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Harmonic mappings and distance function

DAVID KALAJ

Abstract. We prove the following theorem: every quasiconformal harmonic
mapping between two plane domains with C L (¢ < 1) and, respectively, C 1.1
compact boundary is bi-Lipschitz. This theorem extends a similar result of the
author [10] for Jordan domains, where stronger boundary conditions for the image
domain were needed. The proof uses distance function from the boundary of the
image domain.

Mathematics Subject Classification (2010): 58E20 (primary); 30C62 (sec-
ondary).

1. Introduction and statement of the main result

We say that a function u : D — R is ACL (absolutely continuous on lines) in
the region D C RZ, if for every closed rectangle R C D with sides parallel to
the x and y-axes, u is absolutely continuous on a.e. horizontal and a.e. vertical
line in R. Such a function has, of course, partial derivatives u, and u, a.e. in D.
A homeomorphism f: D — G, where D and G are subdomains of the complex
plane C, is said to be K-quasiconformal (K-q.c), for K > 1, if f is ACL and

IVf(z)| < KI(Vf(z)) ae.onD, (1.1)

where
IVf)|:= miﬁ VRl =1z + | fz]

and

I(Vf(z) = lglrlll_n] IVf@hl =11 — |zl
(cf. [1, pages 23—24] and [22]). Note that, condition (1.1) can be written as

K-1, 1+k
ie. K =—
K+1 1—k%

|zl < k|f;| ae.on D,wherek =
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or in its equivalent form
IVf@P < KJs@). 2 €U, (1.2)

where J is the Jacobian of f.

A function w is called harmonic in a region D if it has form w = u + iv
where u# and v are real-valued harmonic functions on D. If D is simply connected,
then there are two analytic functions g and s defined on D such that w has the
representation

w=g+h.

If w is a harmonic univalent function then, by Lewy’s theorem (see [23]), w has a
non-vanishing Jacobian and consequently, according to the inverse mapping theo-
rem, w is a diffeomorphism.

Let

1—r2

2m(1 —2r cosx +r2)

denote the Poisson kernel. Then every bounded harmonic function w defined on the
unit disc U := {z : |z] < 1} has the representation

P@r,x) =

27
w(z) = P[F1(2) =/ P(r,x — @) F(e'™)dx, (1.3)
0

where z = re'? and F is a bounded integrable function defined on the unit circle S'.

In this paper we continue to study quasiconformal harmonic mappings. See
[25] for the pioneering work on this topic, and [8] for related earlier results. In some
recent papers, a lot of work have been done on this class of mappings ([3, 10-17,
19-21,24,26,28,29]). In these papers for the Lipschitz and the co-Lipschitz charac-
ter is established quasiconformal harmonic mappings between plane domains with
certain boundary conditions. In [32] the same problem is considered for hyperbolic
harmonic quasiconformal selfmappings of the unit disk. Notice that, in general,
quasi-symmetric self-mappings of the unit circle do not have a quasiconformal har-
monic extension to the unit disk. In [25] an example is given of C! diffeomorphism
of the unit circle onto itself whose Euclidean harmonic extension is not Lipschitz.
Alessandrini and Nesi proved in [2] the following:

Proposition 1.1. Let F : S' — y C C be an orientation-preserving diffeomor-
phism of class C' of S' onto a simple closed curve y. Let D be the bounded
domain such that 9D = y. Let w = P[F] € C'(U; C). The mapping w is a
diffeomorphism of U onto D if and only if

Jw > 0 everywhere on st (1.4)

From the inequalities (1.2) and (1.4), we easily deduce the following:

Corollary 1.2. Under the assumption of Proposition 1.1 the harmonic mapping w
is a diffeomorphism if and only if it is K -quasiconformal for some K > 1.
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In contrast to the case of the Euclidean metric, in the case of the hyperbolic
metric, if £ : §' > S!is C! diffeomorphism, or more generally if f : §"~! -
$™=1 is a mapping with non-vanishing energy, then its hyperbolic harmonic exten-
sion is C! up to the boundary ([4, 5]).

To continue we need the definition of C¥% Jordan curves (k € N, 0 < o < 1).
Let y be a rectifiable curve in the complex plane. Let / be the length of y. Let g :
[0, [] — y be an arc-length parametrization of . Then [¢(s)| = 1 for all s € [0, /].
We will say that y € C*% k e N,0 < a < 1if g € CK, and M(k,a) :=

® (1)— g®) . . .
SUP; g W < 00. Notice this important fact: if y € C"! then y has a

curvature «; for a.e. z € y and esssup{|«;| : z € y} < M(1,1) < oo.

