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Sharp Liouville results for fully nonlinear equations

with power-growth nonlinearities

SCOTT N. ARMSTRONG AND BOYAN SIRAKOV

Abstract. We study fully nonlinear elliptic equations such as

F(D2u) = u p, p > 1,

in Rn or in exterior domains, where F is any uniformly elliptic, positively ho-
mogeneous operator. We show that there exists a critical exponent, depending
on the homogeneity of the fundamental solution of F , that sharply characterizes
the range of p > 1 for which there exist positive supersolutions or solutions in
any exterior domain. Our result generalizes theorems of Bidaut-Véron [6] as well
as Cutri and Leoni [11], who found critical exponents for supersolutions in the
whole space Rn , in case −F is Laplace’s operator and Pucci’s operator, respec-
tively. The arguments we present are new and rely only on the scaling properties
of the equation and the maximum principle.

Mathematics Subject Classification (2010): 35B53 (primary); 35J60 (sec-
ondary).

1. Introduction and main results

Elliptic equations and systems with power-like zero order terms have been the focus

of great attention for many years. A model is the Emden-Fowler equation

−!u = u p, p > 1, (1.1)

which has important applications in physics and geometry as well as a rich mathe-

matical structure. In this paper, we study the more general equation

F(D2u) = f (x, u) (1.2)

where F is a uniformly elliptic operator and f has power-like dependence in u. In

particular, we study the existence of positive solutions and supersolutions of (1.2) in

unbounded domains of Rn , n ≥ 2. The only hypotheses on the nonlinear operator

F are uniform ellipticity and positive homogeneity; precisely, we require:
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(H1) for some constants 0 < λ ≤ # and all real symmetric matrices M and N ,

with N nonnegative definite, we have

λ trace(N ) ≤ F(M − N ) − F(M) ≤ # trace(N ), and

(H2) F(tM) = t F(M) for every t ≥ 0 and each symmetric matrix M .

An operator F satisfying (H1)-(H2) is called an Isaacs operator. If in addition F

is concave or convex, then F is often called a Hamilton-Jacobi-Bellman operator.

See the references in the next section for more on the the theory and applications of

Isaacs operators.

The question we are concerned with has been extensively studied in the special

case F(D2u) = −!u (when (H1) holds with λ = # = 1, and (H2) holds for all

t ∈ R), by using energy methods and the divergence-form structure of the Lapla-
cian. The following Liouville-type theorem is a particular case of results obtained

by Bidaut-Véron [6], and sharply characterizes the range of p > 1 for which there

exist positive (super)solutions of (1.1) in exterior domains, as well as positive su-

persolutions in the whole space Rn . An exterior domain is a domain $ ⊂ Rn for

which Rn \ BR ⊆ $ ⊆ Rn \ {0} for some R > 0, where BR denotes the open ball

of radius R centered at the origin.

Theorem 1.1 ( [6]). Denote 2∗ := n/(n − 2) if n ≥ 3, and 2∗ := ∞ if n = 2. Let

p > 1. Then the Emden-Fowler equation (1.1) has no nontrivial nonnegative weak

supersolutions in any exterior domain of Rn , provided that p ≤ 2∗.

Note that it can be checked by a straightforward calculation the functions

v(x) := cp|x |−2/(p−1) and u(x) := c̃p
(
1+ |x |2

)−1/(p−1)
are respectively a so-

lution of (1.1) in Rn \ {0} and a supersolution of (1.1) in the whole space Rn ,

provided that p > 2∗ and the constants cp, c̃p > 0 are chosen appropriately. Thus

the previous theorem states that 2∗ is the critical exponent for both the existence of
positive solutions or supersolutions of (1.1) in any exterior domain, and positive su-

persolutions of (1.1) in the whole space Rn . Recall that the famous result of Gidas

and Spruck [16] states that the critical exponent for existence of positive solutions

of (1.1) in Rn is different, namely 2∗ := (n+ 2)/(n− 2). The delicate proof of this
deep fact relies on special geometric properties and symmetries of the Laplacian.

