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Regularity of a class of degenerate elliptic equations

QIAOZHEN SONG, YING LU, JIANZHONG SHEN AND LIHE WANG

Abstract. In the present paper we establish theW1,p type estimates for the weak
solutions of a class of degenerate elliptic equations. The optimal estimates are
obtained by introducing the intrinsic metric that is associated with the geometry
of the operator and then using the compactness method.
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1. Introduction

In this paper we consider the following degenerate elliptic equation:

Lu := uxx + |x |2σuyy = fx + |x |σ gy (x, y) ∈ ", (1.1)

where σ is an arbitrary positive real number and " is a bounded domain in R2 with
(0, 0) ∈ " or (0, 0) ∈ ∂".

When σ is a positive integer, L belongs to a class of sum-of-squares operators,
i.e.,

L = X21 + X22,

by choosing X1 = ∂x , X2 = xσ ∂y . The vector fields X1, X2 are smooth and satisfy
Hörmander’s condition that is the vector fields together with their commutators of

some finite order span the tangent space at any point. In [7], Hörmander proved the

following subelliptic estimate

||u||Hε(B 1
2
) ≤ C(||Lu||L2(B1) + ||u||L2(B1)),

and as a consequence L is hypoelliptic. A few years later, Kohn studied the same
problem by using some basic properties of pseudo-differential operators (see [9]).

Furthermore, by studying the properties of the nilpotent group which is suitable

to the analysis of the operator, Rothschild and Stein gave the optimal regularity

estimates of L in various Sobolev spaces and Lipschitz spaces (see [12]).
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As σ is an arbitrary positive number, all of the above methods do not apply

since the vector fields ∂x, |x |σ ∂y, are only Hölder continuous and do not sat-
isfy the Hörmander’s condition. In this setting, there are some papers studied the

Hölder regularity of equation (1.1) in the last few years. For instance, Franchi,

Lanconelli and Serapioni proved the Sobolev-Poincaré inequality, the Harnack type

inequality and the Cα estimates of the weak solutions(see [3–5]). Their results

are obtained by adjusting the classical Morse iteration techniques to the geometry

of the homogeneous space that is related to the intrinsic metric(or currently called

Carnot-Carathéodory metric) associated with the vector fields ∂x, |x |σ ∂y. More-
over, in [14], one of the authors, Wang, gave an optimal Hölder estimate which is

C2+α
∗ regularity for all α < 1.

In this paper we will consider optimalW 1,p type estimates of equation (1.1) for

arbitrary σ > 0.We must point out that the standard procedure such as Rothschild-
Stein’s method does not work for our situation since the vector fields are not even

smooth in R2 when σ is not an integer. Our results are the following

Theorem 1.1. Let 1 < p < ∞ and (0, 0) ∈ ". If u is a weak solution of equation
(1.1) in ", then u satisfies a uniform estimate in any subset "′ ⊂⊂ "

∫

"′
(|ux |p + ||x |σuy|p)dxdy ≤ C

∫

"
(|u|p + | f |p + |g|p)dxdy, (1.2)

where C depending only on σ, p, "′ and ".

Here we say u is a weak solution of the equation (1.1) in " if

∫

"
(uxϕx + |x |2σuyϕy)dxdy =

∫

"
( f ϕx + |x |σ gϕy)dxdy, (1.3)

for every ϕ ∈ H10,∗(")(for the explicitly definition of the space see Section 3).
If the degenerate line is a part of the boundary ", we give the following theo-

rem.

Theorem 1.2. Let 1 < p < ∞ and (0, 0) ∈ ∂". If u is a weak solution of equation
(1.1) in " ⊂ R+

x × Ry with u = 0 on T = ∂" ∩ {x = 0} then, for any domain
"′ ⊂⊂ " ∪ T, we have

∫

"′
(|ux |p + ||x |σuy|p)dxdy ≤ C

∫

"
(|u|p + | f |p + |g|p)dxdy, (1.4)

where C depending only on σ, p, "′ and ".

The key method of our approach is the compactness method and the idea fol-

lows what was introduced byWang in [15]. In that paper, Wang gave a new proof of

the classical Calderón-Zygmund estimate for the Laplace operator. After that, this

geometric approach has been used to prove the regularity of the more general ellip-

tic equations(see [1]). In this paper we show that it is also valid for the degenerate

elliptic equations.
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Although the methods to prove the regularity for the elliptic equation and the

degenerate one are similar, there are some difficulties of the proof since the operator

L is lacking of ellipticity when |x |σ vanishes. As we know the Euclidean distance
related to the Laplace operator, for the degenerate elliptic operator we need a suit-

able metric that is relate to the vector fields ∂x, |x |σ ∂y. Hence, the balls, the max-
imum functions and so on, should also be adapted for our operator. For the elliptic

equation the points are equal from the geometry point of view, so it is enough to

give the estimates on the unit ball. For the degenerate equation, we must consider

the estimates on each ball and then match the estimates on the balls centered at any

point to obtain an uniform estimate.

We remark that our method can be applied to study the general degenerate

elliptic equations in higher dimension.

The organization of the paper will be as follows: In Section 2 we give the

definitions and the properties of the intrinsic metric and the analytic tools, such

as the maximal principle and the covering lemma. In Section 3 we introduce the

Sobolev type spaces associated with the operator. In addition, we give a new simple

proof of the Sobolev-Poincaré type inequality by using the classical one. In Section

4 we give the interior W 1,p type estimates of the weak solutions of equation (1.1)

and the special boundary value problems.

2. Preliminaries

2.1. The metric and the balls

Now we introduce the metric related with the operator L that is given by:

ds2 = dx2 + |x |−2σdy2.

