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Regularity for the CR vector bundle problem IT

XIANGHONG GONG AND SIDNEY M. WEBSTER

Abstract. We derive a Ck+% Holder estimate for Pg, where P is either of the
two solution operators in Henkin’s local homotopy formula for d; on a strongly
pseudoconvex real hypersurface M in C", ¢ is a (0, g)-form of class Ck on M s
and k > 0 is an integer. We also derive a C¢ estimate for Pg, when ¢ is of class
C% and a > 0 is a real number. These estimates require that M be of class Ck"'% s
or Ca12, respectively. The explicit bounds for the constants occurring in these
estimates also considerably improve previously known such results.

These estimates are then applied to the integrability problem for CR vector
bundles to gain improved regularity. They also constitute a major ingredient in a
forthcoming work of the authors on the local CR embedding problem.

Mathematics Subject Classification (2010): 32V05 (primary); 32A26, 32T15
(secondary).

1. Introduction

In this paper we will prove the following.

Theorem 1.1. Let n > 4. Let M be a strongly pseudoconvex real hypersurface in
C" of class C*. Let w be anr x r matrix of continuous (0, 1)-forms on M. Assume
that 3w = w A w. Near each point of M, there exists a non-singular matrix A of
Holder class C'/? satisfying 9y A = — Aw and

a) AeClM), ifweC M), M ecC*?anda > 0 is a real number;
b) Ac Ck+%(M), ifweCk(M), M e C+3 and k > 0 is an integer.

If  and A are of class C°, the identities 9y = @ A w and Iy A = —Aw are in
the sense of currents; see Section 3. This work is a continuation of [5]. For earlier
results see [23] and Ma-Michel [15].

We now describe the above result in terms of an integrability problem for CR
vector bundles ([23]). Let E be a complex vector bundle of rank r over M with
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a connection D. For a local frame e = (ey,...,er), De; = a)ijej, where w =
(a)ij ) are connection 1-forms on M; by a frame change ¢ = Ae, De = we with
® = (dA+ Aw)A~". The integrability problem is to find an A such that the new

connection forms @ = (cT)I.J ) belong to the ideal J (M) generated by (1, 0)-forms
on M. The integrability condition is that the curvature 2-forms dw — @ A  belong
to J(M).

We want to mention a few ingredients in the proof. The integrability problem
is local. Asin [5,20], we will use the Henkin local homotopy formula. Let M C
C" be a graph over a domain D C R?"~!, given by y" = |7/|> + 7(z/, x") with
7(0) = 97(0) = 0, where z = (z/, z") are standard coordinates. Set M, = M N
{(x™)? 4+ y"* < p?} and D, = n(M,). Suppose that 5,)0 C D and the C?-norm
71l y,2 of 7 on D, is sufficiently small. For 0 < p < pp and n > 4, we have the
Henkin homotopy formula

¢ =0uPp+ Qdug (L.1)

for (0, g)-forms ¢ on E with 0 < ¢ < n — 2. We will prove the following
estimates.

(i) Let a > 0 be a real number. Then

1Pell-0)p.a < Cap™ 0 (llgllp.a + I71lp,.a+21915,0)-

(i1) Let k > O be an integer. Then

1POl gyppry < Cep™ 0™ (L4 171, DI@lpk + 171, 3 101.0);

Lol =" ollp0, k=0, g=1.

IPell(1—0)p,1/2 < Cp~
(See (10.16) for s, s..) We emphasize that the estimates hold forall0 < p < pg <3
and 0 < o < 1. Under the coordinates (z/, x™) of M, || - || p.a denotes the standard
C“-norm on the domain D, C R27=1. The same estimates hold for Q; however,
the second estimate in (ii), based on a special property of the kernels for (0, 1)
forms, is not applicable to Q when it operates on (0, g 4 1) form with g > 0. See
Romero [17] for estimates in Holder norms for the Heisenberg group case and an
example showing necessity of blow-up constants.

The estimate (i) is proved in Proposition 10.1 and (ii) is in Proposition 11.1.
The above theorem and two estimates are our main results. With the estimates, we
will prove Theorem 1.1 by using a KAM rapid iteration argument as in [5], which
avoids the Nash-Moser smoothing techniques.

We now describe some ideas to derive the estimates. The integral operators
P, Q are estimated in the same way. Let us focus on P = Py + P;, where P
is an integral operator over dM, and Py is over M,. Since we need estimates
only on shrinking domains, the boundary integral P; can be treated easily. For the
interior integral Py, via cutoff, the difficulties lie in the case where the (0, g)-form
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p=> gajdz_J has compact support. We will see that coefficients of (0, g —1)-form
Pog are sums of K.f (2) = [y, f(§)k(¢,2)dV(£), where f(¢) = ¢7(5)U5(¢) and
U5 depend on derivatives of |¢’ |2+ 7(¢’, €") of order at most two, and

Vej —Fr,j
k(¢,z) = v 5, a=n—q,b=gq
(re - (& —2)%rz- (€ —2)
for r(z) = —y" + |Z/|* + 7 (z/, x™); see Section 3 for details.

To deal with the singularity of the kernel along { = z, we fix z € M and apply
the approximate Heisenberg transformation { — ¢, defined by

Vil =0 =2, ¢l ==2ir,- (¢ —2).

We will show that ¢/, €' = 2Im(r; - (¢ —z)) form coordinates of ¥, (M), and under
this coordinate system the integral becomes

K@) = f FOT @k (CL £ 2 X" dV (2L ).
ﬂ(‘pz(Mp))

Here

kGl &0, 2 X" = D Er(eL £ 2 xMkL, (el 8D,
1=1
@l el 80"
(P +iEmadley? —igmb’
where I = (i, ..., i2,—1) and we use standard multi-index notation. The coeffi-
cients E;(¢L, £, -) are of class C? if (¢., E")(# 0) is fixed and 7 € C**2. Since
f has compact support, one can take derivatives of /C f directly onto f and onto
E; without disturbing the kernels kéb. The transformation i, has been used by
other people. See Bruna-Burgués [1] and Ma-Michel [13]. To obtain estimate

(i1), we need to return to the original coordinates after differentiation. This will
give us another formula for the derivatives of C f, which allows us to reduce the

kLo(cl,em = a+b=n,

1 . . .
C**2-estimates to the Holder %-estlmate for new kernels of the same type.
‘We would like to mention some methods to derive the fundamental %—estimate.

Kerzman [11] obtained Holder a-estimates for all o < % for 3-solutions, by esti-
mating a Cauchy-Fantappi¢ form. Folland-Stein [3] used non-isotropic balls and
piecewise smooth curves in complex tangential directions to obtain estimates in
their spaces on the real hyperquadric. Henkin-Romanov [8] obtained the %—estimate

for 3-equations on strongly pseudoconvex domains via a type of Hardy-Littlewood
lemma (see also Henkin [7] for 9, on strictly convex boundaries). Our estimate,
like the classical Holder estimate for the Newtonian potential, is still based on a
decomposition of domain. However, we delete a cylinder about the pole, instead of
a (non-isotropic) ball. The radius of the cylinder is optimized for the %—exponent
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and is yet so large that, when estimating the Holder 2—ratio at two points, we can
ignore their non-isotropic distance and connect them with a line segment.

In the 5 dimensional case there is an extra term added to the right-hand side of
(1.1). As of this writing, it remains unclear whether such a more general homotopy
formula can be used. See [21] and Nagel-Rosay [16].

The E-eSUmate for a solution to d-equations for (0, 1)-forms on strictly pseu-
doconvex domains with C? boundary is obtained by Henkin-Romanov [8]. For

Ck+% -estimates for solutions of 3-equations of degree (0, 1) on strictly pseudocon-
vex domains with C" boundary (m > k+4), see Siu [19]; for - )-equations in higher
degree, see Lieb-Range [12]. The Co-estlmate for a solution to d,- -equations on M,,,
without shrinking M,, is given by Henkin [7]. For C¥-estimates for the homotopy
formula for 9, operator on shrinking domains, see [21]. Michel-Ma [13] also ob-
tain CX-estimates for a modified homotopy formula without shrinking domains, by
introducing an extra derivative via .

We want to mention that in estimating (i) and (if) we need some Holder in-
equalities. For the convenience of the reader, we present these inequalities in Ap-
pendix A, following the formulation and proofs of Hérmander [9].

The estimates (i) and (i) will be used to improve regularity in the local CR
embedding problem in [6]. To limit the scope of this paper, we leave the estimates
in Folland-Stein spaces for future work.

2. Notation and counting derivatives
To simplify notation, set 7’ = (z', ..., 2" 1),z = (¢, 2"), and
x = Rez,Im7) = n(2).

Analogously, & = (Re ¢, Im ¢’). Denote by |-| the Euclidean norms on C*~!, C"*~! x
R =R?*~! and C". Our real hypersurface M C C”" is always a graph over a domain
in C"! x R. Let M,=MnN {(x™)? + y" < p?} and D, = w(M,). For the real
hyperquadric M: y" = |Z|?, m(M)) is exactly the ball B, = {x € R =1 x| <
p}. On R~ we will use the volume-form dV = d&é' Adn' A+ Adn"~ ! AdE™.
On 3D, we will need (2n — 2)-forms dV* = d&' A--- ANdES A - A dEP),

Let k > 0 be an integer. Denote by 3’ u a derivative of u of order ||, where I
is a standard multi-index. Let 8%u denote the set of the k-th order derivatives of u.
For a function # on D c R?"~!, define

k I j
[8%ullpo=sup [8"u(x)|, |ullpx = max [[8ullp,o,
xeD,|I|=k 0<j=<k
lu(x) —u(y)|
lu|py = sup ——, O<a <],

x,yeD |x — y|*

lullp kte = max{llullp . 18" ulpo: 11| =k}, O0<a<l
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IfA= (ai]) is a matrix of C¥ functions on D, we define || Allpk = max,-’j{||al.] Dk}
Define || A|| p k+o analogously.

To avoid confusion and in the essence of estimates (i)-(ii) in the introduction,
the C%-norm of a function on M, is its C°-norm on D, C R?*~!, defined above.

The C*(M,) norm of a (0, ¢)-form ¢ = ) (pfdgl is the maximum of C%-norms of
¢7. The C*-norm on M,, will be denoted by || - llcam,) = |l - Ip,.as OF simply by
|l - Il p,« when there is no confusion about M.

Throughout the paper, C; denotes a constant dependent of k and this depen-
dence will not be expressed sometimes. Constants, such as C, C, Cy, might have
different values when they reoccur. All constants are independent of M, 7, p, po.

Let M be defined by

r@) &y 4P +7(x) =0, xeD, @.1)
where 7 € C?(D). Throughout the paper, we make the basic assumption
Dpy CD, F(0)=7(0)=0, €=][Flp2<Cy" (2.2)

We emphasize that Cy is a large constant to be adjusted several times. However, it
will not depend on any quantity other than .

Counting derivatives. We need to count derivatives efficiently and use the count
to estimate norms. Such a counting scheme is essentially in [9] and we specialize
it for two reasons. First, the homotopy formula involves two extra derivatives of the
defining function r of M; second, for each consecutive x-derivative on ¢7 o ¥ 1
the x-derivative which falls on ¢7 yields an extra factor 8%r(z) via the chain rule
and ¥, (¢) = (¢’ — 7/, —i2r; - (£ — z)). We illustrate below how to use the scheme
to cope with the two extra derivatives on r and the consecutive derivatives.

Recall that for [ > 1, 8'r(z) = 8'r(x) is the set of the /-th order derivatives of
r. Define

0lr€. ) = p (&2, (L+Fufen ™ rZ! 976), 07()
02r (€. x) = p (&%, (L Fufen ™ 15 07(©), 0%(6), 07 (1), 0% (1)) . (23)

Here and in what follows, p is a polynomial with constant coefficients. Its coeffi-
cients and degree are bounded in absolute values by a constant depending only on
fixed quantities, say k, n. Also, p might be different when it reoccurs. In general,
define

07 rE x) =) L 05r €. 00" @) 91 E)d7r () - 97r (),

where the sum is over finitely many multi-indices /;, J; satisfying

J /
DAL=+ (=2 <k =2, |5]=2
i=1 i=1
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We will write 3277 (&, x) = 32+*r (x) when it depends only on x. With this abbre-
viation, we have simple relations

24j 24+-k+j 24-k+|J
0 rol e = o7y 9 92y = 97T (2.4)

From [9, Corollary A.6] (see Proposition A.5 in Appendix A), we know that with
D2 =D, x D,,

m m m

—b{——b
| | ”fj”D%,kj-i-b_,- = C|a|+|c|+mp ! m(l | ”fj”D%,kj—',-a_/- + | | ”fj”D%,k_/-‘rc_,)
Jj=1 Jj=1 Jj=1

for any non-negative integers k; and non-negative real numbers a;, c; such that
(b1, ..., by) is in the convex hull of (ay, ..., ay), (c1,...,cn). With the above
abbreviation, basic assumption (2.2), and 0 < p < pg < 3, one obtains

2+k a
[

—a—k def a
llp,a < Catkp I7llp24k+as  I7llp24k+a = L+ IFllp24k+a (2.5)

for all real numbers a > 0 and integers k > 0.
We will also need a chain rule. Recall that v, : ¢, = ¢'—2/, ¢! = —2ir;-(£—2)
and define

W(E x) = @Y,(0), %), z=nly @), C=mnlE).
Let0 < p < pp < 3. We will show that B,» C D, C By, and
W, =W (D, x D,) C By, x D,.

(See Lemmas 5.1-5.2.) The Jacobean matrix of ¥ depends only on derivatives of
r of order < 2 and has determinant 1 + 7yn7gn (by (6.2)). Then the chain rule takes

simple forms. Let (¢ 1)/ be the j-th component of ¥~!. Then

Ay =02row!, |I=1;
A (fow = 3 @k ot I 0wt 2.6)
ILIZIK|

We will show that the Lipschitz constant of W~! on W, is bounded by C (see
Lemma 5.2). Then taking Holder ratio in (2.6) with k = [a] gives us

If oW lw,.a < Cep™ U fllDyxDya + I1f D, x D,y 0lI7llp.24a)- 2.7)

Note that the above mentioned ¢ o I'is a special case.

The above counting scheme via (2.4)-(2.7) and its variants will be used sys-
tematically.
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3. The Henkin homotopy formula

In this section we recall the homotopy formula by following the formulation in [21].
We discuss the formula for differential forms of low regularity.

Let M ¢ C": r = 0 be given by (2.1)-(2.2). We first recall a representative
9y for the d,-operator. By definition, a (p, ¢)-form ¢ of class C* on M is the
restriction of some (p, ¢)-form ¢ of class C* in a neighborhood of M. If a > 1, we
define 3¢ to be the restriction of 3¢ to M. Notice that on M, # = —2idr = 6 and
that 3, ¢ is well-defined modulo 3r when 0 < p < n, and it is actually well-defined
when p = n. By a rangential (0, g)-form ¢, we mean a form ¢ = Z\I|=q gr,d?l

with d7/ = (d_z_], ...,dz"1). A continuous (0, ¢)-form ¢ can be written uniquely
as ¢’ + ¢”" A 0 for some tangential forms ¢’, ¢”. Define

— [y = = Y ./ joa 7
Xo =0z — o7, Omg=0ug'= Y > Xagydz® nd7.
" [I|=qg 1<a<n

Then a straightforward computation shows that
e = 0ye@ mod 6.

Each (n, ¢)-form on M can be written as ¢ Adz' A--- Adz" ™' A 0 where ¢” is
tangential. If ¢” € C!, then

@' ANdZ' A ANdZTIAO) = dye" AdZE A AdZTI NG (3D

Let ¢ be a continuous (0, g)-form on a domain &/ C M, and ¢ be a continuous
(0, g — 1)-form. Suppose that ¢ > 1. We say that 3¢ = ¢ mod holds onlA as
currents, if [}, ¢ Adpyy = (—=1)4 fM(p Ay for all C!-smooth (n, n — g — 1)-forms
Y with compact support in U/.

Write r, = r,(z) and r; = r¢(¢). Set No(¢,2) = r¢ - (£ — 2), So(¢,2) =
r; - (¢ —z) and
O A (ry - dE) A (3dcr)" 179 A (3gr, AdE)TT!
Ny (2. 253, 2)
dg™ A der A (rp - dg) A (azagr)"*H A (8zr, AdL)T!
@ =N N(C 288 2)

Q+* 18, 2) =

, (3.2)

Qr @) = (3.3)

Note that 6(¢) annihilates . (¢, 2) and 07~ (£,2). Letn > 4and 0 < ¢ <
n — 2. For a tangential (0, ¢)-form ¢ on Vp, we have the homotopy formula

o =am(Py+ PDo+ (Qy+ Q)DIme, z€ M, (3.4)
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Here P(;, Pl’ , Q6, Q’l are tangential parts of

Pog(2) =c1 [y, 9 AN, (D). Po@) =2 [y ¢ A5, 2),

3.5
Qov(@ =c3 [y W AR 2), Q1Y) =csfyy ¥ ARG 2). o)
From now on, all (0, g)-forms ¢ on M are tangential. By |l¢||, 4, we mean the
norm ||¢’||, . as defined in Section 2, where ¢’ = ¢ mod 0 and ¢’ is tangential.
By | P¢llp,q as used in the introduction, where P is either of solution operators in
the homotopy formula, we mean || P’'¢||, .. By an abuse of notation, ¢ stands for
forms on M, and D, = w(M,).

