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Rational singularities and quotients
by holomorphic group actions

DANIEL GREB

Abstract. We prove that rational and 1-rational singularities of complex spaces
are stable under taking quotients by holomorphic actions of reductive and com-
pact Lie groups. This extends a result of Boutot to the analytic category and
yields a refinement of his result in the algebraic category. As one of the main
technical tools vanishing theorems for cohomology groups with support on fibres
of resolutions are proven.
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14L30 (secondary).

1. Introduction and statement of main results

Generalising the Hochster-Roberts Theorem [12], Jean-François Boutot proved that
the class of varieties with rational singularities is stable under taking good quotients
by reductive groups, see [2]. This result has found various applications in algebraic
geometry, symplectic geometry, and representation theory.

In this note we study singularities of semistable quotients of complex spaces
by complex reductive and compact Lie groups and prove a refined analytic version
of Boutot’s result.

The notion of semistable quotient or analytic Hilbert quotient is a natural gen-
eralisation of the classical concept of good quotient, as used in Geometric Invariant
Theory, to the holomorphic setup. Analytic Hilbert quotients play an important role
in the study of group actions of complex reductive and compact groups on Stein
and Kählerian complex spaces, cf. [8] and [9]. Here we show that the following
refinement of Boutot’s result holds for these quotients.

Theorem 1.1. Let G be a complex reductive Lie group acting holomorphically on
a complex space X. Assume that the analytic Hilbert quotient π : X → X//G
exists.

(1) If X has rational singularities, then X//G has rational singularities.
(2) If X has 1-rational singularities, then X//G has 1-rational singularities.
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The notion of 1-rational singularity gains its importance from the fact that it
provides the natural setup in which projectivity results for Kähler Moishezon mani-
folds extend to singular spaces, see [18, Theorem 1.6]. The fundamental properties
of 1-rational singularities that allow to carry over the projectivity results from the
smooth to the singular case were described in [14, Section 12.1]. Complex spaces
with 1-rational singularities also play a decisive role in the author’s algebraicity
results for momentum map quotients of algebraic varieties, see [5].

As a corollary of Theorem 1.1 we prove the following result for spaces on
which there are a priori no actions of complex groups, e.g. bounded domains.

Theorem 1.2. Let K be a compact real Lie group acting holomorphically on a
complex space X. Assume that the analytic Hilbert quotient π : X → X//K exists.

(1) If X has rational singularities, then X//K has rational singularities.
(2) If X has 1-rational singularities, then X//K has 1-rational singularities.

Furthermore, we obtain the following refinement of Boutot’s result in the algebraic
category as a byproduct of our proof of Theorem 1.1.

Theorem 4.3. Let X be a normal algebraic G-variety with good quotient π : X →
X//G. Let f : X̃ → X be a resolution of X , and let g : Z → X//G be a resolution
of X//G. Assume that R j f∗OX̃ = 0 for 1 ≤ j ≤ q. Then also R j g∗OZ = 0 for
1 ≤ j ≤ q.

This theorem generalises the main result of [4] and can be used to study quo-
tients of G-varieties with worse than rational singularities; see for example [16,
Lemma 3.3] for cohomological conditions imposed by Cohen-Macaulay singulari-
ties.

Although the main result refers to complex spaces with group action, one of
the key technical results of this paper does not refer to the equivariant setup at hand
and may also be of independent interest.

Theorem 3.6 (Vanishing for cohomology with support I). Let f : X̃ → X be
a resolution of an irreducible normal complex space X of dimension n ≥ 2. Let
x ∈ X , F = f −1(x)red, and assume that

⋃
k≥1 supp Rk f∗OX̃ ⊂ {x}. Then, we

have
Hq

F

(
X̃ ,OX̃

) = {0} for all q < n.

This vanishing theorem and the detailed analysis of algebraic and analytic coho-
mology groups with support generalises work of Karras [13], cf. Section 3.
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2. Setup and notation

In the following a complex space is a reduced complex space with countable topol-
ogy. The structure sheaf of a given complex space X will be denoted by OX . Fur-
thermore, analytic subsets of complex spaces are assumed to be closed. Throughout
the paper G = K C will always denote a complex reductive Lie group with maximal
compact subgroup K .

