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�-convergence for stable states and local minimizers

ANDREA BRAIDES AND CHRISTOPHER J. LARSEN

Abstract. We introduce new definitions of convergence, based on adding stabil-
ity criteria to �-convergence, that are suitable in many cases for studying conver-
gence of local minimizers.

Mathematics Subject Classification (2010): 49J45 (primary); 49K40 (second-
ary).

1. Introduction

�-convergence is a key tool in studying approximations of energies, based on com-
paring global minimizers of an energy E and minimizers of approximate energies

En . In particular, if En
�→E , then

1. if un → u and the un asymptotically minimize En , then u minimizes E
2. if u minimizes E , then there exist un → u such that the un asymptotically
minimize En (whenever En are equicoercive).

This convergence is used in two main ways in applications: if E is a physical stored
energy, it can sometimes be more convenient to find approximate energies that are
more easily analyzed (see, e.g., [4, 5, 7, 8]). On the other hand, it can be that the
physical energy has a natural small scale, such as atomistic energies, and one seeks
a continuum model without a scale. In this case, the “true” physical energy is some
En , with n large, and the limiting energy E is the approximation.

The physical motivation for these approximations is the study of stable states,
and global minimizers of stored energies are important examples. But to study
all stable states, one must also consider at least strict local minimizers. Unfortu-
nately, (1) above typically fails when “minimize” is replaced by “locally minimize”
or “strictly locally minimize.” This is particularly a problem when the energies En
contain oscillations, and therefore many local minimizers, while the limit E does
not. These oscillations are often quite natural physically, such as in atomistic mod-
els and homogenization in the presence of material microstructure. (2) is also an
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issue, except when E can easily be localized near a strict local minimizer, so that
what was a strict local minimizer is now a global minimizer. We should also note
that there are cases in which it has been shown that �-convergence can work for lo-
cal minimization (see, e.g., Kohn-Sternberg [11], Serfaty [14], Sandier-Serfaty [13],
Jerrard-Sternberg [10]). In those cases, the energies En did not develop fine oscil-
lations. Our primary interest is developing definitions of convergence that can be
used for these oscillating energies.

A definition of stability was recently introduced in [12] such that, loosely
speaking, a point is stable if it is not possible to reach a lower energy state from
that point without crossing an energy barrier of a specified height. That notion im-
plies local minimality (in the context in which it was introduced) and is implied
by strict local minimality. Moreover, it is maintained in some natural examples
of �-convergence. Our idea of convergence is to combine this stability with �-
convergence. To that end, in Section 2 we give a notion of stable convergence of
energies, which implies an analog of the convergence result (1) and (2) mentioned
above for local minimizers (Theorem 1). Unfortunately, contrary to �-convergence,
stable convergence is not maintained after addition of continuous perturbations, a
key property of �-convergence. To overcome this drawback we provide a definition
of strong stable convergence, which then gives the desired property for the addi-
tion of continuous perturbations (Theorem 2). Despite its technical appearance,
that definition can be easily checked for sequences of oscillating energies such as
in the case of the homogenization of elliptic functionals. The main examples of the
paper are contained in Section 3, and concern the elliptic homogenization already
mentioned, as well as the homogenization of perimeter functionals.

Finally, in Section 4 we note that the notion of stable convergence can be
adapted to the analysis of more general energies, where stability at a point is al-
ways trivial, such as in the case of the passage from discrete-to-continuous. In that
context the energies En are defined on discrete spaces, so that stability and local
minimality are always trivial, but their limit E is defined on a continuous (non-
discrete) space. The stable convergence of En can be then understood as taking
into account discrete paths uniformly converging to a continuous one (in that sense
stability at a point is substituted by stability at a converging sequence of points).
We show how this notion of stable convergence again implies convergence of stable
sequences.

2. ε-stability

X will be a metrizable topological space, equipped with a distance denoted by dist.