Next, we describe kernels of P]/., Q/j on domain D,, via coordinates x. We have

re-dt ANy -dl = Z r;z(r{j—rzj)dgj/\d{l, (3.6)
1<j,l<n
re-dg Ar-dg AT =Y replree —ra)de® AdeP Adg". (3)
1<«a,B<n

Assume now that ¢, z € M,. We compute d¢" and dz” in different ways. We keep
the latter a (0, 1)-form and find its tangential part. We have
I r=r —
d7" = ——=% .d7’ mod 6(z), (3.8)

rem

d¢" = (1 +ifgn)dE" +i2Re{ry - d¢'} = 2irmdg" +i2Refry - d¢'}.  (3.9)

Note that in (3.9), we have used 7 (§) = —n" + 11> +7(&) = 0. In (3.6)-(3.7) and
d,r; ANd¢, we use (3.8)-(3.9) to rewrite dz" and d¢”, respectively. In 70y, we use

(3.9) to rewrite d¢", d¢". From (3.2)-(3.3), we obtain on M,

Pop)= " d// A €. x W(f)f, - D gve, G0)
[I|=q—1 |J| —g 1<j<n (Ny "8y)(&, 2)
n=l 2n-] B (&, 2076 (ree—r)r
/ —1I J ¢ z I
Plp(x)= ' | ° 4V ().
1 |1|=Xq:—1|ﬂ2=:qa§=:1 ; 0D, (("—zM(Ny 1 158)(4“,2)
(3.11)

Here A%J and B?f are polynomials in (r¢, r ol T 1/r=,r;z). We make a

Zn 9

remark for the case seq = 1. In this case we need to remove Z|1|=0 in (3.10)-(3.11).

Also, A77 &L A7 ang p#! &L pe?
Is

play arole in the §—est1mate of P'¢ when ¢ is a (0, 1)-form.
See also Chen-Shaw [2] for homotopy formulae. In this paper we replace the
strict convexity of defining function r in [2] by the condition (2.2) with 0 < pg < 3;

are independent of z. This observation will
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see Appendix B for details. We remark that the homotopy formula (3.4) holds as
currents, when ¢ and d,¢ on M, admit continuous extensions to Vp. See Ap-
pendix B for a proof by using the Friedrichs approximation theorem. Henkin [7]
formulated 9, in the sense of currents. Shaw [18] also used the Friedrichs approx-
imation for d5-solutions.

4. Kernels and the approximate Heisenberg transformation

In this section, we will describe briefly the new kernels when the approximate
Heisenberg transformation is applied. The contents of next few sections are in-
dicated at the end of this section.

Recall that in (3.10) functions A%j have the form 32r. Hence coefficients of
Pé(p are sums over |J|=g and 1 < j < nof Ko7(x) = po <p7(§)kjb(g, x)dV(§).
Here ¢,z € M and

82r (€, x)(rs —r21)

(re - =2z - € — 2P

To understand the kernel, let us compute its denominator. Set 7(z) = 7(x). On
M x M we have

k(5 x) =kl (5, %) =

a=n—gq, b=gq.

rz-(c—z)=?~(g’—z’)+’5(;”—z")+fz~(§—z)
=T @ =) = S0P 1) + € )
1
— 5@ = F@) +F (€ = 2)
. 1 ’ 112
=ilm(r; - (£ —2) — JI¢ — 2]
1 . R A
— 5O =7(@) +Re(P - (¢ = 2).
Also
re(C =) =1 (¢ —2)+ (e —1) - (€ —2)
1
=z'1m(rz-(;—z>>+5|c/—z’|2+(fg—fz>'<c—z>
1,. R n
—5{7(©) = 7@) = 2Re(: - (¢ — )},

The first two terms inr; - (¢ — z) and ¢ - ({ — z) can be simplified simultaneously.

Define

N 2) Z 1 — P + 20 Im(r, - (¢ — 2)). 4.1
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Then we arrive at the basic relations
“2r.- =) =N D+ AC 2, 2-(C—2)=N( 2)+BE 2
with
A(L,2)=F(§)—F(2)—2Re(; - (¢ —2)), B(£,2)=2(F¢—77) - (£ —2)— AL, 2).
By the condition (2.2) on 7, we will show that D, is convex and hence
|A(C, )| < Celg —zI%, |B(L, D) < Celg =z’ ¢,z € My,

We will show that |N (¢, z)| = C~!|¢ —z|? on M, x M,,. Consequently, the kernel
of Py is factored as

B0 — 1)
N, 2)NP(Z,2)
Ti(,x) =1+ N7, 2B, 2), TaE x)=1+N"1(, A, 2)

k(,x) =Ti¢, )T,

for ¢,z € Mp,. Moreover, min{|T1(§, x)|, |T2(§, x)|} > 1/4 when (§, x) is on
Dy, x Dy, and off its diagonal. Now, identity (4.1) suggests the following approx-
imate Heisenberg transformation

Vil =0 =2, ¢l ==2ir;- (¢ —2).

We will show that for fixed z € My, ¢, = ¢ — 2/, & = 2Im(r; - (¢ — z)) indeed
form coordinates of M. Thus, with ¢, z € M,

N, 2) = 16/ +ig! S Na(a),
kE )= Y Er(E. 0E N(E) N (€D, a+b=n.

[I]=1

When ¢ has compact support, the decomposition for k(&, x) allows us to take x-
derivatives of K ¢7(x) directly onto coefficients E;(§x, x) and onto ¢7(, L&),
without destroying the integrability of the kernels.

We now describe the contents of next few sections.

We will carry out the details of this section in Sections 5, 6, and 8. In Section 5
we will also study how domains B,, D, = 7n(M,) and 7v,(M,) are nested. We
will need Holder inequalities in Appendix A for domains D,. Therefore, we will
verify that under the basic assumption (2.2) and 0 < p < pg < 3, D, is convex
and B,2 C D, C By,. In Section 6, we will also express the graph ¥, (M) for
7 € My, as

=Y hiGa0E, &= Reg, Img).

=2
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The latter will be used to show |r; - (¢ — z)| = C~ ! (po)? for z € Mi_s), and
¢ € dM,. In Sections 9 and 10, we derive the C%-estimates. The %—estimate is in

Section 12, following a reduction for Ck+% -estimates in Section 11.

We conclude this section with a lower bound for |£” — z"|. By the basic as-
sumption (2.2), D,, is relatively compact in D and hence (™2 4+y" =p>ondM P
for 0 < p < po. Then the image of the projection of M, in the z"*-plane is con-
tained in the parabola (x")?> + y" = p2. Therefore, for z € Mi_s)pand ¢ € IM,
with p < po(< 3), we obtain

¢" = 2" = ¢ 4.2)

5. Domains and images under the transformation

Recall that our real hypersurface M is given by (2.1)-(2.2), and
M, =M0O{(x")?+y" < p?), D,=n(M,) ={xeD:|x|”+x) < p.
Lemma 5.1. Let M satisfy (2.2). Suppose that 0 < p < po. Then D_p is strictly
convex with C? boundary. Also,
B(i—ce)p € Dp C Biitcerp, C'po < dist(dD(1—0)p, dD,) < Cpo.
Moreover, constants Cy, ¢, C are independent of p and 7.

Proof. Let € = |Fllp2 < Cy ! The strict convexity follows from the positivity
of the Hessian of ¢ (x) = (x")? + y" = |x|*> + 7(x) on D_p. Since 0 € D,, then
|7 (x)| < Celx|?> on D,. Now,

(1= Colxl> < ¢(x) < (1 +Co)lx|.

In particular, for a possibly larger C, we have B(;_cy12, C Dp C B(jyceyirzps
since D,, C D implies that ¢ = p> on D, for all 0 < p < py.

Let x € dD(—4)p. Then ¢(x) = ((1 — o)p)? and %(1 —o)p < |x| <
2(1 — 0)p. For y € D, we have |¢(y) — ¢(x)| < C[13"$ll0ly — x|. We get

o < (1 —a)p* +Cl13"¢ll,0ly — x| < (1 —0)?p? + Cply — x|.

Hence, ¢ (y) < p for |y — x| < C_lpa. This shows that dist(0 D(1—¢)p, D)) >
C~'po. On the other hand, if y = (1 +1)x € D, and ¢t > 0, applying the mean-
value-theorem to ¢ ((1 + s)x) for 0 < s < ¢ yields

¢(») = (1 —0)p)? +x-(y —x) — Celylly — x|
> p2(1 —0)? +t|x)? = C'ept|x|

1
> p2{(1 —0)? + TS 0)? —2C"et).
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This show that ¢ ((1 + )x) > pZif (1 +1)x € D, and t > Co, a contradiction.
Therefore, dist(0 D(1—¢)p, 0D,) < Cpo. O

Recall the approximate Heisenberg transformation
Vo le=0 =7, &l =2irg- (¢ - 2).

Before applying ¢, to kernels k(f »(¢,2), we need to know how it transforms M,,.
Recall our notation x € R**~! and £ € R?>"~!. Define a map Vs by relations

Ex=Ux(E) = TY(0), (7€ Mpy,.

Set W(&, x) = (1/~/x (&), x). We have the following.

Lemma 5.2. Let M: y" = |7/|> + 7(Z/, x") satisfy (2.2) with 0 < pg < 3. There
exist constants C, Cy,, independent of 7, p and pg, such that the following hold.

(1) Ifx € Dy and0 < p < po then
Ux(D,y) C Bop, W(D, x D,) C By, x D,.
(ii) Foru,v € Dy, X Dy,
C7 o —ul < W) — V@] < Clv—ul.
In particular, if z € M, then W, (M) is a graph over wr;(M ).

Proof. Let R(x) = |/|*> + 7(x). By (2.2), Dy, C D and € = ||| 52 < CO—‘. For
brevity, set M = M.

(i). Assume that 0 < p < pg. Since D, is convex, we have |F(x)| < Celx|? on
D,,. The map VU, is defined by ¢/ = ¢’ — 7/ and

£ =&" —x" + 7 (RE) — R(x)) +2Im[Ry - (¢" — 2]

_ R R 5.1
=& —x"+2Im(z - ) + 7 (R(E) — R(x)) +2Im[F - (' = 2)].
Let&, x be in D,. Recall that D, C B(14c¢)p- We have

x| < 1+ Ce)p, &l < (1 +Ce)p, || <€, |Fyl<e,
IRE) < |¢|* + Cele|* < (14 Ce)p.

Thus, [¢;> = ¢/ = 2/ < 215" + 21217 < 4(1 + Ce)p?; by (5.1), [§/1> <
(2p 4+ 2p? + Cep)?. Since 2p* < 6p then

5L + €21 < 4(1+ Ce)p* + (2p + 207 + Cep)® < (9p),

if € is sufficiently small. We get 1/~/x (Dp) C Bop.



REGULARITY FOR THE CR VECTOR BUNDLE PROBLEM II 141

(ii). It is obvious that the Llpschltz constant of W on the convex domain Dpo X Dy,
is bounded by some C. Let &, x, S X bein D,,. We need to show that |\IJ(§ X) —
W(E x)| > CTE 5 — 2. erteé = (¢, &"), x = (¢, x"). Then
WE D - WE 0= |¢ -7 =+ F =0 = ¢ F-2)l/C.
Set &, = xﬁg (§) and &, = Wx (&). It suffices to show that
€7 — &0l = 1€" —€"I/C

if (7 —C¢ % —x)| < ﬁ@” — &"|. Assume that the latter holds. Recall that
0 < po < 3and D,, C By, We have max({|Z[, 12} < 2po. Now the second

identity in (5.1) implies that
|EF—EN| > |E" —£" | — | —x"| 2| |17 =2 | =21 1T ¢/ | —Ce|(E — &, % — x)|

1 P o ~/ / /_1&n n
2(1—E)|E"—€"I—8/00(|§/—§’|+|Z —z]) —Cel§” — &7

Thus, |§7 — 7] > (1 — g — 3332 — Cle)j§" — &7 > 1" — £")/4,
That v, (M) is a graph follows from the injectivity of W. O

6. Estimatesonr, - ({ —z),r; —r; and v, (M) via Taylor’s theorem

To transform k(¢, z) via ¥, we need expansions of r, - ({ — 2),7; - (¢ — z) and
Fej =T in new variables &,. We will find these expansions via Taylor’s theorem.

Let us recall Taylor’s theorem. Assume that 0 < p < pg < 3 and 7 satisfies
(2.2). So D, is strictly convex. If f is a complex-valued function on the convex set
D,, we define Ry f and R; f on D, x D, by

1 .
Rif0)=fM= D =8/li=of(x+1(y—x)

0<j<k—1

(k_l),/ (1= f(xr +1(y — ) dr

=Y Rify. 06 -0
|I|=k

Denote by R f the set of coefficients R; f with |I| = k. For any real number
a >0,
IRiflp,xDpa < Catinll fllp.a+in)- (6.1)

We will also need to express the remainders in & = (Re gy, Im¢)). Letz € M),
and 7 (z) = x € D,,. By Lemma 5.2, yr,(M,,) is a graph

Nt =hE,x), & € Yx(Dpy).
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By ¢ — 7z =¢)and ¢ = —2ir; - ({ — z), we have
Gl =" =" —ife(C" = 2") = 2iRy - &
Here R(x) = |7/|> + 7(x). Computing the real and imaginary parts, we get
£l =&" —x" + 7 (RE) — R(x)) +2Im(Ry - ), (6.2)
Nt =0l +FE) —F(x) — P (E" — x") — 2Re (P - 1)) (6.3)
In (6.2), replace R(§) — R(x) by

YO RIRE X)E -0 =" RIRE x)(E, & —x!

[I]=1 [1]=1

and then solve for £” — x". We get

£ —x" =Y pi. 0ElL (6.4)

[1=1

where p; (&€, x) are of the form

1 A lA
P % e 070, RYF (6, )
L+ 7R, 1)F (§, x)
for some polynomials p. With these polynomials p, introduce notation
. 1
Rig= Y p(.x 0700, RIFE, 1) )Rig(6, x). (6.5)
* |;=:i L+ e R, 1y (5, %)

Note that reappearing p, Rfk g may be different. We now express Taylor remainders
in variables ¢, &I as follows

RefE.x)= Y RofEx)E—nt= > REfE0EL  (6.6)

|LI=k |LI=k
IRLAE, 0| < Cllfllgy2. [ <2, &.x€Dpy,.

We now apply notation (6.5). Using (6.4) in (6.3) we get

=6+ ) RIFE 0], 6.7)
[11=1
=152+ Raf (. x) = g2+ Y REF(E, x)EL. (6.8)
|11=2

Setr(z) = —y" + |Z/|> + 7(z/, x™). We have defined

N, 2) = 1¢ =2 P +2Im(r, - —2)),  Nu(E) = [CL1 + gl
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Recall that for (¢, z) € M,, x M,, we have

—2r;- (£ —2)=N(,2) + Ror(§,x), 2r¢- (5 —2)=N(2) + B(£.2), (6.9)

B(¢,2) =2(Fc —7;) - (£ —2) — RaF (&, x). (6.10)
Define ' _ _
Riof = Y Rir,+ Y Rify,. (6.11)
I<j<n 1<j<n
We have
(Fr—F) (¢ —2)= ) RLIFE 0EK,
|K|=2
B(t,2) = Y (RiF(§, x) + RL0F(, x)EL. (6.12)
|L|=2
For the numerator of the kernel, we have
re—r:= L0+ Y (RLOF, ..., RLoR)E 8] (6.13)

[1]=1
In summary, we have proved the following expansions.

Lemma 6.1. Let M: y" = |Z/|> + 7 (2, x") satisfy (2.2) with 0 < py < 3. Suppose
that {,z € My, and § = Yr;(¢). Then ¥r,(Mp,) is given by n} = Ig“,ﬁl2 + h(&, x).
Moreover,

h(Eex) = Y RIFE 0E =Y RI(E xEL

|I|=1 |1|=2
“2r - (£ —2) =GP —iEl + Y RIFE 0E],
[7]=2
2 (6 —2) =GP+ 4+ ) (RIFE, x) + RLIFE, x)E],
[7]=2
re =1 = L0+ > (RIF1, ..., RiFx)(E &L
=1

We emphasize that R g, R. 97, defined by (6.5) and (6.11), might be different when
they reoccur.

Remark 6.2. Notice that (6.2)-(6.8) are valid if we fix { € M, and vary z € M.
Therefore, the image of M, under the map z — /() is still given by (6.7) and
(6.8), where z varies in M.

Here are immediate consequences of the above expansions:
2re - (£ —2) 1 2r; - (§ —2) 1 [N J)
— —1| < —+1 _—

N = <4 (6.14)

- 6= -
2 N(.2) 2" IN(, 2|

for ¢,z € My, with ¢ # z and py < 3.
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Lemma 6.3. Let M satisfy (2.2) andlet0 < p < pg < 3. Setd (¢, z) = |r;-({—2)|.
Then
e 22 <d(C,2) < CUEv) +d©,2),  £z,vE My,
d,2) = C %%, z2€Mi_oyp, L €IM,, 0 <o < 1.
Proof. M is defined by r = —y" + |Z/|> +7(z/, x") = 0and € = |7 py2 < C(;l.