This definition can be easily extended to an arbitrary C¥* compact 1-dimen-
sional manifold (not necessarily connected).

The starting point of this paper is the following proposition.

Proposition 1.3. Let w = f(z) be a K-quasiconformal harmonic mapping
between a Jordan domain 0 with C“* boundary and a Jordan domain Q
with C1 (respectively C*%) boundary. Consider in addition b € i and set
a = f(b). Then w is Lipschitz (respectively co-Lipschitz). Moreover there exists a
positive constant ¢ = c(K, Q, 21, a, b) > 1 such that

[f(z1) — f)| <clz1 —z2l, 21,22 € Q1 (1.5)

and |
;|Zl — 22| = |f@z) — f@)], z1,22 € Q1 (1.6)

respectively.

See [13] for the first part of Proposition 1.3 and [10] for its second part. In [10],
it was conjectured that the second part of Proposition 1.3 remains true if we assume
that Q has C!* boundary only. Notice that the proof of Proposition 1.3 relies
on the Kellogg-Warschawski theorem ([6, 33, 34]) from the theory of conformal
mappings, which asserts that if w is a conformal mapping of the unit disk onto a
domain € CK?, then w® has a continuous extension to the boundary (k € N).
It also depended on Mori’s theorem from the theory of quasiconformal mappings,
which deals with the Holder character of quasiconformal mappings between plane
domains (see [1,31]). In addition, Lemma 3.2 below is needed.

Using a different approach, we will extend here as stated in Theorem 1.4 the
second part of Proposition 1.3 to the case of image domains with C'*! boundary.
The proof of Theorem 1.4, given in the last section, is different form the proof of
second part of Proposition 1.3, and the use of the Kellogg-Warschawski theorem
for the second derivative ([34]) is avoided. The distance function is used and hence
a “weaker” smoothness of the boundary of image domain is needed.

Theorem 1.4 (The main theorem). Let w = f(z) be a K-quasiconformal har-
monic mapping from the unit disk U to a Jordan domain Q with C'! boundary. Set
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a = f(0). Then w is co-Lipschitz. More precisely, there exists a positive constant
c=c(K, ,a) > 1 such that

1
E|Z1—Z2| <|f(z1) — f@2), z1,22 € Q. (L.7)

Since the composition of a quasiconformal harmonic and a conformal mapping is
itself quasiconformal harmonic, using Theorem 1.4 and Kellogg’s theorem for the
first derivative we obtain:

Corollary 1.5. Let w = f(z) be a K -quasiconformal harmonic mapping between
a plane domain Q1 with C1% compact boundary and a plane domain Q with C1-1
compact boundary. Consider ay € 21 and set bg = f(ag). Then w is bi-Lipschitz.
Moreover there exists a positive constant ¢ = c(K, Q, Q1, ag, bg) > 1 such that

1
;Im — 22l = 1f(z1) — f(z2) < clz1 — 22, z1,22 € Q1. (1.8)

Proof of Corollary 1.5. Letb = f(a) € 3. Since dQ € C!!, it follows that there
exists a C!! Jordan curve ¥» C Q, whose interior D, lies in 2, and dQ N yj, is
a neighborhood of b. See [13, Theorem 2.1] for an explicit construction of such a
Jordan curve. Let D, = f~!(Dj), and take a conformal mapping g, of the unit disk
onto D,. Then f, = f o g, is a quasiconformal harmonic mapping from the unit
disk onto the C*! domain Dj,. From Theorem 1.4 it follows that f, is bi-Lipschitz,
and from Kellogg’s theorem it follows that f = f, o g;l and its inverse f~! are
Lipschitz in some small neighborhood of a and of b = f(a) respectively. This
means that V f is bounded in some neighborhood of a. Since 92 is a compact, we
deduce that V f is bounded in 8. The same holds for V £ ~! with respect to <.
This implies that f is bi-Lipschitz. O

ACKNOWLEDGEMENTS. I thank the referee for providing constructive comments
and help in improving the contents of this paper.