2.1. Singularities and their resolutions

Let X be a complex space. Then, a resolution of X is a proper modification f :
X̃ → X of X such that X̃ is a complex manifold.

If f : X̃ → X is a resolution of X , then for every q the q-th push forward
sheaf Rq f∗OX̃ is a coherent sheaf of OX -modules. A complex space is said to have
rational singularities if it is normal and if for every resolution f : X̃ → X of X ,
the direct image sheaves Rq f∗OX̃ vanish for q > 0. Analogously, we say that X
has 1-rational singularities if X is normal, and if for every resolution f : X̃ → X
the first direct image sheaf R1 f∗OX̃ vanishes.

If f1 : X1 → X and f2 : X2 → X are two resolutions of X , then for every
q the sheaves Rq( f1)∗OX1 and Rq( f2)∗OX2 are isomorphic. In particular, having
(1-)rational singularities is a local property that can be checked on a single resolu-
tion. Furthermore, if a Lie group G acts on X by holomorphic transformations, and
if f : X̃ → X is a resolution, then the support of Rq f∗OX̃ is a G-invariant analytic
subset of X .

Remark 2.1. A complex space X has rational singularities if and only if the fol-
lowing two conditions are satisfied:

(1) X is Cohen-Macaulay,
(2) if f : X̃ → X is any resolution, then f∗ωX̃ = ωX .

Here, ωX , ωX̃ denote the canonical sheaves of X , X̃ , respectively: if Z is any
normal complex space and if ı : Zsmooth → Z denotes the inclusion of the smooth
part of Z into Z , then ωZ := ı∗(�dim Z

Zsmooth
).

Since Rdim X f∗OX̃ vanishes for every resolution f : X̃ → X of a (normal)
complex space X , the two notions rational and 1-rational singularity coincide for
two-dimensional complex spaces. In higher dimensions these notions differ as the
following example shows.

Example 2.2. Let X be the affine cone over a smooth quartic hypersurface S in P3.
Then, the vertex of the cone is an isolated 1-rational singularity that is not rational.
In fact, if f : X̃ → X is the blowdown of the zero section in the total space X̃ of
the line bundle associated to OS(−1), we have (R2 f∗OX̃ )vertex = C.



416 DANIEL GREB

2.2. Analytic Hilbert quotients

If G is a real Lie group, then a complex G-space Z is a complex space with a real-
analytic action α : G × Z → Z such that all the maps αg : Z → Z , z �→ α(g, z) =
g • z are holomorphic. If G is a complex Lie group, a holomorphic G-space Z is a
complex G-space such that the action map α : G × Z → Z is holomorphic.

Let G be a complex reductive Lie group and X a holomorphic G-space. A
complex space Y together with a G-invariant surjective holomorphic map π : X →
Y is called an analytic Hilbert quotient (or semistable quotient in the terminology
of [10]) of X by the action of G if

(1) π is a locally Stein map, and
(2) (π∗OX )G = OY holds.

Here, locally Stein means that there exists an open covering of Y by open Stein
subspaces Uα such that π−1(Uα) is a Stein subspace of X for all α. By (π∗OX )G

we denote the sheaf U �→ OX (π−1(U ))G = { f ∈ OX (π−1(U )) | f G-invariant},
U open in Y .

An analytic Hilbert quotient of a holomorphic G-space X is unique up to bi-
holomorphism once it exists and we will denote it by X//G. It has the following
properties (see [10]):

(1) Given a G-invariant holomorphic map φ : X → Z into a complex space Z ,
there exists a unique holomorphic map φ : Y → Z such that φ = φ ◦ π .

(2) For every Stein subspace A of X//G the inverse image π−1(A) is a Stein sub-
space of X .

(3) If A1 and A2 are G-invariant analytic subsets of X , then π(A1) ∩ π(A2) =
π(A1 ∩ A2).

Examples 2.3. 1) If X is a holomorphic Stein G-space, then the analytic Hilbert
quotient exists and has the properties listed above (see [8] and [20]).

2) Let X be a Kählerian complex space on which G = K C acts holomor-
phically. Assume that the induced K -action is Hamiltonian with momentum map
µ : X → Lie(K )∗. If X (µ) = {x ∈ X | G • x ∩ µ−1(0) 
= ∅} is non-empty, it is
G-invariant and open in X , and the analytic Hilbert quotient π : X (µ) → X (µ)//G
exists, see [9].

