(x) dx−

∫ ε

0

∫ x

0
f ′′(t) dt dx = f (ε)− f (0)−

∫ ε

0

∫ x

0
f ′′(t) dt dx .
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This shows that 1 = | f ′(0)| ≤ C1‖ f ‖0 + C2‖ f ′′‖0 ≤ 2εC1 + 6εC2. However,
|C1| + |C2| tends to ∞ as ε → 0. This example demonstrates that in some in-
equalities derived in this appendix, the constants indeed depend on C∗(D). For
special domains used in this paper, we will find these constants by dilation; see
Proposition A.5.

Lemma A.3. Let D ⊂ Rm satisfy the cone property. Set ‖ · ‖D,a = ‖ · ‖a . If
0 < a < b, c = λa + (1− λ)b and 0 < λ < 1, then |u|c ≤ C|u|λa(|u|a + |u|b)1−λ,

where C depends only on a, b.

Proof. The case |u|a ≥ |u|c is obvious and we may assume that |u|a ≤ |u|c. If
|u|a = 0, then u is a polynomial of degree < a. Then |u|c = 0 too for c > a, and
the inequality holds. We may assume that |u|a �= 0. Without loss of generality, we
may assume that |u|a = 1 < |u|c. If |u|b ≤ 1, Lemma A.2 implies that |u|c ≤ C
and the inequality holds. Therefore, it suffices to verify

|u|c ≤ C|u|1−λ
b , if |u|a = 1 < |u|b. (A.4)

We first assume the inequality for integer c and verify it for non-integer c. Set
[c] = k. We have λ = b−c

b−a and 1 − λ = c−a
b−a . Depending on whether a, b are in[k, k + 1], we have the following cases.

Case i) k ≤ a < c < b ≤ k + 1. Since c = λa + (1 − λ)b then c − k =
λ(a−k)+(1−λ)(b−k). Consider first the case a = k. Then c−k = (1−λ)(b−k).
Let v = ∂ I u with |I | = k. Hence

|v(y) − v(x)|
|y − x |c−k = |v(y) − v(x)|λ

∣∣∣∣v(y) − v(x)

|y − x |b−k
∣∣∣∣1−λ

≤ 2λ‖v‖λ
0|v|1−λ

b−k

≤ C ′|u|λk |∂ I u|1−λ
b−k ≤ C ′|u|λk |u|1−λ

b ,

where the second last inequality is obtained by (A.2) using k = a > 0. Therefore,
|u|c ≤ C|u|λa|u|1−λ

b . Assume now that a−k > 0. Then a−k, b−k, c−k are in (0, 1].
Computing the Hölder ratio gives us |v|c−k ≤ |v|λa−k |v|1−λ

b−k , i.e. |u|c ≤ |u|λa|u|1−λ
b .

We emphasize that we have proved |u|c ≤ C|u|λa|u|1−λ
b (and hence (A.4) for case

i)) without using any condition on |u|a, |u|b, |u|c other than that on a, b, c, k.
Case ii) a < k < c < b ≤ k + 1. We get |u|c ≤ C|u|(b−c)/(b−k)k |u|(c−k)/(b−k)b , by
case i). By the assumption for the integer case (applied to triple a < k < b) we
obtain

|u|k ≤ C|u|(k−a)/(b−a)b . (A.5)

Eliminating |u|k from two inequalities gives us (A.4); indeed
k − a

b − a
· b − c

b − k
+ c − k

b − k
= c − a

b − a
.
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Case iii) k ≤ a < c < k + 1 < b. We have |u|c ≤ C|u|(c−a)/(k+1−a)k+1 , by case i).
The assumption on the integer case (applied to triple a < k + 1 < b) gives us

|u|k+1 ≤ C|u|(k+1−a)/(b−a)b . (A.6)

Eliminating |u|k+1 gives us (A.4).
Case iv) a < k < c < k + 1 < b. Then (A.5) and (A.6) are still valid. By i), we
have |u|c ≤ C|u|k+1−ck |u|c−kk+1. Using (A.5)-(A.6) and eliminating |u|k , |u|k+1 gives
us (A.4).

Finally, we prove (A.4) when c is a positive integer by repeating an argument
in [9].

Fix x0 ∈ D and let V be a cone in D with vertex x0, height and opening 1/C∗.
Since V is convex, for x ∈ V and 0 < ε < 1 we can define

uε
x (y) = u((1− ε)x + εy), y ∈ V .

Then |uε
x |V,b ≤ εb|u|b and |uε

x |V,a ≤ εa . Since |u|b > 1, there is an ε ∈ (0, 1) so
that εa = μ = εb|u|b. Now, apply Lemma A.2 to the domain V and the function
μ−1uε

x . For any multiindex I with |I | = c, we have

εc|∂ I u(x)| = |∂ I uε
x (x)| ≤ C0μ = C0(ε

a)λ(εb|u|b)1−λ.

Canceling ε’s shows |∂ I u(x)| ≤ C0|u|1−λ
b for x ∈ V . Since C0 does not depend

on x0 ∈ V , we get ‖∂cu‖0 ≤ C0|u|1−λ
b on D; by (A.2), |u|c ≤ C‖∂cu‖0 and (A.4)

follows.

Proposition A.4. Let D ⊂ Rm have the cone property and denote ‖ ·‖D,a by ‖ ·‖a .
Let a, b, a j , b j be nonnegative real numbers.

(i) ‖u‖λa+(1−λ)b ≤ Ca,b‖u‖λ
a‖u‖1−λ

b for 0 < λ < 1.
(ii) ‖uv‖a ≤ Ca(‖u‖0‖v‖a + ‖u‖a‖v‖0).
(iii) Suppose that Dj ⊂ Rn j has the cone property for j = 1, . . . , k. Let a j , c j

be non-negative real numbers, and let (b1, . . . , bk) be in the convex hull of
(a1, . . . , ak) and (c1, . . . , ck). Then

k∏
j=1

‖u j‖Dj ,b j ≤ Ck+|a|+|b|+|c|

(
k∏
j=1

‖u‖Dj ,a j +
k∏
j=1

‖u‖Dj ,c j

)
.

(iv) Let f be a map from D into D′ ⊂ Rn . Assume that D′ has the cone property.
Then

‖u ◦ f ‖a ≤ Ca(‖u′‖D′,a−1‖ f ′‖a0 + ‖u′‖D′,0‖ f ′‖a−1) + ‖u‖D′,0, a ≥ 1,

‖u ◦ f ‖a ≤ C min(‖u′‖D′,0| f |a, ‖u‖D′,a‖ f ′‖a0) + ‖u‖D′,0, 0 ≤ a ≤ 1.
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(v) Let f = I + f̃ be a Ca map from D into Rm . There exists C0 > 1 such that if
| f̃ ′| < C−1

0 then

‖ f −1 − I‖ f (D),a ≤ Ca‖ f̃ ‖a, a ≥ 0.

(vi) Let f = I + f̃ be a C1 map from D into D′ ⊂ Rm with | f ′| < C0. Assume
that D ∪ D′ is contained in a convex domain D′′ of the cone property. Then

‖u ◦ f − u‖a ≤ Ca(‖u′‖D′′,a‖ f̃ ‖0 + ‖u′‖D′′,0‖ f̃ ‖a), a ≥ 0.

Proof. (i)-(iii) are proved in [9]. The proof for (iii) is for Dj being the same do-
main. In fact, by (i), one has log ‖u j‖Dj ,b j≤λ log ‖u j‖Dj ,a j+(1−λ) log ‖u j‖Dj ,c j+
logC for all j . Sum over j = 1, . . . , k and take exponential on both sides. The
convexity of ex yields (iii). For 0 ≤ a ≤ 1, two inequalities in (iv) are verified
directly. Assume that (iv) holds when a is replaced by a − 1. Assume that a > 1.
Then (u ◦ f )′ = u′( f ) f ′. For both cases of 0 < a−1 ≤ 1 and a−1 > 1 we obtain

‖(u ◦ f )′‖a−1 ≤ C(‖u′( f )‖a−1‖ f ′‖0 + ‖u′( f )‖0‖ f ′‖a−1)
≤ C ′(‖u′‖D′,a−1‖ f ′‖a0 + ‖u′‖0‖ f ′‖a−1),

where ‖u′‖a−1 ≡ ‖u′‖D′,a−1. Note that for the second inequality when a > 2, we
have used

‖u′‖1‖ f ′‖a−2‖ f ′‖0 ≤ C‖u′‖
a−2
a−1
0 ‖u′‖

1
a−1
a−1‖ f ′‖

1
a−1
0 ‖ f ′‖

a−2
a−1
a−1‖ f ′‖0

≤ C ′(‖u′‖a−1‖ f ′‖a0 + ‖u′‖0‖ f ′‖a−1).
This gives us (iv) as ‖u ◦ f ‖a ≤ ‖u‖0 + ‖(u ◦ f )′‖a−1.
(v). It follows immediately from Lemma A.1 when 0 ≤ a ≤ 1. We now prove it
for a > 1 by using a variant of counting scheme in Section 2. Define