For any two points P1 and P2, denote this intrinsic metric as d̃(P1, P2).
Since there is a natural scaling of the operator L, that is,

L(u(r x, r1+σ y)) = r2(Lu)(r x, r1+σ y),

we expect there are some scaling properties for the metric and the balls. So for our

convenience, define the following equivalent metric explicitly (see [14]),

d(P1, P2) = |x1 − x2| + |y1 − y2|
|x1|σ + |x2|σ + |y1 − y2|

σ
1+σ

,

for any two points P1 = (x1, y1) and P2 = (x2, y2). The two defined metrics d̃ and
d have the following relationship,

α1d̃(P1, P2) ≤ d(P1, P2) ≤ α2d̃(P1, P2), (2.1)

where α1 and α2 are positive constants depending only on σ.
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From now on and towards the end of this paper we fix

γ = α2

α1
, (2.2)

then γ ≥ 1 and depends only on σ. It is easily seen that d(P1, P2) is a quasi-metric
and satisfies

d(P1, P2) ≤ γ (d(P1, P3) + d(P3, P2)).

Let P = (x, y). Using the scaling property, we denote

r P = (r x, r1+σ y),

then

d(r P1, r P2) = rd(P1, P2).

Define the ball with the center point P as

B(P, r) = {X : d(X, P) < r},

and the intrinsic ball as

B(P, r) = {X : d̃(X, P) < r}.

We denote B(0, r), B(0, r) by Br , Br , for simplicity. For any measurable set ",
|"| is its measure.

These balls have the following properties:

(a) For the intrinsic and explicitly defined balls, by (2.1), it is easily seen that

B(P,α1r) ⊂ B(P, r) ⊂ B(P,α2r);

(b) The measures of the balls with the same center are controllable, that is,

|B(P, r)| ≤ |B(P, R)| ≤
(
R

r

)2+σ

|B(P, r)|, for R ≥ r > 0.

We remark that the regularity results can be obtained by using the intrinsic metric.

Since the explicitly defined balls are equivalent to the intrinsic ones, for our con-

venience, in many cases we use them to substitute the intrinsic ones, and then the

equivalent results can be obtained. That can been seen in the later sections.
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2.2. The maximal functions and the covering lemmas

Since the regularity of the solution depends on the geometry of operator, the main

analytic tools of the classical ones, such as the maximal function and the covering

lemma, can not be used, so they must be adapted for the geometry of degenerate

operator. Define the maximal function of a locally integrable function f as

M f (X) = sup
r>0

1

|B(X, r)|

∫

B(X,r)
| f (x, y)|dxdy.

Here the ball B(X, r) can be replaced by the intrinsic one. For an integrable func-
tion f defined in ", define the local maximal function as

M" f (X) =M( f χ")(X). (2.3)

Remark. If a domain " is very close to |x | = 1 and the diameter of " is very

small, then in ", the metric related with L is

ds2 = dx2 + |x |−2σdy2 ∼ dx2 + dy2.

That means for X ∈ " and r small, the intrinsic ballB(X, r) and hence B(X, r), are
equivalent to the Euclidean ball. If r is large, then the measure of the set { f (x, y) =
0} is large, so the average of | f (x, y)| on B(X, r) has little effect on the value
ofM" f (X). Thus the local maximal function defined here is equivalent to the
classical one. Let u(x, y) be defined in B(X0, r). Notice the scaling property of the
operator L and let

ũ(x, y) = u(|x0|x, |x0|1+σ y),

then ũ is defined in B( X0|x0| ,
r

|x0| ). If the distance of the ball B(X0, r) to the degen-

erate line x = 0 is very larger than r, then the ball B( X0|x0| ,
r

|x0| ) is close to |x | = 1

and the diameter is small. For ũ, the local maximal function is equivalent to the
classical one. Thus, if ũ has some properties then, scaling back, u has the similar

properties. This is very useful and by using this property we can match the estimates

at different points.

Applying the usual methods as in [13], we have the following Vitali covering

lemma and the results of the maximal functions.

Lemma 2.1. Let E be a measurable set which is covered by a class of balls

B(X, r
X
). Suppose the radius of B(X, r

X
) are bounded, then there exists a disjoint

sequence, B(X1, rX1 ),B(X2, rX2 ), . . . , such that E ⊂ ∪iB(Xi , 5rXi ).

By Lemma 2.1 and B(P,α1r) ⊂ B(P, r) ⊂ B(P,α2r), we immediately have
the following equivalent result for the explicitly defined balls.

Lemma 2.2. Let E be a measurable set which is covered by a class of balls

B(X, r
X
). Suppose the radius of B(X, r

X
) are bounded, then there exists a disjoint

sequence, B(X1, rX1 ), B(X2, rX2 ), . . . , such that E ⊂ ∪i B(Xi , 5γ rXi ).

We need the following lemmawhich is usually called a modified Vitali Lemma.
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Lemma 2.3. Let C ⊂ D ⊂ B1 be two measurable sets contained in B1. Assume
there exists an ε such that

1) |C| < ε|B1|;
2) For every X ∈C and r<2, if |C∩B(X, r)| ≥ ε|B(X, r)|, thenB(X, r)∩B1⊂D.

Then

|C| ≤ (7γ 3)2+σ ε|D|.

Proof. Since |C| < ε|B1|, for almost every X ∈ C, there is an r
X

< 2 such that

|C ∩ B(X, r
X
)| = ε|B(X, r

X
)|, and |C ∩ B(X, r)| < ε|B(X, r)|, for r > r

X
. By

Lemma 2.1, there exists a disjoint sequence, B(X1, rX1 ),B(X2, rX2 ), . . . , such that

(C \ A) ⊂ ∪iB(Xi , 5rXi ), where A is a set of measure zero. So

|C| = | ∪i B(Xi , 5rXi ) ∩ C|
≤

∑

i

|B(Xi , 5rXi ) ∩ C|

≤ ε
∑

i

|B(Xi , 5rXi )|

≤ ε(5γ )2+σ
∑

i

|B(Xi , rXi )|.