Theorem 1.1 has been extended to various quasilinear equations in divergence

form, like −!mu = u p, see [6], as well as to more general divergence form equa-
tions such as − div(A(Du, u, x)) = 0, provided that A possesses the appropriate

growth in u and Du. For more results in this direction, see [5, 18, 22, 25].

In this paper, we study the corresponding problem for certain fully nonlinear

elliptic equations. Consequently, all differential (in)equations appearing here are

to be interpreted in the viscosity sense, which is the appropriate notion of weak

solution for elliptic equations in nondivergence form. Our model equation is

F(D2u) = u p, (1.3)
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where p > 1 and F satisfies (H1) and (H2). The arguments we give are com-

pletely different from the ones in the above quoted works, since energy methods

are obviously inapplicable to the study of (1.3). Instead, our approach relies on the

maximum principle, and makes essential use of the following result we recently

obtained with Smart [3] on the existence and properties of fundamental solutions of

fully nonlinear equations.

Theorem 1.2 ( [3]). Assume F satisfies (H1) and (H2). The equation F(D2u) = 0

in Rn \ {0} has a non-constant solution that is bounded below in B1 and bounded

above inRn \B1. Moreover, the set of all such solutions is {a%+b | a > 0, b ∈ R},
where% ∈ C

1,δ
loc (Rn \{0}) can be chosen to satisfy one of the following homogeneity

relations: for all σ > 0,

%(x) = %(σ x) + log σ or

{
%(x) = σα∗

%(σ x)
α∗%(x) > 0

for x ∈ Rn \ {0}, (1.4)

for some unique number α∗ = α∗(F) ∈ (−1,∞) \ {0} which depends only on F
and n (we set α∗(F) = 0 in case the first alterantive in (1.4) occurs). We call α∗(F)
the scaling exponent of F , and we call % the fundamental solution of F .

Remark 1.3. Of course, the fundamental solution of the Laplacian is %(x) =
|x |2−n , if n ≥ 3, and %(x) = − log |x |, if n = 2, so the scaling exponent of

−! is α∗(−!) = n − 2. For a general F satisfying (H1) and (H2), the scaling

exponent can be any number between λ
#(n − 1) − 1 and #

λ (n − 1) − 1. For more
on fundamental solutions and scaling exponents, we refer to [3].

Equation (1.3) has another “scaling exponent”, given by the interplay between

the 1-homogeneity of the elliptic operator and the p-homogeneity of the right-hand

side in (1.3). If u is a (sub/super)solution of (1.3) in the exterior domain Rn \ BR ,
then it is easy to check that the rescaled function uσ , defined for each σ > 0 by

uσ (x) := σβ∗
u(σ x), β∗ = β∗(p) := 2

p − 1
,

is also a (sub/super)solution of (1.3) in the domain Rn \ BR/σ . In order to compare

with (1.4), note that %σ ≡ % when α∗ = β∗.

Put briefly, our main result for (1.3) asserts that the answer to the question

of whether there exists a positive (super)solution in exterior domains, or a positive

supersolution in the whole space Rn , is determined by which of the numbers α∗(F)
and β∗(p) is greater.

Theorem 1.4. Assume that F satisfies (H1) and (H2), and p > 1. Then the gener-

alized Emden-Fowler equation (1.3)

(i) has no nontrivial nonnegative supersolution in any exterior domain of Rn , if

α∗(F) ≤ β∗(p);
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(ii) has a positive supersolution in the whole Rn , if α∗(F) > β∗(p).
(iii) has a positive solution in Rn \ {0}, if α∗(F) > β∗(p).