Definition 2.1 (ε-slide and ε-stability). Let E : X → [0,+∞] and ε > 0. An
ε-slide for E at u is a continuous function φ : [0, 1] → X such that φ(0) = u,

sup
0≤s<t≤1

[E(φ(t)) − E(φ(s))] < ε

and E(φ(1)) < E(u).
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We say that u is ε-stable for E if no ε-slide at u exists, and stable if it is ε-
stable for ε > 0 small enough (see [12] for motivation in the context of evolutions
based on local minimization).

Let En : X → [0,+∞]. A sequence {un} is uniformly stable for {En} if, for n
large enough and all ε > 0 small enough, each un is ε-stable for En .

Note that in general stable points might not be local minimizers, since for stability,
the values of E at points close by a given point are relevant only if these points are
connected by an ε slide (for ε arbitrarily small) to the given point. As an example
one can take the real function

f (x) =
⎧⎨⎩0 if x = 0

sin

(
1

x

)
otherwise.

In this case 0 is not a local minimizer, but it is ε-stable for ε < 1. A similar example
is

f (x) =
⎧⎨⎩0 if x = 0

−x2 + sin2
(
1

x

)
otherwise.

Here also 0 is not a local minimizer, but it is ε-stable for ε < 1.
Note, however, that for the function

f (x) =
⎧⎨⎩0 if x = 0

x sin

(
1

x

)
otherwise,

0 is not a local minimizer, but neither is it ε-stable for any ε > 0.

Definition 2.2 (relative stability). We say that {En} is stable relative to E if the
following hold:

1. If u has an ε-slide for E and un → u, then each un has an ε-slide for En (for n
large enough)

2. If u is a strict local minimizer of E , then there exist un → u uniformly stable
for {En} (and so, by (1), u is stable for E).

Note that conditions (1) and (2) above can be empty if no u has an ε-slide for E
or E has no strict local minimizer. A trivial example is when E is constant, in
which case every {En} is stable relative to E . Note also that for a given E , we
can consider En := E , and it is not generally true that {En} is stable relative to E .
To some degree, this is analogous to the fact that a constant sequence En := E as
above does not �-converge to E (unless E is lower semicontinuous).

To make this stability more meaningful, it will be coupled with �-convergence
in the sequel.
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Definition 2.3 (stable convergence). If {En} is stable relative to E and �-con-
verges to E , we say that it stable converges to E . Stable convergence will be
denoted En

s→E .

Theorem 2.4. Let En
s→E .

(i) Let each stable point for E be a local minimizer. Then, if un → u and the
un are uniformly stable for En , then u is a local minimizer of E;

(ii) Let each strict local minimizer for E be a stable point. Then, each strict
local minimizer u of E is the limit of a sequence of uniformly stable points for En .

Proof. (i) We first suppose that un → u and each un is ε-stable for En . Then, from
condition (1) in Definition 2.2, u must be δ-stable for E , for every δ ∈ (0, ε), and
hence a local minimizer by hypothesis.

(ii) We suppose that u is a strict local minimizer of E . Then u is stable for
E . So, from condition (2) in Definition 2.2, it follows that there exist un → u and
ε > 0 such that each un is ε-stable for En .

While it is true that if {En} �-converges to E , then {En+ f } �-converges to E+
f for continuous f , the following example illustrates that this is not necessarily true
for stable convergence. Consequently, we need additional information to conclude
the convergence of continuous perturbations, and this is the subject of Definition
2.6 and Theorem 2.7 below.

Example 2.5. Consider X = R and set En(x) := 1 + sin(nx). Then {En} �-
converges to E = 0, and, as remarked above, {En} is stable relative to E (as is
every other sequence of energies!). But, {En(x) + x} does not stably converge to
E(x) + x since (1) is violated: each x ∈ R has an ε-slide for E + x , for all ε > 0,
but if we take a sequence of local minimizers un of En + x converging to u they
have no ε-slide for ε < 2 and n large enough.

