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Quantitative uniqueness for the power

of the Laplacian with singular coefficients

CHING-LUNG LIN, SEI NAGAYASU AND JENN-NAN WANG

Abstract. In this paper we study the local behavior of a solution to the l-th
power of the Laplacian with singular coefficients in lower order terms. We ob-
tain a bound on the vanishing order of the nontrivial solution. Our proofs use
Carleman estimates with carefully chosen weights. We will derive appropriate
three-sphere inequalities and apply them to obtain doubling inequalities and the
maximal vanishing order.
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1. Introduction

Assume that ! is a connected open set containing 0 in Rn for n ≥ 2. In this paper

we are interested in the local behavior of u satisfying the following differential

inequality:

|"lu| ≤ K0
∑

|α|≤l−1
|x |−2l+|α||Dαu| + K0

[3l/2]∑

|α|=l
|x |−2l+|α|+ε |Dαu|, (1.1)

where 0 < ε < 1/2 and [h] = k ∈ Z when k ≤ h < k + 1. For (1.1),

a strong unique continuation was proved by the first author [9]. A similar re-

sult for the power of the Laplacian with lower derivatives up to l-th order can

be found in [2]. On the other hand, a unique continuation property for the l-th

power of the Laplacian with the same order of lower derivatives as in (1.1) was

given in [12]. The results mentioned above concern only the qualitative behav-

ior of the solution. In other words, they show that if u vanishes at 0 in infinite

order or u vanishes in an open subset of !, then u must vanish identically in !.
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The aim of this paper is to study the strong unique continuation from a quantita-

tive viewpoint. Namely, we are interested in the maximal vanishing order at 0 of

any nontrivial solution to (1.1). It is worth mentioning that quantitative estimates

of the strong unique continuation are useful in studying the nodal sets of eigen-

functions [3], or solutions of second-order elliptic equations [7, 11], or the inverse

problem [1].

Perhaps, for the quantitative uniqueness problem, the most popular technique,

introduced by Garofalo and Lin [4, 5], is to use the frequency function related to

the solution. This method works quite efficiently for second-order strongly elliptic

operators. However, this method cannot be applied to (1.1). Another method to

derive quantitative estimates of the strong unique continuation is based on Carle-

man estimates, which was first initiated by Donnelly and Fefferman [3] where they

studied the maximal vanishing order of the eigenfunction with respect to the cor-

responding eigenvalue on a compact smooth Riemannian manifold. Their method

does not work for (1.1) either.

Recently, the first and third authors and Nakamura [10] introduced a method

based on appropriate Carleman estimates to prove a quantitative uniqueness for

second-order elliptic operators with sharp singular coefficients in lower order terms.

A key strategy of our method is to derive three-sphere inequalities and then ap-

ply them to obtain doubling inequalities and the maximal vanishing order. Both

steps require delicate choices of cut-off functions. Nevertheless, this method is

quite versatile and can be adapted to treat many equations or even systems. The

present work is an application of the ideas of [10] to the l-th power of the Lapla-

cian with singular coefficients. The power l = 2 is the most interesting and useful

case. It corresponds to the biharmonic operator with third-order derivatives. Our

work provides a quantitative estimate of the strong unique continuation for this

equation. To our best knowledge, this quantitative estimate has not been derived

before.

Before stating the main results of the paper, we want to remark that if the

right-hand side of (1.1) contains only l-th (or lower) order derivatives and has mild

singular coefficients, then the Carleman estimate (3.1) alone is sufficient to derive

doubling inequalities. However, if the highest order of the right-hand side of (1.1) is

strictly larger than l, even with bounded coefficients, (3.1) is not enough to deduce

doubling inequalities. The reason is that the constant in (3.1) behaves like m2l−2|α|
for |α| ≤ 2l and it decays to zero when |α| > l. The trick to overcome this

difficulty is to use three-sphere inequalities, which is another form of a quantitative

uniqueness estimate.

We now state the main results of the paper. Assume that BR′
0

⊂ ! for some

R′
0 > 0.