This result extends Theorem 1.1 to arbitrary Isaacs operators, and provides a new

perspective on this theorem by embedding the Laplacian in the family of positively

homogeneous, uniformly elliptic operators. From our point of view, the condition

p ≤ n/(n − 2) is better written as n − 2 ≤ 2/(p − 1), which emphasizes the
competition between the homogeneity of the fundamental solution of the Laplacian

and the scaling exponent β∗(p) = 2/(p− 1) for equation (1.1). Of course, we may
also write the inequality α∗(F) ≤ β∗(p) in terms of p as

p ≤ 2∗(F) :=
{

α∗(F)+2
α∗(F) if α∗(F) > 0,

∞ if α∗(F) ≤ 0.
(1.5)

To our knowledge, there are no previous results concerning the nonexistence of

positive solutions of fully nonlinear equations and inequalities in exterior domains.

Theorem 1.4 implies (1.3) has no positive singular supersolutions, with singularities

contained in a bounded set, provided that α∗ ≤ β∗.
In the special case that (1.3) is posed in the whole space Rn , and F is a Pucci

extremal operator (see Section 2 for a definition of these operators), problem (1.3)

was studied and Theorem 1.4 was proved by Cutri and Leoni [11]. Their result

was extended to a class of rotationally invariant operators1 in a recent paper by

Felmer and Quaas [14]. Note that for rotationally invariant operators the existence

statements (ii) and (iii) in Theorem 1.4 are trivial. For such operators, just as for

(1.1), it can be checked by a direct computation that if α∗ > β∗, then the functions
v(x) := c|x |−2/(p−1) and u(x) := c̃

(
1+ |x |2

)−1/(p−1)
are respectively a solution

of (1.3) in Rn \ {0} and a supersolution of (1.3) in the whole space Rn , for suitably

chosen constants c̃, c > 0. The proofs of the nonexistence statements in [11] and

[14] depend heavily on the rotational invariance of F , in particular on the existence

of radial fundamental solutions for F .

Theorem 1.4 generalizes these results first by dropping the assumption of ro-

tational invariance and considering an arbitrary fully nonlinear operator satisfying

(H1) and (H2), and second by requiring only that the equation hold in an exterior

domain, which yields a Liouville statement for singular solutions. Our proof of

Theorem 1.4 is (necessarily) accomplished through a different argument than the

one given in both [11] and [14]. The proof of part (i) makes use of the scaling

properties of the equation and of the maximum principle to compare a positive su-

persolution of (1.3) with the fundamental solution % of F . To prove part (ii), we

show that the ellipticity estimates imply that some power of the fundamental so-

lution of F is a supersolution of (1.3), which permits us to construct a solution of

(1.3) in the whole space by a truncation-type argument.

Finally, Theorem 1.4(iii) is proved with the help of Krasnosel’skiı̌ degree the-

ory (see Theorem 3.5 in Section 3), a tool which became popular in elliptic PDE

1 Rotationally invariant means that F(M) depends only on the eigenvalues of M .
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with the well-known works of Amann (see e.g. [1]). An essential step in the appli-

cation of degree theoretic results lies in estabishing a priori bounds. The classical

blow-up argument, introduced by Gidas and Spruck [17] and de Figueiredo, Lions

and Nussbaum [12], has been employed many times in the last thirty years to ob-

tain a priori bounds and hence existence results for nonlinear problems in bounded

domains. In the fully nonlinear setting this approach was first used in [23].

It is less typical for a priori estimates and degree theory to be used to establish

existence results in unbounded domains, and their application hides some specifici-

ties. In particular, we deduce an a priori estimate by an argument which is different

than the one typically used in the literature (for example in [12, 17]). In fact, we

will prove the following result, which implies Theorem 1.4(iii) and deserves to be

stated separately.

Theorem 1.5. Assume β∗(p) < α∗(F). Then at least one of the following holds:

(i) equation (1.3) has a bounded positive solution in the whole space Rn , or

(ii) equation (1.3) has a positive solution u in the domain Rn \ {0} which is

(−β∗(p))-homogeneous, that is, uσ ≡ u for all σ > 0.

In Section 3 we give an extended discussion of our arguments and compare them

to those of previous papers on the subject. Let us mention here another advan-

tage of our approach, which is that it easily adapts to more general nonlinearities

f = f (x, u) as in (1.2). An extension of our results to equation (1.2) is given in
Theorem 3.1, which roughly states that analogous conclusions as in Theorem 1.4

(i)-(ii) hold for (1.2), provided f is positive, behaves like |x |−γ u p for large |x | and
small u, and satisfies a mild global hypothesis.