Definition 2.6 (strong stability). We say that En
s-s−→E (the convergence is strong-

ly stable) if the following hold:

1. En
s→E

2. If φ is a path from u (i.e., φ : [0, 1] → X , φ(0) = u, and φ is continuous) and
un → u, then there exist paths ψn from un and φn from ψn(1) such that

i) τ �→ En(ψn(τ )) is decreasing up to o(1) as n → +∞; i.e.,

sup
0≤τ1<τ2≤1

(
En(ψn(τ2)) − En(ψn(τ1))

)
→ 0 as n → ∞

ii) supτ∈[0,1] dist (φn(τ ), φ(τ)) = o(1)
iii) there exist 0 = τ n1 < τ n2 < ... < τ nn = 1 with maxi [τ ni − τ ni−1] = o(1)
such that maxi |En(φn(τ ni )) − E(φ(τ ni ))| = o(1) and En(φn(τ )) is
between En(φn(τ ni )) and En(φn(τ ni+1)) for τ ∈ (τ ni , τ ni+1), up to o(1);
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i.e., there exist infinitesimal βn > 0 such that

min
{
En(φn(τ

n
i )),En(φn(τ

n
i+1))

}−βn≤ En(φn(τ ))

≤ max
{
En(φn(τ

n
i )),En(φn(τ

n
i+1))

}+βn

3. E and each En are lower semicontinuous
4. ε-stability for E implies local minimality for all ε > 0.

We remark that while (2) iii) above may seem unwieldy, and instead a condition
like “‖En(φn(τ )) − E(φ(τ))‖∞ = o(1)” might seem more natural, it seems that
in practice (2) iii) will be more useful. Note moreover that condition (2) i) allows
the energies En to be discontinuous. This will not be used in the analysis and
the examples below, but it may be useful for other types of applications; e.g., for
problems within the variational theory of Fracture Mechanics (see [12]).

Theorem 2.7. If En
s-s−→E , then (En +G)

s→(E +G) for every continuous G such
that (En + G) is coercive.

Proof. That (En + G) �-converges to (E + G) follows from the fact that �-
convergence is stable under continuous perturbations.

For condition (1) of Definition 2.2, suppose that u has an ε-slide φ for E + G
(and therefore a (ε− δ)-slide for some δ > 0) and un → u. Then we choose ψn, φn
satisfying property 2 in Definition 2.6 and set φ′

n(τ ) := ψn(τ ) for τ ∈ [0, 1], and
φ′
n(τ ) := φn(τ −1) for τ > 1. We then consider τ1 < τ2 ∈ [0, T ]. If τ1, τ2 ∈ [0, 1],
then

En(φ
′
n(τ2)) − En(φ

′
n(τ1)) = En(ψn(τ2)) − En(ψn(τ1)) ≤ o(1).

If τ1, τ2 > 1, then

En(φ
′
n(τ2))−En(φ′

n(τ1))=En(φn(τ2))−En(φn(τ1))≤E(φ(τ nj ))−E(φ(τ ni ))+o(1)
for some τ ni ≤ τ nj . If τ1 < 1 < τ2, then

En(φ
′
n(τ2))−En(φ

′
n(τ1))=En(φn(τ2))−En(ψn(τ1)) ≤ E(φ(τ ni ))−E(φ(0))+o(1)

for some τ ni , so that in any case(
En(φ′

n(τ2)) + G(φ′
n(τ2))

) − (
En(φ′

n(τ1)) + G(φ′
n(τ1))

)
≤ (

E(φ(τ j )) + G(φ(τ j ))
) − (

E(φ(τi )) + G(φ(τi ))
) + o(1)

< ε − δ + o(1)

(2.1)

for some τi ≤ τ j , where we used the continuity of G together with (2) ii) and iii)
in Definition 2.6, as well as the fact that φ is an ε-slide for u. The same argument
gives

(En +G)(φ′
n(1)) − (En +G)(φ′

n(0)) ≤ (E +G)(φ(1)) − (E +G)(φ(0)) + o(1),

so that φ′
n is an ε-slide for En + G, for n sufficiently large.
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Finally, for condition (2) of Definition 2.2, we begin by supposing that u is a
strict local minimizer of E+G, and therefore a strict minimizer in some closed ball
B(u, r). Let vn → u be such that En(vn) → E(u). Then we have

E(u) + G(u) = lim
n→+∞(En(vn) + G(vn)) ≥ lim sup

n→+∞
inf

B(u,r)
(En + G).