2.3. Quotients by compact Lie groups

If G = K C acts holomorphically on a Stein space X with analytic Hilbert quotient
π : X → X//G, then the quotient X//G can also be constructed without refer-
ing to the G-action: let OX (X)K = OX (X)G denote the algebra of K -invariant
holomorphic functions on X ; associated with OX (X)K is the equivalence relation
∼: {(x1, x2) ∈ X × X | f (x1) = f (x2) for all f ∈ OX (X)K } and the quotient X/∼
with respect to this equivalence relation is a complex space naturally isomorphic to
X//G.
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Therefore, one is lead to the following generalisation of the notion of analytic
Hilbert quotient which allows to study holomorphic actions of compact groups K
that do not necessarily extend to actions of the complexification K C: let K be a
compact Lie group and let X be a complex K -space; a complex space Q together
with a surjective holomorphic map π : X → Q is called an analytic Hilbert quo-
tient if every q ∈ Q has an open Stein neighbourhood U in Q such that π−1(U )

is Stein and such that the restriction π |π−1(U ) : π−1(U ) → U induces an isomor-
phism of π−1(U )/∼ and U .

It is shown in [8] that for actions of compact groups on Stein spaces the analytic
Hilbert quotient always exists and is a Stein space.

3. Vanishing for cohomology with support

The proof of the main result uses the vanishing of cohomology groups with support
on a fibre of a resolution π : X̃ → X , see Theorems 3.5 and 3.6. This vanishing
will be derived from analytic Grauert-Riemenschneider vanishing using duality. It
is the analytic analogue of a vanishing result already used by Boutot in his proof
of the rationality of quotient singularities. However, in contrast to the algebraic
case, the analytic setup requires a careful study of the a priori different algebraic
and analytic cohomology groups with support. This section is devoted to the proof
of Theorems 3.5 and 3.6

3.1. Algebraic and analytic cohomology with support

If Y is a closed subspace of a topological space X and if F is a sheaf of abelian
groups on X we denote the q-th (analytic) cohomology group with support on Y by
Hq

Y

(
X,F

)
. Furthermore, we denote the q-th cohomology sheaf with support on Y

by H q
Y (F ). Suppose now that Y is an analytic subset of a complex space X and

that F is a coherent analytic sheaf on X . Then, H q
Y (F ) is an analytic OX -sheaf

with support contained in Y . It is however not coherent in general. Let I be an
ideal sheaf defining Y . Then, we define

�[Y ]
(
X,F

) := lim−→
m

HomOX

(
OX/I m,F

)
,

Hq
[Y ]

(
X,F

) := lim−→
m

Extq
(
X;OX/I m,F

)
.

We call Hq
[Y ]

(
X,F

)
the q-th algebraic cohomology group with support on Y . For

each m there exists a natural map HomOX

(
OX/I m,F

) → �Y
(
X,F

)
. For every

q ≥ 0 this induces a natural homomorphism

ρq : Hq
[Y ]

(
X,F

) → Hq
Y

(
X,F

)
.

The homomorphism ρ0 is an isomorphism. In the algebraic category this fact is
used to prove that ρq is bijective for all q ≥ 0, see [6, Theorem 2.8]. In the ana-
lytic category this is no longer true in general. However, we prove the following
comparison result:
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Proposition 3.1 (Comparison between algebraic and analytic local cohomology).
Let f : X̃ → X be a resolution of an irreducible normal complex space X of dimen-
sion n ≥ 2. Let x ∈ X, F = f −1(x)red, and assume that

⋃
k≥1 supp Rk f∗OX̃ ⊂

{x}. Then, the natural homomorphisms

ρq : Hq
[F]

(
X̃ ,OX̃

) → Hq
F

(
X̃ ,OX̃

)

are isomorphisms for q < n.

3.1.1. Coherence of cohomology sheaves and comparison

In the proof of Proposition 3.1 we are going to use the following comparison result.

Proposition 3.2 (see Section 1.3 of [13] and Section 5.5 of [22]). Let Y be an an-
alytic subset of a complex space X and let F be a coherent analytic sheaf on X.