2. Auxiliary results

Let © be a domain in R? having non-empty boundary d$2. The distance function
from the boundaryis defined by

d(x) = dist (x, 0€2). (2.1)

Let 2 be bounded and assume 32 € C!-!. These conditions on  imply that 92
satisfies the following: at a.e. point z € 92 there exists a disk D = D(wg,r;)
depending on z such that D N (C \ Q) = {z}. Moreover i := essinf{r;,z €
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a2} > 0. It is easy to show that ! bounds the curvature of €2, which means that

% > k;, for z € 0€2. Here «; denotes the curvature of 92 at z € 9€2. Under the

above conditions, we have d € C“(FM), where I')y = {z € Q :d(z) < p} and for
z € I';, there exists w(z) € €2 such that

Vd(z) = Vo), (2.2)

where v, (;) denotes the inner normal vector to the boundary 92 at the point w(z).
See [7, Section 14.6] for the details.

Lemma 2.1. Let w : Q — Q be a K-quasiconformal mapping and set x =
—d(w(z)). Then
Vx| = |Vw| = K|Vx] (2.3)

in w_l(FM)for,u > 0 such that 1/ > ko = ess sup{|x;| : z € 92}.

Proof. Observe first that Vd is a unit vector. From the identity Vx = —Vd - Vw it
follows that

IVl = [Vd|[Vw| = [Vw].

For a non-singular matrix A we have

inf |Ax|> = inf (Ax, Ax) = inf <ATAx,x>
|x|=1 |x|=1 |x]=1

= inf{x:3x #£0, AT Ax = Ax}

2.4)
=inf{A : Ix #£0, AAT Ax = L Ax)}
=inf{x:3y #£0, AATy = Ay} = ‘inl |AT x|?.
X|=
We next denote that (Vx)T = —(Vw)T - (Vd)T, therefore for x € w_l(Fu) we
obtain
Vx| = lilnfl (Vw)T e| = ‘ilnfl |Vwe| =1(w) > K~!|Vuw].
e|l= el=
The proof of (2.3) is complete. O

Lemma 2.2. Let {ey, e2} be the canonical basis of the space R2 Letw: Q)+ Q
be a twice differentiable mapping and let x = —d(w(z)). Then

Ax(z0) = 1= Kw’:z‘zw = (05 Vw(zo) €1 = (Vd) (w(z0)), Aw), (2.5)

where 7 € w’l(l’ﬂ), wy € 02 with |w(zg) — wp| = dist(w(zg), 02), . > 0 such
that 1/10 > ko = esssupll«;| : z € 02} and Oy, is an orthogonal transformation.
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Proof. Let v, be the inner unit normal vector to y at the point wy € y. Let O, be
an orthogonal transformation that takes the vector e; to v,,. In complex notations
one has:

Oxw = —iVyW.

Take Q := 0,,Q. Let d be the distance function for Q. Then
d(w) = d(0Ozw) = dist (0w, IK2).
Therefore x(z) = —d (04 (w(z))). Furthermore
2
Ax (@) ==Y (D*d) (0w (2)) (05 Vw(2)e;, O Vw(z)e:)

i=1
— (Vd(w(2)), Aw(2)) .

(2.6)

To continue, we make use of the following proposition.

Proposition 2.3 ([7, Lemma 14.17]). Let Q be bounded and assume 3Q2 € CL1.
Then, with notation as in Lemma 2.2, we have

Ky
~ . _K S —
(Dzd)(ozow(zo»:dlag(—l_ = d,0)= I—kepd |, @7
Kan 0 0

where k., denotes the curvature of 92 at wy € 9.

Applying (2.7) we have

2
D (D*d) (02, (w(20)) (O (Vw(z0))ei, Oz (Vw(z0))er)

i=1

2 2
=Y Y D;jxd(05(w(20))) Di(0zw);(z0) - Di(Ozw)i(z0)
k=

i=1 jk=1 (28)
2
= Y Djxd (0 (w(z0))) ((%Vw(zo))Tej, (Ozovw(10>)Tek>
Jj.k=1
= 4|(OZOVw(z0)) el
1 — Ky,

Finally we obtain

Ax(z0) = K$d~|(0zoVw(Zo))T€1l2 — ((Vd)(w(z0)), Aw) . O

—_ KLU()



HARMONIC MAPPINGS AND THE DISTANCE FUNCTION 675

3. Proof of the main theorem

The main step to establish the main theorem is the following lemma.