Let un be minimizers of (En + G)|B(u,r) (which exist by the coerciveness and the
lower semicontinuity of En + G). Up to subsequences they converge to some u ∈
B(u, r), and we have

E(u) + G(u) = inf
B(u,r)

(E + G) ≤ E(u) + G(u)

≤ lim inf
n→+∞(En(un) + G(un)) = lim inf

n→+∞ inf
B(u,r)

(En + G).

We then obtain E(u) + G(u) = E(u) + G(u), and then u = u by the strict mini-
mality of u. This shows that un → u, and that un are local minimizers for En + G.

Note now that min(E +G)|∂B(u,r) ≥ E(u) +G(u) + ε′ for some ε′ > 0. This
implies that the un are ε′/2-uniformly stable for {En}. To check that, note first that

lim inf
n→∞ min(En + G)|∂B(u,r) ≥ E(u) + G(u) + ε′ .

(Otherwise, choose vn ∈ ∂B(u, r) that, up to a subsequence, converge to some
v ∈ ∂B(u, r) and lim infn→∞(En(vn) + G(vn)) < E(u) + G(u) + ε′. But then
E(v) + G(v) < E(u) + G(u) + ε′, a contradiction.) Let φn be an ε′/2-slide for
En + G at un . Then in particular En(φn(t)) + G(φn(t)) < En(un) + G(un) +
ε′/2, which implies that φn(t) ∈ B(u, r) for all t , for n large enough. We finally
obtain a contradiction since the condition En(φn(1))+G(φn(1)) < En(un)+G(un)
contradicts the minimality of un .

3. Examples of strongly stable convergence

In this section we examine in some detail two examples of oscillating functionals.
The first is elliptic homogenization, and even though the approximating functionals
have oscillations, there do not exist local minimizers unrelated to local minimizers
of the limit functional. Still, the proof of stable convergence requires constructing
ε-slides for the approximating energies in a way that mimic a given ε-slide for the
limit functional, even though there exist small oscillations for these energies.

The second example also involves functionals with oscillations, and here the
oscillations cause the existence of many local minimizers unrelated to local mini-
mization of the limit functional. Superficially, it would seem that size of the oscilla-
tions is bounded away from zero, but in fact, due to the definition of ε-slide, we can
show that the size tends to zero, so that for any given ε > 0, these artificial (strict)
local minimizers eventually become un-ε-stable.
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Example 3.1 (elliptic homogenization). Consider

En(u) =
∫ 1

0
a(nx)|u′(x)|2 dx, u ∈ H1(0, 1),

where a is a bounded positive coefficient, bounded away from zero and periodic of
period 1. Here X = H1(0, 1) endowed with the L2-distance. It is well known (see,
e.g., [6]) that the �-limit of En is

En(u) = a
∫ 1

0
|u′(x)|2 dx, u ∈ H1(0, 1),

where a is the harmonic mean of a: a−1 = ∫ 1
0 a(y)

−1dy. Note that En and E are
strictly convex, up to translations, so that they are lower semicontinuous, and have
only global minimizers corresponding to specified Dirichlet data. Hence, (1), (3)
and (4) of Definition 2.6 are satisfied.