For every point Xi , there is a point Zi , satisfying d̃(Zi , Xi ) =
r
Xi

4
andB(Zi ,

r
Xi

4
) ⊂

B(Xi , rXi ) ∩ B1. Thus,

|B(Xi , rXi )|
|B(Xi , rXi ) ∩ B1|

≤
|B(Xi , rXi )|
|B(Zi ,

r
Xi

4
)|

≤
|B(Xi ,α2rXi )|
|B(Zi ,

1
4
α1rXi )|

≤ |B(Zi ,αrXi )|
|B(Zi ,α1rXi )|

≤
(
5

4
γ 2

)2+σ

,

where α = 5α22
4α1
.

By the above inequalities we have

|C| ≤ ε

(
25

4
γ 3

)2+σ ∑

i

|B(Xi , rXi ) ∩ B1| ≤ ε(7γ 3)2+σ |D|.

So the proof is finished.

Similarly we have the following equivalent lemma.
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Lemma 2.4. Let 0 < ε < 1, C ⊂ D ⊂ B1 be two measurable sets contained in

B1 with |C| < ε|B1|. Assume for every X ∈ C and r < 2γ , if |C ∩ B(X, r)| ≥
ε|B(X, r)|, then B(X, r) ∩ B1 ⊂ D. Then |C| ≤ C(γ )ε|D|.

Remark. Here we use the Lebesgue differentiation theorem of the characteristic

function χ
C
with the Euclidean balls replaced by the balls we defined, but this is

easily seen by using the same method as in [13].

For the Maximal function, the weak (1, 1) and the strong (p, p) estimates hold.

Lemma 2.5.

(1) If f ∈ L1("), then for every λ > 0,

|{X ∈ " :M f > λ}| ≤ C(γ )

λ
‖ f ‖L1(").

(2) If f ∈ L p("), 1 < p ≤ ∞, then

‖M f ‖L p(") ≤ C(γ , p)‖ f ‖L p(").

3. Spaces associated with the vector fields

In order to study the weak solutions we introduce the Sobolev-type spaces which

associate with the vector fields ∂x, |x |σ ∂y. For 1 ≤ p < ∞, we define the function
space

W
1,p
∗ (") := {u ∈ L p("); ux ∈ L p("), |x |σuy ∈ L p(")}.

Then W
1,p
∗ (") is a Banach space with the norm defined by

||u||
W
1,p
∗ (")

= ||u||L p(") + ||ux ||L p(") + |||x |σuy||L p(").

Another Banach spaceW
1,p
0,∗ (") arises by taking the closure ofC∞

0 (") inW
1,p
∗ (").

In particularly, we denote W
1,2
∗ ("), W 1,2

0,∗ (") by H1∗ ("), H10,∗(").
The imbedding results and Poincaré inequalities for the vector fields have been

studied in many papers, for instance, [2, 3, 6, 8, 10, 11]. Here we need the following

results.

By [14, Corollary 1] we have

Lemma 3.1. For any σ > 0, there is a small constant h = h(σ ) > 0, so that for
any r < R ≤ 1, there is a Cσ (r, R) > 0, such that

‖u‖Hh(Br )
≤ Cσ (r, R)‖u‖H1∗ (BR).
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Let

ū" = 1

|"|

∫

"
u(x, y)dxdy

be the average of u(x, y) over ".

Then the following Poincaré type inequality holds (see [3, 5]).

Lemma 3.2. If u ∈ H1∗ (B(X, r)), then

∫

B(X,r)
|u − ū

B(X,r) |2dxdy ≤ Cr2
∫

B(X,r)
|ux |2 + |x |2σ |uy|2dxdy.

In [3] the author used the intrinsic metric which is called Carnot-Carathéodory met-

ric to prove the Sobolev-Poincaré type inequality. For p ≥ 1, here we use the clas-

sical Poincaré inequality to give a very simple proof of the degenerate one, which

works for all σ ≥ 0.

Lemma 3.2′ Let Qr = (−2r, 2r)×(−r1+σ , r1+σ ), 1 ≤ p < ∞. If u ∈ W
1,p
∗ (Qr ),

then there exists a constant C depending on p and σ, such that

∫

Qr

|u − ūQr |p ≤ Cr p
∫

Qr

|ux |p + |x |σ p|uy|pdxdy.

Proof. By scaling, we need only to prove it for r = 1. For (x, y) ∈ Q1, we have

|x |σ ≥ 1

2
|x |[σ ]+1,

where [σ ] is the integer part of σ. Therefore we need only to prove the lemma when
σ is a positive integer. In what follows we assume σ ∈ N and r = 1.

Let

Q1 = (0, 2) × (−1, 1),
Qn,0 = (2−(n−1), 2−(n−2)) × (−1, 1), n = 1, 2, . . .

We divide each Qn,0 into 2
(n−1)(σ+1) cubes and denote them by Qn,1, Qn,2, . . . ,

Qn,2(n−1)(σ+1) from up to down. Thus,

Q1 = ∪∞
n=1Qn,0 ∪ A = ∪(n,m)Qn,m ∪ Ã,

where A and Ã are the sets of measure zero.
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For every cube Qn,m there exists a point (xn,m, yn,m) such that

Qn,m = (2−(n−1), 2−(n−2)) × (yn,m − 2−(n−1)(σ+1), yn,m + 2−(n−1)(σ+1)).