Assume that the analytic sheaves H j
Y (F ) are coherent for 0 ≤ j ≤ q. Then, the

map ρ j is an isomorphism for 0 ≤ j ≤ q. If Y = {x} is a point, then additionally
ρq+1 is injective.

Therefore, one is led to study the coherence of the local cohomology sheaves
H j

Y (F ). We will do this using the following coherence criterion.

Proposition 3.3 (Theorem 3.5 in [21]). Let Y be an analytic subset of a complex
space X and let F be a coherent analytic sheaf on X. For every m ∈ N let
Sm(F ) := {x ∈ X | depthx F ≤ m}. Then, for every q ≥ 0 the following
conditions are equivalent:

(1) The sheaves H j
Y (F ) are coherent for 0 ≤ j ≤ q.

(2) dimC

(
Y ∩ Sk+q+1(F |X\Y )

X ) ≤ k for all k ∈ Z.

3.1.2. Spectral sequences associated to a resolution

Let f : X̃ → X be a resolution of an irreducible normal complex space, x ∈ X ,
F := f −1(x)red, and let F be a coherent analytic sheaf on X̃ . Analogous to [13,
Section 1.5] we have

�x
(
X, f∗F

) ∼= �F
(
X̃ ,F

)
and �[x]

(
X, f∗F

) ∼= �[F]
(
X̃ ,F

)
.

These isomorphisms induce the following commutative diagram of spectral se-
quences

H j
[x]

(
X, Rk f∗F

) ρ jk
��

��

H j
x
(
X, Rk f∗F

)

��
Hm[F]

(
X̃ ,F

) ρm �� Hm
F

(
X̃ ,F

)
,

where m = j + k.
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Proof of Proposition 3.1. Using the commutative diagram of spectral sequences
above and analysing the proof of [23, Theorem 5.2.12] we see that it suffices to
show that

(1) ρ j0 is bijective for all j < n, injective for j = n, and
(2) ρ jk is bijective for all j > 0, k > 0.

Since X is assumed to be normal, we have f∗OX̃ = OX . Furthermore, again by
assumption, the support of Rk f∗OX̃ is contained in {x} if k > 0. It follows that the
complex space X \ {x} has rational singularities. In particular, X \ {x} is Cohen-
Macaulay, i.e., depthy OX = n for all y ∈ X \{x}, cf. Remark 2.1. Combining these

observations with Proposition 3.3 we see that H j
x ( f∗OX̃ ) = H j

x (OX ) is coherent
for all j < n.

If k > 0, the fact that supp Rk f∗OX̃ ⊂ {x} implies H j
x (Rk f∗OX̃ ) = 0 for all

j > 0, cf. [21, Section 0.4]. Now we use Proposition 3.2 to conclude that both (1)
and (2) hold.

3.2. Duality for algebraic cohomology with support

In this section we prove a duality theorem for algebraic cohomology with support.
If G is a coherent analytic sheaf on a complex space X we denote by G ∗ its dual
sheaf.

Proposition 3.4 (Duality for algebraic cohomology with support). Let f : X̃ →
X be a resolution of an irreducible normal complex space X of dimension n. Let
x ∈ X, F = f −1(x)red, and let G be a locally free coherent analytic sheaf on X̃ . If
supp Rq f∗G ⊂ {x}, then

Rq f∗G
dual∼ Hn−q

[F]
(
X̃ , ωX̃ ⊗ G ∗) for all 0 ≤ q ≤ n.

Proof. (cf. [15, Proposition 11.6.1] and [11, Proposition 2.2]) Let Fm denote the
m-th infinitesimal neighbourhood of the fibre F , i.e., if IF denotes the ideal sheaf
of F in OX , we have OFm = OX̃/I m

F . Let ım : Fm → X̃ be the inclusion. Since
the dimension of the cohomology group Hq+1

(
Fm, ı∗mG

) = Hq+1(X̃ ,OFm ⊗G
)

is
finite by the Cartan-Serre Theorem, we may apply Theorem I and Theorem 6 of [1]
to conclude that for every m ∈ N

Hq(
X̃ ,OFm ⊗ G

) dual∼ Extn−q
c

(
X̃;OFm , ωX̃ ⊗ G ∗).