Theorem 1.1. There exists a positive number R̃0 < e−1/2 such that if 0 < r1 <
r2 < r3 ≤ R′

0 < 1 and r1/r3 < r2/r3 < R̃0, then

∫

|x |<r2
|u|2dx ≤ C

(∫

|x |<r1
|u|2dx

)τ (∫

|x |<r3
|u|2dx

)1−τ

(1.2)
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for u ∈ H2l(BR′
0
) satisfying (1.1) in BR′

0
, where C and 0 < τ < 1 depend on r1/r3,

r2/r3, n, l, and K0.

Remark 1.2. From the proof, the constants C and τ can be explicitly written as
C = max{C0(r2/r1)n, exp(Bβ0)} and τ = B/(A + B), where C0 > 1 and β0 are
constants depending on n, l, K0 and

A = A(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1− 2 log(r2/r3).

The explicit forms of these constants are important in the proof of Theorem 1.3.

Theorem 1.3. Let u ∈ H2lloc(!) be a nonzero solution to (1.1). Then we can

find a constant R2 (depending on n, l, ε, K0) and a constant m1 (depending on
n, l, ε, K0, ‖u‖L2(|x |<R22)

/‖u‖L2(|x |<R42)
) such that if 0 < r ≤ R3, then

C3r
m1 ≤

∫

|x |<r
|u|2dx, (1.3)

where R3 is a positive constants depending on n, l, ε, K0,m1 and C3 is a positive
constants depending on n, l, ε, K0,m1, u.

Theorem 1.4. Let u ∈ H2lloc(!) be a nonzero solution to (1.1). Then there ex-

ist positive constants R4 (depending on n, l, ε, K0,m1) and C4 (depending on

n, l, ε, K0,m1) such that if 0 < r ≤ R4, then

∫

|x |≤2r
|u|2dx ≤ C4

∫

|x |≤r
|u|2dx, (1.4)

where m1 is the constant obtained in Theorem 1.3.

The rest of the paper is devoted to the proofs of Theorems 1.1-1.4.

2. Three-sphere inequalities

In this section we will prove Theorem 1.1. To begin, we recall a Carleman estimate

with weight ϕβ = ϕβ(x) = exp(β
2
(log |x |)2) given in [9].
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Lemma 2.1 ([9, Corollary 3.3]). There exist a sufficiently large number β0 > 0

and a sufficiently small number r0 > 0, depending on n and l, such that for all

u ∈ Ur0 with 0 < r0 < e−1, β ≥ β0, we have that

∑

|α|≤2l
β3l−2|α|

∫
ϕ2β |x |2|α|−n(log |x |)2l−2|α||Dαu|2dx

≤ C̃0

∫
ϕ2β |x |4l−n|"lu|2dx,

(2.1)

where Ur0 = {u ∈ C∞
0 (Rn \ {0}) : supp(u) ⊂ Br0} and C̃0 is a positive constant

depending on n and l. Here e = exp(1).

Remark 2.2. The estimate (2.1) in Lemma 2.1 remains valid if we assume u ∈
H2lloc(Rn \ {0}) with compact support. This can be easily obtained by cutting off u
for small |x | and regularizing.

Proof. We first consider the case where 0 < r1 < r2 < R < 1/e and BR ⊂ !. The
constant R will be chosen later. To use the estimate (2.1), we need to cut off u. So

let ξ(x) ∈ C∞
0 (Rn) satisfy 0 ≤ ξ(x) ≤ 1 and

ξ(x) =






0, |x | ≤ r1/e,

1, r1/2 < |x | < er2,

0, |x | ≥ 3r2.

It is easy to check that for all multiindex α





|Dαξ | = O(r

−|α|
1 ) for all r1/e ≤ |x | ≤ r1/2

|Dαξ | = O(r
−|α|
2 ) for all er2 ≤ |x | ≤ 3r2.