For each cube Qn,l , n ≥ 2, there exists a cube Qn−1,l1 such that the right side
boundary of Qn,l , i.e.,

2−(n−2) × [yn,l − 2−(n−1)(σ+1), yn,l + 2−(n−1)(σ+1)],

is a subset of the left side boundary of Qn−1,l1, i.e.,

2−(n−2) × [yn−1,l1 − 2−(n−2)(σ+1), yn−1,l1 + 2−(n−2)(σ+1)],

and it is clear that (l1 − 1)2σ+1 < l ≤ l1 · 2σ+1. If the two cubes have the above
relationship, then denote

Qn,l ∝ Qn−1,l1 .

Thus, for each cube Qn,m, there exists a sequence {Qn−k,mk
}n−1k=1 such that

Qn,m ∝ Qn−1,m1 ∝ · · · ∝ Q1,1,

and also there exists a sequence {Qn+k,mk
}∞k=1 such that

· · · ∝ Qn+k,mk
∝ · · · ∝ Qn+1,m1 ∝ Qn,m .

We denote

(n,m) ∝ (k, l),

if there exists a sequence {Qni ,mi
}n−k−1i=n−1 such that

Qn,m ∝ Qn−1,m1 ∝ · · · ∝ Qk,l .

To prove the lemma we give some notations:

The set {(n,m) : (n,m) ∝ (k, l)} means the pair of numbers (k, l) is fixed
and all (n,m) satisfying the relation (n,m) ∝ (k, l) are included, so does the set
{(n,m) : (k, l) ∝ (n,m)};

The set {m : (n,m) ∝ (k, l)} means (k, l) and n are fixed and all (n,m)
satisfying the relation (n,m) ∝ (k, l) are included.

Obviously,

∪{(n,m):(n,m)∝(k,l)}Qn,m =(0, 2−(k−1))×(yk,l−2−(k−1)(σ+1),yk,l+2−(k−1)(σ+1))\B,
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where B is a set of measure zero, so the measures of the sets satisfy

| ∪{(n,m):(k,l)∝(n,m)} Qn,m | = |Qk,l |,

and one can also easily have

∑

{m:(n,m)∝(k,l)}
|Qn,m | = 2k−n|Qk,l |.

In each cube Qn,m, let

v(x, y) = u(2−(n−1)x, 2−(σ+1)(n−1)y + yn,m) (x, y) ∈ Q1,1.

By the classical Poincaré inequality,

∫

Q1,1

|v − v̄Q1,1 |p ≤ C

∫

Q1,1

|vx |p + |vy|pdxdy.

For any point (x, y) ∈ Q1,1, we have |x | ≥ 1, so

∫

Q1,1

|v − v̄Q1,1 |p ≤ C

∫

Q1,1

|vx |p + |x |σ p|vy|pdxdy.

Now scaling back,

∫

Qn,m

|u − ūQn,m |pdxdy ≤ C2−(n−1)p
∫

Qn,m

|ux |p + |x |σ p|uy|pdxdy.

For every Q2,i ∝ Q1,1, there is a constant C depending only on σ such that

|ūQ2,i − ūQ1,1 | ≤ C
1

|Q2,i ∪ Q1,1|

∫

Q2,i∪Q1,1
|ux | + |x |σ |uy|dxdy. (3.1)

For Qn,i ∝ Qn−1,i1, by the scaling form of (3.1), we have

|ūQn,i − ūQn−1,i1 | ≤ C
2−(n−1)

|Qn,i ∪ Qn−1,i1 |

∫

Qn,i∪Qn−1,i1

|ux | + |x |σ |uy|dxdy.
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In Q1 we give the following estimate,

∫

Q1

|u(x, y) − ūQ1 |pdxdy =
∞∑

n=1

2(σ+1)(n−1)∑

m=1

∫

Qn,m

|u(x, y) − ūQ1 |pdxdy

≤
∑

n,m

∫

Qn,m

(|u(x, y) − ūQn,m | + |ūQn,m − ūQ1 |)pdxdy

≤ 2p−1
∑

n,m

(∫

Qn,m

|u(x, y) − ūQn,m |pdxdy + |Qn,m ||ūQn,m − ūQ1 |p
)

≤ Cn,p
∑

n,m

∫

Qn,m

(|ux |p + |x |σ p|uy|p)dxdy

+ 2p−1
∑

n,m

|Qn,m |
(

∑

{(k,l):(n,m)∝(k,l)}
|ūQk+1,l1 − ūQk,l | + |ūQ1,1 − ūQ1 |

)p

≤ C

∫

Q1

(|ux |p + |x |σ p|uy|p)dxdy

+ 4p−1
∑

n,m

|Qn,m |
(

∑

{(k,l):(n,m)∝(k,l)}
|ūQk+1,l1 − ūQk,l |

)p

+ |Q1||ūQ1,1 − ūQ1 |p

≤ C

∫

Q1

(|ux |p + |x |σ p|uy|p)dxdy

+ C
∑

n,m

|Qn,m |np−1
∑

{(k,l):(n,m)∝(k,l)}

2−kp

|Qk+1,l1 ∪ Qk,l |

∫

Qk+1,l1∪Qk,l

(|ux |p

+ |x |σ p|uy|p)dxdy + C|Q1|
(

1

|Q1|

∫

Q1

|ux |dxdy
)p

≤ C

∫

Q1

(|ux |p + |x |σ p|uy|p)dxdy

+C
∑

k,l

∑

{(n,m):(n,m)∝(k,l)}

np−1|Qn,m |2−kp

|Qk+1,l1 ∪ Qk,l |

∫

Qk+1,l1∪Qk,l

(|ux |p + |x |σ p|uy|p)dxdy

≤ C

∫

Q1

(|ux |p + |x |σ p|uy|p)dxdy.