Here, Extqc
(
X̃;OFm , ·) is the q-th Ext-group with compact support, cf. [1, Sec-

tion 6]. Since supp OFm = F is compact, it follows that

Hq(
X̃ ,OFm ⊗ G

) dual∼ Extn−q(
X̃;OFm , ωX̃ ⊗ G ∗). (3.1)
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Since the completion of Rq f∗G at x is finite-dimensional by assumption, Grauert’s
comparison theorem (see [3, Hauptsatz IIa]) implies that for large m

Hq(
X̃ ,OFm ⊗ G

) ∼= (Rq f∗G )x = Rq f∗G.

On the other hand, the duality (3.1) implies that Extn−q
(
X̃;OFm , ωX̃ ⊗G ∗) is finite-

dimensional. Consequently, for large m, we obtain

Hn−q
[F]

(
X̃ , ωX̃ ⊗G ∗) = Extn−q(

X̃;OFm , ωX̃ ⊗G ∗) dual∼ Hq(
X̃ ,OFm ⊗G

) = Rq f∗G.

3.3. Vanishing for analytic cohomology with support

Using the results obtained in the previous two sections, we are now able to deduce
the following vanishing theorems, the main technical results of this note.

Theorem 3.5 (Vanishing for cohomology with support I). Let f : X̃ → X be
a resolution of an irreducible normal complex space X of dimension n ≥ 2. Let
x ∈ X, F = f −1(x)red, and assume that

⋃
k≥1 supp Rk f∗OX̃ ⊂ {x}. Then, we

have
Hq

F

(
X̃ ,OX̃

) = {0} for all q < n.

Proof. Since
⋃

k≥1 supp Rk f∗OX̃ ⊂ {x} by assumption, we use Proposition 3.1,
Proposition 3.4, and the Grauert-Riemenschneider Theorem in its analytic version
proven by Silva [19, A.2. Lemma] to obtain

Hq
F

(
X̃ ,OX̃

) ∼= Hq
[F]

(
X̃ ,OX̃

) dual∼ Rn−q f∗ωX̃ = 0 for all q < n.

To handle complex spaces with 1-rational singularities, we prove the following re-
sult.

Theorem 3.6 (Vanishing for cohomology with support II). Let f : X̃ → X be a
resolution of an irreducible normal Stein space X of dimension n ≥ 2. Let x ∈ X,
F = f −1(x)red, and assume that supp R1 f∗OX̃ ⊂ {x}. Then, we have

H1
F

(
X̃ ,OX̃

) = {0}
Proof. Consider the exact sequence for local cohomology ([21, Section 0])

0 → H0(X̃ ,OX̃

) α→ H0(X̃ \ F,OX̃

) → H1
F

(
X̃ ,OX̃

) → H1(X̃ ,OX̃

) → · · · .

Since X is assumed to be normal, the map α is bijective. Consequently, H1
F

(
X̃ ,OX̃

)
injects into H1

(
X̃ ,OX̃

) = H0
(
X, R1 f∗OX̃

)
, and is therefore finite-dimensional by
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the assumption on the support of R1 f∗OX̃ . Applying [7, Theorem 2.3] we see that
the duality homomorphism

Hn−1(F, ωX̃ |F
) → H1

F

(
X̃ ,OX̃

)∗

is surjective, where ·|F denotes set-theoretic restriction. Since Hn−1
(
F, ωX̃ |F

)
is

isomorphic to the stalk of
(
Rn−1 f∗ωX̃

)
at x , the claimed vanishing again follows

from analytic Grauert-Riemenschneider vanishing [19].

4. Proof of the main results

4.1. Cutting by hyperplane sections

The following lemma will be used to obtain information about the singularities of a
complex space X from information about the singularities of a general hyperplane
section H of X and vice versa. Recall that a subset of a topological space X is
called fat if it contains a countable intersecton of dense subsets of X . Every fat
subset of a complete metric space X is dense in X .