(2.2)

On the other hand, repeating [8, proof of Corollary 17.1.4], we can show that

∫

a1r<|x |<a2r
||x ||α|Dαu|2dx ≤ C ′

∫

a3r<|x |<a4r
|u|2dx, |α| ≤ 2l, (2.3)

for all 0 < a3 < a1 < a2 < a4 such that Ba4r ⊂ !, where the constant C ′ is
independent of r and u.
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Notice that the commutator ["l , ξ ] is a 2l − 1 order differential operator. Ap-

plying (2.1) to ξu and using (1.1), (2.2), (2.3) implies

∑

|α|≤2l
β3l−2|α|

∫

r1/2<|x |<er2
ϕ2β |x |2|α|−n(log |x |)2l−2|α||Dαu|2dx

≤
∑

|α|≤2l
β3l−2|α|

∫
ϕ2β |x |2|α|−n(log |x |)2l−2|α||Dα(ξu)|2dx

≤ C̃0

∫
ϕ2β |x |4l−n|"l(ξu)|2dx

≤2C̃0
∫

ϕ2β |x |4l−nξ2
(
K0

∑

|α|≤l−1
|x |−2l+|α||Dαu|+K0

[3l/2]∑

|α|=l
|x |−2l+|α|+ε |Dαu|

)2
dx

+ 2C̃0

∫
ϕ2β |x |4l−n

∣∣["l , ξ ]u
∣∣2dx

≤ C̃1

{∫

r1/2<|x |<er2
ϕ2β

(
∑

|α|≤l−1
|x |2|α|−n|Dαu|2+

[3l/2]∑

|α|=l
|x |2|α|−n+2ε |Dαu|2

)
dx

+
∫

r1/e<|x |<r1/2
ϕ2β

∑

|α|≤2l−1
|x |2|α|−n|Dαu|2dx

+
∫

er2<|x |<3r2
ϕ2β

∑

|α|≤2l−1
|x |2|α|−n|Dαu|2dx

}

≤ C̃2

{∫

r1/2<|x |<er2
ϕ2β

(
∑

|α|≤l−1
|x |2|α|−n|Dαu|2+

[3l/2]∑

|α|=l
|x |2|α|−n+2ε |Dαu|2

)
dx

+ r−n
1 ϕ2β(r1/e)

∫

r1/e<|x |<r1/2

∑

|α|≤2l−1
||x ||α|Dαu|2dx

+ r−n
2 ϕ2β(er2)

∫

er2<|x |<3r2

∑

|α|≤2l−1
||x ||α|Dαu|2dx

}

≤ C̃3

{∫

r1/2<|x |<er2
ϕ2β

(
∑

|α|≤l−1
|x |2|α|−n|Dαu|2+

[3l/2]∑

|α|=l
|x |2|α|−n+2ε |Dαu|2

)
dx

+r−n
1 ϕ2β(r1/e)

∫

r1/4<|x |<r1
|u|2dx + r−n

2 ϕ2β(er2)

∫

2r2<|x |<4r2
|u|2dx

}
,

(2.4)

where C̃1, C̃2, and C̃3 are independent of r1, r2, and u.
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We now choose r0 < e−ε−1([3l/2]−l)−1 small enough that





(log(er0))
−2 ≤ 1

2C̃3

(er0)
2ε(log(er0))

2([3l/2]−l) ≤ 1

2C̃3
.

Letting R ≤ r0 and β ≥ β0 ≥ max{2C̃3, 1}, we can absorb the integral over
r1/2 < |x | < er2 on the right-hand side of (2.4) into its left-hand side to obtain

∫

r1/2<|x |<er2
ϕ2β

(
∑

|α|≤l−1
|x |2|α|−n|Dαu|2+

[3l/2]∑

|α|=l
|x |2|α|−n+2ε |Dαu|2

)
dx

≤ C̃4

{
r−n
1 ϕ2β(r1/e)

∫

r1/4<|x |<r1
|u|2dx + r−n

2 ϕ2β(er2)

∫

2r2<|x |<4r2
|u|2dx

}
,

(2.5)

where C̃4 = 1/C̃3. Using (2.5) we have that

r−n
2 ϕ2β(r2)

∫

r1/2<|x |<r2
|u|2dx

≤
∫

r1/2<|x |<er2
ϕ2β |x |−n|u|2dx

≤ C̃4

{
r−n
1 ϕ2β(r1/e)

∫

r1/4<|x |<r1
|u|2dx + r−n

2 ϕ2β(er2)

∫

2r2<|x |<4r2
|u|2dx

}
.