By the symmetric property we have

∫

Q2

|ux − ūQ2 |pdxdy ≤ C

∫

Q2

(|ux |p + |x |σ p|uy|p)dxdy,

where Q2 = (−2, 0) × (−1, 1).
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Therefore,

∫

Q1
|u − ūQ1 |p =

∫

Q1

|u − ūQ1 |p +
∫

Q2

|u − ūQ1 |p

≤C

(∫

Q1

|u−ūQ1 |p+
∫

Q2

|u − ūQ2 |p+|Q1||ūQ1 − ūQ1 |p + |Q2||ūQ2 − ūQ1 |p
)

≤C

∫

Q1
|ux |p + |x |σ p|uy|pdxdy.

This finishes the proof.

4. Proof of the L p estimates

Since the equation (1.1) is elliptic away from x = 0 and translation invariant along

the y axis, we start with considering the properties near the point (x, y) = (0, 0).

Theorem 4.1. Let 1 < p < ∞. If u is a weak solution of equation (1.1) in " ⊃
B80γ 6r , then u ∈ W

1,p
∗ (Br ) with the estimate

∫

Br

(|ux |p + ||x |σuy|p)dxdy ≤ C

∫

B5r

(r−p|u|p + | f |p + |g|p)dxdy.

Before we come to the proof of the theorem we give some lemmas.

Lemma 4.2. If u is a weak solution of equation (1.1) and B5 ⊂ ", then

∫

B4

(|ux |2 + |x |2σ |uy|2)dxdy ≤ C

∫

B5

(|u|2 + | f |2 + |g|2)dxdy,

for some universal constant C .

Proof. For every η ∈ C∞
0 (B5), take η2u as a test function, then

∫

B5

(ux (η
2u)x + |x |2σuy(η2u)y)dxdy =

∫

B5

( f (η2u)x + |x |σ g(η2u)y)dxdy.

Thus,

∫

B5

(η2|ux |2 + |x |2σ η2|uy|2)dxdy

=−2
∫

B5

(ηuηxux+|x |2σ ηuηyuy)+
∫

B5

f (2ηuηx+η2ux )+|x |σ g(2ηuηy+η2uy)

≤
∫

B5

1

2
η2(|ux |2+|x |2σ |uy|2)+5|u|2(|ηx |2+|x |2σ |ηy|2)+

∫

B5

2|η|2(| f |2 + |g|2).
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So

∫

B5

η2(|ux |2 + |x |2σ |uy|2)dxdy ≤ 10

∫

B5

|u|2(|ηx |2 + |x |2σ |ηy|2)dxdy

+ 4

∫

B5

(| f |2 + |g|2)|η|2dxdy.

Now if we take η such that






0 ≤ η ≤ 1 (x, y) ∈ B5,

η(x, y) = 1 (x, y) ∈ B4,

η(x, y) = 0 (x, y) ∈ Rn\B5,
(4.1)

and |ηx |, |ηy| < C, then the lemma follows.

Lemma 4.3. For any ε > 0, there exists a δ > 0, so that if u is a weak solution of
(1.1) in B6 with the conditions that

1

|B6|

∫

B6

(|ux |2 + |x |2σ |uy|2)dxdy ≤ 1,

1

|B6|

∫

B6

(| f (x, y)|2 + |g(x, y)|2)dxdy ≤ δ,

then
1

|B5|

∫

B5

|u − v|2dxdy ≤ ε,

for some v(x, y) which is a solution of Lv(x, y) = 0 in B5.

Proof. We prove it by contradiction. Suppose there exists an ε0 > 0, such that for
any 1

n
, there exist un, fn, and gn satisfying

1

|B6|

∫

B6

(|(un)x |2 + |x |2σ |(un)y|2)dxdy ≤ 1,

1

|B6|

∫

B6

(| fn(x, y)|2 + |gn(x, y)|2)dxdy ≤ 1

n
,

and

(un)xx + |x |2σ (un)yy = ( fn)x + |x |σ (gn)y

in the weak sense in B6, but for any solution of equation Lv = 0 in B5, we have

1

|B5|

∫

B5

|un − v|2dxdy ≥ ε0.
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Since the equation is linear, we may assume ||un||L2(B6) ≤ 1. Thus by Lemma 3.1,

‖un‖Hh(B5)
≤ C(‖(un)x‖L2(B6) + ‖|x |σ (un)y‖L2(B6) + ||un||L2(B6)) ≤ C.

Since Hh is compactly embedded in L2, there is a subsequence of un, which we
still denote as un, such that

un → v strongly in L2(B5).

By the L2 boundedness of (un)x and |x |σ (un)y we have

(un)x → vx weakly in L2(B5),

and

|x |σ (un)y → |x |σvy weakly in L2(B5).

Since un is a weak solution, we have

∫

B5

(un)xϕx + |x |2σ (un)yϕy)dxdy =
∫

B5

( fnϕx + |x |σ gnϕy)dxdy,

for any ϕ ∈ H10,∗(B5). Now let n → ∞, we have

∫

B5

(vxϕx + |x |2σvyϕy)dxdy = 0,

which is a contradiction. So the proof is finished.

A consequence of Lemma 4.2 and 4.3 is the following:

Lemma 4.4. For any ε > 0, there exists a δ > 0 so that if u is a weak solution of

equation (1.1) with the conditions that

1

|B6|

∫

B6

(|ux |2 + |x |2σ |uy|2)dxdy ≤ 1,

1

|B6|

∫

B6

(| f (x, y)|2 + |g(x, y)|2)dxdy ≤ δ,

then there exists a weak solution v of Lv = 0 in B4 such that

∫

B4

(|ux − vx |2 + |x |2σ |uy − vy|2)dxdy ≤ ε2.