Lemma 4.1. Let X be a normal Stein space, dim X ≥ 2, and let f : X̃ → X be
a resolution. Let H ⊂ OX (X) be a finite-dimensional linear subspace containing
the constants, dimC H = N + 1, such that the image of X under the associated
map ϕH : X → PN = P(C ⊕ CN )[Z0:Z1:···:Z N ] is closed in {Z0 
= 0} and fulfills
dim ϕH (X) ≥ 2. Then, there exists a fat subset U ⊂ P(H ) such that for all h ∈ U
the following holds for the corresponding hyperplane section {h = 0} ⊂ X:

(1) The preimage H̃ := f −1(H) is smooth and f |H̃ : H̃ → H is a resolution of
H.

(2) We have Rq f∗OH̃
∼= Rq f∗OX̃ ⊗ OH for all q ≥ 0.

Proof. (1) This follows from Bertini and Sard theorems, see e.g. [17].
(2) In the exact sequence

0 → OX̃ (−H̃)
m→ OX̃ → OH̃ → 0, (4.1)

the map m is given by multiplication with the equation h ∈ OX (X) defining H
and H̃ . Pushing forward the short exact sequence (4.1) by f∗ yields the long exact
seqence

0 → f∗OX̃ (−H̃)
m0−→ f∗OX̃ → f∗OH̃ →

→ R1 f∗OX̃ (−H̃)
m1−→ R1 f∗OX̃ → R1 f∗OH̃ → · · ·

→ Rq f∗OX̃ (−H̃)
mq−→ Rq f∗OX̃ → Rq f∗OH̃ → · · ·

→ Rn−1 f∗OX̃ (−H̃)
mn−1−→ Rn−1 f∗OX̃ → 0.

(4.2)
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The maps mq , q = 0, 1, 2, . . . , n − 1, are given by multiplication with the element
h ∈ OX (X). Since H is base-point free, there exists a fat subset U in P(H ) such
that all the maps mq in the sequence (4.2) are injective, cf. [17].

Since OX̃ (−H̃) ∼= f ∗(OX (−H)), the projection formula for locally free
sheaves yields

Rq f∗OX̃ (−H̃) ∼= Rq f∗OX̃ ⊗ OX (−H).

Furthermore, for every q, the image of mq coincides with the image Bq of the
natural map Rq f∗OX̃ ⊗ OX (−H) → Rq f∗OX̃ . Since mq is injective, it follows
that

Rq f∗OH̃
∼= Rq f∗OX̃/Bq for all q = 0, 1, . . . , n − 1.

Tensoring with Rq f∗OX̃ is right-exact, and hence the exact sequence 0 →OX (−H)

→ OX → OH → 0 yields Rq f∗OH̃
∼= Rq f∗OX̃ ⊗ OH , as claimed.

4.2. Proof of Theorem 1.1

Let π : X → X//G be an analytic Hilbert quotient. The following lemma relates
cohomology groups of X//G to cohomology groups on X . This is essentially the
only point in the proof of Theorem 1.1 at which we use the fact that π is the analytic
Hilbert quotient for the G-action on X .

Lemma 4.2. Let X be a holomorphic G-space with analytic Hilbert quotient π :
X → X//G. Then, for all q ≥ 0, the natural map

π∗ : Hq(
X//G,OX//G

) → Hq(
X,OX

)

is injective.

Proof. Let {Uα}α∈A be a Čech covering of X//G. Since π is Stein, {π−1(Uα)}α∈A

is a Čech covering of X . If [(vi0...iq )ik∈A] ∈ ker(π∗), then there exists a cocycle
(w jo... jq−1)jk∈A with (π∗(vi0...iq ))ik∈A=δ((w jo... jq−1) jk∈A)=δ

((∫
Kw jo... jq−1dk

)
jk∈A

)
.

Here,
∫

K dk denotes the integral with respect to the Haar measure on a maximal
compact subgroup K of G. Since (π∗OX )K = (π∗OX )G = OX//G , this implies
[(vi0...iq )ik∈A] = 0 ∈ Hq

(
X//G,OX//G

)
.

With the results of the previous sections at hand we are now in the position to
carefully adapt Boutot’s proof to our analytic situation. Furthermore, by thoroughly
carrying out the reduction steps omited in [2] we will even find a refinement of the
classical result in the algebraic category, cf. Theorem 4.3.