Let {,z,vbein M. Set ¢, = ¢’ — 2/, ¢ = =2ir; - (£ — z). Recall that D, is
convex.

(i). By definition,
NG, 2) =10 =P +2iIm(r - ¢ —2)) = ¢ + i8]
By Lemma 6.1, we have

VeMpy il =102+ Y RIF(E, 0E].

|I|=2
On D,y X Dy, R3] < Ce, and |s*| < C. Then [¢'> = [ + In")? < C)l&2
Therefore, | — "> = IZM - o -;“*I2 < C|N(¢,2)|. Also, |t/ —Z|> <

N (¢, z)|. We conclude that IN(E,Z)I >C7 ¢ —z>for¢, z e M,,. By (6.14) we
have d(¢,z) > |¢ — z|>/C. Now

lre - (=2 < (e —ry) - @—=v)|+|ry-@—=v)|+|ry - (v—=20)]
<lre —rol? +lz = v* +d(z,v) +d(v, ¢) < C(d(¢, v) +d(v, 2)).
Thus d(¢,z) < C'(d(¢,v) +d(z,v)).

(ii). By Lemma 5.1, dist(dD(1—¢)p,dD,) > C~!po. Then d(¢,z) > C~(po)?
follows from d(¢, z) > C~ !¢ — z|>. U

7. Outline of C¢ estimates

Let M satisfy (2.1)-(2.2) and let 0 < p < pp < 3. Recall from (3.10)-(3.11) that

Pap)= D Y Zd// A7 T 1Dy )

I=g-1 |T1=q 1<j<n (Ny 18H)(¢, 2)

n—1 2n—1 aﬂf

Plp=Y" Y > Z _I/aaﬂ @"

H=g—1 |J|=q a.p=1 s=

(&, x)(p](g)("'{”‘_rz”‘)rgﬁ

dV3(§).
—zM)(Ng ™' s) (6. 2)

ozﬂJ

Here ¢,z € M,, and AJJ are polynomials in (r¢, res e T rz%l, r;7).
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We emphasize that norms are defined on D, = 7w (M) via coordinates x. Let
us indicate how to obtain C“ estimates. We will give estimates on shrinking domains
M _g)p. For¢ € 9M, and z € M(1_4)p, We obtain min{|r; - (¢ —2)|, |r;- (¢ —2)|} =
C~'(po)? by Lemma 6.3 and |¢" — 7"| > C~!p?0 by (4.2). This will allow us
to estimate the C*-norm of boundary integral P{¢ by passing derivatives over the
integral sign and differentiating the kernels directly.

We now deal with the interior integrals Pé(p. Using a partition of unity, we can
find a smooth function ¥ = x,,, which is 1 on D, _s/2) and zero off D,1—s/4),
such that || x|lp.a < Ca(po)™%. On D,, decompose

0o =X, @1 =¢—q, Pyp = Pypo + Pyor.

Now Pégol can be estimated on M(1_q), by differentiating the kernels directly, since
@ is supported in Vp\ M (1-Lo)pr The only non-trivial integral is Pjgo, for which

¢o has compact support in M(lf To estimate the latter, we will apply the

1 .
30 )P
transformation i, for the integral and then differentiate the new integral.

The estimate for Pj¢y is the most technical part. We deal with this estimate first
in Sections 8 and 9. The estimates for boundary and cutoff terms are in Section 10.

We now conclude this section with estimates of some integrals.

Lemma 7.1. Let n > 2. Let a be a real number, and J = (ji, ..., jon—1) be a
multiindex of non-negative integers. Let B = (jop—1 + |J| — 2a) + 2n — 1 and
0 < p1 <py < o0. Then

/ 1@’ [Cey 1<B<m-3

1Z/|<p1,1x"|<po [1z/]% + ix"|@ - C,Olzn_2 log(2 + Z—(lz’ , B>2n-3;
e[GOt p peans

/plslz’fpo,lxupo |12/]2 + ix"|a V'= 1 Cloglpo/p1), p=-1

C(po — p1), B > 2n-3.

Here C depends only on n and B, and C depends on py too.

Proof. Using [x"| < |Z/|* + |x"| and |z;| < (Iz/|* + |x"])!/?, we may assume,
without changing 8, that J/ = 0 and

1G] 1

b7, x™ = _ .
( 122 +ix"e  (|Z]? + |x"])®

Assume first that 8 = 2n — 1 — 2a < 2n — 3, i.e. a > 1. Using polar coordinates,
we get

P1 £0 r2n—3 dx" Pl
/ b(z/’xn)dV < C/ dr/ —_— < C// B dr.
/| <p1.|x"<po 0 o (r=+|x")e 0
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Als
05 S <1212 p0.lx" <o
follow.

Assume now that 8 > 2n — 3,i.e. a < 1. Reducingittoa = 1 via C, we get

[P s 0
/ b(z/,x")dVSC/ renT log<1—|——2) dr.
|Z/|<p1,1x" | <po 0 r

b7, x"dV < C’fpplo rP dr. The estimates in this case

Also, fmflz’\fpo,lﬂkpo bz, x")dV < f[ﬁ(’ C dr. The estimates are obtained by a
simple computation. O

8. New kernels and two formulae for derivatives

In this section we express the kernels by using Lemma 6.1 and derive two formulae
for derivatives of Ppgp, where ¢ has compact support in D,. The first formula will

1
be used for C estimates and the second is for C¥T2 estimates.
Recall that with ¢, z € M, the coefficients of Pégo(x) are sums of

O2r (&, x)(rej —rei)
a ¢b d
(NO SQ)((» 2)

overl < j <nand|J|=gq,wherea=n—qandb =gq. Set f(§, x) = ¢7(§).
We have defined 32+*r in Section 2. Now, CHANGE NOTATION and let

Z(x) :/D @7 (&) V(&)

02r =p (6. x. (furfen) ™ 2, (140 R €, 0 07(0.07(6). Q6.)
Q. x) = (9% (x), 9% (). RLOF(E., ). RIF(E. 1), REF(.1))

where p is a polynomial. Again, R197, R2#, defined by (6.11) and (6.5), and p
might be different when they reoccur; for instance, (Rir)2 may be the product of
two different R1r’s. Define

92tk (e, x) = Zafr Qi x) -9l Q. x), j=0,
;P ) =) r- Qi x)--- Qi x), j=1,

where le:l |I;| <k, Q; € Q and both sums have finitely many terms. Hence, we
have simple relations

Oyt = oM 9 92y = gt
The chain rule takes the form
of Wwl=0Zrow™! |I=1,

ol A(foXtmow ly= Y @kf ol V0wt @)
IL1=1)
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New kernels. Set (¢§,,x) = W(&, x) with £,z € My,. Recall that N.(&) =
|£/1> + i&". By Lemma 6.1,
No(¢,2) =2r¢ - (£ — 2) = No(EDT1 (E4, x),
S0(¢.2) = =2r, - (§ —2) = Ny 1265, %),
T1(E0x) =TioW ' Gox) =1+ ) 0;F o ¥ G 0N EDE!,  82)
|J|=2
D) =Tro W ') =14 ) 0;F o U (G 0N (EDE!,  (83)
|J|=2
Rr(. )y —r) =Y 0froW (&, nE].
[1]=1
Note that |8§f| < Ce and |fj (4, x) — 1| < 1/2 when &, # 0. Thus, we obtain

02r (8, ) (rei — r.0) 2 1 A—ap—b ol
= dgr o W T AT 71 (b, XDk (64), 8.4)
e MZZI{ r T 6 R ).

k() = EINT9EINT(ED, a=n—q, b=gq. (8.5)

First formula of derivatives of Z. Recall that W (&, x) = (Y/x(§), x), & = Y (§)
and (Y3dV)(&) = }r) o U1(&,, x)dV (&,). By (8.4) and 32rd}r = 8%r, we
obtain

T =3 [ faine v A i okl e dviE). 66
[1]=17¥x(Dp)

wherea =n—¢q,b =¢q. By Lemma 7.1 with 8 > 0, 12;,, = Llloc. Foreachx € D,
the integrand has compact support in &x(Dp) C Bg,. To compute *T(x), we

extend the integrand of Z(x) to be zero on By, \ &x (D,). The integral is over the
fixed domain Bg,. So we can interchange the integral sign with d,. The derivatives
of 7 have the form

KTy = ) ooy Y > (8.7)

JHkHAm=|K| |[JI=j |K'|=k' |LI=l |I]=1

/B {(aLfa$+mr) ow ' 9lT - af/f;”} (B, x) - kL (£ AV ().
9p

By (8.2), the first-order x-derivatives of f’l_a have the form
AT En )= Y Y AT (02 o W HE 1IN, (EEL
V=1 |L'|=2

= Y @ oW T &, 0N 08,
IL'|=2
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Take derivatives consecutively and use the product rule. We can write

L/
ang_a(S*’ xX) = Z Z {(834_“”}”) o \I’,*l . Tl—a—S} (%-*’ x)N+ (88)
s<lJ| |L/]=2s (&)
Analogously, Bf T Z*b (IK'| = k') can be written as
b 2+|K'| .y, L
0Tt = Y ) {(a* Pow . Ty —f} )=, (8.9)
1<|K'| |L"|=21 N (&)

Let!"=1+L +L",a =a+s,b =b+t. Wehave
NS (E0EE NS E0el kL, = kL, 2a' 426" —|I') =2n—1, d'+b' < n+|K]|.

By (8.8)-(8.9), we get
KT = ) > > > (8.10)
ILI<|K| a<d'<a+|K| b<b/<b+|K| 2a’'4+2b'—|I'|=2n—1

/ @L KLy o w1 (g, x)
Bo, (TETY) (&, x)

kL, (g0 dV (&)

Recall that f(&,x) = ¢7(§) has compact support in D,. Since |I'| = 2a" +
20" —2n + 1, Lemma 7.1 with 8 > 0 implies l%é//b, € Llloc' By the dominated

convergence theorem, we see that B_kI are continuous. Note that this also implies
that if 7 € C¥*2(D,,) and ¢ € CX(D,,), then P'p € CK(D,).

Second formula of derivatives of Z. We return to the original coordinates by
letting (&4, x) =W (§,x)and ¢,z € M,. SodV (&) = Bjr dV (). Also

T oW, x) = N DN (6.2, Ty o W(E, x) = NV(£, 25,7 (¢, 2),
Re(¢' — 2), Im(¢’ — 2), 2Im(r; - (¢ — 2))"’
N(¢, 20N (¢, 2)

Igi/b/ ° &x é) =
Multiply the same sides of the three identities and expand the last numerator. Then

A — /A_ I . . . .
{T, “ T, b ké,b/} o WV is a linear combination of

KL (e ) S (Y - zZ, Im(/rz (6 - Z)))""
a N§' (. 288 (¢, 2)

Since |1I”| = |I'| = 2a’ +2b" + 1 — 2n, then

| —2a' =26 —1+2n=0, |I"|<2|K|+1,d +b <n+|K|. (8.11)
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By (8.10), derivatives of Z(x) have the form

Kz = > > > > (8.12)

ILISIK| a<a’<a+|K| b<b'<b+|K| 1+2a'42b'—2n<|I1"|<2|K|+1

f ot pr(&)or KT 6 )k, (8, x) dV (&)

D,

Here ¢ has compact support in D,. Obviously, the 8L<p7 in (8.12) do not depend

on x. This simple observation will be crucial for the %—estimate.
The reader might want to acquaint with the counting scheme in Section 2 and
Holder inequalities on domains D, in Appendix A; see Proposition A.5.

9. (“-estimates, case of compact support
In this section, we derive the C%-estimate for Pygy where

v =x¢, lxlpa=<Calpo)™ .1

and x is supported in D,. We also derive an estimate for Pp¢ when ¢ itself has
compact support in D,,.

Proposition 9.1. Let k > 0 be an integer and 0 < o < 1. Let M: y"* = |Z/|> +
7 (7, x™) satisfy (2.2) and 0 < p < po < 3. Let ¢y be a tangential form as in (9.1).
Then

e (ol g ke + 10190 lF g kt240).  (9:2)

I Powollp ke < Crp
If ¢ has compact support in D, and is tangential, then

(ol p ke + 1000017 1o kt24e)- (9.3)

I Popllpk+a < Crp
The same estimate holds for Q.

Proof. Recall that by applying (8.10) to f = x 7, k-th derivatives of a coefficient
of Pj¢o are sums of finitely many

Wo Wl (g, x) oy
I = ?kw (Sx dv *x)-
@) /ng Ty € AV ED

Herea =g,b=n—q,a<a <a+k,b<b <b+kand
def . . . .
u(E, x) =3 x )’ pr®)dX r &, x), =i, |JI=j, i+j+l=k,
B &) = N~ EIN P EDEL. 2d' +26 = I'| + 20— 1.

To obtain (9.2), we estimate the C*-norm of Zj.
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By the definition of 32*r, we have

2+1
192l <C D Irlsnyta - I7ll24,-
L+l <l

Thus

. . -
18" x 10,0187 @z ll0,0185 7 11 9,0

<Cpo)™ Y Neglo Il a - Irllas,
I+ <1

< C'(po) " p T logll pat e + Irll21i4 jra @zl p.0)-

Here the last inequality is obtained by Proposition A.5. Also

241
90

18" x 1l p.a 137 @7l p 0l
< C(pa) oI @zl p.itj + 1724 1071 p.0),

. . ol
13" x 10,0187 @71l o0 1857 1 0,0

= oy e Ietlorsiva + Irlassjrallorlp.o-

Therefore,

k—a _—k—
Yo (el p ko + 17 1o k24 1911 0,0),

k—

lllpz 0 < Cip™
lullpz ol llp,2+a = Cro™
By Lemma 5.2, we know that W, = W(D, x D,) C By, x D, and

) =) < Clv—ul, wu,veW,.

—k
Yo (el pkre + Il phs2+ellelpo)-

(9.4)
9.5)

(9.6)

Assume that 0 < o < 1. Fix & € Bo, \ {0} and x{, xo € D,. Assume first that

£ = &;/,1(5*) are in D, for j = 1, 2. First, by (9.6)

&2 — &1l < Clx2 — x1].

Now by (8.2)-(8.3), we obtain |f,- (&4, x)| > 1/4 and

T (&, x2) — Tj (s, x1)| < Cl02r (£2, X2) — 82r (&1, x| < 171l p. e X2 — X11%.

Thus

def (w0 W (&, x2)  uoWT(&, x1)
A =AG) = AWD| == | =
Tla T2 (&x, x2) Tla T2 (&x, x1)

< Cllullp.alxz — x1|% + Clu(€, x2)((32r) (&2, x2) — (32r) (1, 1))

< Clullp,a + el p 0l 1l p, 2400 X2 — x1]%.
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By (9.4)-(9.5) we get

A < Cep 0 (gl pkga + 171l p k2 @l p.0) 162 — x11% 9.7)
The above holds trivially if &1, & are both not in D,, in which case A = 0. If
& € D,and & € D,, we replace x| by a point x3 in the line segment [x1, x3], for
which & = g}xgl(é‘*) € 0D,. Then A = |A(x2)| = |A(x2) — A(x3)| and (9.7)
still holds. By Lemma 7.1 (with p1 = po = 9p and § > 0), [ kL, ,1dV < Cp.
Combining the above estimates yields (9.2).