It remains an interesting open question whether the result of Gidas and Spruck

[16] can be extended to fully nonlinear equations. For more details on this question,

we refer to Felmer and Quaas [13], who used ODE techniques to study the existence

and nonexistence of radial solutions in Rn for rotationally invariant operators.

In the next section, we very briefly describe some notation and results from the

theory of viscosity solutions of fully nonlinear equations. Our main result is proved

in Section 3.

2. Some notation and results on viscosity solutions of elliptic PDE

This short section is meant for readers who are not familiar with the theory of fully

nonlinear equations and the concept of viscosity solutions.

We denote the set of n-by-n real symmetric matrices by Sn , and In ∈ Sn is the
identity matrix. If x, y ∈ Rn , we denote by x⊗ y the symmetric matrix with entries
1
2
(xi y j + x j yi ). For M, N ∈ Sn , we write M ≥ N if M − N has nonnegative

eigenvalues. The Pucci extremal operators are defined by

P+
λ,#(M) := sup

A∈[[λ,#]]
[− trace(AM)] and P−

λ,#(M) := inf
A∈[[λ,#]]

[− trace(AM)] ,
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for each M ∈ Sn and 0 < λ ≤ #, where [[λ,#]] ⊆ Sn is the subset of Sn consisting
of the matrices A for which λIn ≤ A ≤ #In . The following equivalent definition

of the Pucci extremal operators is often more convenient for calculations:

P+
λ,#(M)=−λ

∑

µ j>0

µ j−#
∑

µ j<0

µ j and P−
λ,#(M)=−#

∑

µ j>0

µ j−λ
∑

µ j<0

µ j , (2.1)

where µ1, . . . , µn are the eigenvalues of M . See Caffarelli and Cabre [9] for

more on these operators (to avoid confusion with the notations in [9], note that

P+
λ,#(M) = −M−(M, λ,#) and P−

λ,#(M) = −M+(M, λ,#), whereM± are
as in [9]).

An equivalent way of writing (H1) is

(H1) there exist 0 < λ ≤ # such that for every M, N ∈ Sn ,
P−

λ,#(M − N ) ≤ F(M) − F(N ) ≤ P+
λ,#(M − N ).

Observe that (H1) and (H2) are satisfied for both F = P−
λ,# and F = P+

λ,#, and

these hypotheses imply P−
λ,#(M) ≤ F(M) ≤ P+

λ,#(M) for each M ∈ Sn .
Furthermore, an equivalent way of stating (H1) and (H2) is to assume F is of

the form

F(D2u) = sup
α∈A

inf
β∈B

(
−aα,β

i j ∂i j u
)
or F(D2u) = inf

α∈A
sup
β∈B

(
−aα,β

i j ∂i j u
)

, (2.2)

where α,β are indices that belong to some sets A and B, and the symmetric ma-
trices Aα,β = (a

α,β
i j ) satisfy the inequality λI ≤ Aα,β ≤ #I . This is the form of

general Isaacs operators, which are fundamental in the theory of two-player zero-

sum stochastic differential games. In the particular case card(B) = 1, the operator

F in (2.2) is called a Hamilton-Jacobi-Bellman operator – these have many uses

in applied mathematics, and arise in the theory of stochastic optimal control. We

refer to Cabre [7] as well as Fleming and Soner [15] for references and more on

Hamilton-Jacobi-Bellman and Isaacs equations.

Suppose that $ is an open subset of Rn , F satisfies (H1), and f ∈ C($). A
continuous function u ∈ C($) is a viscosity subsolution (respectively supersolu-
tion) of the equation

F(D2u) = f (x) in $, (2.3)

if, for every point x0 ∈ $ and test function ϕ ∈ C2($) such that x +→ u(x) − ϕ(x)
has a local maximum (respectively minimum) at x0, we have

F(D2ϕ(x0)) ≤ (resp. ≥) f (x0).