Proof of Theorem 1.1. Since the claim is local and π is Stein, we may assume that
X//G and X are Stein, and that X//G admits a closed embedding ϕ : X//G ↪→ CN

for some N ∈ N. Since OX//G = (π∗OX )G , normality of X implies that X//G
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is also normal. As a consequence, we can assume in the following that X is G-
irreducible.

We prove the claim by induction on dim X//G. For dim X//G = 0 there
is nothing to show. For dim X//G = 1 we notice that X//G is smooth. So, let
dim X//G ≥ 2. Let π : X → X//G denote the quotient map and let pX : X̃ → X
be a resolution of X . First, we claim that there exists a fat subset of the set of
all affine hyperplane sections H ⊂ X//G such that H has rational singularities.
Indeed, by Lemma 4.1 there exists a fat subset U of the set of all affine hyper-
plane sections H ⊂ X//G such that pX |H̃ : H̃ → π−1(H) is a resolution, where
H̃ = p−1

X (π−1(H)). By the same lemma we may furthermore assume that for all
H ∈ U we have

Rq(pX )∗OX̃ ⊗OX Oπ−1(H) = Rq(pX )∗OH̃ for all q ≥ 0.

Since (pX )∗OX̃ = OX by the analytic version of Zariski’s main theorem, it fol-
lows from the case q = 0 that π−1(H) is normal. Alternatively, one could invoke
Seidenberg’s Theorem (see [17]). Together with the cases q = 1, . . . , dim X − 1
this implies that π−1(H) has rational singularities. By induction, it follows that
H = π−1(H)//G has rational singularities.

Let p : Z → X//G be a resolution of X//G. The previous considerations
together with Lemma 4.1 imply that there exists a fat subset U of the set of all
affine hyperplane sections H of X//G such that H has rational singularities, such
that the restriction of p to Ĥ := p−1(H), p|p−1(H) : Ĥ → H , is a resolution of
H , and such that OH ⊗ Rq p∗OZ = Rq p∗OĤ = 0. Consequently, the support
of Rq p∗OZ does not intersect any H ∈ U and hence supp(Rq p∗OZ ) consists of
isolated points. Since the claim is local, we can therefore assume in the following
that

⋃
q≥1 Rq p∗OZ ⊂ {x0} for some x0 ∈ X//G.

The group G acts on the fibre product Z ×X//G X such that the canonical pro-
jection pX : Z ×X//G X → X is equivariant. One of the G-irreducible components
X̃ of Z ×X//G X is bimeromorphic to X , and, by passing to a resolution of X̃ if
necessary, we can assume that pX : X̃ → X is a resolution of X . We obtain the
following commutative diagram

X

π

��

X̃
pX��

pZ

��

X//G Z .
p

��

Since
⋃

q≥1 supp(Rq p∗OZ ) ⊂ {x0}, we have (Rq p∗OZ )x0 = H0(X//G, Rq p∗OZ )

for every q ≥ 1. Recall that X//G is Stein, hence the Leray spectral sequence for
p implies that it suffices to show that Hq

(
Z ,OZ

) = 0 for all q ≥ 1. Since X is
Stein and has rational singularities, it follows that Hq

(
X̃ ,OX̃

)∼= Hq
(
X,OX

)={0}
for all q ≥ 1. Consequently, it suffices to show that there exists an injective map
Hq

(
Z ,OZ

)
↪→ Hq

(
X̃ ,OX̃

)
.
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We introduce the following notation: U = (X//G) \ {x0}, U ′ = π−1(U ) ⊂ X ,
Ũ = p−1

X (U ′) ⊂ X̃ , V = p−1(U ) ⊂ Z . For every q ≥ 1 we obtain the following
commutative diagram of canonical maps

Hq
(
X̃ ,OX̃

) hq
X̃ ,Ũ

�� Hq
(
Ũ ,OŨ

)
Hq

(
U ′,OU ′

)hq
U ′,Ũ

��

Hq
(
Z ,OZ

)
hq

Z ,X̃

��

hq
Z ,V

�� Hq
(
V,OV

)

��

Hq
(
U,OU

)
.

hq
U,V

��

hq
U,U ′

��
(4.3)

Let Y := p−1(x0) ⊂ Z . We consider the exact sequence for cohomology with
support

. . .→ Hq
Y

(
Z ,OZ

)→ Hq(
Z ,OZ

) hq
Z ,V−→ Hq(

V,OV
)→ Hq+1

Y

(
Z ,OZ

)→· · · . (4.4)

Since dim X//G ≥2, Theorem 3.5 yields Hq
Y

(
Z ,OZ

)={0} for 1≤q ≤n − 1. (�)

Hence, as a consequence of (4.4), the map hq
Z ,V is injective for every 1 ≤ q ≤ n−1.