The case that g9 = ¢ is simpler, and it does not involve 0. So we can remove
all powers of ¢ in (9.4)-(9.5), (9.7), and (9.2). The latter becomes (9.3). O

1
We compute the C2 norm of 87 x 37 ¢732+!r for a later use. Here it is crucial
to avoid the Holder %—norm of 8”7 @7

Proposition 9.2. Ler u(£, x) = 3/ x(£€)98” 3 )33“ r(&, x) where x has compact
support in D, and satisfies || x|l p,a < C(po)™®. Let |I| +|J| +1 =k. Then

lu(€, ), 1 = Celpo)™ - (II zloklrll, s +llex IIpoIIVIka+s) (9.8)

Proof. Fix & € D,. The @7 appearing in u(&, x) depends only on &. Therefore, for
lu(&, )l p,1/2, we only use the sup norm of 8Jgoz(§). Then

(€, Ip,172 = Crl(po)™ v o jlrllp.r2 4+ (o) oz, il 143)
< Ci(po) 2 p I (g Lo j+t Fllezlloolrllp.2+j+1)
+Cr(po) " p~” “3(loz zhoollrll, jyrys +lezllo j+llrll, 5).

where |I| =i, |J| = j, |L| = [ and the last two terms are obtained by Proposi-
tion A.5 in which we take dy = 0 and d» = % Simplifying yields (9.8). O

10. Boundary integrals, end of C“-estimates

In this section we will estimate the boundary integrals P{¢ and cutoff term Pj¢i,
where ¢; vanishes on D(l_%a)p. Estimates (10.14) and (10.15) below will be used

again for the C¥*2 estimate.
Recall (3.10)-(3.11) that for ¢,z € M,

Por= 3 3 Zd?’/D A (g, 0y T )

li=q—1 |J1=q 1=j<n (Ny I8¢, 2)

n—1 -1 "‘f”(g X)@7(E)(rea —re)r
Plo(x)= Z a7’ d § i

R dv*(&).
[I[=qg—1 |J]=q a,p=1 s=1 aD, (&" —zZ")(N, $9)(¢, 2)
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Here AiJ and B_ are polynomials in (r¢, rz, 1z, 17, r o ~! rz). And No(¢,2) =

re- (¢ —z) S()({ 2)=r;- (¢ —2z). For¢,z e My, set
(rej —rz)
(NG Se) (6, 2)
’”;/3(7'{“ —re)
(" — (NP8 (¢, 2)

def

ke x) L € x) = AT 6.0 a+bo=n. by=gq.

def

I, )—l"’“@,m: "‘f”(s x)

Recall that x = xo,, is a smooth function, which is 1 on D42y and zero off
Dyi—o/ay,and | x|l p.a < Ca(po)™. On D, set

Y0 =X¢, Y1 =9 — %o

Assume that M satisfies (2.1)-(2.2). Thus [|7]|p,,2 < 1/Co. Assume that 0 < p <
0o < 3. Set R = |7/|? + 7(x). Let 7, be the projection from 9 D,, into the subspace
g% = 0. Since D, is bounded and strictly convex, then 7y is a 2-to-1 map from 9D,
onto 7y (dD,) = 71(5,,). Actually, mg sends ns_l (9(ms(Dy))) one-to-one and onto
d(ms(Dp)). Let vol(my D)) be the volume of (D)) calculated via the volume-
form dV*. Recall that D,, is contained in B;,. If f is a continuous function on D,,
then

| / F@&av:E)| = 2v0l(msDp)l fllp.0 < 2v0l(Boy "R fllp0
aD, (10.1)

< Co™ 2 fllpo-

Since the projection of 3D, in any coordinate hyperplane is contained in a ball of
radius 2p, by the Fubini theorem one can verify that

vol (D \ D(_1,,) < @n—1)-Cpo - P2 < C'pP o (10.2)

Let k > O be an integer and 0 < o < 1. Fix ¢ € My \ My _1,, and vary

20’
7 € M(1_¢)p. By Lemma 6.3, we have

re - (¢ =2 = C N pa)?,  Iro- (¢ —2)| = C 7 (po)™ (10.3)
We also have |r,; —r;| < Cll¢ —z|| < C'|r¢ - (¢ —2)|'/2. Hence
Ires = r2ilINol =180l ™2 < CINoI2 ™70 < C'(p0)! 242 (10.4)

ifa+b > 1/2. Using | f(x2) — f(xD)| < Cllflip.1lx2 —x1| < Cll fllp,1(x2] +
Ixi)!=%]xa — x1]%, we get

1fllpa < 1flp0+Clflloae'
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Therefore, for1 < j <nand0 <« < 1,

lrei =riOllpa <Cp' ™ Iresl < Cp. (10.5)
Also for x1, x2 € Dy,
L e = fel B o
fo  Fenl T ifefan 0TI
< C2'UN/FIINANG ylea — 1

Combining it with Holder ratio |1/ f¢|p.o < Ca||1/f||‘;_01 11/fp.« fora > 1, we
get
11/ fNpe < W11/ f M0 + Ca||1/f||25a||f||z,1, a>1. (10.6)

Now, by (10.3)

INo(Z. )™ la=aypar + 1505, )™ N1=0pp.a < C(00)2Fa = 1. (10.7)
Note that A%j has the form 32r. By Proposition A.5, we have

1827 (&, Mp.a - 1027 E, oo < Cabp Nl p2rats- (10.8)
We have
02 Cr (&, )L (r — 1)

ap+a «bo+b
atb+etLl=K| |L)=0,1 Ny Sy (&, 2)

3Kk, x) =

where ag 4+ by = n. Fix & and vary x. For the summand, we estimate the C*-norms
of two terms in the numerator by (10.3)-(10.5), and use (10.7) for the reciprocals of
two terms in the denominator. Set |K| = k and |L| = d. Recall thatd = 0 or 1.
We get

02ter(&, )L (ry — ()
(NG sy, )
[

1—d —c—a
= (,00)2(“+ao+b+bo)[(pa) o ||r||p,2+c+a

(I1-0)p,a

om0 o= st +2(00) T (00) 20 2 .

The worst term in terms of powers of p, o occurs whena +b =k,c =d =0. We
see that

Ik, ')||(1fa)p,k+oz =< Ck(;oa)_sl ||r||p,k+2+(¥v S Dp \ D(l_%g)p (10.9)

with sy =2n — 1 + 2k + 2a.
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To estimate the boundary term, by (4.2) we have
i" =" = C 7' p’o (10.10)
forz € M(1_4)p and ¢ € 9M,,. Using (10.6), we get for { € IM,,

1" = 2" ) l1-0)pe <C(P*0) 7%, az=1, 0=<a<l  (10.11)

Note that B?f / has the form d2r. We have

82+C|

. 9Ll .
aXIE x) = Z Z Z w1 Tep Oy (rei — 1))

ap—1+a obo+b :
atbidre=IK| eiHL=c |L=0,1 (€™ — 21T (Ng Sy )&, 2)

Set |K| = k and |L| = ¢;. We now estimate the C*-norm in the x variables. Fix
¢ € 0D,. Using (10.3)-(10.5), (10.8) for three terms in the numerator and (10.7),
(10.10)-(10.11) for the reciprocals of three terms in the denominator, we obtain

G Ma-orphra <Ce Y Y (po)Hakatbotbid)pltd 5,
a+b+d+cl+c‘2=k c=0,1
(10.12)

1— —c1— 1— 1— —c—
-{(po’) “ep a||r||p,2+cl+a+:0( ea)( a)p “ 62a||r||p,2+cl+cza

+ P71 (p0) T2 (P20) ™ 4+ 2(00) ) 24 |

The worst term in terms of powers of p, o occurs whency = ¢; =d =0, a+b = k.
This shows that for each ¢ € M, \ M(l—lg)p’ we have
2

1, a-o)pkta < Ck(po) ™27l pk4+2+a (10.13)

withsy =2(n+k — 1 + ).
By (10.1) and (10.13), we estimate the boundary term by

2n—2

IP{@ll(1-0)pk+a = Ckp™ = (00) 2|7 Il p ktat2 [0l 0,0- (10.14)

Estimating the cutoff term by (10.9) and (10.2), we obtain

2n—1—S10,

IPoe1ll(1-0)p k+a < Cap Il k24l 0- (10.15)

Define s gef max{s;—1, s7, k+a} and s, gef max{s; —2n+1, so—2n+2, k+ao—1}.
Thus fora = k + o, we get

s=2@+n-1), s.=2a. (10.16)

Combining (9.2), (10.14)-(10.15), we get the following.
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Proposition 10.1. Ler n > 4, and let a > 0 be a real number. Let M: y* =
1Z'|? + 7 (2, x") satisfy (2.2). Let P’ be either of P', Q' in the homotopy formula
¢ =0mP'¢+ Q' dmy on M,. Assume that0 < p < po < 3. Then for a tangential
Jorm ¢

IP"@llD¢ g0 < Cap™ 0 (l@llD,.a + I¢llD,0llFID,a+2),

where 0 < o < 1, s, s, are given by (10.16).

11. Reduction of C**-estimates to C2-estimate. Summary

. Lo
We want to prove the following C¥*2 estimates.

Proposition 11.1. Let n > 4, and let k > 0 be an integer. Let M: y" = 1z/12 +
F(Z', x™) satisfy (2.2). Let P’ be one of P’, Q" in the homotopy formula ¢ =
5MP/¢ + Q/5M¢ on M,. Then for0 < p < pp < 3,0 <o < 1, and a tan-
gential (0, q) form ¢

Cy
i A
| P ¢||D(l—a)psk+% = W(HFHD’”% lellp,.x + ”r“Dp,k—i-% ||§0||D,],0),

-1 _1-2
o' lgllp, 0. q=1.

1P¢lp, 1 =Cp

Proof. Fix a positive integer k. To estimate the C**+2 -norm of P’ ¢ = (Py+ P)e,
we first recall estimates (10.14) and (10.15) for the boundary and cutoff terms

131, Pl gy isy < Cap 0 Il g lellpo.  (111)

Here s = 2n 4 2k — 1 and s, = 2k 4 1 are computed by (10.16) fora = k + %

It remains to estimate the C<*2 -norm of Pi@1, where g1 = x¢ and x has compact
supportin D, and || x [l 5, < Ca(po)™?. The proof will be completed later. For the

rest of proof, we reduce it to the special case of k = 0.
The second formula (8.12) says that the coefficients of ok P(;(po are sums of

Ku(x) = / u(, x)k&,x)dv (11.2)
Dy
with functions u (&, x) and kernels k(&, x) of the form
u(E x) =05 x (&)  pr(&)0]'r (€, x), |E|+|F|+1=k, (11.3)
def (&' =2, ¢ =2, Im@; - (¢ —2))!

k(g,x) =kl (¢, 2) =

(”g“'(é'—Z))a(rz-({—z))b , C,zeM, (114)
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Moreover, by (8.11), the non-negative integers a, b, I = (i1, ..., iz;,—1) satisfy
[I|—2a—-2b>1—-2n, |I|<2k+1, a+b<n+k. (11.5)

By (9.8) in Proposition 9.2, we have

—k—L ~
lu. I,y < Celoo) ™2 (Igllpilirll, 5 + 10llp0lfll, 4 5)-  (AL6)
In Section 12 we will prove that if u € L>°(D, x D,) then

IKullp,.1/2 < C sup |u(,)lp,.1/2- (11.7)

é&eD,

Combining it with (11.1) and (11.6) yields the first estimate in the proposition.

We now consider the case that ¢ is a tangential (0, 1)-form. We return to
(3.10)-(3.11) and look at a special property of the kernels of P’g. Recall that in this
case

/ W(é)( Yy &I — 1) ZJ)
Pp(x) = / AT (€, x V).
’ 1<y<n 52, I, TR
BT (&, x)gp(E) re — 1)
Pip(x) = / dV*(€).
: 1501;/<n l<s<2n YD (i Z")(NS_ZSO)(C, 2)

Here £,z € M. Also, A'Y and Bgﬂ Y are polynomials in 7, res Tz In particular,
they are independent of z. Moreover, in the kernels there are onfy the first-order
derivatives r_; in the z variable. Then all norms of r in (10.12)-(10.14), in which
k = 0, can be replaced by ||r||,> < C and the estimate (10.14) for the boundary
term becomes

IP{¢ll(1—0)p.a < Cp 20> 2" l0llp0, O0<a<1.

ﬁf\/s:ﬂze?ng ) into ¢ (§). With ¢,z € M, the kernels of interior integral P(;(p
Fep —Tgi

(re - (= 2)%ry - —2)b’

We will show that (11.7) holds for this new kernel. Applying it to

u(E, x) = AV E)yE), ¢eM

k&, x) = a+b=n. (11.8)

we obtain ||P6g00,1||p,1/2 < Cll¢o,1llp,0. This shows the second estimate of the
proposition.

The proof of Proposition 11.1 is thus complete, by assuming (11.7) in which
Ku, given by (11.2), has a kernel of the form (11.4)-(11.5) or (11.8). O
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We want to unify the two kernels (11.4), which satisfies (11.5), and (11.8). For
(11.4), we write

1
Im@rz - (¢ = 2)) = 7ore - (€ = 2) = 5ore - (£ = 2).

Then kernel (11.4) is a linear combination of
({ _Z7§_Z9r§‘ _rZ)I
(re - (C—2)r; - (& —2)P(rg - (£ —2)° (r; - (¢ —2))¢

where ¢,z € M, a, b, ¢, d are now possibly negative integers, I is a (3n)-tuple of
nonnegative integers, and

ks, x) &

(11.9)

\I1—2(a+b+c+d) > 1=2n, |I| < 2k+1, |a|+|bl+|c|+]d| < n+3k+2. (11.10)

Indeed, the I = (i1, ..., i2;—1) in (11.5) is a multi-index of nonnegative integers.
Hence, (11.5) and ip,—1 > O implies (11.10). Obviously, (11.8) is of the form
(11.9). In Section 12, for the new kernel (11.9) with the condition (11.10) we will
prove (11.7), i.e.

=< C sup |u(§, )lp,1/2, (11.11)
Dp,1/2 €D, oo/

H/D u(, I )V )|

where u € L*°(D, x D,).

. . . 1 .
Summary. We would like to summarize our observations on Ck*2-estimates to
explain how the general estimate (11.11) gives us an actual %—gain in special cases.

a) k > 1 and ¢ > 1. In our applications of (11.11) to the Ck+%—estimates,
u(&, x), arising from the k-th order derivatives of Pj¢ after applying the approxi-

mate Heisenberg transformation, is of the form 9%~/ 7§ )&{ 2y (&, x) where ¢ has
compact support in D,; see the second formula of the derivatives in Section 8.

In particular, the C %-norm of u(&,x) in x variables involves only ||¢]|, «x (and

%). Thus the estimate for || Pjel| | gains % in Holder exponent from

171 4 ot

loll .« at the expense of two extra derivatives in ||r ”p,k+§‘

b)k =0and g = 1. Apply (11.11) to (0, 1) forms. In this case, we will
not need to differentiate the kernels and apply cutoff. Both simplify the estimate
considerably. However, it is crucial that when (11.11) is applied, u(&, x) has the
form A/ (& )¢5 (§); in particular, it is independent of x. Therefore, the %—estimate

of u in the x-variables and hence %-estimate of Py¢ only require r € C2.

¢) While the %-estimate of Pj¢ is on the original domain (Proposition 12.1

below), the estimate for the boundary term P{¢, which only requires r € C 2 for the
same reason as in b), is on shrinking domains.
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12. }-estimate

We will derive the %—estimate, by modifying a standard argument for Holder esti-
mates. This will complete the proof of Proposition 11.1 via (11.6) and (11.11). We
restate the latter as the following.

Proposition 12.1. Let M be a real hypersurface of class C* and satisfy (2.2). As-
sume that 0 < p < pg < 3. Let a, b, c, d be (possibly negative) integers and I be a
(3n)-tuple of nonnegative integers. Suppose that |I| —2(a+b+c+d) > 1 —2n.
Let

({ _Z’g — %, It _rZ)I
(re - (C =)y - (€ =)o e - (€ = 2)) (rz - (£ — 2))¢

Ku(x) =/ u€, x)kE, x)dVv.
M)

k(€. x) = {,ze M,

Then for u € L (D, x D,),

1Kull, y = C(p sup u(&, i, 1 + sup (&, )lp,.0)-
2 geD, 2 geD,
Proof. Recall that D, is convex. It will be convenient to regard Ku as a function

on M. The %—Hélder ratios on M, and 7w M, are equivalent, since |7 (z2 — z1)| >
|zo —z1]/C for z1, z2 € M,. By abuse of notation, we write u (£, x) as u(¢, z) with
¢,z € M and apply the same change of notation to k(&, x), Ku(x).