We now check (2). Consider un → u with supn En(un) < +∞, and suppose φ

is a path from u. We will set αn = ‖un − u‖∞, which is infinitesimal as n → +∞.
The number k = kn 
 1 will be chosen in such a way that

1 
 kn 
 1

αn
. (3.1)

For notational simplicity we still assume that 1k ∈ N.
The pathsψn will bring un to an interpolation In(u) of u on the lattice 1

knZwith
minimal energy En with respect to functions with the same values on the nodes of
the lattice. To that end, define

zni = nk

(
u

(
i

nk

)
− u

(
i − 1

nk

))
, i = 1, . . . , nk.

Let v be the minimizer of

min

{∫ 1

0
a(y)|v′(y)|2 dy : v(0) = 0, v(1) = 1

}
(= a),

interpolated to the whole ofR in such a way that v(x)−x is 1 periodic (in particular
v(z) = z if z ∈ Z). Upon considering translations, we also suppose that v′ is
continuous at zero. Recall that v satisfies

(a(y)v′(y))′ = 0. (3.2)

The interpolated function will be defined by

In(u)(x) = u

(
i − 1

nk

)
+ 1

n
zni v

(
n

(
x − i − 1

nk

))
if
i − 1

nk
≤ x ≤ i

nk
,
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and the path ψn : [0, 1] → X will be defined by

ψn(τ ) = τ In(u) + (1− τ)un = In(u) + (1− τ)(un − In(u)).

Then we get

En(ψn(τ )) =
∫ 1

0
a(nx)(In(u)

′ + (1− τ)(u′
n − In(un)

′))2 dx

=
nk∑
i=1

∫ i
nk

i−1
nk

a(nx)(In(u)
′ + (1− τ)(u′

n − In(u)
′))2 dx

=
nk∑
i=1

∫ i
nk

i−1
nk

a(nx)

(
zni v

′
(
n

(
x − i − 1

nk

))
+ (1−τ)(u′

n − In(u)
′)
)2
dx

=
nk∑
i=1

1

n

∫ 1/k

0
a(y)(zni v

′(y) + (1− τ)w′
n,i (y))

2 dy

=
nk∑
i=1

1

n

∫ 1/k

0
a(y)

(
(zni v

′(y))2 + (1− τ)2(w′
n,i (y))

2

+ 2(1− τ)zni v
′(y)w′

n,i (y)
)
dy,

where

wn,i (y) = n un

(
i − 1+ yk

nk

)
− zni v(y) for 0 ≤ y ≤ 1

k
.

Note that, integrating by parts and using (3.2) and the periodicity of a and v, we get∫ 1/k

0
a(y)v′(y)w′

n,i (y) dy = −
∫ 1/k

0
(a(y)v′(y))′wn,i (y) dy

+ a

(
1

k

)
v′

(
1

k

)
wn,i

(
1

k

)
− a(0)v′(0)wn,i (0)

= −a(0)v′(0)
(

wn,i

(
1

k

)
− wn,i (0)

)
= −a(0)v′(0)n

(
un

(
i

nk

)
− un

(
i − 1

nk

)
− u

(
i

nk

)
− u

(
i − 1

nk

))
,

so that

En(ψn(τ )) =
nk∑
i=1

1

n

∫ 1/k

0
a(y)

(
(zni v

′(y))2 + (1− τ)2(w′
n,i )

2
)
dy + Cn

= a
nk∑
i=1

1

nk
|zni |2 + (1− τ)2C ′

n + Cn,
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where

C ′
n =

nk∑
i=1

1

n

∫ 1/k

0
a(y)(w′

n,i (y))
2 dy

=
nk∑
i=1

1

n

∫ 1/k

0
a(y)

(
u′
n

(
i − 1+ yk

nk

)
− zni v

′(y)
)2

dy

≤ C
nk∑
i=1

1

n

∫ 1/k

0
a(y)

(∣∣∣∣u′
n

(
i − 1+ yk

nk

)∣∣∣∣2 + |zni |2|v′(y)|2
)2

dy

≤ C‖a‖∞

(∫ 1

0
|u′
n|2 dy +

nk∑
i=1

1

nk
|zni |2

)
≤ C,

and

|Cn| ≤ 2
nk∑
i=1

|zni |‖u − un‖∞ ≤ Cnkαn.