We say that u is a viscosity solution of (2.3) if it is both a viscosity subsolution and

supersolution of (2.3).

Below we mention some standard results from the theory of viscosity solutions

which will be used in this article. All differential operators F , G, H , appearing

below are assumed to satisfy only (H1).
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• Maximum principle and strong maximum principle ([9, Proposition 4.9, The-

orem 5.3] and Theorem 3.3 in [10] together with the remarks in Example 3.6

and section 5.C in that paper). Suppose that $ is bounded and u, v ∈ C($̄),
f ∈ C($) satisfy F(D2u) ≤ f ≤ F(D2v) in$ and u ≤ v on ∂$ . Then u ≤ v
in $. If u(x0) = v(x0) at some point x0 ∈ $, then u ≡ v in $.

• Transitivity of inequalities in the viscosity sense ([9,Theorem 5.3] and [2,Lemma

3.6]). Assume F(M)+G(N ) ≥ H(M+N ) for each M, N ∈ Sn . If u, v, f, g ∈
C($) are such that F(D2u) ≤ f and G(D2v) ≤ g in $, then the function
w := u + v satisfies H(D2w) ≤ f + g in $.

• Local Hölder estimates ([9, Theorem 4.10]). Suppose that u, f ∈ C($) satisfy
the inequalities P−

λ,#(D2u) ≤ | f | and P+
λ,#(D2u) ≥ −| f | in$. Then there is a

constant 0 < γ < 1, γ = γ (n, λ,#), such that for each compact subset K ⊆ $
we can find C = C(n,#, λ, K ,$) for which

‖u‖Cγ (K ) ≤ C
(
‖u‖L∞($) + ‖ f ‖Ln($)

)
.

• The infimum of a family of supersolutions which is uniformly bounded below is

a supersolution. ( [9, Proposition 2.7]).

The book [9] is a nice introduction to the theory of viscosity solutions of fully

nonlinear, uniformly elliptic equations. See also Crandall, Ishii, and Lions [10].

3. Further remarks and proofs

3.1. Discussion and more general results

To put our main result and its proof in a proper context, we begin this section with

a discussion. First, all earlier results concerning linear and quasilinear operators in

divergence form use the weak formulation of the equation in terms of integrals, a

feature which operators in non-divergence form do not have. For example, a simple

way to prove a nonexistence result for (1.1) is to replace u by its spherical mean,

which is a supersolution too, by Jensen’s inequality. It is then enough to study radial

supersolutions, which can be reduced to an ODE problem (see for example Guedda

and Véron [18]).

A different approach is required in the nondivergence setting. It was noticed by

Labutin [21] as well as in [11] and [14] that for certain rotationally invariant fully

nonlinear operators F , such as the Pucci extremal operators, there exists a unique

number α = α∗(F) ∈ (−1,∞) for which the function ξα defined by

ξα(x) :=






|x |−α if α > 0,
− log |x | if α = 0,
−|x |−α if α < 0,

(3.1)

is a smooth solution of F(D2ξα) = 0 in Rn \ {0}. This is easy to verify by a direct
computation. For the Pucci maximal operator P+

λ,# we have α∗(P+
λ,#) = #

λ (n −
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1) − 1, while the Pucci minimal operator P−
λ,# has scaling exponent α

∗(P−
λ,#) =

λ
#(n − 1) − 1.

It is then shown in [11,14] that (1.3) has no positive supersolutions in the whole

space Rn if and only if (1.5) holds. The argument used in these papers relies on the

fact that any solution of F(D2u) ≥ 0 in Rn satisfies min∂Br u = minB̄r u by the

maximum principle, so the function r +→ m(r) = min∂Br u is decreasing. Together

with the radial symmetry of the fundamental solution, this permits one to prove

an analogue of Hadamard’s three spheres theorem, which in turn implies that the

function rα∗(F)m(r) is increasing. Finally, with the help of a judiciously chosen
test function, one obtains the inequality m(r)p ≤ Cr2m(r/2), which contradicts
properties of m(r). This approach cannot be used if the operator is not rotationally
invariant, or if the domain is not Rn .