Fix z1, z2 in M,,. We have

Ku(ez) — Ku(zy) = / u(C, 2)(k(E. 22) — k(z.20) dV

M,

+ /M (u(g, 22) —u(C, z2))k(C, z)dV =T+ T

To estimate 7', we need to estimate || M, |k(§,z1)|dV (§). So we apply the approx-

imate Heisenberg transformation ¢, = v, (¢). (However, we want to refrain from
use of Taylor remainder expansions, such as (8.4)-(8.5), for the kernel. This avoids
the requirement of r € C>/2) Let¢ € M ». Using the fundamental theorem of
calculus, we get n" — y = A(&, x1) - (§ — x1) with |A] < C. By (6.4), we have
&" — x| = p(&, x1) - & with |p| < C. Therefore,

18 —z1] = Clé«l.
By Lemma 6.1, we have

|rZ1 : (é‘ _Z1)|
¢4 410

e -zl _

Ire —ry| < Cl&l, 1/C < < =<
e * IZL? + il

<cC, 1/C
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Therefore, for ¢ € M,
Clé. [ - Cl&/|

; — ; b d’
+ l§-£|a+b+c+d ||§;|2 + léfch_ +c+

kg, 2l <
k.20l < 1

[J1=1]

By Lemma 5.2, 7w (Y7, (M,)) C Bog,. Applying Lemma 7.1 with p; = pp = 9p and
B >0, we get

J
/ k&, z)|dV < 2/ ClE, | dv < C'p. (12.1)
Mp =) 7B

0p |En +i|§;|2|a+b+c+d

Since u(¢, z) is of class C!/? in the z-variable, one gets

IZ| < Clza — 211"?p sup lu(z, ) p.1/2-
teD,

To estimate the integral 7', it suffices to show that
/ k(¢, 22) — k(¢ z)|dV < C8'2 8§ =z — z1l.
My

As mentioned in the introduction we decompose M), into a cylinder and its comple-
ment. Consider the cylinder M, N {|¢" — 2| < p1}, where p; = min(9p, Cy|z2 —

zl|%) with C, > 1 to be determined. Notice that the radius of cylinder is about
|zo — z1|"/2, which is much large than |z — z1], the Euclidean distance between
21, 22-

We have

f k(6. 22) = k(G 2Dl AV < Ty + T + T,
Mp

1 =/ (&, 201V, Izzf k(2 22)|dV,
Mo0lIE~21<p1) Mo0{1E~21<p1)
Ty = / k(2. 22) — k(2 20| V.
Mpnfle’ =z} 1=p1)

By an analogy of (12.1), we have

4
I] < C/ - * .
|j|2:|:[| [¢al<p1:1841<9p 134 +l|§x/<|2|a+b+c+d

By Lemma 7.1 with 8 > 0 and pp = 9p and p; = min(9p, Cy|z2 — Z1|%), we get
T; < Cp; < CCy|z2 — z1]'/%. Note that

M, N{IS" =211 < p1} C My N {1 = 25| < p1 + 122 — 21}

Applying the estimate for Z;, we get 7, < C(p1 + |z2 — z1]) < C'Cilza — z1|'/2.
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With C, > 1 to be determined, we have 73 = 0 if p; = 9p. Therefore, we

may assume that p; = Cy|z2 — le%-

To estimate 73, we ignore any non-isotropic distance and connect (z’l, x}') and
(2, x4) by a line segment in the convex domain D,. Let z(¢) be the graph of the
line segment in M. Let ¢ be a point of M, which is not in the cylinder. Then

i = 1¢ = 2}l = p1 = Culza — 21|V

We have

720y - (€ —2(@)) — 1z - (€ —z1)| < Colzz — 211,
Iry - (€ —z)| = Cile —z21)* = C11¢' — 2} 1> = C1C2|za — 21,

where the second inequality comes from Lemma 6.3. We now fix C, > 1 such that

Cle > 2Cy. (As remarked earlier, if Cy|z2 — 2z |% > 9p, we already have 73 = 0.)
We obtain

Iz - (€ = 2DI/2 < |rz@y - (€ = 2(D)] = 2frz - (€ = 2]

Recall that & = ¥, (¢) and CTH|ZL? + i8] < Iry, - (€ — 20| < Cllgyl* + i€l
Using |rz¢) - (¢ =2/ C < |rg - (& — 2(D))| = Clrz@y - (& — 2(0)], we get

CHIEI? + &l < Ire - (¢ — z(@)] < ClEL* + il (12.2)
CTHIELP +i&8] < Iryw) - (€ — 2(0)] < ClEL* + &P (12.3)

Write k(¢, 2) = 2&3 with p(¢,2) = (¢ = 2,7 = 2, g —r2)! and

4.2 = (- € =)z ¢ —2)" (e € —2)° =+ € — ).
For ¢ € M, and C, > 1 we have

[t —z@®| = —z1l+1z(t) —z1l £ 1¢ — 211 + Clzz2 — 21
<t —zl+CCAL =2 < Clg -zl

By (6.4), [" — x{| < C|&|. Thus [¢ — z1| < C|&,]|. Therefore, |[¢ — z(2)| < C|&|
and

1P, z(0)] < Cl¢ — 2z < )51,
By (12.2)-(12.3), we have

C
+ lé;-'f |a+b+c+d :

g (¢, 2} < Tl
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It is easy to see that |z’ (¢)| < Clxa — x1| < C|z2 — z1|. Then |3;q(¢, z(1))~ 1| does
not exceed the sum of

Clzz — z1|
(rz - (€ = 2N (rzy - (€ = 2ONP (rz - (& = 20 (rz0y - (€ — 2(0))?|
wherea’ +b' + ¢ +d =a+ b+ c+d + 1. Applying the product rule, we get

9z < Claa—z1] Y. 1€ —2().T —2).re —rza)” .

[I'|=]1]-1
Therefore,

1 Clza — z1]
0y {S T 5 i
q(¢,z(®)  ||gL P+ igp|atbretdt

19, (¢, 2(1)] < Clza—z111(¢L, M1,

By the mean-value-theorem, we get for £ € M, N{|¢' — /| > p1}
A " |, 111! }
||C>,’<|2+ iSf|“+b+C+d+l ||§4|2+ i§£|a+b+c+d

A

||§>L|2 + i$£|a+h+c+d+1

k(§.22)= k&2l = Claa=a1l]

<C'lz2—z1l

3 C'lza — 218/ |
= 24 +b+ct+d+1°

‘lelll ||{>|/<| +l§:|a ¢

Applying Lemma 7.1 with p; = Cy|z2 — zlll/2 <9p =ppand B > —2, we get

I3 < Clzz — z1lpy ' < Clza — 21|12 O

13. Proof of Theorem 1.1

We now prove Theorem 1.1, following a KAM argument in [5]. We restate the
theorem.

Theorem. Let M: r = 0 be a strongly pseudoconvex real hypersurface of class
C? in C" with n > 4. Let w be a continuous r X r matrix of (0, 1)-forms on M
satisfying the integrability condition 9w = w A @ mod dr. Near each point of M
there exists a non-singular matrix A € C Y2(M) such that 3,A = —Aw mod or.
Moreover, if a is a positive real number, M is of class C*? and w € C4(M), there

is a solution A € C*(M); if k is a positive integer, w € Ckand M € CH%, there is
a solution A € Ck"'%(M).

Note that not all solutions have the same regularity. If u is a continuous CR
function vanishing nowhere on M, then u A is still a solution.
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Non-isotropic dilations. The non-isotropic dilation T5: z — (87, 87") with
8 > 0 does not preserve the real hypersurface M. However, it is obvious that it
sends M?® = TS_IM onto M. By abuse of notation, we will denote T} its restriction
to C"~! x R.

We want to show that M can be put in the form (2.1)-(2.2) after a second order
normalization and a non-isotropic dilation.

Let M be a graph y" = |7/|> 4+ 7(z/, x") over D. Recall that M, = M N
{(x")?+y" < p*} and

Dy =a(My) = |, 5") € D: 12+ WP+ 7, x") < p?].
Setr(z) = —y" +7(z/, x™). Define
P(2) = 867287, 8%, rP(x) =877 (82, 8%x").
Then M? = TB_IM is the graph over D% = T8_1D, given by
yn — |Z/|2 +f8(Z/,Xn)-

For0 < § < 1, we have

M) = M N {[x"* +y" < p*} € M° N (8" > +y" < p?).
So Dg def n(Mg) - Ta_le for0 <6 < 1.

In Theorem 1.1, we need a local solution A. By a change of local holomorphic
coordinates, we may assume that 7(0) = 97 (0) = 3°7(0) = 0. Therefore

||r”‘||D(f’2 <€, DjcD’
if 6 is sufficiently small.

Integrability conditions. We will find our solution through a sequence of frame
changes. We also need a small norm of initial w via dilation. Therefore, we need to
verify that the integrability condition is preserved under dilation and frame changes.

_I — JR—
Recall thatfor =3, _, ¢7dz" , we define Oy =3/, 1 <qen Xa@pdz* A
—I . . _
dz’" for Xz = 0@ — rg/rzoz. A direct computation shows that §d 7 "Xz =
Xg =0 — rj_a/rj_naz—n. Thus, T5*5M =0, TS*_. This shows that the formal integra-
bility condition is invariant under dilation, i.e. 3 s0° = W’ A@®. fw = Y o7 dz’

is a tangential (0, 1)-form on M, then 7w is a tangential (0, 1)-form on M 8. More-
over, if w € C*(M), then

n—1
¥ = - i 8 —
Tiw=38) gzoTydz®, lim [ lcapy =0. (13.1)

a=1

In other words, we have achieved the smallness of w via dilation alone.
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We now consider the integrability condition under a frame change. We are
given an r x r matrix of continuous (0, 1)-forms @ on M. We assume that 3,0 =
w A w mod dr. Without loss of generality, we may assume that  are tangential.
The formal integrability condition is that as currents

Inw =0 A . (13.2)
Recall that our goal is to find a non-singular matrix A which solves
ImA+ Aw =0. (13.3)

We will consider only the solution A such that both A and A are continuous.
For any such A, the transformation ® — @ = (IyA + Ag))A‘l preserves the
integrability condition (13._2). Ingleed, differentiating @A = dIyA+ Aw and then
using w = A'OA — A9 A, Ay = w A w, we verify 00 = @ A @ by
OuA—OANIMA=dyAAw+ Adyw =0yAA (A"'DA — A9y A)
+ (@A — A A (A'OA — A9 A)
=OANDA—DOANIYA.
Assume that the matrix w is of class C?. In what follows, all constants, including 8,

will depend on a. For simplicity this dependence will not be indicated sometimes.
However, constants Cy, §, and € do not depend on a.

Proof of Theorem 1.1. We need to find a non-singular matrix A = I + B, defined
near the origin of M, such that

duB + w+ Bw =0.

It suffices to find a § > 0 and a non-singular matrix A® defined near 0 € M? such
that 9 s w® + A%w® = 0. Then A% o Ta_l is a solution to the original equation.

Take pg = 1,0, = 27/=land pj+1 =0 —=0j)p;. Then poo =lim; o p; >
0. We will assume that 0 < § < §,. We want to apply our estimates for P’ and
Q’. So we choose 8, € (0, 1] such that the homotopy formula holds on Mg for
p € (0,1]and § € (0, §,]. For poo < p < 1 we have

”P/(p“Ca(M?l—a)p < CO‘_S||(p||Ca+2(Mg), (134)

where P’ is either of operators P’, Q' in the homotopy formula on M g. We em-

phasize that the constant C, is independent of § € (0, px) and p € (pso, 1]. We

have also absorbed ||r6||ca+2(D24) into C,,, since 7°(z/, x™) = 8§27 (87, 82x™) and
J

7(0) = 87 (0) = 0 imply that

~S ~ ~
||r ||ca+2(D2.) < C||r||cz(D5p0) + 8a||r”C“+2(Dap0) < Ca, 0<d< 8*
J
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Set M; = ng and [ lp;,1.a = |- llcaqa;,)- Wehave Mjy1 C M. Let wg =
T w, restricted on M. On M; we have the homotopy formula ¢ = 9 s P]/.(p +
Q’ngs(p, where P]/. = Pl’wj and Q/j = Q’Mj.

Using 0,500 = wo A wg, we arrive at the equation

915 (Bo + Pywo) + Qp(wo A wp) + Bowo = 0,

where Pj, Q are applied entrywise to the matrices. We use the approximate solu-
tion
By = —Pywy.

Assume that Ag = I + By is invertible. We repeat this procedure and get B; =
—P//.a) ;j and

wj1=0uAj+ Ajo)AT ={0)(w; A w)) = (Pjojw}I — Pjw))~". (13.5)

Here, we need all A; = I + B; to be non-singular on M;. We want to show that
limj o0 AjAj_1--- Agis a solution.
We now estimate || Bjllp;,,,a and @j+1llp;y,,a-

For an r x r matrix B = (bl.j) of functions on M, we define ||B|,q. =

max{||bij llp,a}- If B, D are two such matrices, we have
2 I l [
IDBllp,0 =r“lIDlp,0llBllp,0. 1B llp0 <7 lIBll, 0-

Assume that poo < p < po. We want to show that if || B||, 0 < % then
1Dllp.a < callBllp,ar 0=<a < oo, (13.6)

where ¢, > 1 depends on a,r,n. Let A-! = I + D. We know that D =
> =1 (=1)'B" and

rlBllp.0

ID||yo < ——22
PP = 1 —rlBllpo

< 2r||Blip0,

which is (13.6) with a = 0. Since [ is constant, then
D(z2) — D(z1) = A(z2) ' — Az1) ™ = A(z) "1 (A1) — A(z2) A(z2) ™!
= A(z1) "' (B(z1) — B(z2))A(z2) .

Using (13.6) with a = 0, we get ||[D]yo < Cl|Bllp,q if 0 < a < 1. Assume
that (13.6) holds when [a] < k. Let [a] = k > 1. Applying the product rule to
(I + B)D = —B and multiplying from left by (I + B)~! = I + D, we get

3D = (I + D)(®B)D — (I + D)dB.
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By Proposition A.4 and the induction assumption, we obtain
IDllp.a < Cald +11Bllp,a=lIBllp,1 + 1Bllp.a} < CollBlip,as

which proves (13.6).
Since B; = —PJ/.a)j, by (13.4) we have

—S,
1Bjllossra < €507 lojllpan ek > 1. (13.7)

We want to achieve ||Bjllp;,;.0 < % So it suffices to obtain

Sa

O .
”w]”p/,a = ZVCJ*C = b]v J = 07 17 27 e (138)
a-a

By (13.6)-(13.8), we have || (I + B) ™! lpj.a < 1+1Dllp;.a < 2. Using (13.4)-(13.5)
and the estimates on matrix products, we get

lojsillpyra <2 r2{1Q5 @) Aw)lipira (13.9)

+721B gy 1allwjllpsira} < Choy =3, o
Assume that ||| op,« 7 0. Otherwise the theorem holds trivially. Define
bjv1=Clo; b3, by = llwollpy.a-
By (13.1), we choose a dilation Ts with § € (0, §,] such that wg = Tsw satisfies
bo = ol pp.a < bo-
Thenr; = 5j+1/l;j satisfies

ro = Clog by, rj=2%(rj_1)°

ri/ro=2%ro, rjw1/rj=j/rji-1)>

This shows that rj/r;, and hence r;, b j» converge rapidly, if 130 is sufficiently
small. Specifically,

2/ 2/ -1 7 roJ 2/ —j—1
rigi/rj=(ri/ro)>, rj=ro(ri/ro)" ", bj=bory(ri/ro)” 7.
i A A s 2*-"41 — .
Recall that o; = 27771, Clearly, |lwjllpa < bj < borg < 3= (27%0)) = by,
provided
A 2™ 5a 1
by < s ro =27 rifrg=2%ry < -.
2rckeq 2
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Therefore, we have shown that if w € C% and M € C**¢ then (I + Bj)---(I + Bo)
converges in C*-norm on ﬂDf)], to an invertible matrix Asc. When a = k is an

integer and M € Ck+3/2 or when M € C2 for k = 0, we have

—S,
1Bl pj1k+1/2 < Cro; k”“)j”pj,k‘

Since [lwjllp;, k tends to zero rapidly, it is obvious that B; converges to O rapidly in
CKt1/2 on ND},. This shows that A™ is of class CK1/2,

To complete the proof, we check that 9,5 A% + A®wy = 0. Recall that for
Aj=1+Bj,wehave dysAj + Ajw; = wj1Aj. Thus

a)j_HAjAj_l = (3M5Aj)Aj_1 + Aja)jAj_l
= OypADAj1+ AjOppAj1 + Aj_1wj-1)
=5M5(AjAj_1)+AjAj_1a)j_1.

Inductively, we get 5M5(Aj <o Ag) + Aj---Apwo = w1 A -+ Ag. Taking the
limits, we get F] ms A® + A%wy = 0 on Mgw. When k = 0, the derivatives in the
sense of currents are continuous and the above computation is valid as currents. [

In the above argument, we obtain the rapid convergence of B;, w; in C* norm
in one step when « is finite. One can also establish a rapid convergence of w;, B;

first in C%-norm and then in higher order derivatives. See [23], [5] for details.

Appendix
A. Holder inequalities

The main purpose of this appendix is to present some Holder inequalities on do-
mains in R™. We do not claim any originality in deriving these inequalities. In fact,
we will just modify formulation and proofs of Hérmander [9]. The inequalities
in [9] are for a fixed convex domain. In our applications, we need to allow the
domain D, to vary. Therefore, we will derive them in full details and omit simple
repetitions only.

We say that a domain D in R™ has the cone property if the following hold: (i)
Given two points pg, p1 in D there exists a piecewise C! curve y (¢) in D such that
y(0) = po and y(1) = p1, |y’ (t)] < Cyllp1 — poll for all 1 except finitely many
values. The diameter of D is less than C,. (ii) For each point x € D, D contains a
cone V with vertex x, opening # > C; ! and height & > C!.

We will denote C, (D) a constant C,, > 1 satisfying (i) and (ii).
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In this appendix, by a cone V = V (6, h, v) with vertex at the origin, opening

6 > 0 and height 2 > 0, and centered at positive v axis where v is a unit vector, we
mean

V={eR": v-t>0"Yr—@- -], v-r<h}, (A.1)

where 7| = (1" + - + |tm|2)%. Note that x + V is a cone with vertex at x.
Note that each cone satisfying (ii) contains a ball of radius at least C(D)/C. Let
D1, D, be domains of the cone property, and let V1, V> be cones in (ii) for Dy, D;
respectively. Assume that the vertex of V; is p;. Then D; x D, contains the convex
hull of (p1, p2) and a ball of radius depending only on C(D1), C(D3). Therefore,
D1 x Dj still has the cone property.

For the rest of the appendix, until Proposition A.5, we assume that the domain
D has the cone property unless stated otherwise. The constants in all Holder in-
equalities will depend on m and C, (D). For simplicity this dependence will not be
expressed sometimes.

Let k > 0 be an integer. For a complex-valued function # on D C R™, define

10%ullpo=sup [8'u()l, lullpx = max [[87ullp.o.
xeD,|I|=k 0<j=k
u(x) —u
|u|p.a = sup L((xy)' O<a<l,
x,yeD lx — yl

1 .
lullp ko = max{llullpk, 10" ulpo: Il =k}, 0<a <l

IfA = (aij) is a matrix of functions on D, we define || A||p x+o = max{||al.] D k+al-
We also define

u|pgta = max [0/ ulpg, 0 <a<1.
=k

By (i) of the cone property and the fundamental theorem of calculus
Co 'lulpk < 13ullpo < lulpg, k=1.2...., (A2)

provided that u € Ck(D). It will be convenient to use both |u|p k and 0% u Ip.o-

Lemma A.1. Let D C R™ satisfy (i) of the cone property. Let f be a C' map from
D into R™. There exists a constant Co > 1 such that if | f'— 1| < CO_1 on D, then f
isaCl diffeomorphism from D onto D'. Moreover, ||f_1 —Ilp1 =Clf=1Ilpa.