(2.6)

Dividing r−n
2 ϕ2β(r2) both sides of (2.6) we get

∫

r1/2<|x |<r2
|u|2dx

≤ C̃4

{
(r2/r1)

n[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

r1/4<|x |<r1
|u|2dx

+[ϕ2β(er2)/ϕ
2
β(r2)]

∫

2r2<|x |<4r2
|u|2dx

}

≤ C̃5

{
(r2/r1)

n[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

|x |<r1
|u|2dx

+(r2/r1)
n[ϕ2β(er2)/ϕ

2
β(r2)]

∫

|x |<4r2
|u|2dx

}
,

(2.7)

where C̃5 = max{C̃4, 1}. With such choice of C̃5, we can see that

C̃5(r2/r1)
n[ϕ2β(r1/e)/ϕ

2
β(r2)] > 1
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for all 0 < r1 < r2. Adding
∫
|x |<r1/2 |u|2dx to both sides of (2.7) and choosing

r2 ≤ R = min{r0, 1/4}, we get
∫

|x |<r2
|u|2dx ≤ 2C̃5(r2/r1)

n[ϕ2β(r1/e)/ϕ
2
β(r2)]

∫

|x |<r1
|u|2dx

+ 2C̃5(r2/r1)
n[ϕ2β(er2)/ϕ

2
β(r2)]

∫

|x |<1
|u|2dx .

(2.8)

Setting

A = β−1 log[ϕ2β(r1/e)/ϕ
2
β(r2)] = (log r1 − 1)2 − (log r2)

2 > 0,

B = −β−1 log[ϕ2β(er2)/ϕ
2
β(r2)] = −1− 2 log r2 > 0,

inequality (2.8) becomes

∫

|x |<r2
|u|2dx

≤ 2C̃5(r2/r1)
n

{
exp(Aβ)

∫

|x |<r1
|u|2dx + exp(−Bβ)

∫

|x |<1
|u|2dx

}
.

(2.9)

To further simplify the terms on the right-hand side of (2.9), we consider two

cases. If
∫
|x |<r1 |u|2dx )= 0 and

exp (Aβ0)

∫

|x |<r1
|u|2dx < exp (−Bβ0)

∫

|x |<1
|u|2dx,

then we can pick β > β0 such that

exp (Aβ)

∫

|x |<r1
|u|2dx = exp (−Bβ)

∫

|x |<1
|u|2dx .

Using such a β, we obtain from (2.9) that

∫

|x |<r2
|u|2dx ≤ 4C̃5(r2/r1)

n exp (Aβ)

∫

|x |<r1
|u|2dx

= 4C̃5(r2/r1)
n

(∫

|x |<r1
|u|2dx

) B
A+B

(∫

|x |<1
|u|2dx

) A
A+B

.

(2.10)

If
∫
|x |<r1 |u|2dx = 0, then it follows from (2.9) that

∫

|x |<r2
|u|2dx = 0
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since we can take β arbitrarily large. The three-sphere inequality obviously holds.
On the other hand, if

exp (−Bβ0)

∫

|x |<1
|u|2dx ≤ exp (Aβ0)

∫

|x |<r1
|u|2dx,

then we have
∫

|x |<r2
|u|2dx ≤

(∫

|x |<1
|u|2dx

) B
A+B

(∫

|x |<1
|u|2dx

) A
A+B

≤ exp (Bβ0)

(∫

|x |<r1
|u|2dx

) B
A+B

(∫

|x |<1
|u|2dx

) A
A+B

.