Before we state an important lemma, we shall introduce the following regularity

result for the homogeneous equation. See [14, Lemma 2].
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Lemma 4.5. If Lv(x, y) = 0 in B1, then v is C2,2σ in B 1
2
, and

‖v‖C2,2σ (B 1
2
) ≤ C(σ )‖v‖L2(B1).

Lemma 4.6. There is a constant N1, so that for any ε > 0, there exists a δ > 0,

such that the following statement holds: if u is a weak solution of (1.1) in" ⊃ B8γ 4 ,

with

{M(| f |2 + |g|2) ≤ δ2} ∩ {M(|ux |2 + |x |2σ |uy|2) ≤ 1} ∩ B1 1= ∅, (4.2)

then

|{M(|ux |2 + |x |2σ |uy|2) > N21 } ∩ B1| < ε|B1|. (4.3)

Proof. From (4.2), there is a point X0 ∈ B1, such that

1

|B(X0, r)|

∫

B(X0,r)∩"
(|ux |2 + |x |2σ |uy|2)dxdy ≤ 1

and
1

|B(X0, r)|

∫

B(X0,r)∩"
(| f (x, y)|2 + |g(x, y)|2)dxdy ≤ δ2.

Since B6γ 2 ⊂ B7γ 3(X0) ⊂ B8γ 4 , we have

1

|B6γ 2 |

∫

B
6γ 2

(|ux |2 + |x |2σ |uy|2)dxdy ≤ (2γ 2)2+σ , (4.4)

and
1

|B6γ 2 |

∫

B
6γ 2

(| f (x, y)|2 + |g(x, y)|2)dxdy ≤ (2γ 2)2+σ δ2. (4.5)

By Lemma 4.4, for any η > 0 (here we take η < 1), there exists a δ depending on
η, such that ∫

B
4γ 2

(|ux − vx |2 + |x |2σ |uy − vy|2)dxdy ≤ η2, (4.6)

where v(x, y) is a weak solution of Lv(x, y) = 0 in B4γ 2 . Thus by the inequalities
(4.4) and (4.6),

∫

B
4γ 2

(|vx |2 + |x |2σ |vy|2)dxdy ≤ 2(1+ (2γ 2)2+σ |B6γ 2 |). (4.7)

Let ṽ(x, y) = v(x, y) − v̄
B
4γ 2

, then ṽ(x, y) satisfies Lṽ(x, y) = 0 and the same

estimate as v in inequality (4.7). By the Poincaré type inequality and Lemma 4.5,
there is a constant N0 such that

‖ṽx‖L∞(B
3γ 2

) + ‖|x |σ ṽy‖L∞(B
3γ 2

) ≤ N0,
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therefore,

‖vx‖L∞(B
3γ 2

) + ‖|x |σvy‖L∞(B
3γ 2

) ≤ N0.

By (4.6) and Lemma 2.5,

|{X ∈ B3γ 2 :MB
3γ 2

(|ux − vx |2 + |x |2σ |uy − vy|2) > N20 }|

≤ C(γ )

N20

∫

B
3γ 2

(|ux − vx |2 + |x |2σ |uy − vy|2)dxdy

≤ C(γ )

N20

η2.

(4.8)

Now let X1 be a point in {MB
3γ 2

((ux − vx )
2 + |x |2σ (uy − vy)

2) ≤ N20 } ∩ B1.

If r ≤ 2γ , then B(X1, r) ⊂ B3γ 2 . So

1

|B(X1, r)|

∫

B(X1,r)
(|ux |2 + |x |2σ |uy|2)dxdy

≤ 2

|B(X1, r)|

∫

B(X1,r)
(|ux − vx |2 + |x |2σ |uy − vy|2)dxdy

+ 2

|B(X1, r)|

∫

B(X1,r)
(|vx |2 + |x |2σ |vy|2)dxdy

≤ 4N20 .

If r > 2γ , then B(X1, r) ⊂ B(X0, 2γ r) and

1

|B(X1, r)|

∫

B(X1,r)
(|ux |2 + |x |2σ |uy|2)dxdy

≤ |B(X0, 2γ r)|
|B(X1, r)|

1

|B(X0, 2γ r)|

∫

B(X0,2γ r)
(|ux |2 + |x |2σ |uy|2)dxdy

≤ |B(X1, γ (2γ + 1)r)|
|B(X1, r)|

≤ (γ (2γ + 1))2+σ .

Therefore, if we take N21 = max{4N20 , (γ (2γ + 1))2+σ }, then
{M(|ux |2+|x |2σ |uy|2)>N21 }∩B1⊂{MB

3γ 2
(|ux−vx |2+|x |2σ |uy−vy|2)>N20 }∩B1.

From (4.8) we have

|{M(|ux |2 + |x |2σ |uy|2) > N21 } ∩ B1|
≤ |{MB

3γ 2
(|ux − vx |2 + |x |2σ |uy − vy|2) > N20 } ∩ B1|

≤ C(γ )

N20

η2 < ε|B1|

by taking η small enough and hence the lemma is proved.
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Corollary 4.7. There is a constant N1, so that for any ε > 0 there exists a δ > 0

such that the following statements hold.

1. Take Y = (0, y). If u is a weak solution of (1.1) in " ⊃ B(Y, 8γ 4r) and

{M(| f |2 + |g|2) ≤ δ2} ∩ {M(|ux |2 + |x |2σ |uy|2) ≤ 1} ∩ B(Y, r) 1= ∅, (4.9)

then

|{M(|ux |2 + |x |2σ |uy|2) > N21 } ∩ B(Y, r)| < ε|B(Y, r)|. (4.10)

2. If u is a weak solution of (1.1) in " ⊃ B80γ 6, then for any point X ∈ B1 and

every 0 < r < 2γ , if

|{M(|ux |2 + |x |2σ |uy|2) > N21 } ∩ B(X, r)| ≥ ε|B(X, r)|,

then

B(X, r) ⊂ {M(| f |2 + |g|2) > δ2} ∪ {M(|ux |2 + |x |2σ |uy|2) > 1}. (4.11)

Proof. Statement 1 is easily seen by translating the equation in y direction and a

scaling argument of Lemma 4.6.