The restriction of p to V = p−1(U ) is a resolution of U .
Since

⋃
q≥1 supp Rq p∗OZ ⊂ {x0}, the complex space U has rational singularities,

and the Leray spectral sequence for p|V yields that hq
U,V is bijective. Similar argu-

ments show that hq
U ′,Ũ is bijective. Furthermore, Lemma 4.2 implies that hq

U,U ′ is
injective for all q ≥ 1.

By the considerations above the map

hq
Z ,Ũ

:= hq
U ′,Ũ ◦ hq

U,U ′ ◦ (hq
U,V )−1 ◦ hq

Z ,V

is injective for every 1 ≤ q ≤ n − 1. Diagram (4.3) implies hq
Z ,Ũ

= hq
X̃ ,Ũ

◦ hq
Z ,X̃

,

and therefore hq
Z ,X̃

is injective for every 1 ≤ q ≤ n − 1. Consequently, we have

Hq
(
Z ,OZ

) = 0 for all q ≥ 1. This concludes the proof of part (1) of Theorem 1.1.
The proof of part (2) is completely analogous to the argument given above,

except that instead of invoking Theorem 3.5 at (�) we use Theorem 3.6 to show that
h1

Z ,V is injective.

Inspecting the proof above gives a refinement of Boutot’s result in the algebraic
category (see also [4]):

Theorem 4.3. Let X be a normal algebraic G-variety with good quotient π : X →
X//G. Let f : X̃ → X be a resolution of X, and let g : Z → X//G be a resolution
of X//G. Assume that R j f∗OX̃ = 0 for 1 ≤ j ≤ q. Then also R j g∗OZ = 0 for
1 ≤ j ≤ q.
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Proof. The proof of Theorem 1.1 (1) given above applies verbatim up to the point (�)
where one uses Theorem 3.5 to conclude that Hq

F (Z ,OZ ) vanishes (this required
the union

⋃
q≥1 supp Rq p∗OZ to be contained in {x0}). However, algebraic and

analytic cohomology groups with support always coincide in the algebraic cate-
gory [6, Theorem 2.8]. Consequently, the cohomology group Hq

F

(
Z ,OZ

)
vanishes

without the additional assumption on the supports, see [2] and [11, Proposition
2.2].

This result allows to obtain information about good quotients of algebraic G-vari-
eties with worse than rational singularities. See for example [16] for cohomological
properties of varieties with Cohen-Macaulay singularities.

4.3. Quotients of K -spaces: proof of Theorem 1.2

The proof of Theorem 1.2 follows from the existence of complexifications for Stein
K -spaces.

Proof of Theorem 1.2. Let X be a complex K -space with analytic Hilbert quotient
π : X → X//K . Since the claim is local on X//K , we may assume that both X and
X//K are Stein. Then, by the main result of [8] there exists a holomorphic Stein
K C-space XC and a holomorphic K -equivariant open embedding ı : X ↪→ XC

with the following properties:

1. the image ı(X) is an orbit-convex Runge subset of XC, and K C • ı(X) = XC,
2. the analytic Hilbert quotient πC : XC → XC//K C exists, and the restriction

πC|ı(X) : ı(X) → XC//K C induces an isomorphism X//K ∼= XC//K C such that
the following diagram commutes

X
ı ��

π

��

XC

πC

��

X//K
∼= �� XC//K C.

Hence, the claim is proven once we show that the singularities of XC are not worse
than the singularities of X : let f : X̃ → XC be a resolution and suppose that
Aq := supp Rq f∗OX̃ is non-empty; since Aq is a K C-invariant analytic subset of
XC (cf. Section 2.1) it follows from properties (1) and (2) above that Aq ∩ı(X) 
= ∅,
contrary to the assumption on the singularities of X .
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