∂̂1+kv =
∑

j1+···+ jl≤k
p( f̃ ′)∂ J1v · · · ∂ Jlv, ji = |Ji | − 1 ≥ 0, (A.7)

where p( f̃ ′) is a polynomial in (I + f̃ ′)−1 and f̃ ′ and it might be different when
it reoccurs. Let g = f −1 and g̃ = f −1 − I . Let 1 denote the identity matrix. We
have g̃′ = −((1+ f̃ ′)−1 f̃ ′) ◦ g, i.e. ∂ I g̃ = (̂∂1 f̃ ) ◦ g for |I | = 1. Inductively,

∂ J g̃ = (̂∂ |J | f̃ ) ◦ g, |J | ≥ 1. (A.8)

By Lemma A.1, we have 12 |y1− y0| ≤ |g(y1)−g(y0)| ≤ 2|y1− y0|. Let k = [a]−1
and α = a − k − 1. Thus ‖g‖D′,1+k+α ≤ C‖ f ‖0 + C

∑
j≤k ‖̂∂1+ j f̃ ‖α . Now

‖̂∂1+k f̃ ‖α ≤
∑

j1+...+ jl≤k
C ′{‖ f̃ ‖1+α‖ f̃ ‖1+ j1 · · · ‖ f̃ ‖1+ jl

+
∑
1≤i≤l

‖ f̃ ‖1+ j1 · · · ‖ f̃ ‖1+ ji+α · · · ‖ f̃ ‖1+ jl

}
.

By (iii) we obtain ‖g̃‖D′,1+k+α ≤ ∑
C(‖ f̃ ‖l1 + ‖ f̃ ‖l−11 )‖ f̃ ‖1+k+α ≤ C ′‖ f̃ ‖a .
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(vi). By convexity of D′′, we have u(x+ f̃ (x))−u(x)= f̃ (x) ·∫ 10 u′(x+ t f̃ (x))dt.
Consider case 0 ≤ a < 1. We have∣∣∣∫ 1

0
{u′(y+t f̃ (y)) − u′(x+t f̃ (x))}dt

∣∣∣≤ max
t

‖u′‖D′′,a|y−x+t ( f̃ (y)− f̃ (x))|a

≤ C‖u′‖D′′,a(1+ ‖ f̃ ‖D,1)|y − x |α.

By ‖ f̃ ‖1 ≤ C , one sees easily that

‖u(I + f̃ ) − u‖a ≤ C(‖u′‖D′′,a‖ f̃ ‖0 + ‖u′‖D′′,0‖ f̃ ‖a),
which is (vi) for 0 ≤ a < 1. Assume that the above inequality holds when a is
replaced by a − 1. Assume that a ≥ 1. We need to estimate the ‖ · ‖a−1 norm of
∂xi (u◦(I+ f̃ )−u) = (∂yi u)◦(I+ f̃ )−∂xi u+

∑
1≤ j≤m

(∂y j u)◦(I+ f̃ )·∂xi f̃ j . (A.9)

By the induction assumption, we have

‖(∂yi u) ◦ (I + f̃ ) − ∂xi u‖a−1 ≤ C(‖∂2u‖D′′,a−1‖ f̃ ‖0 + ‖∂2u‖D′′,0‖ f̃ ‖a−1).
We need to put ‖∂2u‖D′′,l‖ f̃ ‖a−1−l ≤ ‖u′‖D′′,l+1‖ f̃ ‖a−1−l into the desired form.
By (iii), we get

‖u′‖D′′,l+1‖ f̃ ‖a−1−l ≤ C(‖ f̃ ‖0‖u′‖D′′,a + ‖u′‖D′′,0‖ f̃ ‖a). (A.10)

We now treat the term in the sum of (A.9). Set ‖u′‖b ≡ ‖u′‖D′′,b. By (iv) we have
‖(∂y j u)(I + f̃ )‖a−1 ≤ C(‖u′‖a−1 + ‖u′‖1‖ f̃ ‖a−1) + ‖u′‖0. Thus
‖(∂y j u)(I + f̃ ) · ∂xi f̃ j‖a−1 ≤ C((‖u′‖a−1 + ‖u′‖1‖ f̃ ‖a−1)‖ f̃ ‖1 + ‖u′‖0‖ f̃ ‖a)

≤ C ′(‖u′‖a−1‖ f̃ ‖1 + ‖u′‖1‖ f̃ ‖a−1 + ‖u′‖0‖ f̃ ‖a).
We can put the first two terms in the desired form by (A.10).

Two inequalities in the next proposition are used in estimating P and Q.

Proposition A.5. Let D be a convex domain in Rm satisfying

Bρ/c0 ⊂ D ⊂ Bc0ρ, 0 < ρ ≤ 3.

Let a∗ = 0 for 0 ≤ a ≤ 1 and a∗ = a for a > 1. Let ‖ · ‖a = ‖ · ‖Ca(D). Then

ρa∗
∥∥∥ m∏
j=1

u j
∥∥∥
a

≤ Ca,c0

m∑
j=1

‖u j‖a
∏
i �= j

‖ui‖0,

ρe
m∏
j=1

‖u‖d j+b j ≤ Ca,b,c,c0

(
m∏
j=1

‖u j‖d j+a j +
m∏
j=1

‖u j‖d j+c j
)

,

where e = (b1+d1−[d1])+· · ·+(bm+dm−[dm]), a j , c j , d j are non-negative real
numbers, and (b1, . . . , bm) is in the convex hull of (a1, . . . , am) and (c1, . . . , cm).
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Proof. The first estimate is trivial if a ≤ 1. So assume that a > 1. We know that
D is convex and Bρ/c0 ⊂ D ⊂ Bc0ρ . Thus D has the cone property if 1 ≤ ρ ≤ ρ0,
where the cone of fixed size with vertex at x ∈ D can be found from the convex
hull of x and Bρ/c0 . Assume now that 0 < ρ < 1. Consider the isotropic dilation
Sρ(x) = ρx . Then, D∗ = S−1

ρ D has the cone property. Since 0 < ρ < 1, we have

ρa‖u‖a ≤ ‖u ◦ Sρ‖D∗,a ≤ ‖u‖a. (A.11)

By Proposition A.4 (ii) we obtain

ρa
∥∥∥ m∏
j=1

u j
∥∥∥
a

≤
∥∥∥ m∏
j=1

u j ◦ Sρ

∥∥∥
D∗,a

≤ C
m∑
j=1

‖u j ◦ Sρ‖D∗,a
∏
i �= j

‖ui ◦ Sρ‖D∗,0.

Using (A.11), we get the first inequality easily. Let l j ≤ [d j ] be any non-negative
integers. By (A.11) and Proposition A.4 (iii), we get

ρe
m∏
j=1

‖∂l j u j‖b j+d j−[d j ] ≤
m∏
j=1

‖(∂l j u j ) ◦ Sρ‖D∗,b j+d j−[d j ]

≤ C

(
m∏
j=1

‖(∂l j u j ) ◦ Sρ‖D∗,a j+d j−[d j ]+
m∏
j=1

‖(∂l j u j ) ◦ Sρ‖D∗,c j+d j−[d j ]

)

≤ C

(
m∏
j=1

‖u j‖l j+a j+d j−[d j ] +
m∏
j=1

‖u j‖l j+c j+d j−[d j ]

)

≤ C

(
m∏
j=1

‖u j‖d j+a j +
m∏
j=1

‖u j‖d j+c j
)

.

Summing over all non-negative integers l j ≤[d j ] gives us the second inequality.
One can also obtain other inequalities via dilation. The inequalities below are

not directly used in this paper.

Proposition A.6. Let a∗ be as in Proposition A.5. Let ρ, D, ‖ · ‖a be as in Propo-
sition A.5. Let a, b, a j , b j be nonnegative real numbers.

(i) ρc∗‖u‖λa+(1−λ)b ≤ Ca,b‖u‖λ
a‖u‖1−λ

b for 0 < λ < 1, where c∗ = λa + (1 −
λ)b.