We give the proof of statement 2 in the following two cases.

Case 1: d(B(X, r), {x = 0}) ≤ 18γ 2r. In this case we prove it by contradiction.
Let Y be a point on x = 0 such that

d(Y, B(X, r)) = d(B(X, r), {x = 0}).

Then,

B(X, r) ⊂ B(Y, 20γ 3r) ⊂ B(X, 39γ 4r).

If

{M(| f |2 + |g|2) ≤ δ2} ∩ {M(|ux |2 + |x |2σ |uy|2) ≤ 1} ∩ B(X, r) 1= ∅,

then

{M(| f |2 + |g|2) ≤ δ2} ∩ {M(|ux |2 + |x |2σ |uy|2) ≤ 1} ∩ B(Y, 20γ 3r) 1= ∅.

Taking ε in (4.10) as εCγ , where Cγ = (39γ 4)−(2+σ ), we have

|{M(u2x + |x |2σu2y) > N21 } ∩ B(Y, 20γ 3r)| < εCγ |B(Y, 20γ 3r)|.
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This implies

|{M(|ux |2 + |x |2σ |uy|2) > N21 } ∩ B(X, r)| < ε|B(X, r)|,
which is a contradiction.

Case 2: d(B(X, r), {x = 0}) > 18γ 2r . We denote the center point of the ball
B(X, r) by X0 = (x0, y0). Recall the remark after the definition of the local maxi-
mal function (2.3) and let

v(x, y) = u(|x0|x, |x0|1+σ y)

|x0|
, (4.12)

then v(x, y) satisfies
Lv = ∂x f̃ + |x |σ ∂y g̃, (4.13)

where f̃ (x, y) = f (|x0|x, |x0|1+σ y), g̃(x, y) = g(|x0|x, |x0|1+σ y).
Now the corresponding good point of v(x, y) is

X̃0 = X0

|x0|
=






(
1,

y0

|x0|1+σ

)
if x0 > 0,

(
−1, y0

|x0|1+σ

)
if x0 < 0.

(4.14)

Since |x0| > 18γ 2r, consider the equation (4.13) in B(X̃0,
6γ 2r
|x0| ), then the operator

L is uniformly elliptic, that is
(
2

3

)2σ
|ξ |2 ≤ ai j (x, y)ξiξ j ≤

(
4

3

)2σ
|ξ |2

for all ξ = (ξ1, ξ2) ∈ R2, where [ai j (x, y)] is the coefficient matrix of L. Since

near X̃0, the coefficients are smooth and the maximal function defined in (2.3)
is equivalent to the classical Hardy-Littlewood maximal function, we can use the

normal estimates as in [15] to have the following local result:

There exists a constant N0, so that for any ε > 0, there exists a δ > 0, such
that if

{M(| f̃ |2 + |̃g|2) ≤ δ2} ∩ {M(|vx |2 + |x |2σ |vy|2) ≤ 1} ∩ B

(
X̃0,

r

|x0|

)
1= ∅,

then
∣∣∣∣∣

{
X ∈ B

(
X̃0,

3γ 2r

|x0|

)
:M

B(X̃0,
3γ 2r
|x0| )

(|vx − wx |2 + |vy − wy|2) > N20

}∣∣∣∣∣

≤ ε

∣∣∣∣B
(
X̃0,

r

|x0|

)∣∣∣∣ ,
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where w(x, y) satisfies

wxx + |x |2σwyy = 0 (x, y) ∈ B

(
X̃0,

4γ 2r

|x0|

)
,

and

‖wx‖
L∞(B(X̃0,

3γ 2r
|x0| ))

+ ‖wy‖
L∞(B(X̃0,

3γ 2r
|x0| ))

≤ N0.

Furthermore, for each X ∈ B(X̃0,
3γ 2r
|x0| ), we have

||x | − 1| ≤ 3γ 2r

|x0|
<
1

6
.

Thus,

∣∣∣∣∣

{
X ∈ B

(
X̃0,

3γ 2r

|x0|

)
:M

B(X̃0,
3γ 3r
|x0| )

(|vx − wx |2 + |x |2σ |vy − wy|2) ≥ Ñ20

}∣∣∣∣∣

≤ ε

∣∣∣∣B
(
X̃0,

r

|x0|

)∣∣∣∣ ,

where Ñ0 = (7
6
)σ N0.

By the definition of the maximal function we have

M f̃ (X) =M f (|x0|X).

Now, scaling back, we have the local result of u(x, y), that is, if

{M(| f |2 + |g|2) ≤ δ2} ∩ {M(|ux |2 + |x |2σ |uy|2) ≤ 1} ∩ B(X0, r) 1= ∅,

then

|{X ∈ B(X0, 3γ
2r) :MB(X0,3γ 2r)

(|ux − w̃x |2 + |uy − w̃y|2) > Ñ20 }|
≤ ε|B(X0, r)|,

(4.15)

where w̃(x, y) = |x0|w( x
|x0| ,

y

|x0|1+σ ). One can also drop the localization in the

inequality (4.15) as in Lemma 4.6 to have the statement 2. The proof is com-

plete.