Lemma 3.1. Let w = f(z) be a K-quasiconformal mapping of the unit disk onto
a CY Jordan domain Q satisfying the differential inequality

|Aw| < B|Vw|?>, B >0 (3.1)

for some B > 0. Assume in addition that w(0) = ag € Q2. Then there exists a
constant C(K, 2, B, a) > 0 such that

0
‘a—w(t) > C(K, Q, B, ag) for almost every t € st (3.2)
,

Proof. Let us find A > 0 such that the function ¢, (z) = —% + %e*Ad(“’(Z)) is
subharmonic on {z : d(w(z)) < ﬁ}, where

ko = esssup{|iy| : w € y}.
Let x = —d(w(z)). Combining (2.3), (2.5) and (3.1) we get
|Ax| < 2k0|Vw|* + BIVw|* < 2ko + B)K?|Vx|*. (3.3)
Take
At.

1 1
) = —— —
g(1) <3¢

Then ¢y (z) = g(x(2)). Thus

Apw = &"COIVXI* + & () Ax. (3.4)
Since
g (x) = e~ AW (3.5)
and
g" () = Ae” M), (3.6)
it follows that
Ay > (A — 2kg + B)K?)|Vx|Pe~ 400, (3.7)

In order to have Ag,, > 0, it is enough to take
A= (2ko + B)K?. (3.8)
Choosing

1
© = max {Izl sdist(w(z), y) = —} ,
2K

we have that ¢,, satisfies the conditions of the following generalization of the Hopf
lemma ([9]):
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Lemma 3.2 ([10]). Let ¢ satisfy Ap > 0in Ry ={z:0 <z <1},0 <90 < 1,
@ be continuous on Ry, ¢ < 0in Ry, ¢(t) =0fort € S L. Assume that the radial

derivative %—‘f exists almost everywhere on S'. Set M (¢, 0) = max|;|—, ¢(z). Then
the following inequality holds

dpt)  2M(g.0)
or 02(1 — el/0*—1

)for ae.teSh (3.9)

We will make use of (3.9), but under some improvement for the class of quasi-
conformal harmonic mappings. The idea is to make the right-hand side of (3.9)
independent of the mapping w for ¢ = ¢y,.

We will say that a quasiconformal mapping f : U +—  is normalized if
F) = wo, f(e¥/3) = wy and f(e F/3) = w,, where wow;, wiwy and wrwg
are arcs of y = 9€2 having the same length |y|/3.

In what follows we will prove that, for the class H(S2, K, B) of normalized
K -quasiconformal mappings, satisfying (3.1) for some B > 0, and mapping the
unit disk onto the domain €2, the inequality (3.9) holds uniformly (see (3.10)).

Let

1
0 = sup {Izl sdist(w(z), y) = —, w € H(Q, K, B)} .
2K0

Then there exists a sequence {wy}, w, € H(2, K, B) such that

1
On = max {IZI sdist(wy (2), ¥) = —} :
2k0
and
o = lim p,.

n—oo

Now notice that if w,, is a sequence of normalized K-quasiconformal mappings
of the unit disk onto €2 then, up to taking a subsequence, w, is a locally uni-
formly convergent sequence converging to some quasiconformal mapping w €
‘H(2, K, B). Under the condition on the boundary of €2, by [27, Theorem 4.4]
this sequence is uniformly convergent on U. Then there exists a sequence z, such
that dist(w, (z,), y) = i) lim,— 00 2o = zo and ¢ = |zo|. Since w, converges
uniformly to w, it follows that lim,,—, oo wy,(z,) = w(zo), and dist(w(zp), y) = 2170
This implies that o < 1. Let now

M(Q) = Sup{M(Qﬁw’ Q)v w e H(Q’ K7 B)}

Using a similar argument we obtain that there exists a uniformly convergent se-
quence wy, converging to a mapping wo, such that

M(o) = nlin;o M(@y,, 0) = M(¢u,, Q).
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Thus
M(o) < 0.

Placing M (o) instead of M (g, ¢) and ¢,, instead of ¢ in (3.9), we obtain

duw (1) - 2M(0)
or 02(1 — el/o*=1)

= C(K,Q, B) forae. r €S (3.10)

To continue observe that

dpu (1) — AW@) | yy 8_w(t)
ar ar

a
— Adw() ‘ ow (1)
ar

Combining (3.8) and (3.10) we obtain fora.e. r € S!