(ii) Let f be a map from D into D′ ⊂ Rn . Assume that D′ is convex and Bc−10 ρ
⊂

D′ ⊂ Bc0ρ . Then

ρa∗‖u ◦ f ‖a ≤ Ca,c0ρ(‖u′‖D′,a−1‖ f ′‖a0 + ‖u′‖D′,0‖ f ′‖a−1) + ‖u‖D′,0, a ≥ 1,

‖u ◦ f ‖a ≤ Cc0 min(‖u‖D′,1‖ f ‖a, ‖u‖D′,a‖ f ‖a1) + ‖u‖D′,0, 0 ≤ a ≤ 1.
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(iii) Let a∗∗ = 0 for 0 ≤ a ≤ 2 and a∗∗ = a − 1 for a > 2. Let f be a Ca map
from D into Rm . There exists C0 > 1 such that if | f ′ − I | < 1/C0 then

ρa∗∗‖ f −1 − I‖ f (D),a ≤ Ca‖ f − I‖a.
(iv) Let f = I+ f̃ be a C1 map from D into D′ ⊂ Rm with | f ′| < C0. Assume that

D ∪ D′ is contained in a convex domain D′′ satisfying Bρ/c0 ⊂ D′′ ⊂ Bc0ρ .
Then

ρa∗‖u ◦ f − u‖a ≤ Ca,c0(‖u′‖D′′,a‖ f̃ ‖0 + ‖u′‖D′′,0‖ f̃ ‖a).
Proof. We may assume that 0<ρ <1. Let u∗(x) = u(ρx), f ∗(x) = ρ−1 f (ρx) =
x + f̃ ∗(x), and D∗ = ρ−1D. Then D∗ has the cone property.
(i) is immediate, by applying Proposition A.4 to u∗ and by using (A.11).
(ii). The case 0 ≤ a ≤ 1 is verified directly. Assume that a > 1. Applying
Proposition A.4 to u∗ ◦ f ∗, we get
‖u∗ ◦ f ∗‖D∗,a≤Ca(‖∂u∗‖D′∗,a−1‖ f ∗′‖aD∗,0+‖∂u∗‖D′∗,0‖ f ∗′‖D∗,a−1)+‖u∗‖D′∗,0.

Since f ∗′(x) = f ′(ρx), then ‖ f ∗′‖D∗,b ≤ ‖ f ′‖D,b for b ≥ 0. By (A.11), we also
have

‖u∗ ◦ f ∗‖D∗,a = ‖(u ◦ f ) ◦ Sρ‖D∗,a ≥ ρa‖u ◦ f ‖a,
‖∂u∗‖D′∗,a−1 = ‖ρ(∂u)∗‖D′∗,a−1 ≤ ρ‖∂u‖a−1, a ≥ 1.

Simplifying gives us (ii).

(iv). Let f̃ = f − I . The case 0 ≤ a ≤ 1 is verified directly. Assume that a > 1.
Then

‖u∗ ◦ f ∗ − u∗‖D∗,a ≤ C(‖ f̃ ∗‖a‖∂u∗‖D′′∗ ,0 + ‖ f̃ ∗‖0‖∂u∗‖D′′∗ ,a).

As in (ii), we can get (iv) by (A.11) and

‖ f̃ ∗‖D′∗,a = ρ−1‖ f̃ ◦ Sρ‖D′∗,a ≤ ρ−1‖ f̃ ‖a.

(iii). (A dilation would give us a∗∗ = a.) Let g = f −1 = I + g̃. We have
g̃ = − f̃ ◦ g and g̃′ = −{ f̃ ′(1 + f̃ ′)−1} ◦ g. By Lemma A.1, C−1|x ′ − x | ≤
|g(x ′) − g(x)| ≤ C|x ′ − x |. We get immediately

‖g̃‖ f (D),a ≤ C‖ f̃ ‖a, 0 ≤ a ≤ 2.

Assume that k ≥ 1. Recall that by (A.7)-(A.8),

∂K g̃ =
∑

j1+···+ jl≤k
{p( f̃ ′)∂ J1 f̃ · · · ∂ Jl f̃ }◦g, k = |K |−1 ≥ 0, ji = |J |i −1 ≥ 0.

Set 1 + k = [a] and α = a − k − 1. Computing the Hölder ratio of (A.8) and
applying Proposition A.5 with d j = 1, we obtain (iii) from

‖∂K g̃‖α ≤ C
∑

j1+···+ jl≤k
ρ− j1−···− jl−α‖ f̃ ‖1+k+α ≤ C ′ρ−k−α‖ f̃ ‖1+k+α.
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Remark A.7. If all norms in Proposition A.6 are replaced by the scalar-invariant
norm ‖ · ‖∗, defined as

‖u‖∗
D,a = ‖u ◦ Sd‖S−1

d D,a

with d being the diameter of D, we can take c∗ = a∗ = a∗∗ = 0 for the proposition.
For the use of scalar-invariant norms to derive estimates on the Bochner-Martinelli-
Koppelman formula for balls in Cn , see [20].

B. The Henkin homotopy formula

Recall notation z′ = (z1, . . . , zn−1), z = (z′, zn) and x = π(z) = (Re z, Im z′).
In this appendix, we will derive the following version of Henkin’s homotopy

formula.

Theorem B.1. Let M ⊂ Cn be a graph yn = |z′|2+r̂(x) over D ⊂ R2n−1. Assume
that 0 < ρ < ρ0 ≤ 3 and

Dρ0 ⊂ D, r̂(0) = 0, ∂r̂(0) = 0, ‖r̂‖ρ0,2 = ‖r̂‖Dρ0 ,2
< 1/C0 (B.1)

with C0 sufficiently large. Assume that 0 < ρ < ρ0 ≤ 3. Let ϕ be a continuous
tangential (0, q)-form on Mρ . Assume that ∂Mϕ is continuous as currents on Mρ

and admits a continuous extension on Mρ . If 0 < q < n − 2, then on Mρ and as
currents

ϕ = ∂M(P0 + P1)ϕ + (Q0 + Q1)∂Mϕ mod ∂r,

where P0, P1, Q0, Q1 are defined by (3.5).

Recall that Mρ = M ∩ {z : |xn|2 + yn < ρ2} and Dρ = {x ∈ D : |xn|2 + yn <

ρ2}. When M is strictly convex, see Henkin [7] for the proof. Our proof will
follow [21] via Stokes’ theorem.

Set r = −yn + |z′|2 + r̂(x) and define

F(ζ, z) = rz · (ζ − z) + 1

2

∑
1≤ j,k≤n

rz j zk (ζ
j − z j )(ζ k − zk), (B.2)

St (z) = π{ζ ∈ M : |F(ζ, z)| = t}, S′
t (ζ ) = π{z ∈ M : |F(ζ, z)| = t}.

Note that rz j zk = r̂z j zk .

Lemma B.2. Let n ≥ 2. Let M be as in Theorem B.1. There exists C1 > 1
satisfying the following.

(i) If 0 < t < (ρ0 − ρ)2/C1 and z ∈ Mρ , then St (z) and S′
t (z) are compact subsets

of Dρ0 .
(ii) Assume that r̂ ∈ C3(Dρ0), z ∈ Mρ and 0 < t < C−1

1 min{(ρ0 − ρ)2, (1 +
‖r̂‖ρ0,3)

−1}. Then St (z) and S′
t (z) are smooth and of classes C3 and C1, respec-

tively.
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Proof. Set ε = ‖r̂‖ρ0,2. (i) By Lemma 5.1, Dρ0 is convex and dist(∂Dρ0, ∂Dρ) ≥
(ρ0 − ρ)/C . On Mρ0 × Mρ0 , |rz · (ζ − z)| ≥ |ζ − z|2/C by Lemma 6.3 and
|r̂z j zk | ≤ Cε. Hence, (i) follows from

|F(ζ, z)| ≥ |ζ − z|2/(2C). (B.3)

(ii) Fix z ∈ Mρ0 . Let ζ
n∗ = −2irz(ζ − z). By Lemma 6.1, ξ∗ = (Re ζ∗, Im ζ ′∗) are

coordinates of Mρ0 and

ξn∗ = Re(−2irz · (ζ − z)) = ξn − xn + 2 Im(z′ · ζ ′) + Im{2r̂z · (ζ − z)}, (B.4)

ηn∗ = Im(−2irz · (ζ − z)) = |ζ ′∗|2 +
∑
|I |=2

R2∗r̂(ξ, x)ξ I∗ , (B.5)

whereRi∗ is defined by (6.5). Write u = Re(−2i F(ζ, z)) and v = Im(−2i F(ζ, z)).
We have

−2i F(ζ, z) = −2irz · (ζ − z) − i
∑

1≤ j,k≤n
rz j zk (ζ

j − z j )(ζ k − zk),

u(ξ∗) = ξn∗ + ũ(ξ∗), ũ(ξ∗) =
∑
|I |=2

aI ◦ �−1(ξ∗, x)ξ I∗ , (B.6)

v(ξ∗) = |ζ ′∗|2 + ṽ(ξ∗), ṽ(ξ∗) =
∑
|I |=2

bI ◦ �−1(ξ∗, x)ξ I∗ , (B.7)

where |aI | + |bI | ≤ C‖r̂‖ρ0,2 ≤ C ′ε and |∂1aI (ζ, z)| + |∂1bI (ζ, z)| ≤ C‖r̂‖ρ0,3.
Suppose that |F(ζ, z)| = t and

t1/2‖r̂‖ρ0,3 < 1/C0 (B.8)

and C0 is sufficiently large. To show that St (z) is smooth, we need to verify that
dζ ′∗,ξn∗ (u2 + v2) �= 0 when u2 + v2 = t2. By (B.3)-(B.4) we know that

|ζ − z|/C ≤ |ξ∗| ≤ C|ζ − z| ≤ C ′t1/2.