Corollary 4.8. Assume u is a weak solution of equation (1.1) in a domain " ⊃
B80γ 6 , with the condition that |{X ∈ B1 :M(|ux |2 + |x |2σ |uy|2) > N21 }| ≤ ε|B1|.
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Then, for ε1 = C(γ )ε, the following inequalities holds,

(a) |B1 ∩ {M(u2x + |x |2σu2y) > N21 }| ≤ ε1(|B1 ∩ {M(u2x + |x |2σu2y) > 1}|
+ |B1 ∩ {M(| f |2 + |g|2) > δ2}|);

(b) |B1 ∩ {M(u2x + |x |2σu2y) > N21λ
2}| ≤ ε1(|B1 ∩ {M(u2x + |x |2σu2y)>λ2}|

+|B1 ∩ {M(| f |2+|g|2)>δ2λ2}|);
(c) |B1 ∩ {M(u2x + |x |2σu2y) > N2k1 }| ≤ εk1 |B1 ∩ {M(u2x + |x |2σu2y) > 1}|

+
k∑

i=1
εi1|B1 ∩ {M(| f |2 + |g|2)

> δ2N
2(k−i)
1 }|.

Proof. The conclusion (a) comes from Lemma 2.4 and Corollary 4.7 by choosing

C = {X ∈ B1 :M(|ux |2 + |x |2σ |uy|2) > N21 },
and

D = ({M(u2x + |x |2σu2y) > N21 } ∪ {M(| f |2 + |g|2) > δ2}) ∩ B1. (4.16)

The conclusion (b) can be obtained by applying (a) to the weak solution v(x, y) =
u(x,y)

λ of the equation

vxx + |x |2σvyy = fx + |x |σ gy
λ

,

(c) is an iteration of (b) by taking λ = Ni
1, i = 1, 2 . . .

Now we go back to the proof of Theorem 4.1.

Proof. By scaling, we need only to prove r = 1.
When p = 2, the theorem is easily seen by Lemma 4.2.
Let p > 2. We may assume that ‖ f ‖L p(B5) and ‖g‖L p(B5) are small, and also

the measure

|{X ∈ B1,M(|ux |2 + |x |2σ |uy|2) > N21 }| ≤ ε|B1|

by multiplying the equation a small constant. Since f and g are in L p we have | f |2
and |g|2 are in L p

2 . By using Lemma 2.5 we haveM(| f |2 + |g|2) ∈ L
p
2 with a

small norm. We assume ‖ f ‖L p(B5) + ‖g‖L p(B5) ≤ δ p, then

∞∑

i=0
N
ip

1 |{M(| f |2 + |g|2) > δ2N2i1 }|

≤ C(γ , N1, p)

δ p
(‖ f ‖L p + ‖g‖L p ) ≤ C.

(4.17)
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Thus

∫

B1

|ux |p + ||x |σuy|p

≤
∫

B1

M(|ux |2 + |x |2σ |uy|2)
p
2 dxdy

= p

∫ ∞

0

λp−1|B1 ∩ {M(|ux |2 + |x |2σ |uy|2) ≥ λ2}|dλ

≤ p

(
|B1| +

∞∑

k=0

∫ Nk+1
1

Nk
1

λp−1|B1 ∩ {M(|ux |2 + |x |2σ |uy|2) ≥ λ2}|dλ

)

≤ p|B1| + p

∞∑

k=0
N

(k+1)(p−1)
1 |B1 ∩ {M(|ux |2 + |x |2σ |uy|2) ≥ N2k1 }|

≤ p(1+ |N p

1 |)|B1| + N
p

1

∞∑

k=1
N
kp

1 (εk1 |B1 ∩ {M(u2x + |x |2σu2y) > 1}|

+
k∑

i=1
εi1|B1 ∩ {M(| f |2 + |g|2) > δ2N

2(k−i)
1 }|)

≤ p(1+ |N p

1 |)|B1| + N
p

1

( ∞∑

k=1
N
kp

1 εk1 |B1 ∩ {M(u2x + |x |2σu2y) > 1}|

+
∞∑

i=1
εi1N

ip

1

∑

k≥i
N

(k−i)p
1 |B1 ∩ {M(| f |2 + |g|2) > δ2N

2(k−i)
1 }|

)

≤ C,

(4.18)

by taking ε1 small enough such that N
p

1 ε1 < 1.
If 1 < p < 2, then the statement follows from the standard duality argument,

so the proof is finished.

Now we have all we needed to prove Theorem 1.1.

Proof. Let δ = d("′, ∂").
For every point Y ∈ "′ ∩ {x = 0}, consider the equation (1.1) in the ball

B(Y, δ). Since the equation is translation invariant along y axis, by Theorem 4.1 we
have

∫

B(Y, δ

80γ 6
)
(|ux |p + ||x |σuy|p)dxdy

≤ C

∫

B(Y, δ

16γ 6
)

((
δ

80γ 6

)−p

|u|p + | f |p + |g|p
)
dxdy.
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For every point X0 ∈ "′ ∩ {(x, y) : |x | > δ
160γ 6

}, we consider the equation (1.1) in
the domain B(X0,

|x0|
2

) ∩ " and let v(x, y) be the scaling function of u that is the
same as in (4.12). Then v(x, y) satisfies equation (4.13) and is uniformly elliptic
in B(X̃0,

1
2
) ∩ "̃, where X̃0 is the same as in (4.14) and "̃ = {X : |x0|X ∈ "}.

Applying the classical interiorW 1,p estimates for v(x, y) and scaling back, we have

∫

B(X0,
|x0|
4 )∩"′

(|ux |p + ||x |σuy|p)dxdy

≤ C

∫

B(X0,
|x0|
2 )∩"

(|δ|−p|u|p + | f |p + |g|p)dxdy.

The estimate (1.2) follows by covering "′ with a finite number of balls B(Y, δ
80γ 6

)

with Y = (0, y) and B(X, |x |
4

) with |x | > δ
160γ 6

.

Theorem 1.2 is easily derived by Theorem 1.1 and the odd extension method,

so we omit the proof.
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Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49
(1996), 1081–1144.
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