(2.11)

Putting together (2.10), (2.11), and setting C̃6 = max{4C̃5(r2/r1)n, exp (Bβ0)}, we
arrive at

∫

|x |<r2
|u|2dx ≤ C̃6

(∫

|x |<r1
|u|2dx

) B
A+B

(∫

|x |<1
|u|2dx

) A
A+B

. (2.12)

Now for the general case, we take R̃0 = R and consider 0 < r1 < r2 < r3 with

r1/r3 < r2/r3 ≤ R̃0. By scaling, i.e., defining û(y) := u(r3y), we derive from
(2.12) that

∫

|y|<r2/r3
|̂u|2dy ≤ C

(∫

|y|<r1/r3
|̂u|2dy

)τ (∫

|y|<1
|̂u|2dy

)1−τ

, (2.13)

where τ = B/(A + B) with

A = A(r1/r3, r2/r3) = (log(r1/r3) − 1)2 − (log(r2/r3))
2,

B = B(r2/r3) = −1− 2 log(r2/r3),

and C=max{4C̃5(r2/r1)n, exp(Bβ0)}. Note that C̃5 can be chosen independent of
the scaling factor r3 provided r3<1. Replacing the variable y= x/r3 in (2.13) gives

∫

|x |<r2
|u|2dx ≤ C

(∫

|x |<r1
|u|2dx

)τ (∫

|x |<r3
|u|2dx

)1−τ

.

This concludes the proof.

3. Doubling inequalities and maximal vanishing order

In this section we prove Theorem 1.3 and Theorem 1.4. We begin with another

Carleman estimate derived in [9, Lemma 2.1]: for any u ∈ C∞
0 (Rn\{0}) and for

any m ∈ {k + 1/2, k ∈ N}, we have the following estimate
∑

|α|≤2l

∫
m2l−2|α||x |−2m+2|α|−n|Dαu|2dx ≤ C

∫
|x |−2m+4l−n|*lu|2dx, (3.1)

where C depends only on the dimension n and the power l.
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Remark 3.1. Using the cut-off function and regularization, the estimate (3.1) re-

mains valid for any fixed m if u ∈ H2lloc(Rn\{0}) with compact support.

Proof. In view of Remark 3.1, we can apply (3.1) to the function χu with χ(x) ∈
C∞
0 (Rn\{0}). Thus, we define χ(x) ∈ C∞

0 (Rn\{0}) as

χ(x) =






0 if |x | ≤ δ/3,

1 if δ/2 ≤ |x | ≤ (R0 + 1)R0R/4 = r4R,

0 if 2r4R ≤ |x |,

where δ ≤ R20R/4, R0 > 0 is a small number which will be chosen later and

R < 1 is sufficiently small. Here the number R is not yet fixed and is given by

R = (γm)−l/2ε , where γ > 0 is a large constant which will be determined later.

Using the estimate (3.1) and equation (1.1), we can derive that

∑

|α|≤2l

∫

δ/2≤|x |≤r4R
m2l−2|α||x |−2m+2|α|−n|Dαu|2dx

≤
∑

|α|≤2l

∫
m2l−2|α||x |−2m+2|α|−n|Dα(χu)|2dx

≤C

∫
|x |−2m+4l−n|"l(χu)|2dx

=C

∫

δ/2≤|x |≤r4R
|x |−2m+4l−n|"lu|2dx+C

∫

|x |>r4R
|x |−2m+4l−n|"l(χu)|2dx

+C
∫

δ/3≤|x |≤δ/2
|x |−2m+4l−n|"l(χu)|2dx

≤C ′K 20

∫

δ/2≤|x |≤r4R

(
∑

|α|≤l−1
|x |2|α|−n−2m |Dαu|2+

[3l/2]∑

|α|=l
|x |2|α|−n−2m+2ε|Dαu|2

)
dx

+C
∫

|x |>r4R
|x |−2m+4l−n|"l(χu)|2dx+C

∫

δ/3≤|x |≤δ/2
|x |−2m+4l−n|"l(χu)|2dx

≤C ′K 20 (r4R)2ε
∫

δ/2≤|x |≤r4R

[3l/2]∑

|α|=l
|x |2|α|−n−2m |Dαu|2dx

+C ′K 20

∫

δ/2≤|x |≤r4R

∑

|α|≤l−1
|x |2|α|−n−2m |Dαu|2dx

+C
∫

|x |>r4R
|x |−2m+4l−n|"l(χu)|2dx+C

∫

δ/3≤|x |≤δ/2
|x |−2m+4l−n|"l(χu)|2dx,

(3.2)

where the constant C ′ depends on n and l.
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By carefully checking the terms on both sides of (3.2), we now choose γ ≥
(2C ′K 20 )

1/ l and thus

R2ε = (γm)−l ≤ m−l

2C ′K 20
.