By (B.3) and (B.8), we obtain |ζ − z|‖r̂‖ρ0,3 ≤ 1/C0 and

|∂1ũ| + |∂1ṽ| ≤ C(‖r̂‖ρ0,3|ζ − z|2 + ε|ζ − z|) ≤ C ′(C−1
0 + ε)|ξ∗|.

Assume that dζ ′∗,ξn∗ (u2 + v2) = 0. Then

(ξn∗ + ũ)(1+ ũξn∗ ) + vvξn∗ = 0, uũζ ′∗ + v(ζ ′∗ + ṽζ ′∗) = 0.

From the first identity we get |ξn∗ | ≤ C(|ũ| + |v|) ≤ C ′(|ζ ′∗|2 + |ξn∗ |2). Therefore,
for t < 1/C , |ξn∗ | ≤ C|ζ ′∗|2. Now, |v| ≥ |ζ ′∗|2 − Cε(|ζ ′∗|2 + |ξn∗ |2) ≥ 1

2 |ζ ′∗|2 and
|u| ≤ C|ζ ′∗|2. By Lemma 5.2, |∂1ξ∗ξ | ≤ C , and by (B.7) and (B.8),

|ṽζ ′∗ | ≤ |ζ ′∗|/2, |ζ ′∗ + ṽζ ′∗ | ≥ |ζ ′∗|/2,
|ζ ′∗|3/4 ≤ |v(ζ ′∗ + ṽζ ′∗)| = |uũζ ′∗ | ≤ C|ζ ′∗|2(ε + C−1

0 )|ζ ′∗|.



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 177

Hence ζ ′∗ = ξn∗ = 0, when C−1
0 , ε are sufficiently small. This shows that t = 0,

a contradiction. It is clear that for a fixed z, u2 + v2 is a function of class C3 in
(ζ ′, ξn). This shows that St (z) is smooth and of class C3.

For a fixed ζ ∈ Mρ , (ζ ′∗, ξn∗ ) still form a coordinate system of class C2 for M .
We have the same formulae (B.4)-(B.5), only to vary z ∈ Mρ0 ; see Remark 6.2.
Thus (B.6)-(B.7) are still valid, where ξ is fixed and z varies in Mρ0 . The same
argument shows that S′

t (ζ ) is smooth and of class C1.

Let us recall from Section 3

�+−
0,q = (rζ − rz) · dζ ∧ rz · dζ ∧ (∂ζ ∂ζ r)n−2−q ∧ (∂ zrz ∧ dζ )q

(rζ · (ζ − z))n−1−q(rz · (ζ − z))q+1 .

The following computation is essential in Folland-Stein [3]. See also Romero [17].

Lemma B.3. Let n ≥ 2 and 0 ≤ q ≤ n − 1. Let M satisfy (B.1) and r̂ ∈ C3. Let
F(ζ, z) be the Levi polynomial of r about z ∈ M . Let ϕ be a continuous tangential
(0, q)-form on M . Then

lim
t→0

∫
|F(ζ,z)|=t,ζ∈M

ϕ(ζ ) ∧ �+−
0,q (ζ, z) = (2π i)n

2
ϕ(z) mod ∂r(z), (B.9)

where the convergence is uniformly in z on each compact subset of M .

In the lemma, |F(z, ·)| = t} is oriented as the boundary of the domain |F(z, ·)| < t
in M on which dV = dξ1 ∧ dη1 ∧ · · · ∧ dηn−1 ∧ dξn is the volume-form.

Here is an outline. Following [3], we will use the Levi polynomial F(ζ, z) to
define new coordinates of M near z and compute each term in the kernel. On T 1,0z M
there are two quadratic forms h = ∑

1≤ j,k≤n rz j zk t
j tk , A = ∑

1≤ j,k≤n rz j zk t j tk .
We will express the kernel in h and A, with error terms. When we compute the
residue, the error terms can be removed via non-isotropic dilation. This gives us a
limit kernel (see (B.19) below) on a non-isotropic sphere. Roughly speaking, the
limit kernel is expressed in h and A, but not in A. For latter purpose we will use
−2i F(ζ, z), instead of its linear part−2irz · (ζ − z), as part of coordinates. Without
A, we remove A in the limit kernel by averaging. By a linear transformation, we
reduce h to the identity, and compute the residue.

CHANGE NOTATION. Let ζ ′∗ = ζ ′ − z′ and

ζ n∗ = −2i F(ζ, z) = −2irz · (ζ − z) − i
∑

1≤ j,k≤n
r̂z j zk (ζ

j − z j )(ζ k − zk). (B.10)

Then near z ∈ Mρ0 , ζ
′∗, ξn∗ form coordinates of Mρ0 . We will modify some earlier

computations where the approximate Heisenberg transformation is used.
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Applying the Taylor formula on convex domain Dρ0×R and then letting ζ, z ∈
Mρ0 , we obtain

r(ζ ) − r(z) = 2Re F(ζ, z) +
∑

1≤ j,k≤n
r
z j zk

(ζ j − z j )(ζ k − zk) + E(ζ, z),

E(ζ, z)=o(|(ζ ′ − z′, ξn − xn)|2), |∂1E(ζ, z)|≤C‖r̂‖ρ0,3|(ζ ′ − z′, ξn − xn)|2.
With z ∈ Mρ0 the equation r(ζ ) = 0 becomes

−ηn∗ +
∑

1≤ j,k≤n
r
z j zk

(ζ j − z j )(ζ k − zk) + E(ζ, z) = 0,

where ζn − zn , with ζ ′ − z′ = ζ∗, is a local solution to (B.10). Replace ζ − z by
the solution expressed in ζ∗. Solving for ηn∗ from the new equation shows that for
(ζ ′∗, ξn∗ ) ∈ πψz(Mρ0)

ηn∗ =
∑

1≤α,β<n

hαβζα∗ ζ∗
β + o(|ζ ′∗|2) + O(|ξn∗ ||ζ ′∗| + |ξn∗ |2). (B.11)

Write A(ζ ′∗,ξn∗ )=o(k) if t−k A(tζ ′∗,t2ξn∗ ) tends to zero uniformly for |ζ ′∗|+ |ξn∗ |< 1
and small |t |, where A is a function or differential form. Write A(ζ ′∗, ξn∗ ) = O(k)
if |t−k A(tζ ′∗, t2ξn∗ )| ≤ C . Thus ζ ′ − z′ = O(1), ζ n∗ = O(2), dξ ′∗ = O(1) and
dξn∗ = O(2). By (B.10)-(B.11), ζ n − zn = − rz′

rzn
· ζ ′∗ + O(2). The Levi matrix

(hαβ) at z is determined by∑
1≤ j,k≤n

r
z j zk

(ζ j − z j )(ζ k − zk) =
∑

1≤α,β<n

hαβζα∗ ζ∗
β + o(2). (B.12)

Explicitly, we have

hαβ = r
zαzβ

− rzαzn
r
zβ

rzn
− rzα

rzn
r
znzβ

+ rznzn
rzα

rzn

r
zβ

rzn
. (B.13)

We also have the holomorphic quadratic form∑
1≤ j,k≤n

rz j zk (ζ
j − z j )(ζ k − zk) =

∑
1≤α,β<n

Aαβζα∗ ζ
β∗ + o(2). (B.14)

Here Aαβ = Aβα . Set h = (hαβ) and A = (Aαβ). To simplify notation, we define

h(ζ ′∗, ζ ′∗) =
∑

1≤α,β<n

hαβζα∗ ζ∗
β
, A(ζ ′∗, ζ ′∗) =

∑
1≤α,β<n

Aαβζα∗ ζ
β∗ .

We can write

∂ζ∗h(ζ
′∗, ζ ′∗) = h(ζ ′∗, dζ ′∗), ∂ζ∗ A(ζ ′∗, ζ ′∗) = 2A(dζ ′∗, ζ ′∗).
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We will need to express the kernel in h = (hαβ) and A = (Aαβ), but not in (Aαβ).
This will play a crucial role, when we eliminate A later via averaging.

For the denominator of the kernel, using (B.10)-(B.11) we get

−2irz · (ζ − z) = ζ n∗ + i
∑

1≤ j,k≤n
rz j zk (ζ

j − z j )(ζ k − zk) (B.15)

= ξn∗ + i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(2).

Using rζ · (ζ − z) = rz · (ζ − z) + (rζ − rz) · (ζ − z), we get

− 2irζ · (ζ − z) = −2irz · (ζ − z) − 2i
∑

1≤ j,k≤n
rz j zk (ζ

j − z j )(ζ k − zk)

− 2i
∑

1≤ j,k≤n
r
z j zk

(ζ j − z j )(ζ k − zk) + o(2)

= −2irz · (ζ − z) − 2i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(2) (by (B.12), (B.14))

= ξn∗ − i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(2). (by (B.15))

We arrive at the basic relations

−2irζ · (ζ − z) = ξn∗ − i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(2), (B.16)

−2irz · (ζ − z) = ξn∗ + i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(2). (B.17)

We now computer the numerator of the kernel. Using the first-order expansion of
rζ about z, we get

(rζ −rz) · dζ =
∑

1≤ j,k≤n

{
rz j zk (ζ

k − zk) + r
z j zk

(ζ k − zk) + O(2)
}
dζ j

= ∂ζ

∑
1≤ j,k≤n

{
1

2
rz j zk (ζ

j − z j )(ζ k − zk) + r
z j zk

(ζ j − z j )(ζ k − zk)

}
+ o(2).