By (3.1) we have Cn = o(1) and we obtain that En(ψn) is decreasing for τ ∈ [0, 1]
up to o(1). Hence ψn satisfies (i). Moreover ψn(1) = In(u). Note that

En(In(u)) = a
nk∑
i=1

1

nk
|zni |2 = E(Pn(u)),

where Pn(u) is the piecewise-affine interpolation of u on the nodes of the lattice
1
nkZ.

Let φ be a path with bounded energy for E ; i.e., sup{E(φ(τ)) : τ ∈ [0, 1]} <

+∞. Note that this implies that {φ(τ)}τ is bounded in H1(0, 1), and by the Rellich
embedding theorem that {φ(τ)}τ is continuous with values in L∞. With fixed n we
can choose 0 = τ n1 < τ n2 < ... < τ nn = 1 such that, having set βn = maxi |φ(τ ni ) −
φ(τ ni−1)|, we have

βn 
 1

kn
, (3.3)

where k = kn has been chosen as above. The path φn is then defined by taking
φn(τ

n
i ) = In(φ(τ ni )), and by linear interpolation between those points. The same

proof as above shows that En(φn(τ )) is between En(φn(τ ni )) and En(φn(τ ni+1)) for
τ ∈ (τ ni , τ ni+1), up to o(1). Hence, also condition (iii) is satisfied.

Finally, note that since In(φ(τ ni )) and φ(τ ni ) have the same value at all points
i/nk, we can apply Poincaré’s inequality on all intervals ((i − 1)/nk, i/nk) to get∫ 1

0
|In(φ(τ ni )) − φ(τ ni )|2 dx ≤ 1

nk

∫ 1

0
|In(φ(τ ni ))′ − φ(τ ni )′|2 dx

≤ C
2

nk
sup{En(φ(τ))}.

The inequality extends to all τ by interpolation, and also (ii) holds.
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Example 3.2. We consider theManhattan metric function ϕ : R2 → {1, 2}

ϕ(x1, x2) =
{
1 if x1 ∈ Z or x2 ∈ Z

2 otherwise,

and the related scaled-perimeter functionals with forcing term f

En(A) =
∫
A
f (x) dx +

∫
∂A

ϕ(nx) dH1

defined on Lipschitz sets A. We assume that f is a (smooth) bounded function (we
may assume that ‖ f ‖∞ ≤ 1), so that the first integral is continuous with respect to
the convergence A j → A, understood as the L1 convergence of the corresponding
characteristic functions.

By reasoning as in [3], it can be proved that the energies En �-converge to an
energy of the form

E(A) =
∫
A
f (x) dx +

∫
∂∗A

g(ν)dH1

defined on all sets of finite perimeter (ν denotes the normal to ∂∗A). A direct
computation (following for example a similar homogenization problem for curves
as in [1], see also [6]) shows that actually

g(ν) = ‖ν‖1 = |ν1| + |ν2|.
Furthermore, it is easily seen (a proof can be derived from [2]) that the same E is
equivalently the �-limit of

Ẽn(A) =
∫
A
f (x) dx + H1(∂A),

defined on A which are the union of cubes Qn
i := 1

n (i + (0, 1)2) with i ∈ Z2. We
denote byAn the family of such A. Note that Ẽn is the restriction of En toAn .

We now prove that actually En
s−→E . We first show that if A has an ε-slide for

E and An → A, then each An has an (ε + o(1))-slide for En (and so, as above, an
ε-slide for n sufficiently large).