In addition to being more general, our proof of the corresponding Liouville-

type result, Theorem 1.4(i), is actually simpler. It has two central ideas. First, we

observe that a nontrivial solution of F(D2u) ≥ 0 in an exterior domain must be

greater than a constant multiple of the fundamental solution, according to the maxi-

mum principle. Second, thanks to the scaling properties of (1.3), we will see that in

the case α∗(F) ≤ β∗(p) the existence of a nontrivial solution of (1.3) contradicts
the finiteness of the first half-eigenvalue of F in an annular domain.

The existence statement (ii) in Theorem 1.4 is obtained by “bending” the fun-

damental solution, that is, by showing that some power of % is a supersolution in

Rn \ {0} of the inequality we want to solve. Then a supersolution in Rn is obtained

by truncating this function around the origin in a suitable way.

The proof of Theorem 1.4(iii) is based on a well-known theorem by Kras-

nosel’skiı̌, which asserts the existence of a nonzero fixed point of any compact map

which sends a convex cone into itself, under some conditions on its behavior on

two distinct spheres. The precise statement of this theorem is given in Theorem

3.5 below. To apply it, we show that an appropriate map can be defined on the

cone of nonnegative (−β∗)-homogeneous functions whenever β∗ < α∗. We verify
that its fixed points are solutions of (1.3), and that it satisfies the conditions of Kras-

nosel’skiı̌’s theorem under the assumption that (1.3) does not have bounded positive

solutions in the whole space Rn . On the other hand, if (1.3) has a positive solution

in Rn , then of course this solution is also a solution in Rn \ {0}, so we have nothing
to prove.

As we noted in the introduction, we can easily extend our results to more gen-

eral nonlinearities f (x, u). The next theorem generalizes our statements on super-
solutions, that is, Theorem 1.4 (i) and (ii). We denote

β∗ = β∗(p, γ ) := 2− γ

p − 1
,

for each γ < 2 and p > 1.

Theorem 3.1. Assume that the operator F satisfies (H1) and (H2), R0 > 0, and

f : (Rn \ BR0) × (0,∞) → (0,∞) is a continuous function (note f needs not be

defined at u = 0).
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(i) Suppose there exist ε0, c0,C0 > 0, p > 1, γ < 2 such that α∗(F) ≤ β∗(p, γ ),

f (x, s) ≥ c0|x |−γ s p in (Rn \ BR0) × (0, ε0), and (3.2)

f (x, s)

s
≤ C0

f (x, t)

t
for all t > 0, s ∈ (0,min{t, ε0}), |x | ≥ R0. (3.3)

Then (1.2) has no positive supersolution in any exterior domain.

(ii) Suppose that there exist constants ε0,C0 > 0, p > 1 and γ < 2 such that

α∗(F) > β∗(p, γ ) and

f (x, s) ≤ C0|x |−γ s p in (Rn \ BR0) × (0, ε0). (3.4)

Then there exists a positive supersolution of (1.2) in Rn \ BR0 . If in addition
γ ≤ 0 and (3.4) holds in Rn × (0, ε0), then (1.2) has a positive supersolution
in the whole space Rn .

Remark 3.2. The number β∗(p, γ ) defined in this theorem is the scaling exponent
of the equation

F(D2u) = |x |−γ u p. (3.5)

That is, if u is a (sub/super)solution of (3.5) in Rn \ BR , then the rescaled function

uσ (x) := σβ∗
u(σ x), β∗ = 2− γ

p − 1
, (3.6)

is also a (sub/super)solution of (3.5) in Rn \ BR/σ .