Note that for fixed z, ζ → ζ∗ is holomorphic. So we can switch the above ∂ζ to ∂ζ∗
and then restrict it to M , which gives us

(rζ − rz) · dζ = h(dζ ′∗, ζ ′∗) + A(dζ ′∗, ζ ′∗) + o(2). (B.18)

Recall that ζ n∗ = −2irz · (ζ − z) − i
∑
1≤ j,k≤n rz j zk (ζ j − z j )(ζ k − zk). Applying

∂ζ gives us

−2irz · dζ = ∂ζ

{
ζ n∗ + i

∑
1≤ j,k≤n

rz j zk (ζ
j − z j )(ζ k − zk)

}

= ∂ζ

{
ζ n∗ + i

∑
1≤α,β<n

Aαβζα∗ ζ
β∗ + o(2)

}
by (B.14)

= dζ n∗ + 2i A(dζ ′∗, ζ ′∗) + o(2).
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Recall that z is fixed. So on M we have

∂ζ ∂ζ r = ∂∂r(ζ ) = ∂∂

{ ∑
1≤ j,k≤n

r
z j zk

(ζ j − z j )(ζ k − zk) + o(2)

}

= ∂∂

{ ∑
1≤α,β<n

hαβζα∗ ζ∗
β

}
+ o(2) by (B.12)

= −h(dζ ′∗, dζ ′∗) + o(2).

On M , ∂rz j =∂Mrz j mod ∂r(z) and ∂rz j =∑n−1
β=1

(
rz j zβ − rzβ

rzn
rz j zn

)
dzβ mod ∂r(z).

Recall that ζ n − zn = −r−1
zn rz′ · ζ ′∗ + O(2). Thus dζ n = − rz′

rzn
· dζ ′∗ + O(2).

Therefore,

(∂rz) ∧ dζ =
∑

1≤α,β<n

(
rzαzβ − rzβ

rzn
rzαzn

)
dzβ ∧ dζα∗ + O(2)

−
∑

1≤α,β<n

(
rznzβ − rzβ

rzn
rznzn

)
dzβ ∧ rzα

rzn
dζα∗ mod ∂r(z).

Looking at (B.13), we see that

(∂rz)∧dζ = −h(dζ ′∗, dz′) + O(2) mod ∂r(z).

We apply the non-isotropy dilation Tt (ζ ′∗, ξn∗ ) = (tζ ′∗, t2ξn∗ ) and summarize the
above as

t−2T ∗
t {−2irζ · (ζ − z)} = ξn∗ − i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(t0),

t−2T ∗
t {−2irz · (ζ − z)} = ξn∗ + i(h(ζ ′∗, ζ ′∗) + A(ζ ′∗, ζ ′∗)) + o(t0),

t−2T ∗
t {(rζ − rz) · dζ } = h(dζ ′∗, ζ ′∗) + A(dζ ′∗, ζ ′∗) + o(t0),

t−2T ∗
t {−2irz · dζ } = dζ n∗ + 2i A(dζ ′∗, ζ ′∗) + o(t0),

t−2T ∗
t {∂ζ rζ ∧̇dζ } = −h(dζ ′∗, dζ ′∗) + o(t0),

t−1T ∗
t {∂ zrz∧̇dζ } = −h(dζ ′∗, dz′) + O(t) mod ∂r(z).

By (B.10) and (B.15), the subset of M defined by 2|F(ζ, z)| = t2 has the form

St (z) =
{
(ζ ′∗, ξn∗ ) : |ξn∗ + ih(ζ ′∗, ζ ′∗) + o(2)| = t2

}
.

Then we have a non-isotropic sphere

lim
t→0

T−1
t (St ) =

{
(ζ ′∗, ξn∗ ) : |ξn∗ + ih(ζ ′∗, ζ ′∗)| = 1

}
def== S.
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Set N∗(ζ ′∗, ξn∗ ) = ξn∗ +ih(ζ ′∗, ζ ′∗). As t tends to 0, tqT ∗
t �+−

(0,q) mod ∂r(z) converges

uniformly in a neighborhood of S to �̃. Here �̃ is

(h(dζ ′∗,ζ ′∗)+A(dζ ′∗,ζ ′∗))∧(dζ n∗ + 2i A(dζ ′∗,ζ ′∗))∧h(dζ ′∗, dζ ′∗)n−q−2∧h(dζ ′∗,dz′)q

−(2i)1−nNn−q−1
∗ Nq+1∗ (1− i N

−1
∗ ζ ′∗Aζ ′T∗ )

n−q−1
(1+ i N−1∗ ζ ′∗Aζ ′T∗ )

q+1 .

(B.19)
Here N∗ = N∗(ζ ′∗, ξn∗ ). Note that except at the origin, the above form is smooth in

the (ζ ′∗, ξn∗ )-space. Therefore, for ϕ(ζ ) = ∑
|I |=q ϕI (ζ )dζ ′ I

∫
2|F(ζ,z)|=t2

ϕ(ζ ) ∧ �+−
0,q (ζ, z) =

∫
(ζ ′∗,ξn∗ )∈St (z)

ϕ(ζ(ζ ′∗, ξn∗ )) ∧ �+−
0,q (ζ(ζ ′∗, ξn∗ ), z)

=
∫

(ζ ′∗,ξn∗ )∈T−1
t St (z)

T ∗
t

{
ϕ(ζ(ζ ′∗, ξn∗ )) ∧ �+−

0,q (ζ(ζ ′∗, ξn∗ ), z)
}

=
∑
|I |=q

ϕI (z)
∫

(ζ ′∗,ξn∗ )∈T−1
t St (z)

T ∗
t

{
dζ ′∗

I ∧�+−
0,q (ζ(ζ ′∗, ξn∗ ), z)

}
mod ∂r(z).

We obtain

lim
t→0

∫
2|F(ζ,z)|=t2

ϕ(ζ )∧�+−
0,q (ζ, z)=

∑
|I |=q

ϕI (z)
∫
S
dζ ′∗

I ∧�̃(ζ ′∗, ξn∗ , z) mod ∂r(z).

Return to �̃, defined by (B.19). We are ready to remove A via an averaging. By

(B.1), |A| is small. Express (1 − i N
−1
∗ ζ ′∗Aζ ′T∗ )−(n−q−1)(1 + i N−1∗ ζ ′∗Aζ ′T∗ )−(q+1)

as a convergent power series in N
−1
∗ ζ ′∗Aζ ′T∗ and N−1∗ ζ ′∗Aζ ′T∗ . Note that N∗(ξ∗) is

invariant under the rotation eθ : (ζ ′∗, ξn) → (eiθ ζ ′∗, ξn∗ ). Using |I | = q, we can
verify that∫

(ζ ′∗,ξn∗ )∈S
dζ ′∗

I ∧ �̃(ζ ′∗, ξn∗ , z) = 1

2π

∫ 2π

0
dθ

∫
(ζ ′∗,ξn∗ )∈eθ S

dζ ′∗
I ∧ �̃(ζ ′∗, ξn∗ , z)

= 1

2π

∫ 2π

0
dθ

∫
(ζ ′∗,ξn∗ )∈S

e∗θ {dζ ′∗
I ∧ �̃}

= 1

2π

∫
(ζ ′∗,ξn∗ )∈S

∫ 2π

θ=0
e∗θ {dζ ′∗

I ∧ �̃}dθ.

Therefore
∫
(ζ ′∗,ξn∗ )∈S dζ ′∗

I ∧ �̃(ζ ′∗, ξn∗ , z) = ∫
(ζ ′∗,ξn∗ )∈S dζ ′∗

I ∧ �′(ζ ′∗, ξn∗ , z), where

�′(ζ ′∗, ξn∗ , z) = dζ ′∗hζ ′∗
T ∧ dζ n∗ ∧ (dζ ′∗ ∧ hdζ ′∗

T
)n−q−2 ∧ (dζ ′∗ ∧ hdz′T )q

−(2i)1−nNn−q−1∗ (ξ∗)Nq+1∗ (ξ∗)
.
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In eliminating A, we have used the fact that there are no terms ζ∗
α
ζ∗

β
in (B.16)-

(B.17).
Take a linear transformation ζ̂ ′ = U(ζ ′∗), ξ̂n = ξn∗ such that

h(ζ ′∗, ζ∗) = |ζ̂ ′|2, ζ̂ n = ξ̂n + i |ζ̂ ′|2.
Let ẑ′ = U(z′). Under the new coordinates and on |ζ̂ n| = 1, �′(ζ ′∗, ξn∗ , z) becomes

�̂(ζ̂ ′, ξ̂n, ẑ′) = (ζ̂ ′ · d ζ̂ ′) ∧ d ζ̂ n ∧ (d ζ̂ ′∧̇d ζ̂ ′)n−q−2 ∧ (d ζ̂ ′∧̇dẑ′)q
−(2i)1−n(ζ̂ n)n−q−1(ζ̂ n)q+1

= (ζ̂ ′ · d ζ̂ ′) ∧ dμ(ζ̂ n) ∧ (d ζ̂ ′∧̇d ζ̂ ′)n−q−2 ∧ (d ζ̂ ′∧̇dẑ′)q .
Here

μ(ζ̂ n) =
{

−(2i)n−1(n − 2q − 1)−1(ζ̂ n)n−2q−1, n − 2q �= 1,
−(2i)n−1 log ζ̂ n, n − 2q = 1.