We first observe that an arbitrary sequence An of Lipschitz domains converging
to a set A can be substituted by a sequence in An with the same limit. To check
this, consider a connected component of ∂An . Note that for n big enough every
portion of ∂An parameterized by a curve γ : [0, 1] → R2 such that ϕ(nγ (0)) =
ϕ(nγ (1)) = 1 and ϕ(nγ (t)) = 2 for 0 < t < 1 can be deformed continuously
to a curve lying on ϕ−1(1) and with the same endpoints. If otherwise a portion of
∂An lies completely inside a cube Qn

i is can be shrunk to a point or expanded to
the whole cube Qn

i . In both cases this process can be obtained by a O(1/n)-slide,
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since either the lengths of the curves are bounded by 2/n, or the deformation can
be performed so that the lengths are decreasing.

We can therefore assume that An ∈ An and that there exist an ε-slide for E
at A obtained by continuous family A(t) with 0 ≤ t ≤ 1. We fix N ∈ N and set
t Nj = j/N . For all j ∈ {1, . . . , N } let AN , j

n be a recovery sequence in An for

A(t Nj ). Furthermore we set AN ,0
n = An . Note that, since A

N , j
n → A(t Nj ) and A(t)

is continuous, we have |AN , j
n �AN , j+1

n | = o(1) as N → +∞. We may suppose
that the set AN , j+1

n is the union of AN , j
n and a family of cubes QN , j

i . We may
order the indices i and construct a continuous family of sets AN , j,i (t) such that
AN , j,i (0) = AN , j

n ∪ ⋃
k<i Q

N , j
k , AN , j,i (1) = AN , j

n ∪ ⋃
k≤i Q

N , j
k ,(

H1(AN , j ) ∧ H1(AN , j+1)
)

− c

n
≤ H1(AN , j,i (t))

≤
(
H1(AN , j ) ∨ H1(AN , j+1)

)
+ c

n
.

Since also |AN , j,i (t)| differs from |AN , j | and |AN , j+1| by at most o(1) as N →
+∞, by gluing all these families, upon reparametrization we obtain a family ANn (t)
such that ANn (0) = An , ANn (1) = An(1), and, if s < t then we have, for some
j < k

En(A
N
n (s)) ≥ E(A(t Nj )) − c

n
− o(1),

En(A
N
n (t)) ≤ E(A(t Nk )) + c

n
+ o(1).

Since A(t) is an ε-slide for E we have

E(A(t Nk )) ≤ E(A(t Nj )) + ε,

so that
En(A

N
n (t)) ≤ En(A

N
n (s)) + ε + c

n
+ o(1).

By choosing N and n large enough we obtain the desired (ε + o(1))-slide.

We now prove the second condition; namely, that given a strict local minimum
A0 for E there exist a sequence (An) of ε-stable sets for En converging to A0.

Let δ > 0 be such that E(A0) < E(A) if |A�A0| ≤ δ and A �= A0. In partic-
ular, since E is coercive and lower semicontinuous with respect to L1-convergence,
we have

min{E(A) : |A�A0| = δ} > E(A0).

We therefore have, for some c > 0

min{En(A) : |A�A0| = δ} > E(A0) + c.
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In fact, otherwise there exist Ãn with lim infn En( Ãn) ≤ E(A0). By the equico-
erciveness of En we may suppose that Ãn → A, with |A�A0| = δ, so that we
get

E(A) ≤ lim inf
n

En( Ãn) ≤ E(A0),

and a contradiction.
We can therefore choose An as a minimizer of

min{En(A) : |A�A0| ≤ δ}.
By �-convergence we have An → A0, and clearly no ε-slide exists for En from An
if ε < min{En(A) : |A�A0| = δ} − En(An).