Remark 3.3. In the case f = f (s) does not depend on x , conditions (3.2) and (3.4)
in Theorem 3.1 suggest that it is the behaviour of f (s) near s = 0 that determines

whether there exist positive supersolutions of (1.2) in exterior domains. While con-

dition (3.3) is a global hypothesis, it is not very restrictive. In fact, hypothesis (3.3)

turns out to be necessary only for the method of proof we employ. We have re-

cently discovered another approach which permits us to replace (3.3) by an optimal

hypothesis, and yields nonexistence results for sublinear equations (p < 1) as well

as for systems of Lane-Emden type. This alternative method, based on some results

from the regularity theory of Krylov and Safonov (cf. [20]), will be described in a

forthcoming article.

3.2. Proof of the nonexistence result

The existence of fundamental solutions of quasilinear equations provides a lower

bound on positive supersolutions, as observed for example in [25, Lemma 2.3] and

[5, Proposition 2.6]. The following lemma states that the same is valid for uniformly

elliptic operators of Isaacs type. Its simple proof needs only Theorem 1.2 and the

maximum principle.
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Lemma 3.4. Suppose that R1 > 0 and u ∈ C(Rn \ BR1) is a positive solution of
F(D2u) ≥ 0 in Rn \ B̄R1 . Then for some c > 0,

u(x) ≥ c|x |−α in Rn \ BR1, where α := max{0,α∗(F)}. (3.7)

Proof. We first consider the case α∗(F) > 0. By Theorem 1.2, the fundamental

solution % of F is such that % > 0 and %(x) → 0 as |x | → ∞. Select c > 0 so

small that u ≥ c% on ∂BR1 . Then for each ε > 0, there exists R̄ = R̄(ε) > R1
such that u + ε ≥ ε ≥ c% in Rn \ BR̄ . Applying the maximum principle to

F(D2(u + ε)) ≥ 0 = F(D2(c%))

in BR \ BR1 , for each R > R̄(ε), we conclude that u+ ε ≥ c% in Rn \ BR1 . Letting
ε → 0 we obtain u ≥ c% in Rn \ BR1 . This implies (3.7) by the homogeneity of%,
since %(x) = |x |−α∗(F)%(x/|x |) for every x ∈ Rn \ {0}.

In the case α∗(F) ≤ 0, we have %(x) → −∞ as |x | → ∞. Setting

c := (1/2) min
∂BR1

u > 0,

we observe that u ≥ ε%+c on ∂(BR \ BR1), for each 0 < ε < c/(max∂BR1
%), and

each R > R̄(ε) sufficiently large. By the maximum principle, we have u ≥ ε% + c

in Rn \ BR1 . By passing to the limit ε → 0, we deduce that u ≥ c.

Proof of Theorem 3.1(i). Assume first that there exists u > 0 which is a supersolu-

tion of (1.2) with f (x, u) = |x |−γ u p, that is,

F(D2u) ≥ |x |−γ u p (3.8)

in some exterior domain Rn \ BR1 . We can assume R1 > 1. We will argue that the

number β∗ defined in (3.6) is such that β∗ < α∗(F).
In what follows c,C denote positive constants which may change from line to

line, and depend only on F and n.

By Remark 3.2, for each σ ≥ R1 the function uσ given by (3.6) is a superso-

lution of (3.8) in Rn \ B1, and hence

F(D2uσ ) ≥ |x |−γ u pσ ≥ min{1, 2−γ } u pσ in B2 \ B1. (3.9)

By applying Lemma 3.4 to u and expressing (3.7) in terms of uσ , we obtain

uσ (x) = σβ∗
u(σ x) ≥ cσβ∗−α|x |−α for every σ ≥ 1 and |x | ≥ R1/σ, (3.10)

where α := max{0,α∗(F)}. Thus for every σ ≥ R1, we have uσ (x) ≥ cσβ∗−α in

B2 \ B1. Hence by (3.9),

F(D2uσ ) ≥ cσ (β∗−α)(p−1) uσ in B2 \ B1. (3.11)
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The existence of a positive function uσ satisfying this inequality implies that the

first eigenvalue of F in the bounded regular domain B2 \ B1 is bounded below by
cσ (β∗−α)(p−1), for every σ ≥ R1. This is of course a contradiction if β∗ > α and
σ ≥ 2R1 is taken large enough, since the first eigenvalue λ+

1 (F, B2 \ B1) is finite.
For a simple proof2 of a finite upper bound on the first eigenvalue, which requires

only the maximum principle, see the definition of λ+
1 (F,$) as well as Lemma 3.7

in [2]. For more on first eigenvalues of fully nonlinear equations of Isaacs type,

see [2, 24] and the references therein.