Proof. Take two points pg, pi in D. By assumption there exists a piecewise C!
curve y in_D such that y (0) = po, y(1) = pi1, and ly' ()] < Cyllp1 — poll. Write
f =1+ f. We have

1 ~
f(p1) — f(po) = p1 — po — /0 V@) y'(t)dt.
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Since || f "Ipo < Co ! then for Cy sufficiently large we get

1
Flpr=pol = £ py) = £ (po)ll = 2 p1 = poll- (A.3)

Now it is obvious that f is a C! diffeomorphism from D onto D’ and that D’
satisfies (i) of the cone property. Let § = f~! —1.Then go f = —f. In particular,
Igllp0 = IIfIp,0, and by (A.3), [glpr,1 < C|fID,1. O

We are ready to derive Holder inequalities. We start with two lemmas in [9]
for our domains.

Lemma A.2. Let 0 < a < b. Let D satisfy the cone property. If lu|p . < 1 and
lulpp < 1then lulp,. < C fora < ¢ < b, where C depends only on a,b and
C.«(D).

Proof. For simplicity, denote |u|p 4 by |u|,. Since the diameter of D is bounded by
some constant C, it is obvious that |u|. < C'|u|~ if k < ¢ < ¢’ < k + 1. Therefore,
it suffices to prove the inequality when c is an integer.

Let V C D be a cone as stated in the cone property. We may assume that
OeV.

If a is an integer, we get |0%u| < 1 on V. If a is not an integer, let P be its
Taylor polynomial of degree [a] at 0. Set v = u — P. Since 8/ P are constants
for all |I| > [a], then |v|» = |u|~ for all ¢ > [a]. Therefore, we may assume
that 3’u(0) = 0 for all [I| = [a]. Now |u|, < 1 implies that [87u| < Cy for all
|7l = [al.

We want to use the mean-value-theorem repeatedly. Let us first look at the
one-variable case. When f is Ck on [0, 1] and lfllo = Il flljo.11.0 < Co, there is
a point ¢ in [0, 1] such that | f'()| < 2Cp. One can divide [0, 1] into a sufficient
number of equal parts and find a point ¢; € [0, 1] such that | f Dt ) <C'for j=
1,...,k.If | fla < 1forsome a € (k, k + 1], we obtain further that || f®|lo < Cy.
Consequently, || o < Cjholdfor j =k, k—1,...,0.

Return to our case. Fix a polydisc A” in V with side larger than C~'. Fix
I with |I| = [a]. Using |3'u| < Co for |I| = [a] and |u|, < 1, by the one-
variable argument we obtain 18707u| < C on A™ for j = [b]—[a],...,c—[a]. So
|0/ul < Con A" for j =c, ..., [b]. If [b] <b, lulp < 1 implies that [3°1u| < C’
on D. If b = [b] the assumption and (A.2) implies [0bu| < 1. Using a path
connecting a point in D to A™ and |8/u| < C on A™ for j=10b]...,c, we get
|8/u| < C" on D for j = [b] —1,...,c. Using (A.2) again, we get |u|. < C. [

Example. Let f(x) = x + x? and D = [0, €]. Then f'(0) = f'(x) — [y f"(t)dt
and

ef'(0) = / £ dx— / f £ di dx = f(e)— F(0) / / () dt dx.
0 0 0 0 0
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This shows that 1 = |f/(0)] < Ci|lfllo + C2llf"llo < 2€Cy + 6¢C,. However,
|C1] + |C3| tends to oo as € — 0. This example demonstrates that in some in-
equalities derived in this appendix, the constants indeed depend on C.(D). For
special domains used in this paper, we will find these constants by dilation; see
Proposition A.S.

Lemma A.3. Let D C R™ satisfy the cone property. Set || - llpa = |l - la- If
O<a<bc=ra+ (1 —Mband0 < A < 1, then |ul. < Clu|}(|luly + ulp)'=*,
where C depends only on a, b.

Proof. The case |ul, > |u|. is obvious and we may assume that |u|, < |u|.. If
|ul, = 0, then u is a polynomial of degree < a. Then |u|. = 0 too for ¢ > a, and
the inequality holds. We may assume that |u|, 7 0. Without loss of generality, we
may assume that |u|, = 1 < |u|.. If |u|, < 1, Lemma A.2 implies that |u|, < C
and the inequality holds. Therefore, it suffices to verify

jule < Cluly ™, if lulg = 1 < Julp, (A4)
We first assume the inequality for integer ¢ and verify it for non-integer c¢. Set
[c] = k. We have A = 2%2 and 1 — A = ;==. Depending on whether a, b are in
[k, k + 1], we have the following cases.

Casei)k <a <c<b <k+1. Sincec = da+ (1 —A)bthenc —k =
Ma—k)+(1—=X)(b—k). Consider first the case a = k. Thenc—k = (1—-A)(b—k).
Let v = 8'u with |I| = k. Hence

1-2
PR AR )
= 2%liglvl,—_y

[v(y) — v(x)]
ly — x|ek

v(y) —v(x)
ly — x|P=k

Aol 1—=2 Ay, 1 1—=2
< Cllul|d”ul, "y < Clulilul,™,

= [v(y) — v()|*

where the second last inequality is obtained by (A.2) using k = a > 0. Therefore,
lule < C|u|ﬁ|ul}j_k. Assume now thata—k > 0. Thena—k, b—k, c—k are in (0, 1].
Computing the Holder ratio gives us |v|.—; < |v|f;_k|v|ll7:2, ie. |ul. < |u|2|u|ll7_k.

We emphasize that we have proved |u|. < C |u|§ |u| é_'\ (and hence (A.4) for case
1)) without using any condition on |u/|,, |¢|p, |u|. other than that on a, b, c, k.

Caseii)a < k < c <b < k+ 1. We get Jul, < Clu|\" 770070 1y
case i). By the assumption for the integer case (applied to triple a < k < b) we
obtain

jule < Clul, == (A5)

Eliminating |u|; from two inequalities gives us (A.4); indeed

k—a b—c+c—k_c—a
b—a b—k b—k b-a




170 XIANGHONG GONG AND SIDNEY M. WEBSTER

Caseiii) k <a <c <k+1 < b. We have |u|. < C|u|,(:r_1“)/(k+l_“), by case i).

The assumption on the integer case (applied to triple a < k + 1 < b) gives us

k41— b—
lulir < Clu|fH10/C=0, (A.6)

Eliminating |u|x41 gives us (A.4).

Caseiv)a <k <c¢ < k+ 1 < b. Then (A.5) and (A.6) are still valid. By i), we
have [ulc < Clulg ™' ~¢|ul{7}. Using (A.5)-(A.6) and eliminating |ulk, [u|it1 gives

us (A.4).

Finally, we prove (A.4) when c is a positive integer by repeating an argument
in [9].

Fix xo € D and let V be a cone in D with vertex xo, height and opening 1/C..
Since V is convex, for x € V and 0 < € < 1 we can define

us(y) =u((l —e)x +e€y), yeVv.

Then |u v,y < €?|u|p and lu$|v.a < €. Since |u|, > 1, there is an € € (0, 1) so
that € = pu = €®|u|;. Now, apply Lemma A.2 to the domain V and the function
/x’lu;. For any multiindex / with |I| = ¢, we have

€187 u(x)| = 87us (x)| < Cop = Co(e)*(e®|ulp)! .

Canceling €’s shows 197u(x)| < Colulé_A for x € V. Since Cy does not depend
onxp € V, we get ||dullp < Colul},’A on D; by (A.2), lul. < C||0ullo and (A.4)
follows. [

Proposition A.4. Let D C R™ have the cone property and denote || - ||p.a by || - |l4-
Leta, b, aj, bj be nonnegative real numbers.

@) Nullratra-np < Capllultlull,™ for0 < < 1.
(i) fluvlla < Callulolivlla + llullallviio)-
(iii) Suppose that D; C R" has the cone property for j = 1,...,k. Let aj,c;j
be non-negative real numbers, and let (by, ..., by) be in the convex hull of
(ai,...,ar)and (c1,...,cr). Then

k k
lullp;a; + [ [ lullpyc; ) -
=1 j=1

(iv) Let f be a map from D into D' C R". Assume that D' has the cone property.
Then

k
lujllp;b; < Ck+lal+ibl+Ic| (
L

J

J

luo flla < Callw'llpr a1l £1lg + NIl oll £ lla=1) + llullpro, @ =1,
luo flla < € min(llu’ll prol flas el pr,all £716) + llull o 0, 0<a=1
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(v) Let f =1+ f be a C* map from D into R™. There exists Co > 1 such that if
|f'l < Cy" then

If~' =1l tpya < Call fllay a=>0.

(vi) Let f = I + f be a C' map from D into D' C R™ with | f'| < Co. Assume
that D U D' is contained in a convex domain D" of the cone property. Then

luo f—ulla < Calllt'llp7.all fllo + lu"l o7 oll flla), @ = 0.

Proof. (i)-(iii) are proved in [9]. The proof for (iii) is for D; being the same do-
main. In fact, by (i), one has log ||uJ||D b <ilog ||uj||D aj+(1—2)log ||u]||D it

log C for all j. Sum over j = 1, k and take exponentlal on both sides. The
convexity of ¢* yields (iii). For O 5 a < 1, two inequalities in (iv) are verified
directly. Assume that (iv) holds when a is replaced by a — 1. Assume thata > 1.
Then (o f) =u'(f)f'. Forboth cases of 0 <a—1 < landa—1 > 1 we obtain

o ) lla=1 < CUL (Hlla=11lf llo + N’ (Hlloll f la—1)
<1l a—1 1 F NG + I llol f lla=1),

where ||u'|l4—1 = 'l p 4—1. Note that for the second inequality when a > 2, we
have used

H*

I T la=211 f o < Cllllg™" Ml ll; l1||f||0 11l ‘1||f llo
< C' U lla=11LF11G + e loll £ la=1)-
This gives us (iv) as [lu o flla < llullo + I o ) lla—1.

(v). It follows immediately from Lemma A.1 when 0 < a < 1. We now prove it
for a > 1 by using a variant of counting scheme in Section 2. Define

Mty = 3 p(fHaftee i, ji=1-120. (AT
Jittji<k

where p(f’) is a polynomial in (I + f/)~! and f’ and it might be different when

it reoccurs. Let g = f _‘~and g=f1-1 Let 1 denote the identity matrix. We
have g’ = —(1+ f)" ' fYog,ie 8'g = (0" f) o g for |I| = 1. Inductively,
/g =@0""Pog. 1I=z1. (A8)

By Lemma A.1, we have §|y1 —yo| < Ig(y1)—g(yo)| < 2|y —Yol- Letk = [a] -1
anda = a —k — 1. Thus [|gllp/, 1441a < Cllfllo +C X 0" flla. Now

Ry PR Dol [T TV TR T

it tji<k
+ ||f||1+,~1---||f||1+,-i+a---||f||1+j,}.
1<i<l

By (iii) we obtain [|Z]| pr. 1142 < 3. CULIE +UFIONFlithta < C'Nl Flla-



172 XIANGHONG GONG AND SIDNEY M. WEBSTER

(vi). By convexity of D", we have u(x 4+ f(x)) —u(x)= f (x)- fol u'(x +1 f(x))dr.
Consider case 0 < a < 1. We have

1
‘/0 W+t f(y) —u'(x+1 f(x))de| < max 'l pr,aly —x+1(f ()= f N

< Clulpral+ 11 flip,0)ly —x|*.
By || fll1 < C, one sees easily that
lu(I + f) —ulla < CUL Iprall Fllo + 114 Ilp7oll Flla),

which is (vi) for 0 < a < 1. Assume that the above inequality holds when a is
replaced by a — 1. Assume that a > 1. We need to estimate the || - ||,—; norm of

By uo(I+f)—u) = @uu)yo(I+ —daut »  @yu)oI+f)-d.:f/. (A9)

I<j<m
By the induction assumption, we have
1@yiw) o (I + f) = dgiulla—r < C18%ull pr.a-1ll Fllo + 19%ull proll flla—1)-

We need to put ||32M||D”,1||f||a—1—l < [t pr.1+1 ||f||a—1—z into the desired form.
By (iii), we get

'l o7 a1l flla—1-2 < CAL ol | pr.a + 1l o1l f 1la)- (A.10)
We now treat Ehe term in the sum of (A.9). Se~t lu'lly = |4l pr.p. By (iv) we have
1@y ) + Flla—1 < CUlulla—1 + 1’111 flla=1) + llu’[lo. Thus
1@y 5) (I + ) 3 flla1 < CCl a1 + 1Tl Flla=D N+ T Toll £lla)
< C'(u la=tIF 1+ e I Flla=1 + ' lloll flla)-
We can put the first two terms in the desired form by (A.10). O
Two inequalities in the next proposition are used in estimating P and Q.
Proposition A.5. Let D be a convex domain in R™ satisfying

By CD C Byyp, 0<p=<3.

Letay, =0forO<a <landay =afora>1. Let| - |la =1 "lcep). Then
m m
| TTws| = Coco D Nutslla [T il
=1 ¢ j=1 i#]

Jj=1 Jj=1

m m m
p° [T lella; 40, < Cavceo | [T 1illasa; + [ 1ejllasae; ) -
j=1

where e = (b1 +dy —[d1])+- - -+ (bm+dn—[dn]), aj, cj, dj are non-negative real
numbers, and (by, . .., by) is in the convex hull of (ay, ..., ay) and (cy, . .., ).
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Proof. The first estimate is trivial if @ < 1. So assume that a > 1. We know that
D is convex and B/, C D C B,,. Thus D has the cone property if 1 < p < pp,
where the cone of fixed size with vertex at x € D can be found from the convex
hull of x and B,/¢,. Assume now that 0 < p < 1. Consider the isotropic dilation
Sp(x) = px. Then, D, = S;l D has the cone property. Since 0 < p < 1, we have

pllulla < lluo Spllp,.a = llulla. (A1)

By Proposition A.4 (ii) we obtain

m m m
| |”.iH < Hl |uj°SpH =C E lujoSylip,.a | | lu; o Spllp,.0-
; a . Dy.,a - P

0

Using (A.11), we get the first inequality easily. Let /; < [d] be any non-negative
integers. By (A.11) and Proposition A.4 (iii), we get

m m
l, .
p¢ [T 005 ujllo;va;—1an < [T 105 2;) 0 Spllp, b +d;-1a51

j=1 j=1

m m
<C (H 1"1) © Syl D.ajra;—tay+ [ [ 11 u)) Sp||D*,c,.+dj_[dﬂ>
j=1 j=1

m m
C (l_[ Noejllij+a;+d;—1a;1 + l_[ ||Mj||l,+c,+d,—[dj]>

j=1 j=1
m m

<C (T 0uillajra; + T Nujllajre; |-
j=1 j=1

Summing over all non-negative integers /; <|[d ] gives us the second inequality. [

IA

One can also obtain other inequalities via dilation. The inequalities below are
not directly used in this paper.

Proposition A.6. Let a, be as in Proposition A.5. Let p, D, || - || be as in Propo-
sition A.5. Let a, b, aj, bj be nonnegative real numbers.

Q) P lllrara-np < Capllulllllull,™ for 0 < & < 1, where ¢, = ra + (1 —
A)b.
(ii) Let f be a map from D into D' C R". Assume that D' is convex and B - » C
0

D’ C Beyp. Then

plluo flla = CacopUlt'llpr a1l F1G + "l proll flla=1) + llullpro. @ =1,
luo flla < Coomin(llullp 11l fllas lullprall FIIT) + llullpro, 0=<a <1
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(iii) Let ays = 0for0 < a <2and aw = a — 1 fora > 2. Let f be a C* map
from D into R™. There exists Co > 1 such that if | f' — I| < 1/Cy then

o N =11 ppya < Call f = Ila-

(iv) Let f = I+ f be aC' map from D into D' C R™ with | f'| < Cy. Assume that
D U D' is contained in a convex domain D" satisfying Byjc, C D" C Be)p.
Then

p*luo f—ulla < CacoUlt'lprall fllo + llu'll o7 oll flla)-

ProofL We may assume that 0 < p < 1. Let u,(x) = u(px), f*(x) = p~ ' f(px) =
x 4 f*(x),and D, = p~'D. Then D has the cone property.

(i) is immediate, by applying Proposition A.4 to u, and by using (A.11).

(ii). The case 0 < a < 1 is verified directly. Assume that a > 1. Applying
Proposition A.4 to u, o f*, we get

s o f* I pssa < Calllduslipga—1 Il f* D, o+ 10wl oy oll £ Desa=1) + el g0

Since f*(x) = f'(px), then ||f*/||D*,b < ||f/||D,b for b > 0. By (A.11), we also
have

s o f*lpa =l o f)oSplip,a = plluc fla,
19uxll Dy a—1 = lP@W)xll D) a—1 < plldulla—1, a =1.
Simplifying gives us (ii).