Note that Im ζ̂ n ≥ 0 and hence μ(ζ̂ n) is smooth and single-valued on |ζ̂ n| = 1. To
remove the differential on μ, we apply Stokes’ theorem and get

cqdẑ′
I def==

∫
|ζ̂ n |=1

d ζ̂ ′ I ∧ (ζ̂ ′ · d ζ̂ ′) ∧ dμ(ζ̂ n) ∧ (d ζ̂ ′∧̇d ζ̂ ′)n−q−2 ∧ (d ζ̂ ′∧̇dẑ′)q

= −
∫

|ζ̂ n |=1
μ(ζ̂ n)(d ζ̂ ′∧̇d ζ̂ ′)n−q−1 ∧ d ζ̂ ′ I ∧ (d ζ̂ ′∧̇dẑ′)q .

Now, the differential form is a multiple of the volume-form onCn−1 (the ζ̂ ′-space).
The projection from |ζ̂ n| = 1 to the ball |ζ̂ ′| ≤ 1 is two-to-one, branched over
|ζ̂ ′| = 1. Recall that dV (ζ ) = dξ1∧dη1∧· · ·∧dηn−1∧dξn defines the orientation
of M and (ζ ′, ξn) → (ζ ′∗, ξn∗ ) preserves the orientation. Since S : |ζ̂ n| = 1 is
obtained via the dilation of the boundary of |F(z, ·)| < t , S must be oriented as the
boundary of |ζ̂ n| < 1 on which dV (ζ̂ ) is the volume-form. After considering the
orientation, we conclude that

cqdẑ′
I =

∫
|ζ̂ ′|≤1

(μ(ζ̂ n−) − μ(ζ̂ n+))(d ζ̂ ′∧̇d ζ̂ ′)n−q−1 ∧ d ζ̂ ′ I ∧ (d ζ̂ ′∧̇dẑ′)q .

Here dV (ζ̂ ′) = d ξ̂1 ∧ dη̂1 ∧ · · · ∧ dη̂n−1 is the volume-form on the ζ̂ ′-space, and

ζ̂ n+ = (1− |ζ̂ ′|4)1/2 + i |ζ̂ ′|2, ζ̂ n− = −(1− |ζ̂ ′|4)1/2 + i |ζ̂ ′|2.
To rewrite the integrand, introduce variables ξ = (ξ1, · · · , ξq), η, x , y so that

d ζ̂ ′ I = dξ
I
, d ζ̂ ′∧̇d ζ̂ ′ = dξ ∧̇dξ + dη∧̇dη, d ζ̂ ′∧̇dẑ′ = dξ ∧̇dx + dη∧̇dy.
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Then (dξ ∧̇dξ + dη∧̇dη)n−q−1 ∧ dξ
I ∧ (dξ ∧̇dx + dη∧̇dy)q equals

(dη∧̇dη)n−q−1 ∧ dξ
I ∧ (dξ ∧̇dx + dη∧̇dy)q

= (dη∧̇dη)n−q−1 ∧ dξ
I ∧ (dξ ∧̇dx)q

= (−1)q(dη∧̇dη)n−q−1 ∧ (dξ ∧̇dξ)q ∧ dx I .

The last term equals (−1)q(n−1q )−1
(dξ ∧̇dξ + dη∧̇dη)n−1 ∧ dx I . Therefore

cqdẑ′
I = (−1)q

(
n − 1

q

)−1 ∫
|ζ̂ ′|<1

(μ(ζ̂ n−) − μ(ζ̂ n+))(d ζ̂ ′∧̇d ζ̂ ′)n−1 ∧ dẑ′ I .

We now compute cq . Using the polar coordinates, we get

cq = (−1)q
(
n − 1

q

)−1
(n − 1)!(−2i)n−1

∫
|ζ̂ ′|<1

(μ(ζ̂ n−) − μ(ζ̂ n+))dV (ξ̂ ′)

= c̃q

∫ 1

0
(μ((1− r4)1/2 + ir2) − μ(−(1− r4)1/2 + ir2))r2n−3 dr

= c̃q
2(n − 1)

∫ 1

r=0
r2n−2d

{
μ((1− r4)1/2 + ir2) − μ(−(1− r4)1/2 + ir2)

}
.

Note that the last identity is obtained by integration by parts. Here

c̃q = (−1)q+1
(
n − 1

q

)−1
(n − 1)!(−2i)n−1σn−1, σn−1 = 2πn−1

(n − 2)! .

Letting r2 = s and z = (1− s2)1/2 + is, we get

cq = c̃q
2(n − 1)

∫ 1

s=−1
sn−1d

{
μ((1− s2)1/2 + is)

}
= c̃q
4(n − 1)

∫
|z|=1

(Im z)n−1dμ(z) = −(2i)n−1c̃q
4(n − 1)

∫
|z|=1

(Im z)n−1zn−2q−2dz.

A simple residue computation yields cq = 1
2 (2π i)

n for 0 ≤ q ≤ n − 1. The proof
of Lemma B.3 is complete.

We need the following lemma from [7], where |F(ζ, z)| = t is replaced by
|ζ − z| = t and only r ∈ C2 is needed.
Lemma B.4. Let 1 ≤ q ≤ n − 1. Let M, ρ0 be as in Lemma B.3. Assume that r is
of class C3. Let ϕ be a continuous (0, q)-form on Mρ0 . If 0 < ρ < ρ0 and t > 0 is
sufficiently small, then on Mρ , in the sense of currents and modulo ∂r(z),∫
F(ζ,z)>t

ϕ(ζ ) ∧ ∂ z�
+−
(0,q−1)(ζ, z) = (−1)q−1∂b

∫
F(ζ,z)>t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z).
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Proof. For the convenience of the reader, we reproduce the proof in [7]. Since
r ∈ C3, for t sufficiently small, both integrals are continuous on Mρ . To verify the
identity in the sense of currents, letψ be a smooth (n, n−1−q)-form with compact
support in Mρ . Interchanging the order of integration, we have

I(z) =
∫
z∈M

∫
F(ζ,z)>t

ϕ(ζ ) ∧ ∂ z�
+−
(0,q−1)(ζ, z) ∧ ψ(z)

= −
∫

ζ∈M

∫
F(ζ,z)>t

ϕ(ζ ) ∧ ∂ z�
+−
(0,q−1)(ζ, z) ∧ ψ(z) (by Fubini)

=
∫

ζ∈M

∫
F(ζ,z)>t

ψ(z) ∧ ∂ z�
+−
(0,q−1)(ζ, z) ∧ ϕ(ζ ).

Applying Stokes’ theorem yields

I(z) = (−1)q
∫

ζ∈M

∫
F(ζ,z)>t

∂ zψ(z) ∧ �+−
(0,q−1)(ζ, z) ∧ ϕ(ζ )

+ (−1)q+1
∫

ζ∈M

∫
F(ζ,z)=t

ψ(z) ∧ �+−
(0,q−1)(ζ, z) ∧ ϕ(ζ )

=
∫

ζ∈M

∫
F(ζ,z)>t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) ∧ ∂ zψ(z)

+ (−1)q+1
∫

ζ∈M

∫
F(ζ,z)=t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) ∧ ψ(z).

Interchanging the order of integration in both terms yields

I(z) = −
∫
z∈M

∫
F(ζ,z)>t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) ∧ ∂ zψ(z)

+ (−1)q+1
∫
z∈M

∫
F(ζ,z)=t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) ∧ ψ(z)

= −
∫
z∈M

∫
F(ζ,z)>t

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) ∧ ∂ zψ(z).

Here the second last term vanishes by counting total degree in ζ , which equals
q + 2n − q − 1 > 2n − 2.

As in [21], the above two lemmas can be used to derive the Henkin homotopy
formula for (0, q)-forms on Mρ via Stokes’ theorem, when r ∈ C3 satisfies (B.1)
and ϕ ∈ C1(Mρ0). Here are the details. Let M

t (z) = Mρ0 ∩ {ζ : |F(ζ, z)| > t}.
We will use ∂ζ�

+−
(0,q) + ∂ z�

+−
(0,q) = 0 for ζ �= z and 1 ≤ q ≤ n − 2; see [21]. For
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z ∈ Mρ and t sufficiently small,∫
∂Mt (z)

ϕ(ζ ) ∧ �+−
(0,q)(ζ, z)

=
∫
Mt (z)

∂ζ ϕ ∧ �+−
(0,q) + (−1)q

∫
Mt (z)

ϕ(ζ ) ∧ ∂ζ�
+−
(0,q)

=
∫
Mt (z)

∂ζ ϕ ∧ �+−
(0,q)(ζ, z) + (−1)q−1

∫
Mt (z)

ϕ(ζ ) ∧ ∂ z�
+−
(0,q−1)(ζ, z).