— o~ AdW() dw (1) S K 2M (o)

8w(t)
or or 0%(1 — el/e*=1y

Lemma 3.1 is now proved for a normalized mapping w. If w is not normalized then
we take the composition of w and an approprieate Mobius transformation in order
to obtain the desired inequality. The proof of Lemma 3.1 is complete. O

Conclusion of the proof of Theorem 1.4. In this setting w is harmonic, therefore
B = 0. Assume first that w € C'(U). Let [(Vw)(¢) = [lw, ()| — |wz(2)]|. Since w
is K -quasiconformal, according to (3.2) we have

ow
‘—(f)
I(Vw)(1) > IVuI){(l‘)I > arK > C&. ?{ 0. do) G.11)

for € S!. Therefore, having in mind Lewy’s theorem ([23]), which states that
|w,| > |ws| for z € U, we obtain for ¢ € S' that |w,(¢)| # 0 and hence

lw| K lw,|

Since w € C! (@), it follows that the functions

1 C(K, 2,0, ap)

w3
a(z) = —, b(z):=
@ w, @ w, K

are well-defined holomorphic functions in the unit disk having a continuous exten-
sion to the boundary. As |a| + |b| is bounded on the unit circle by 1, it follows that
it is bounded on the whole unit disk by 1 because

la()| 4+ 16(2)| = Pllalsil(z) + PlIbls11(z) = Pllalgi + 1bls11(2), z€U.
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This in turn implies that for every z € U

C(K,R,0,
[(Vw)(z) > % = C(Q. K. ao). (.12)
This yields that
C(K,Q,ap) < M’ 21,20 € U.
lz1 — z2]

Assume now that w ¢ C'(U). We begin with a definition.

Definition 3.3. Let G be a domain in C and let a € 3G. We will say that G, C G
is a 9-neighborhood of a if there exists a disk D(a,r) := {z : |z —a| < r} such that
D(a,r)NG C Gg.

Lett = ¢ € §', so that w(r) € 9Q. Let y be an arc-length parametrization
of 9Q with y(s) = w(z). Since 3Q € C!!, there exists a d-neighborhood ; of
w(z) with C1! Jordan boundary such that

Qf = +iy/'(s)- T C Q, and 02 Cc Qfor0 <t <7 (r>0). (3.13)
An example of a family Q7 such that Q7 € C!! and with the property (3.13) has
been given in [13].

Let a; € Q; be arbitrary. Thena; +iy’(s) -t € Qf. Take U; = f’l(Q,’). Let
nt be a conformal mapping of the unit disk onto U, such that nf (0) = f~'(a; +
iy’(s)- 1), and arg ddiz’(O) = 0. Then the mapping

[F@ = fuy @) —iy'(s) -t

is a harmonic K-quasiconformal mapping of the unit disk onto €2; satisfying the
condition f;¥ (0) = a;. Moreover

fFect@.
Using the case w € C 1 (U), it follows that
IV @) = C(K, Q, a).

On the other hand
IEI& V(@) =V(fon)(z)

on the compact sets of U as well as

dnt d
T (7) = d—'Z(z),

lim
T—>0+ dZ
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where 7, is a conformal mapping of the unit disk onto Uy = f~!(2,) with 1,(0) =
f~Y(ay). Tt follows that

|Vf,(z)| 2 C(K9 QI! al)'

Applying the Schwarz reflexion principle to the mapping 1, and using the formula

dn
V(fon@ =Vf-—@)
z
it follows that in some 9-neighborhood U; of t € S' with smooth boundary where
(D(t,r;) NU C Uy for some r; > 0), the function f satisfies the inequality
C(K, Q;,a ~
Viole —SEEW gy =0 G4
max{|n;(¢)] : ¢ € Up}

Since S! is a compact set, it can be covered by a finite family 9 0,_ NS 'nD(t,r/2),
j=1,..., m. It follows that the inequality

IVf@|>min{C(K, Q. a): j=1,....,m}=C(K,Q,a0) >0 (3.15)

holds in the annulus

. J3 mo
R = {Z'l_Ténjlgmrtj <zl <1 CjL;JlU,j.
This implies that the subharmonic function S = |a(z)| + |b(z)| is bounded in U.
According to the maximum principle, it is bounded by 1 in the whole unit disk.
This in turn implies again (3.12) and consequently

C(K, 2, ao)

z |z1 — 22| < lw(z1) —w(z2)|, z1,22€U. O
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