(iv). Let f = f — I. The case 0 < a < 1 is verified directly. Assume thata > 1.
Then

lus o f* = uslpea < CALF*Nallduslipyo + 11 F*lolldusl pr.a)-
As in (ii), we can get (iv) by (A.11) and

1 *Ipra=p""1FoSelnra <o I fla

(111) (A dilation would give us a4 = a.) Letg = f~! = I + g. We have

= —fogand 3 = —{f A+ f) Yog. ByLemmaAlCllx—x|<
|g(x’) —g(x)| < C|x’ — x|. We get immediately

121 ¢pra < Cllflla; 0<a<2.
Assume that k > 1. Recall that by (A.7)-(A.8),
0= 3 (p(N 0" flog, k=IKI=120, ji=|Ji—120.
Jite i<k

Set 1 +k = [a] and @ = a — k — 1. Computing the Holder ratio of (A.8) and
applying Proposition A.5 with d; = 1, we obtain (iii) from

K =~ —j1— —k—ay F
1052le <€ Y oI ke < €07 N f gkt H
Jite i<k
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Remark A.7. If all norms in Proposition A.6 are replaced by the scalar-invariant
norm || - ||*, defined as

”u“*D,a = “M o Sd”Sd_lD,a
with d being the diameter of D, we can take ¢, = a4 = a4+ = 0 for the proposition.

For the use of scalar-invariant norms to derive estimates on the Bochner-Martinelli-
Koppelman formula for balls in C", see [20].

B. The Henkin homotopy formula

Recall notation 2/ = (z1, ..., Zn—-1), 2 = (Z/, z") and x = 7 (z) = (Rez, Im?7).
In this appendix, we will derive the following version of Henkin’s homotopy
formula.

Theorem B.1. Let M C C" be a graph y" = |7'|>+7(x) over D C R**~!. Assume
that0 < p < po <3 and

Dy C D, 7(0)=0, 87(0)=0, [Fllp2=1IFllp,2<1/Co  (B.D)

with Co sufficiently large. Assume that 0 < p < po < 3. Let ¢ be a continuous
tangential (0, q)-form on M ,. Assume that 0y is continuous as currents on M,

and admits a continuous extension on M ,. If0 < q < n — 2, then on M, and as
currents

¢ =dm(Po+ P)o+(Qo+ QDdyg mod or,
where Py, P1, Qo, Q1 are defined by (3.5).
Recall that M, = M N {z: |x"|>+y" < p’}and D, = {x € D: [x"]* +y" <
0%}, When M is strictly convex, see Henkin [7] for the proof. Our proof will

follow [21] via Stokes’ theorem.
Setr = —y" + |z/|? + #(x) and define

F<c,z)=rz.<z—z)+% Yo raa@l =t -, B2

1<j,k=<n

Si(x) =7m{f e M: |[F(¢, 9l =1}, S/ =n{zeM:|F( 2| =t}
Note thatr;;;, =777

LemmaB.2. Let n > 2. Let M be as in Theorem B.1. There exists C; > 1
satisfying the following.

() If0 <t < (po—p)*/Crandz € M,, then S;(z) and S;(z) are compact subsets
of Dy,. B
(i) Assume that # € C3(Dp,), z € My and 0 < t < C; ' min{(oo — )% (1 +

||F||p0’3)_1 }. Then S;(z) and S;(z) are smooth and of classes C3 and C', respec-
tively.
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Proof. Set € = ||| 5y,2. (i) By Lemma 5.1, Dy, is convex and dist(d D, dD,) >

(po — p)/C. On My, x My, Ir; - (¢ —2)| > | — z]>/C by Lemma 6.3 and
7.i.x| < Ce. Hence, (i) follows from

7z
|F(¢,2)| > |¢ —zI*/(2C). (B.3)

(ii) Fix z € Mp,. Let ¢! = —2ir;(¢ — z). By Lemma 6.1, & = (Re g, Im¢)) are
coordinates of M, and

£ =Re(=2ir;- ({ —2) =£" —x" +2Im(Z - ¢) + Im{27, - (¢ —2)}, (B4

ny =Im(=2ir; - (¢ —2) = ¢lP + Y RIF(E, x)E], (B.5)
[11=2

where Rﬁk is defined by (6.5). Write u = Re(—2i F (¢, z)) and v = Im(—2i F (¢, 2)).
We have

—2iF((,2)==2ir; - (C =) —i Y rya@! =)k =2,

1<j,k<n

) =& i), aE) =Y ajo W (6. nEl (B.6)

[1=2

vE) =P+ 0, TG =Y bro¥ G nE, (B

[1=2

where |a;| + |b;] < C||Fllp,2 < C'e and [8'a; (g, 2)| + 10'b1 (£, 2)] < ClIF |l p.3-
Suppose that |F' (¢, z)| =t and

Y201l g3 < 1/Co (B.8)

and Cy is sufficiently large. To show that S;(z) is smooth, we need to verify that
des gn(u? +v?) # 0 when u? 4+ v? = 1. By (B.3)-(B.4) we know that

£ —zl/C < |&] < Cl¢ —z| < C't'/2.
By (B.3) and (B.8), we obtain | — z|||F]| 5,3 < 1/Co and
0] +10'8] < CUIPllp31¢ — 21> + €l —2]) < C'(Cy " + )&,
Assume that dg/ en (u? 4+ v?) = 0. Then
& )1+ ign) +vvgr =0,  uiig + v(¢] + Ugr) = 0.

From the first identity we get [£"| < C(li| + |v]) < C'(|¢|? + |&"|%). Therefore,
fort < 1/C, €8] < Cl¢l*. Now, [v| > [¢L> — Ce(IgL1> + €717 > %|§>{<|2 and
lu| < C|§>|’<|2. By Lemma 5.2, |8$1*§| < C, and by (B.7) and (B.8),

1Ol < 1201/20 18l + Vel = 1841/2,
0P /4 < (0@ + )| = luiig ] < CIELIP (e + Co DI
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Hence ¢, = & = 0, when Cy 1, € are sufficiently small. This shows that t = 0,

a contradiction. It is clear that for a fixed z, u% + v? is a function of class C? in
(¢’, €™). This shows that S;(z) is smooth and of class C>.

For a fixed ¢ € M, (¢, &") still form a coordinate system of class C? for M.
We have the same formulae (B.4)-(B.5), only to vary z € M,,; see Remark 6.2.
Thus (B.6)-(B.7) are still valid, where & is fixed and z varies in M,,. The same
argument shows that S/(¢) is smooth and of class C'. O

Let us recall from Section 3

(re —ry) -dg Ary-dE A@cder)" 279 A (0, ALY
(re - (L —2)"174(r; - (¢ — 2))9H! '

+— _
QO,q -

The following computation is essential in Folland-Stein [3]. See also Romero [17].

LemmaB.3. Letn >2and0 < g <n — 1. Let M satisfy (B.1) and 7 € C3. Let
F (¢, 2) be the Levi polynomial of r about z € M. Let ¢ be a continuous tangential
(0, g)-form on M. Then

2mi)"?
lim o) A QY76 2) =

¢(z) mod 9r(z), (B.9)
=0 J|F(¢,2)=t.ceM 2

where the convergence is uniformly in 7 on each compact subset of M.

In the lemma, |F(z, -)| = t} is oriented as the boundary of the domain |F(z, -)| < ¢
in M on whichdV =d&g' Adn' A--- Adyp*~! A dg" is the volume-form.

Here is an outline. Following [3], we will use the Levi polynomial F (¢, z) to
define new coordinates of M near z and compute each term in the kernel. On TZI’OM
there are two quadratic forms 7 = Zlgj,kfn rzjz—ktj?k, A= Zlfj,kfn rzjzkfjtk.
We will express the kernel in # and A, with error terms. When we compute the
residue, the error terms can be removed via non-isotropic dilation. This gives us a
limit kernel (see (B.19) below) on a non-isotropic sphere. Roughly speaking, the
limit kernel is expressed in 4 and A, but not in A. For latter purpose we will use
—2i F (¢, 2), instead of its linear part —2ir, - ({ — z), as part of coordinates. Without
A, we remove A in the limit kernel by averaging. By a linear transformation, we
reduce £ to the identity, and compute the residue.

CHANGE NOTATION. Let ¢, = ¢’ — 7/ and

¢l =—21F (. 2)==2ir;- (-2 —i Y Fuyu! —2)c* =275, (B.10)

1<j,k<n

Then near z € My, ¢,, &) form coordinates of M,,. We will modify some earlier
computations where the approximate Heisenberg transformation is used.
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Applying the Taylor formula on convex domain D,, x R and then letting ¢, z €
M, , we obtain

r@Q) —r@=2ReF, )+ Y r 5 —Hh-H+EE,2),
1<j,k<n

E¢ 2)=0( =7, " —xMD, [0'EQ DI <CIFllpysl(¢" — 2/ £ — x|

With z € My, the equation r(¢) = 0 becomes

—mi 4+ Y s ==+ E,2) =0,

1<j.k<n

where ¢, — z,, With ¢’ — 7/ = &,, is a local solution to (B.10). Replace ¢ — z by
the solution expressed in ¢,. Solving for n7 from the new equation shows that for

(54 60) € (M)

= > heglT o) + OUEN L + 151, (B.11)

1<a,B<n

Write A(¢,,&") =o(k) ift_kA(tg;,tzgf) tends to zero uniformly for ||+ |§/| < 1
and small |¢|, where A is a function or differential form. Write A(¢,, &) = O (k)
if |t_kA(t§>L,l‘2$,f)| < C. Thus ¢ — 7' = 0(1), ¢! = 0(Q2), d&, = O(1) and
d&§; = 0(2). By (B.10)-(B.11), ¢" — 2" = —% - ¢, 4+ O(2). The Levi matrix
(hyp) at z is determined by :

3o ra@l —hHEE—F = > hgeT o). (B.12)

zizk
1<j.k<n 1<a,B<n

Explicitly, we have

g I T Vg
h—:]” ——r,,—nz—'ﬂ—ir _+rn_nz_.z- B13
7] z97P 7%z rar Fon 7nzB "z Fon T ( )
We also have the holomorphic quadratic form
3o @ =2 == Y At +o. (B.14)

1<j.k<n 1<a,B<n
Here Agg = Apy. Seth = (h aB) and A = (Agp). To simplify notation, we define
=7 —B
hELTD = > hgllTlh . ACLED =Y Awptlel
1<a,B<n 1<«a,B<n

We can write

B h(g), T = h(g),dL)), 3, AL, L)) = 2A(dL), &)
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We will need to express the kernel in 2 = (h aE) and A = (Agg), but not in (Zaﬁ).
This will play a crucial role, when we eliminate A later via averaging.

For the denominator of the kernel, using (B.10)-(B.11) we get
2ir- (G =) =gl i Yy rua@! =2t =2 (B.15)
1<j,k<n
=& +i(h(CL &) + AL, 4)) +0(2).
Usingry - (§ —2) =rz-(§ —2) + (rg —rz) - (£ — 2), we get
—2irg - (§ —2) = =2ir.- €= =2 Y ryu@) =t -5
1<j.k<n

—2 Y r @ =)=+ o)
I<j.k=n

= —2ir, - (¢ —2) — 2i(h(&}, T + A(LL. &) +0(2)  (by (B.12), (B.14))
=& —i(h(g, £ + AL ¢)) +0(2). (by (B.15))
We arrive at the basic relations
—2irg - (¢ —2) = & —i(h(g), &) + AL, ¢)) + 0(2), (B.16)
=2ir, - ( —2) =&} +i(h(5}. T + AL, &) + 0(2). (B.17)

We now computer the numerator of the kernel. Using the first-order expansion of
r¢ about z, we get

(re—ro)-dg= Y |ryp@ = +r 2@ =)+ 0@)}de/

1<j,k<n
1 o .
=% ) =5rz,-zk<¢f—zJ)(gk—z")wz,-z—k(gf—zf><;k—zk>}
1<j.k<n
+0(2).

Note that for fixed z, { — ¢, is holomorphic. So we can switch the above d; to 9,
and then restrict it to M, which gives us

(re —ry) -d¢ = h(d¢,, £)) + AL, ¢) + 0(2). (B.18)

Recall that &' = —2ir; - (§ —2) =i Y. 1< pan Toick (€ — 2)) (% — 25). Applying
0 gives us

—2ir; - d§ = 0¢ {§:+i Z I’ijk({j —Zj)(é'k —Zk)}

1<j.k<n

=8¢{Cf+i > Aaﬂgf;ero(z)} by (B.14)

1<«,B<n

=d¢! + 2 AL, L) + 0(2).
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Recall that z is fixed. So on M we have

9 0;r = 30r(g) = 09 { Yo ora@ =k —F o)

1<j.k<n

:53{ > haﬂgfg_*ﬁ}—i—o(Z) by (B.12)

1<wa,B<n

= —h(d¢}, d¢]) + 0(2).

On M, dr,j =03 yr, modgr(z) and dr =Z"_1( T izh — :n z/z )dz mod 9r ().

Recall that ¢" — 2" = —r5'ry - ¢/ + O(2). Thus d¢" = —= . dgl + O(2).
Therefore, )

— r=p _
@r)nde =Y (res— frzazn)dzf’ AdLE + 0(2)
Zn

1<a,B<n

r=g _ r,a —
- Z (rZ”Z'B — = rznz’l) p < o mod Jr (Z)
rzn rZ"

1<a,B<n
Looking at (B.13), we see that
(dr;)Ad¢ = —h(d¢),dZ)) + O(2) mod ar(z).

We apply the non-isotropy dilation 7;(¢., ") = (t¢., t>£!") and summarize the
above as

T 2ir - (0 — )} = EL — iR, ) + AL ED) + oY),
T =2ir; - (0 — )} = & +i(h(g). I + AL 1) + o(t?),
T (g — 7o) - dE) = h(dg], T) + Adg], &) + o),
12T (<2ir, -d¢y = d¢l 4+ 2i A(de), ¢ + o(t?),
TH0cre Ade) = —h(dg), dg)) + o(t?),
17T 0,r,AdL} = —h(dE), dZ) + O(r) mod 3r(z).
By (B.10) and (B.15), the subset of M defined by 2|F (¢, z)| = ¢2 has the form

§,(0) = { (€L &0 18+ ih(eL, TD + o) = 2]

Then we have a non-isotropic sphere

tim 7,7 (5) = { L. €0): 182 +in(cl. Tl = 1] £ 5.
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Set N (¢, &) = &1 +ih(L,, 5*) AsttendstoO, r9T* sz)_q) mod 3r(z) converges
uniformly in a neighborhood of S to . Here Q is

(h(dg),C)+ AL, )AL+ 2:A(d;*,;*))Ah(d<;*, dg)ra- ZAh(dg“*,dz/)‘f

@i N T NI 1 =N Ay (N §4A§4T)q+l(B 19)

Here N, = N, (¢, €. Note that except at the origin, the above form is smooth in
the (¢, &)-space. Therefore, for ¢(¢) = Z”l:q ¢7(§)d?1

/ v naf; = [ P (L ED) A 7 (C(El £, )
2F (§.2)|=2 (G18ES (@)
=/ Lo T leeel e Aeg e en, o)
CLEDET  Si(2)

=> sr(z)/ T {d§* Ny (L 8D, Z)} mod 9r(2).
*S*)ET S[(Z)

171=¢
We obtain
. _ —] ~ _
lim ¢(§)A95f,, (E,z)zz W(Z)/dii ALy, &, 2) mod Or(2).
=0 21F@.2)1=2 = S

Return to 5, defined by (B.19). We are ready to remove A via an averaging. By
(B.1), |A| is small. Bxpress (1 — iN, ¢/ A¢z/T)~0=a=D(1 + iN¢lAg/T)~@+D

. .o—=—1 .
as a convergent power series in N, ¢/ A¢T and N '¢/ Az, Note that N, (&) is
invariant under the rotation eg: (¢.,£") — (e%¢/,&"). Using |I| = g, we can
verify that

A D! En L L St gn
dg, /\Q(C*,E*,Z)Zz— do dgy NG, 8, 2)
(¢1.6es T Jo (¢1.E8)€eqS
1 2

do / edel A )
wEX)ES

/ / eHde]’ A Q)do.
1EMes Jo=

=1~ —1
Therefore f(g;,s:!)es dcl AQ(¢g,, &l 2) = f(;;,s;’)es del AN, &, z), where

“ o Jo

dc/hT] AdEl Ade AT Y472 A (dE) A hdZ )
—@2i)! =N N Eg NI ()

Qg & D) =



182 XIANGHONG GONG AND SIDNEY M. WEBSTER

In eliminating A, we have used the fact that there are no terms aag_*ﬁ in (B.16)-
(B.17). ) A
Take a linear transformation ¢’ = U(¢)), §&" = &I such that

h(g, G =P, ¢ =&+l
Let 2 = U(z'). Under the new coordinates and on |£"| = 1, Q/(¢L, £, z) becomes
(& - dE') AdE" A (dETAdEY' 972 A (dE' AT

_(2l')1—n (E—n)n—q—l (En)q—i-l
= (- dEy A" AdE ALY I A (dE A

Q(E/’ éna 2/) =

Here

Gy = |7 T =2 = )TIE TR =g £ 1,
7 e log ¢", n—2q=1.