Using Lemmas B.3-B.4 and letting t → 0, we obtain, modulo ∂r(z),∫
∂Mρ0

ϕ(ζ )∧�+−
(0,q)(ζ, z) = c0ϕ(z)+

∫
Mρ0

∂ζ ϕ∧�+−
(0,q)+∂b

∫
Mρ0

ϕ(ζ )∧�+−
(0,q−1).

Now assume that 0 < q < n−2. Then−�+−
(0,q) = ∂ζ�

0+−
(0,q) +∂ z�

0+−
(0,q−1); see [21].

We get that modulo ∂r(z)∫
∂Mρ0

ϕ(ζ ) ∧ �+−
(0,q)(ζ, z)

= −
∫

∂Mρ0

ϕ(ζ ) ∧ ∂ζ�
0+−
(0,q) −

∫
∂Mρ0

ϕ(ζ ) ∧ ∂ z�
0+−
(0,q−1)

= (−1)q
∫

∂Mρ0

∂bϕ(ζ ) ∧ �0+−
(0,q) − (−1)q∂b

∫
∂Mρ0

ϕ(ζ ) ∧ �0+−
(0,q−1).

Therefore, modulo ∂r(z) and as currents,

c0ϕ(z) = ∂b

{
−

∫
Mρ0

ϕ(ζ ) ∧ �+−
(0,q−1)(ζ, z) − (−1)q

∫
∂Mρ0

ϕ(ζ ) ∧ �0+−
(0,q−1)(ζ, z)

}

+
{
−

∫
Mρ0

∂bϕ(ζ ) ∧ �+−
(0,q)(ζ, z) + (−1)q

∫
∂Mρ0

∂bϕ(ζ ) ∧ �0+−
(0,q)(ζ, z)

}

= −∂b

{∫
Mρ0

�+−
(0,q−1)(ζ, z) ∧ ϕ(ζ ) +

∫
∂Mρ0

�0+−
(0,q−1)(ζ, z) ∧ ϕ(ζ )

}

−
{∫

Mρ0

�+−
(0,q)(ζ, z) ∧ ∂bϕ(ζ ) +

∫
∂Mρ0

�0+−
(0,q)(ζ, z) ∧ ∂bϕ(ζ )

}
.
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We now derive the homotopy formula by reducing the regularity condition.
Notice that when M is C2 and strictly convex it is proved by Henkin [21].

Fix a tangential (0, q)-form ϕ on Mρ0 . Let 0 < q < n − 2.

Case a) r ∈ C2 and ϕ ∈ C1(Mρ0). Write x = (Re z, Im z′) and ξ = (Re ζ, Im ζ ′)
with ζ, z ∈ Mρ0 . We first consider the case when ϕ has compact support, say in
Mρ1 with ρ1 < ρ0. Then P ′

Mρ0
ϕ has no boundary term. Recall that �(ξ, x) =

(ψ̃x (ξ), x) = (ξ∗, x) is defined by relations ζ ′∗ = ζ ′ − z′, ζ n∗ = −2irz(ζ − z) and
ζ, z ∈ Mρ0 . By (8.2)-(8.3) and (8.6), on Dρ0

P ′
0,Mρ0

ϕ(x) =
∑

|I |=q−1
II (x) dz′

I
,

II (x) =
∑

|K |=1

∑
|J |=q

∫
B9ρ0

(
(ϕJ Ã

J
I K

) ◦ �−1 · T̂−a
1 · T̂−b

2

)
(ξ∗, x) · k̂Kab(ξ∗) dV (ξ∗),

ϕJ (ξ, x) = ϕJ (ξ), T̂1(ξ∗, x) = 1+
∑

|L|=2
CL ◦ �−1(ξ∗, x)ξ L∗ N−1∗ (ξ∗).

Here ÃJ
I K

,CL are functions of the form ∂2∗r , ∂2∗ r̂ , respectively, defined in Section 8.
An analogous formula holds for T̂2. These functions depend only on derivatives of
r̂ of order at most two. We take a sequence of C∞ functions r̂m converging to r̂
in C2-norm on Dρ0 . Subtracting r̂

m by its Taylor polynomial of order 1 about the
origin, we may assume that r̂m(0) = 0 and ∂r̂m(0) = 0. In what follows we use the
letter m to indicate dependence on r̂m . Let Mm be the graph yn = |z′|2 + r̂m(x)
over Dρ0 . Let ρ ∈ (ρ1, ρ0). There exists m∗ such that for m > m∗

Dρ1 ⊂ D
m
ρ ⊂ Dρ0, Dm

ρ
def== {x ∈ Dρ0 : |x |2 + r̂m(x) < ρ2}.

Assume that m > m∗. Then by ‖r̂m‖Dρ0 ,2
< 1/C0, Dm

ρ is strictly convex. Note
that ϕ is still a tangential (0, q)-form of Mm on Dρ0 . By the homotopy formula for
the smooth Mm ,

ϕ = ∂Mm P ′
Mm

ρ
ϕ + Q′

Mm
ρ
∂Mmϕ. (B.20)

By the formula of T̂ j , it is clear that |T̂ j,m | ≥ 1/2 for m sufficiently large and
0 �= ξ∗ ∈ B9ρ ∩ ψ̃m

x (Dρ). Since ϕJ has compact support, we have

|{(ϕJ ÃJmI K ) ◦ �−1
m · T̂−a

1,m · T̂−b
2,m}(ξ∗, x)| ≤ C, ξ∗ �= 0.

Since k̂ Iab ∈ L1loc, by the dominated convergence theorem, ImI converges to II
pointwise on Dρ1 as m → ∞. Thus, P ′

Mm
ρ
ϕ converges to P ′

Mρ
ϕ pointwise on Dρ1 .
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By the C0-estimate on P ′
0 (see (9.3)), we know that |P ′

Mm
ρ
ϕ| < C on Dρ1 ⊂ ∩mDm

ρ .

Since ϕ is of class C1, ∂Mmϕ converges to ∂Mϕ uniformly on Dρ0 . Next, we fix

an (n, n − q − 1)-form ψ = ∑
|J |=n−q−1 ψJ dz

1 ∧ · · · ∧ dzn−1 ∧ ∂r(z) ∧ dz′ J

of class C1 and of compact support in Dρ1 . Then ψm = ∑
|J |=n−q−1 ψJ dz

1 ∧
· · · ∧ dzn−1 ∧ ∂rm(z) ∧ dz′ J is an (n, n − 1 − q)-form of Mm on Dm

ρ . Obvi-
ously, ψm converges to ψ in C1-norm uniformly on R2n−1. Now one can see that∫
Dρ1

P ′
0,Mm

ρ
ϕ ∧ ∂Mmψm converges to

∫
Dρ1

P ′
0,Mρ

ϕ ∧ ∂Mψ . A similar argument

shows that Q′
0,Mm

ρ
∂Mmϕ are uniformly bounded and converge to Q′

0,Mρ
∂Mϕ point-

wise on Dρ1 . Thus
∫
Dρ1

(Q′
0,Mm

ρ
∂Mmϕ) ∧ ψm converges to

∫
Dρ1

(Q′
0,Mρ

∂Mϕ) ∧ ψ .

By the homotopy formula (B.20),∫
Dρ1

ϕ ∧ ψm = (−1)q
∫
Dρ1

(P ′
0,Mm

ρ
ϕ) ∧ ∂Mmψm

+
∫
Dρ1

(Q′
0,Mm

ρ
∂Mmϕ) ∧ ψm .

(B.21)

Taking limits, we see that as currents, ϕ = ∂M P ′
0,Mρ

ϕ + Q′
0,Mρ

∂Mϕ holds on Dρ1 .

Since ϕ has compact support in Dρ1 ⊂ Dρ , we replace the domain of integration
Mρ by Mρ0 and add boundary integrals. We get ϕ = ∂M P ′

Mρ0
ϕ + Q′

Mρ0
∂Mϕ on

Dρ1 as currents, and hence on Dρ0 whenever ϕ has compact support in Dρ0 .
Return to the general case. Let Mm be as before. Take any ρ1, ρ2, ρ such

that 0 < ρ1 < ρ2 < ρ < ρ0. Take a C∞ function χ which is 1 on Dρ2 and has
compact support in Dρ0 . Let ϕ0 = χϕ and ϕ1 = (1 − χ)ϕ. We have proved that
ϕ0 = ∂M P ′

Mρ0
ϕ0 + Q′

Mρ0
∂Mϕ0 as currents on Dρ0 . Let ψ,ψm be as before, which

are supported in Dρ1 . By an analogy of (B.21), for m > m∗ we have∫
Dρ1

ϕ1 ∧ ψm = (−1)q
∫
Dρ1

(P ′
Mm

ρ
ϕ1) ∧ ∂Mmψm +

∫
Dρ1

(Q′
Mm

ρ
∂Mmϕ1) ∧ ψm .