Hence, choosing R0 < 1 (which suffices to guarantee that r
2/ε
4 = R2ε0 (R0 +

1)2ε/42ε < 1) and m such that m2 > 2C ′K 20 , we can remove the first two terms on
the right-hand side of the last inequality in (3.2) and obtain

∑

|α|≤2l

∫

δ/2≤|x |≤r4R
m2l−2|α||x |−2m+2|α|−n|Dαu|2dx

≤ 2C

∫

δ/3<|x |<δ/2
|x |−2m+4l−n|"l(χu)|2dx

+ 2C

∫

r4R<|x |<2r4R
|x |−2m+4l−n|"l(χu)|2dx .

(3.3)

In view of the definition of χ , it is easy to see that for all multiindex α

{
|Dαχ | = O(δ−|α|) for all δ/3 < |x | < δ/2,

|Dαχ | = O((r4R)−|α|) for all r4R < |x | < 2r4R.
(3.4)

Note that R20 ≤ r4 provided R0 ≤ 1/3. Therefore, using (3.4) and (2.3) in (3.3), we
derive

m2(2δ)−2m−n
∫

δ/2<|x |≤2δ
|u|2dx + m2(R20R)−2m−n

∫

2δ<|x |≤R20R
|u|2dx

≤
∑

|α|≤2l

∫

δ/2≤|x |≤r4R
m2l−2|α||x |−2m+2|α|−n|Dαu|2dx

≤ C ′′ ∑

|α|≤2l
δ−4l+2|α|

∫

δ/3<|x |<δ/2
|x |−2m+4l−n|Dαu|2dx

+ C ′′ ∑

|α|≤2l
(r4R)−4l+2|α|

∫

r4R<|x |<2r4R
|x |−2m+4l−n|Dαu|2dx

≤ C̃ ′δ−2m−n
∫

|x |≤δ
|u|2dx + C ′′(r4R)−2m−n

∫

|x |≤R0R
|u|2dx,

(3.5)

where C̃ ′ = C ′′32m+n and C ′′ is independent of R0, R, and m.
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We then add m2(2δ)−2m−n ∫
|x |≤δ/2 |u|2dx to both sides of (3.5) and obtain

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R)−2m−n

∫

|x |≤R20R
|u|2dx

= 1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R)−2m−n

∫

|x |≤2δ
|u|2dx

+ m2(R20R)−2m−n
∫

2δ<|x |≤R20R
|u|2dx

≤ 1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + 1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx

+ m2(R20R)−2m−n
∫

2δ<|x |≤R20R
|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx + C ′′(r4R)−2m−n

∫

|x |≤R0R
|u|2dx

= C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx

+ m2(R20R)−2m−nC ′′m−2
(
R20

r4

)2m+n ∫

|x |≤R0R
|u|2dx

(3.6)

with C̃ ′′ = C̃ ′ + 22m+nm2. We first observe that

C ′′m−2
(
R20

r4

)2m+n
= C ′′m−2

(
4R0

R0 + 1

)2m+n

≤ C ′′m−2(4R0)2m+n ≤ exp(−2m)

for all R0 ≤ 1/16 and m2 ≥ C ′′. Thus, we obtain

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R)−2m−n

∫

|x |≤R20R
|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx

+ m2(R20R)−2m−n exp(−2m)

∫

|x |≤R0R
|u|2dx .