4. Discrete-to-continuous ε-slides

In a discrete environment (i.e., when the space X is composed of discrete points, or
composed of functions defined on a discrete set) the concept of local minimizer may
make little sense; however, in many occasions we encounter sequences of “discrete
spaces” Xn “approximating” a “continuous” space X (e.g., finite-element spaces
approximating continuous function spaces). We can therefore extend the definition
of ε-slide and ε-stability to be coupled with this discrete-to-continuous process. The
spaces Xn will all be identified as subsets of X , on which we consider the distance
dist , and we will consider functionals En : Xn → [0,+∞]. Note that the usual
extension

Fn(u) =
{
En(u) if u ∈ Xn
+∞ otherwise

would give functionals for which all isolated points in Xn are local minimizers and
have no ε-slide for all ε > 0. In particular this would make Definition 2 hold only
when E has no ε-slide.

We say that u ∈ X has an ε-slide along En if there exist integers Nn → +∞
and functions φn : {0, . . . , Nn} → Xn such that

(i) supk dist (φn(k), φn(k − 1)) ≤ ω(1/Nn), with ω(0+) = 0;

(ii) sup j≤k (En(φn(k)) − En(φn( j))) < ε;

(iii) lim supn (En(φn(Nn) − En(φn(0))) < 0;

(iv) limn φn(0) = u.

We say that un → u are ε-stable for En if u ∈ X has no ε-slide along En with
φn(0) = un .

Definition 4.1 (stable in E). We say that {En} is stable in E if the following hold:
1. If u has an ε-slide for E and un → u, then for n large enough, u has an ε-slide
along En with φn(0) = un .
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2. If u is a strict local minimizer of E , then there exist un → u and ε > 0 such that
each un is ε-stable for En .

We say that En converge stably in E if the {En} is stable in E and En �→E , and we
write En

s→E .

With this definition Theorem 2.4 holds true with the same statement.

Example 4.2. We consider Xn as the set of all subsets A of 1nZ2. We consider a
smooth function f , positive outside a bounded set, and

En(A) = 1

n
#

{
(i, j) : i ∈ A, j ∈ 1

n
Z
2 \ A, |i − j | = 1

n

}
+

∑
i∈A

1

n2
f (i) .

Each set A ∈ Xn is identified with⋃{
i + 1

n
[0, 1]2 : i ∈ A

}
,

so that Xn is seen as a subset of the space of all subsets of R2 with finite perimeter
with the distance

dist (A, A′) = |A�A′| .
With respect to this distance En �-converge to the same

E(A) =
∫
A
f (x) dx +

∫
∂∗A

g(ν)dH1

as in the example in the previous section. Moreover we have En
s→E . This is

easily seen repeating the same argument as above, since the argument in Section 3
is precisely to compare continuous paths in the space of sets with finite perimeter
with discretized paths in Xn .

References

[1] E. ACERBI and G. BUTTAZZO, On the limits of periodic Riemannian metrics, J. Analyse
Math. 43 (1983), 183–201.

[2] R. ALICANDRO, A. BRAIDES and M. CICALESE, Phase and anti-phase boundaries in bi-
nary discrete systems: a variational viewpoint, Netw. Heterog. Media 1 (2006), 85–107.

[3] L. AMBROSIO and A. BRAIDES, Functionals defined on partitions of sets of finite perimeter,
II: semicontinuity, relaxation and homogenization J. Math. Pures Appl. 69 (1990), 307–333.

[4] A. BRAIDES, “�-convergence for Beginners”, Oxford University Press, Oxford, 2002.
[5] A. BRAIDES, A handbook of �-convergence, In: “Handbook of Differential Equations. Sta-

tionary Partial Differential Equations”, Vol. 3, M. Chipot and P. Quittner (eds.), Elsevier,
2006.

[6] A. BRAIDES and A. DEFRANCESCHI, “Homogenization of Multiple Integrals”, Oxford Uni-
versity Press, Oxford, 1998.



206 ANDREA BRAIDES AND CHRISTOPHER J. LARSEN

[7] A. BRAIDES and L. TRUSKINOVSKY, Asymptotic expansions by Gamma-convergence,
Contin. Mech. Thermodyn. 20 (2008), 21–62.

[8] G. DAL MASO, “An Introduction to �-convergence”, Birkhäuser, Boston, 1993.
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