Since suppψm ⊂ Dρ1 and suppϕ1 ⊂ Dρ0 \ Dρ2 , the dominated convergence theo-
rem implies the convergence of

∫
Dρ1

(P ′
0,Mm

ρ
ϕ1)∧∂Mmψm to

∫
Dρ1

(P ′
0,Mρ

ϕ1)∧∂Mψ.

The integrands for the boundary integrals (P ′
1,Mm

ρ
ϕ1)(x) are of class C1 in a neigh-

borhood of ∂Dρ , when x ∈ Dρ2 . Note that the map dρ sending x ∈ ∂Dρ to
rρ(x)x ∈ ∂Dm

ρ with rρ > 0 converges to the identity map in the C2 norm as
m → ∞. Thus we can verify that P ′

1,Mm
ρ
ϕ1 converges uniformly to P ′

1,Mρ
ϕ1 on Dρ1 .

Combining with suppψm ⊂ Dρ1 , we obtain the convergence of
∫
Dρ1

(P ′
1,Mm

ρ
ϕ1) ∧

∂Mmψm to
∫
Dρ1

(P ′
1,Mρ

ϕ1) ∧ ∂Mψ. One can verify that
∫
Dρ1

(Q′
1,Mm

ρ
∂Mmϕ1) ∧ ψm

converges to
∫
Dρ1

(Q′
1,Mρ

∂Mϕ1) ∧ ψ. Hence ϕ1 = ∂M PMρϕ1 + QMρ ∂Mϕ1 holds



188 XIANGHONG GONG AND SIDNEY M. WEBSTER

as currents on Dρ1 . The definition of ϕ1 is independent of ρ > ρ2. Letting
ρ → ρ0, we get ϕ1 = ∂M PMρ0

ϕ1 + QMρ0
∂Mϕ1 on Dρ1 . Add to ϕ0. We get

ϕ = ∂M PMρ0
ϕ + QMρ0

∂Mϕ as currents on Dρ1 , and hence on Dρ0 .

Case b) r ∈ C2(D) and ϕ, ∂Mϕ ∈ C0(Mρ0). We verify the homotopy formula
by the Friedrichs approximation theorem, for which we need the commutator of a
smoothing operator St and ∂M , applied to tangential (0, q)-forms.

Recall that on M

θ(ξ) = −2i∂r(ζ ) = a dξn mod (dζα, dζ
β
), a = 1+ r̂2ξn . (B.22)

Let ϕ = ∑
|I |=q ϕI (x)dz

′ I be a continuous tangential (0, q) form on M . Let χ be

a smooth function of compact support in R2n−1 such that
∫

χdV = 1. Let χt (x) =
t1−2nχ(t−1x) and define Stϕ = ∑

|I |=q ϕI ∗χt dz′
I
. Recall that Xα = ∂zα + bα∂xn

with bα = −rzα/(2rzn ).

Lemma B.5. Let 0 ≤ q < n − 1. Let M ⊂ Cn be a graph of class C2 over
D ⊂ Cn−1 × R. Assume that ϕ is a continuous tangential (0, q)-form on Mρ such
that ∂Mϕ is continuous on Mρ . Let 0 < ρ′ < ρ. Then for t sufficiently small and
on Mρ′ ,

[∂M ,St ]ϕ(x) =
∑

|I |=q,1≤α<n

∫ {
ϕI (x − tξ)t−1(bα(x) − bα(x − tξ))(∂ξnχ)(ξ)

− (ϕI a
−1Xαa)(x − tξ)χ(ξ)

}
dV (ξ) ∧ dzα ∧ dz′ I.

Proof. We follow a computation in [4]; see also [10, page 121]. Let ϕ= ∑
|I |=q

ϕI dz
′ I.

By the assumption, we have ∂Mϕ = ∑
|J |=q+1 ψJ dz

′ J with ψJ ∈ C0. Now

∂MStϕ(x) =
∑
|I |=q

∑
1≤α<n

∫
ϕI (ξ)X

(x)
α χt (x − ξ) dV (ξ) ∧ dzα ∧ dz′ I ,

St∂Mϕ(x) =
∑

|J |=q+1

∫
ψJ (ξ)χt (x − ξ) dV (ξ) ∧ dz′ J .

Set ν = dζ 1∧· · ·∧dζ n−1∧dξn . We may assume that dV = dζ 1∧· · ·∧dζ n−1∧ν.
For each J = ( j1, . . . , jq+1), there exist increasing indices J∗ = ( j∗1 , . . . , j∗n−2−q)

and ε J = ±1 such that dζ 1 ∧ · · · ∧ dζ n−1 = ε J dζ ′ J ∧ dζ ′ J∗
. Assume that ψJ are
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skew-symmetric. Thus

St∂Mϕ(x) =
∑

|J |=q+1
ε J

∫
ψJ (ξ)χt (x − ξ) dζ ′ J ∧ dζ ′ J∗ ∧ ν ∧ dz′ J

=
∑

|J |=q+1

ε J

(q + 1)!
∫

∂
(ξ)

M ϕ ∧ χt (x − ξ) dζ ′ J∗ ∧ ν ∧ dz′ J .

By Stokes’ formula, (3.1) and (B.22), St∂Mϕ(x) equals∑
|J |=q+1

(−1)q+1ε J

(q + 1)!
∫

ϕ(ξ) ∧ a(ξ)∂
(ξ)

M (a−1(ξ)χt (x − ξ)) ∧ dζ ′ J∗ ∧ ν ∧ dz′ J

=
∑
|I |=q

∑
1≤α<n

∑
|J |=q+1

−ε J

(q+1)!
∫

ϕI (ξ)a(ξ)X
(ξ)

α

χt (x−ξ)

a(ξ)
dζ

α∧ dζ ′ I∧ dζ ′ J∗∧ν∧ dz′ J

= −
∑
|I |=q

∑
1≤α<n

∫
ϕI (ξ)a(ξ)X

(ξ)

α (a−1(ξ)χt (x − ξ)) dV (ξ) ∧ dzα ∧ dz′ I .

Here the last identity is seen as follows. Set dzα ∧ dz′I = ε Jα I dz
′J , if the identity

can hold; otherwise, set ε Jα I = 0. In the above summation
∑

|I |=q
∑

|J |=q+1, we
may restrict to terms with εα I

J �= 0. For ε Jα I �= 0, we have

ε J dζ
α ∧ dζ

′I ∧ dζ ′ J∗∧ dz′J = ε J εα I
J dζ ′ J ∧ dζ ′ J∗∧ dz′J

= ε J dζ ′ J ∧ dζ ′ J∗∧ dzα ∧ dz′I .

Note that the last term is independent of J . We have (q + 1)! such terms for a fixed
(α I ). Set Eα(ξ, x) = a(ξ)X

(ξ)

α (a−1(ξ)χt (x − ξ)) + X
(x)
α (χt (x − ξ)).We get

[∂M , St ]ϕ(x) =
∑
|I |=q

∑
1≤α<n

∫
ϕI (ξ)Eα(ξ, x) dV (ξ) ∧ dzα ∧ dz′ I ,

which can be put into the form in the lemma.

We now derive the homotopy formula for the case b) via smoothing. We have

∂MStϕ − ∂Mϕ = St∂Mϕ − ∂Mϕ + [∂M , St ](ϕ − St ′ϕ) + [∂M , St ]St ′ϕ.

Fix ρ < ρ1 < ρ0 and ε > 0. Fix t ′ > 0 sufficiently small such that |St ′ϕ − ϕ| < ε

on Mρ1 . By Lemma B.5, for all small t

sup
Mρ

∣∣[∂M , St ](ϕ − St ′ϕ)
∣∣ ≤ C sup

Mρ1

|ϕ − St ′ϕ| ≤ Cε. (B.23)
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Let St ′ϕ = ∑
|I |=q ψI dz

′ I . Then [∂M , St ] = ∑[bα∂xn , St ] and

([∂M ,St ]ψ)(x)=
∑
1≤α<n

∑
|I |=q

∫
χt (y)(bα(x)−bα(x−y))∂xnψI (x−y) dV (y)∧dz′ I.

This shows that limt→0[∂M , St ]St ′ϕ = 0 on Mρ . We also have limt→0 St∂Mϕ =
∂Mϕ on Mρ . Therefore, (B.23) implies that limt→0 ∂MStϕ = ∂Mϕ on Mρ . Now by
case a), ϕt = ∂M P ′

Mρ
ϕt + Q′

Mρ
∂Mϕt holds on Mρ as currents. Letting t → 0 and

then ρ → ρ0, we obtain ϕ = ∂M P ′
M0

ϕ +Q′
M0

∂Mϕ on Mρ0 in the sense of currents.
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