(3.7)

It should be noted that (3.7) is valid for all m = j + 1
2
with j ∈ N and j ≥ j0,

where j0 depends on n, l, ε, and K0. Setting R j = (γ ( j + 1
2
))−l/2ε and using the
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relation m = (γ )−1(R)−2ε/ l , we get from (3.7) that

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R j )

−2m−n
∫

|x |≤R20R j
|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx

+ m2(R20R j )
−2m−n exp(−2cR−2ε/ l

j )

∫

|x |≤R0R j
|u|2dx

(3.8)

for all j ≥ j0 and c = γ −1. We now let j0 be large enough that

R j+1 < R j < 2R j+1 for all j ≥ j0.

Thus, if R j+1 < R ≤ R j for j ≥ j0, we can conclude that






∫

|x |≤R20R
|u|2dx ≤

∫

|x |≤R20R j
|u|2dx,

exp(−2cR−2ε/ l
j )

∫

|x |≤R0R j
|u|2dx ≤ exp(−cR−2ε/ l)

∫

|x |≤R
|u|2dx,

(3.9)

where we have used the inequality R0R j ≤ R j/16 < R j+1 to derive the second
inequality above. Namely, we have from (3.8) and (3.9) that

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R j )

−2m−n
∫

|x |≤R20R
|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx

+ m2(R20R j )
−2m−n exp(−cR−2ε/ l)

∫

|x |≤R
|u|2dx .

(3.10)

If there exists s ∈ N such that

R j+1 < R2s0 ≤ R j for some j ≥ j0, (3.11)

then replacing R by R2s0 in (3.10) leads to

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + m2(R20R j )

−2m−n
∫

|x |≤R2s+20

|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx

+ m2(R20R j )
−2m−n exp(−cR−4sε/ l

0 )

∫

|x |≤R2s0
|u|2dx .

(3.12)
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Here s and R0 are yet to be determined. The trick now is to find suitable s and R0
satisfying (3.11) such that the inequality

exp(−cR−4sε/ l
0 )

∫

|x |≤R2s0
|u|2dx ≤ 1

2

∫

|x |≤R2s+20

|u|2dx (3.13)

holds with such choices of s and R0.

It is time to use the three-sphere inequality (1.2). To this end, we choose r1 =
R2k+20 , r2 = R2k0 and r3 = R2k−20 for k ≥ 1. Note that r1/r3 < r2/r3 ≤ R20 ≤ R̃0.

Thus (1.2) implies

∫

|x |<R2k0

|u|2dx/
∫

|x |<R2k+20

|u|2dx

≤ C1/τ

(∫

|x |<R2k−20

|u|2dx/
∫

|x |<R2k0

|u|2dx
)a

,

(3.14)

where

C = max{C0R−2n
0 , exp(β0(−1− 4 log R0))}

and

a = 1− τ

τ
= A

B
= (log(r1/r3) − 1)2 − (log(r2/r3))

2

−1− 2 log(r2/r3)

= (4 log R0 − 1)2 − (2 log R0)
2

−1− 4 log R0
.

It is not hard to see that {
1 < C ≤ C0R

−β1
0 ,

2 < a ≤ −4 log R0,
(3.15)

where β1 = max{2n, 4β0} and if R0 is sufficiently small, e.g., R0 ≤ e−4. Combin-
ing (3.15) and using (3.14) recursively, we have

∫

|x |≤R2s0
|u|2dx/

∫

|x |≤R2s+20

|u|2dx

≤ C1/τ

(∫

|x |<R2s−20

|u|2dx/
∫

|x |<R2s0

|u|2dx
)a

≤ C
as−1−1
τ (a−1)

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)as−1

(3.16)
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for all s ≥ 1. Now from the definition of a, we have τ = 1/(a + 1) and thus

as−1 − 1

τ (a − 1)
= a + 1

a − 1
(as−1 − 1) ≤ 3as−1.

Then it follows from (3.16) that
∫

|x |≤R2s0
|u|2dx/

∫

|x |≤R2s+20

|u|2dx

≤ C3(−4 log R0)
s−1

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)as−1

≤ (C30(R0)
−3β1)(−4 log R0)

s−1
(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)as−1

.

(3.17)

Thus, by (3.17), we can get that

exp(−cR−4sε/ l
0 )

∫

|x |≤R2s0
|u|2dx

≤ exp(−cR−4sε/ l
0 )(C30(R0)

−3β1)(−4 log R0)
s−1

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)as−1 ∫

|x |≤R2s+20

|u|2dx .