Note that Im ;:” > 0 and hence M(E”) is smooth and single-valued on |E”| =1.To
remove the differential on , we apply Stokes’ theorem and get
o et S F B Ml Al AdE—2 & (A
cgd? = | d¢’ AN -de)Y ANdu(C™) A (dEAdE) A (dE'AdZ)
[£m=1

~ ~ ~ ~I n _
= —/A (" AdEY ™ A dS A (dE AR
[gm=1

Now, the differential form is a multiple of the volume-form on C"~! (the Z‘ '_space).

The projection from |2"| = 1 to the ball |E’ | < 1 is two-to-one, branched over
I'] = 1. Recall that dV (¢) = dE' Adn' A---Adn"~ ! AdE" defines the orientation
of M and (¢',&") — (&, &F) preserves the orientation. Since S: ("] = 1 is

obtained via the dilation of the boundary of |F(z,-)| < t, S must be oriented as the
boundary of |;“ | < 1 on which d V({) is the volume-form. After considering the
orientation, we conclude that

—I A A Ay R =~ T
cqd? =/|A I(M(Kf)—ﬂ(fi))(di/AdK')" TN Ade A (S AR,
S
Here dV (') = d&' AdH' A -+ Adf"~ ! is the volume-form on the ¢’-space, and

e (R b N | E S § R T W e S e o

To rewrite the integrand, introduce variables § = (&1, --- , &;), n, x, y so that

~1 _ ~ =~ — . A o= . .
dc’ :dé‘l, dt'Ad¢’ = dEAdE + dnAdn, d{l/\dﬁ/:d%'/\df—i-dn/\dy.
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Then (d€ AdE + dnAdi)"—4=1 A dE' A (dEAdT + dnAdy)? equals
(dnAdi)" 9"V A dE' A (dEADT + dyAdy)!
— (dnAdT)"™ 9V AdE" A (dEAdT)
= (=D9(dnAdn)" 97" A (dEAE)! A dX!.

The last term equals (—1)7 (”q—l)’1 (dE AE + dnAd)"~! A dx!. Therefore
A_/l_ q n—1 - on on 21 gran—1 "_/[
cqdz” = (=1) q o ](u(c_)—u(§+))(d§ NG AdZ
'l<

We now compute c,. Using the polar coordinates, we get
n—1\" o N ~ N
Cqg = (—1)"( q > (n — DI(=20)" 1'/: (D) — u(E)avE
lg/1<1

= /Ol(u((l Y2 iy (1 — Y2 i3 gy
N ﬁ riO P2 ((1 =Y +ir?) — p(=(1 = rH2 4 irh).
Note that the last identity is obtained by integration by parts. Here
2=l
T -2

n—1\""
Cq = (—1>q+‘( ) (n = DU=2)""op1, o
q
Letting 7> = s and z = (1 — s2)1/2 4+ is, we get

~ 1
¢ ne )
= gy ¢ e = i)

éq el —2i)"~ e,
=G I du@z) = 0 %
4n—1) m:l(m) W =0T it

(Im Z)n—lzn—Zq—ZdZ'
A simple residue computation yields ¢, = %(Zm' )" for 0 < g < n — 1. The proof
of Lemma B.3 is complete.

We need the following lemma from [7], where |F (¢, z)| = t is replaced by
|¢ —z| =t and only r € C? is needed.

LemmaB4. Let1 <qg <n — 1. Let M, py be as in Lemma B.3. Assume that r is
of class C*. Let ¢ be a continuous (0, q)-form on Mp,. If0 < p < ppandt > 0 is
sufficiently small, then on M, in the sense of currents and modulo or (2),

/F(;z)» PO NIy (D) = (_l)q_lgb/ &) A Qg4 (2.

F(¢,2)>t



184 XIANGHONG GONG AND SIDNEY M. WEBSTER

Proof. For the convenience of the reader, we reproduce the proof in [7]. Since
r € C3, for t sufficiently small, both integrals are continuous on M - To verify the
identity in the sense of currents, let i/ be a smooth (n, n — 1 — g)-form with compact
support in M. Interchanging the order of integration, we have

1(2) :/ / P& N0, )6 D AY()
zeM JF(¢,2)>t

/; M/F(g ) #(0) A3 sz)_q (&, 2) AY(z)  (by Fubini)
€ z)>t

/zeM /F(; D>t Y@ A9 Q(0 q— 1)(5’ 2) A ().

Applying Stokes’ theorem yields
I(z) = (-1 / DY@ A Q)& D) Ae()
ceM JF (2>t
+ (- 1)‘/“/ / V(@) AQ, (€D AE)
teM JF(¢,2)=t

/CEM /F(g >t v(E) A Q(O q- n& DA 0.9 (2)

+<—1>q+1/ f 0O A Q1D AV Q).
teM JF(¢,z2)=t

Interchanging the order of integration in both terms yields

I(z) = / / fﬂ(f)/\Q(Oq 1)(§,Z)/\5zW(Z)
zeM JF(;,2)>t
+ (= 1)q+1/ / W(;)AQ(Oq 1)@" DAY ()
zeM JF(¢,2)=t

- /z‘eM /;q; >t P& A Q?(_)_q 1)@" FIIAN 5210(2)

Here the second last term vanishes by counting total degree in ¢, which equals
q+2n—q—1>2n-2. O

Asin [21], the above two lemmas can be used to derive the Henkin homotopy
formula for (0, g)-forms on M, via Stokes’ theorem, when r € C3 satisfies (B.1)

and ¢ € C'(M,,). Here are the details. Let M'(z) = M,, N {¢: |F (¢, 2)| > t}.
We will use 5;&2?5_[1) + 51952) =0for{ #zand 1 < g <n—2;see [21]. For
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Z € M, and ¢ sufficiently small,

() ANQG (£, 2)
/aMf(z) 0.0
= ER7 NS —1)? ADe Q2
'/MZ(Z) 4% ©,9) + (1) /M’(z) (P(C) £34(0,9)
= B0 AQET (€, 2) + (=D e N QLT (. 2)
Mo ©0.9)'% 234(0,g-1) 50 %)

M'(z)

Using Lemmas B.3-B.4 and letting + — 0, we obtain, modulo ar(z),

/ PR (6, 2) = cogo(z)+/
My,

e AQET +5b/ e(OAQE
My, ¢ 0.,9) " 0,q—1)

P0

Now assume that 0 <_ qg < n—2. Then —Q?(‘):I) = 5; Q(()(fq_) —I—ng(()Jq__l); see [21].
We get that modulo ar (z)

AQ (e,
/BM,;O @) (o’q)(f 2)

= _/ @(¢) /\5{9?8_4_) _/BM (P(é')/\gzg(()(;i:q__l)
o o

0 0

= (=1 fa @) A Qi — (D70, /8 0 Ay
0 0

Therefore, modulo 9r(z) and as currents,

cocp(z)zﬁb{—fM w(:)mz(*o,q_])(;,z)—(—l)q/ o) AR @ D)

0] 3M/’0

+{- f W0 (©) A Qe (€. 2) + (— 1)1 f B0 () A Qi 6.

My, IMp,

=—5b{/M %fq_l)(c,z)w@)+/w Q?J;_l)(;,z)w(;)}

0 o

B {/M 9:6:1)(57 2) A 0pe(0) + /3M Q?Jq_)(;, 2) A§b¢(§)}.

0 0
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We now derive the homotopy formula by reducing the regularity condition.
Notice that when M is C? and strictly convex it is proved by Henkin [21].

Fix a tangential (0, g)-form ¢ on M,,. Let0 < g <n —2.

Casea)r € C*and ¢ € Cl(ﬁpo). Write x = (Rez,Imz’) and § = (Re¢,Im¢’)
with ¢,z € M,,. We first consider the case when ¢ has compact support, say in
M,, with pi < po. Then P1/14p0¢ has no boundary term. Recall that W (&, x) =
(U (£), x) = (&, x) is defined by relations ¢, = ¢’ — 7/, ¢! = —2ir,({ — z) and
£,z2 € Mp,. By (8.2)-(8.3) and (8.6), on D,

—1I
P,y #X) = MZ Ty d,
=q—

Lon=3Y Y /B (7 AL o w™ 170 157) () R G0 AV G,
900

IK|=11J]=¢

07 x) = 07(). TiGe.x)=14 Y CroWw (& 0EEN G
|L|=2

Here ATJ = C are functions of the form Bfr, 83?, respectively, defined in Section 8.

An analogous formula holds for T>. These functions depend only on derivatives of
7 of order at most two. We take a sequence of C* functions 7" converging to 7
in C>-norm on D,,. Subtracting 7™ by its Taylor polynomial of order 1 about the
origin, we may assume that 7 (0) = 0 and 37 (0) = 0. In what follows we use the
letter m to indicate dependence on 7. Let M™ be the graph y" = |Z/|> + 7" (x)
over D,,. Let p € (p1, po). There exists m, such that for m > m,

Dy C D) C Dy, DI (x e Dyt xP +7"(x) < p?).

Assume that m > m,. Then by ||rA’”||Dp0,2 < 1/Cy, D/’;l is strictly convex. Note
that ¢ is still a tangential (0, g)-form of M™ on D,,. By the homotopy formula for
the smooth M™,

By the formula of T;, it is clear that |7A"j,m| > 1/2 for m sufficiently large and
0# & € By N 1/7§”(Dp). Since ¢ has compact support, we have

(g ATy o Wt T - Ty Py (& 1) < C, Ex #0.

Since Igéb € Llloc, by the dominated convergence theorem, Z;" converges to Z7

pointwise on D, as m — oo. Thus, Pj,,,¢ converges to P, ¢ pointwise on D,.
p P
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By the C°-estimate on P (see (9.3)), we know that |P]’Wz1(p| <ConDy CNy Dy
Since ¢ is of class C!, 3ym¢ converges to d7¢ uniformly on Bpo- Next, we fix
an (n,n —q — D-form ¢ = 3, _,_, 4 Yydz! Ao AdZ"T A OP(2) A a7’
of class C!' and of compact support in D,,. Then y™ = Zm:n_q_] wjdzl A
coe AdZV A () A d?J isan (n,n — 1 — g)-form of M™ on D;)”. Obyvi-
ously, ¥ converges to ¥ in C'-norm uniformly on ]Rz_”_l. Now one can see that
fDm P(;’M;ngo A dpym Y™ converges to fDm P(;’Mp<p A Oy, A similar argument
shows that QE)’ M dpm ¢ are uniformly bounded and converge to Q{), M, d p ¢ point-
wise on D), . Thus fDm (Qé),Mglng‘p) A Y™ converges to fDm (Qé)’Mngq)) AY.
By the homotopy formula (B.20),

/ oAy = <—1)q/ (P pgn ) A Bpgm ™
o
Dy, Dy,
(B.21)
+ (Q6 MmaM”’(p)/\wm'
D e
P1

Taking limits, we see that as currents, ¢ = P(;’Mp(p + QE)’Mng(p holds on D, .
Since ¢ has compact support in D,, C D,, we replace the domain of integration
M, by M,, and add boundary integrals. We get ¢ = P;VIPOQD + Q;wpogMgo on
D,, as currents, and hence on D, whenever ¢ has compact support in D .

Return to the general case. Let M be as before. Take any p1, 02, o such
that 0 < p; < p2 < p < po. Take a C*° function x which is 1 on D,, and has
compact support in D,,. Let oo = x¢ and ¢; = (1 — x)p. We have proved that
0o =0y P[’le0 ©o + Q;‘,[pogM(po as currents on D,,. Let v, Y™ be as before, which
are supported in D, . By an analogy of (B.21), for m > m, we have

J

Since supp ¥ C D,, and supp@; C D, \ D,,, the dominated convergence theo-
rem implies the convergence of po (P yym @D A ym ™ to po (P Mp(pl)/\5Mw.
1 TP 1 ’

e AY" = (—1)q/ (Pyym®1) A dpm ™ +/ (Qhymdpmer) A Y™,
Dy, ? Dy, .

P1

The integrands for the boundary integrals (P| ,,m¢1)(x) are of class C! in a neigh-
o

borhood of dD,, when x € D,,. Note that the map d, sending x € 9D, to

rp(x)x € dD;} with r, > 0 converges to the identity map in the C? norm as

m — oo. Thus we can verify that P| , ¢ converges uniformly to P| m,¥1 00 Dy,
M .

Combining with supp ™ C D,,, we obtain the convergence of |’ D, (P ym®1) A

— — L e

A pm Y™ to po (P Mpgol) A 3y . One can verify that po (O ymOmme1) AY™
1 ’ _ _ 1 e _

converges to pol (Q/LMpaMgol) A Y. Hence @1 = 9y Pm,¢1 + Om,dme1 holds
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as currents on D, . The definition of ¢; is independent of p > p;. Letting
o — po, wWe get 91 = 3MPMp0§01 + QMpoaM(pl on D,OI' Add to ¢p. We get
Q0= 5MPMp0<p + QMp(ﬁM(p as currents on D,,, and hence on D,

Case b) r € C*(D) and ¢, dy¢ < CO(MPO). We verify the homotopy formula
by the Friedrichs approximation theorem, for which we need the commutator of a
smoothing operator S; and 97, applied to tangential (0, ¢)-forms.

Recall that on M

6(€) = —2ir(¢) = ad&” mod (%, de"), a=1+F}. (B.22)

Let ¢ = ZI Il=q (pT(x)d?I be a continuous tangential (0, g) form on M. Let x be
a smooth function of compact support in R?*~! such that f xdV = 1. Let x;(x) =

tlfznx(lilx) and define Sy = le‘:q OF * Xt d?l Recall that Y(X = 8Z_a+bﬁax”
with by = —rz/(2rz).

LemmaB.5. Let0 < g < n— 1. Let M C C" be a graph of class C* over
D c C"! x R. Assume that ¢ is a continuous tangential (0, q)-form on M o such

that 3 y¢ is continuous on M ». Let0 < p' < p. Then for t sufficiently small and
on My
p ’

Busdoe = 3 [ forte = o) — bate — 1) @ 0®)

[I|=q,1<a<n

— (pra~ ' Xoa)(x — tg)x(g)} dV(E) AdTT A dD.

Proof. We follow a computation in [4]; see also [10, page 121]. Letgp= )" gzﬁd?I.
[I|=q

By the assumption, we have 9 ¢ = D1 l=g+1 wjd?J with Y7 € C°. Now

IS =y > / o1& Xy xi(x — E)dV(E) AdT AdT

[I|=q 1<a<n

Sdupr) = Y. f Y5 E) i (x —§)dV(E) NdT.

[J1=q+1

Setv =d¢'A---AdC" ! AdE™. We may assume that dV = dg_l/\- S Ade A,
For each J = (ji, ..., jq+1), there exist increasing indices J* = (j{, ..., j:—z—q)

and €/ = %1 such that dg_l/\ oAderl = ejd?J A d?l . Assume that v/ are
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skew-symmetric. Thus

Sidme(x) = f‘/"(f)xt(x—f)d? /\dC/ “AvadZ
|J| —g+1
e’ f =) I —
= oA xi(x —8)d¢” AvAad
|J|=Xq:+1 (g + D!

By Stokes’ formula, (3.1) and (B.22), S:9me(x) equals
(_1)q+1 J

NZESE / 0(&) A a®)Ty (@ )i (x — £)) A av’ Avnd?!

IJ=q+1

x© X =%

e dTN dT'A dT Ao A d7”!

=X > > / or(E)a®)X,

\1|=q15a<n|1\:q+1( ‘1‘1)'
=2, ) fwT(S)a(S)Yf)(a‘l(s)x,(x —£)dV(E) AdT AdT
[I|=q 1<a<n

Here the last identity is seen as follows. Set dz% A d7'! = 60{ ,d7/ I, if the identity
can hold; otherwise, set eJI = 0. In the above summation - ;,_, >_|jj=+1> W€
may restrict to terms with €9 I' £ 0. For ea ; 7 0, we have

Jdt ndT NdT Na7? = T elag Adg A az!

dt” Adv A dz A d7

Note that the last term is independent of J. We have (g + 1)! such terms for a fixed

(). Set Eq(£,x) = a®) X3 (@ &) xi(x — £)) + X (x — £)). We get

O, Slp) =Y > f r(E) Eq(E, ) dV (§) A dT AdT"
l1=q 1<a<n
which can be put into the form in the lemma. 0
We now derive the homotopy formula for the case b) via smoothing. We have
OmSip — Imp = S1dme — Ime + [9u, S (@ — Sv@) + 9. Si1Spg.

Fix p < p1 < po and € > 0. Fix ¢ > 0 sufficiently small such that |S;¢ — ¢| < €
on M,,. By Lemma B.5, for all small ¢

sup|[a, Si1(¢ — Syp)| < Csup g — Spg| < Ce. (B.23)
My

My,
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Let Sy = Y y1_y ¥7dZ" . Then [y, Si] = Ylbgdsr, S, and

O, SI =Y > / 26 () (b (1) —ba (x— )y (x—y) dV (AT

1<a<n|l|=q

This shows that lim,—.0[d, S;]1S¢ = 0 on M,. We also have lim,¢ S;d ¢ =
§Mcp on M. Therefore, (B.23) implies that lim;_.¢ AmSi¢ = dpepon M,. Now by
case a), ¢; = P]’le o + Q;ngM(p, holds on M,, as currents. Letting + — 0 and

then p — po, we obtain ¢ = 9 Py, @+ Q’MO§M(p on M,, in the sense of currents.
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