(3.18)

Let µ = − log R0. Then if R0 (≤ min{e−4,
√
R̃0}) is sufficiently small, i.e., µ is

sufficiently large, we can see that

4tεµ/ l > (t − 1) log(4µ) + log(logC30 + 3β1µ) − log(c/4),

for all t ∈ N. In other words, for small R0 we have that

(C30 R
−3β1
0 )(−4 log R0)

t−1
< exp(cR

−4tε/ l
0 /4) < (1/2) exp(cR

−4tε/ l
0 /2), (3.19)

for all t ∈ N. We now fix such an R0 so that (3.19) holds and

−4ε
l
log R0 − 2 log a > 0.

It is a key step in our proof that we can find a universal constant R0. After fixing

R0, we then define a number t0, depending on R0 and u, as

t0 =
(
log 2− log(ac) + log log

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
))

×
(

−4ε
l
log R0 − log a

)−1
.
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With this choice of t0, we can see that

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)at−1

≤ exp(cR
−4tε/ l
0 /2) (3.20)

for all t ≥ t0. Let s1 be the smallest positive integer such that s1 ≥ t0. If

R
2s1
0 ≤ R j0 = (γ ( j0 + 1/2))−l/2ε, (3.21)

then we can find j1 ∈ N with j1 ≥ j0 such that (3.11) holds, i.e.,

R j1+1 < R
2s1
0 ≤ R j1 .

On the other hand, if

R
2s1
0 > R j0, (3.22)

then we pick the smallest positive integer s2 > s1 such that R
2s2
0 ≤ R j0 and thus we

can also find j1 ∈ N with j1 ≥ j0 for which (3.11) holds. We now define

s =
{
s1 if (3.21) holds,

s2 if (3.22) holds.

It is important to note that with such an s, (3.11) is satisfied for some j1 and (3.19),

(3.20) hold. Therefore, we set m1 = n + 2( j1 + 1/2) and m = (m1 − n)/2.
Combining (3.18), (3.19) and (3.20) yields

exp(−cR−4sε/ l
0 )

∫

|x |≤R2s0
|u|2dx

≤ exp(−cR−4sε/ l
0 )(C30(R0)

−3β1)(−3 log R0)
s−1

(∫

|x |<R20

|u|2dx/
∫

|x |<R40

|u|2dx
)a(s−1) ∫

|x |≤R2s+20

|u|2dx

≤ 1

2

∫

|x |≤R2s+20

|u|2dx
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which is (3.13). Using (3.13) in (3.12), we have

1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx + 1

2
m2(R20R j1)

−2m−n
∫

|x |≤R2s+20

|u|2dx

≤ C̃ ′′δ−2m−n
∫

|x |≤δ
|u|2dx .

(3.23)

From (3.23), we get

(m1 − n)2

8C̃ ′′ (R20R j1)
−m1

∫

|x |≤R2s+20

|u|2dx ≤ δ−m1
∫

|x |≤δ
|u|2dx (3.24)

and
1

2
m2(2δ)−2m−n

∫

|x |≤2δ
|u|2dx ≤ C̃ ′′δ−2m−n

∫

|x |≤δ
|u|2dx

which implies

∫

|x |≤2δ
|u|2dx ≤ 8C̃ ′′

(m1 − n)2
2m1

∫

|x |≤δ
|u|2dx . (3.25)

The estimates (3.24) and (3.25) are valid for all δ ≤ R2s+20 /4. Therefore, (1.3) holds

with R2 = R0, R3 = R2s+20 /4 and C3 = (m1−n)2
8C̃ ′′ (R20R j1)

−m1 ∫
|x |≤R2s+20

|u|2dx .
Moreover (1.4) holds with R4 = R2s+20 /8 and C4 = 8C̃ ′′

(m1−n)2 2
m1 and the proof is

now complete. Here we have proved (1.3) and (1.4) together. In fact, (1.3) can be

seen as a corollary of (1.4) (see, for example, [6, page 135]).
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