We have left to rule out the critical case α = α∗(F) = β∗ > 0. We first show

that in this case we can improve (3.10). Define w(x) := %(x) (log |x |) and observe
that by (H1) and (H2),

F(D2w) ≤ log |x |F(D2%) + 2P+
λ,#(D log |x | ⊗ D%) + %P+

λ,#(D2 log |x |)
= 2|x |−2P+

λ,# (x ⊗ D%(x)) + %(x)P+
λ,#

(
|x |−2 In − 2|x |−4x ⊗ x

)

in Rn \ BR1 , provided that % ∈ C2(Rn \ BR1). We remark that differentiating
the equality %(x) = tα%(t x) with respect to x yields that the matrix H(x) =
x⊗D%(x)

%(x) satisfies H(t x) = H(x) for all t > 0. Thus P+
λ,#(H(x)) ≤ C =

max∂B2 P+
λ,#(H(x)) in Rn \ B1. The latter is rigorous, since% is locally uniformly

bounded in C1, depending only on the constants λ, #, and n.
Thus P+

λ,# (x ⊗ D%(x)) ≤ C%(x), and since the eigenvalues of x ⊗ x are 0 and

|x |2, we obtain

F(D2w) ≤ C|x |−2%(x) ≤ C|x |−α−2 in Rn \ BR1 . (3.12)

By performing an analogous calculation with a smooth test function, we confirm

that the differential inequality (3.12) holds rigorously in the viscosity sense, even

when % is only in C
1,γ
loc but not in C

2 (see for instance the proof of Lemma 3.3

in [3]). According to Lemma 3.4 and (3.8), we also have

F(D2u) ≥ |x |−γ u p ≥ c|x |−γ−pα = c|x |−α−2 in Rn \ BR1, (3.13)

since α = β∗. Note that Theorem 1.2 implies w = %(x) log |x | → 0 as |x | → ∞,

since α∗ = β∗ > 0. By (3.12), (3.13), and the maximum principle, we infer that

u + ε ≥ cw in BR \ BR1
for every ε > 0 and every R > R̄(ε) sufficiently large. Therefore by letting first
R → ∞ and then ε → 0 we obtain

u ≥ c|x |−α log |x | in Rn \ BR1,

2 In view of possible applications of this method to other problems, we note that this argument
does not depend on the existence of an eigenfunction.
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by the definition of w and Theorem 1.2. Rescaling, we find that for σ ≥ R1,

uσ ≥ c log σ in B2 \ B1.

Thus for all σ ≥ R1,

F(D2uσ ) ≥ |x |−γ u pσ ≥ c(log σ )p−1uσ in B2 \ B1. (3.14)

As above, this shows that the first eigenvalue of F in B2 \ B1 is bounded below by
c3(log σ )p−1. Sending σ → ∞ yields a contradiction. This completes the proof of

Theorem 3.1(i) in the case that f (x, u) = |x |−γ u p.

Finally, we remark that in the case of general nonlinearity f satisfying the

hypotheses of Theorem 3.1 the problem can be reduced to the particular case we

have just studied. Namely, for any σ ≥ R1 the function uσ (x) satisfies

F(D2uσ ) ≥ σ 2+β∗
f (σ x, σ−β∗

uσ ) = σ 2
f (σ y, σ−β∗

uσ )

σ−β∗
uσ

uσ (3.15)

in Rn \ B1. As we showed above, we have uσ ≥ cσβ∗−α if β∗ > α, and uσ ≥
c log σ , if β∗ = α. Applying (3.3) with t = σ−β∗

uσ (x) and s = cσ−α (respectively

s = cσ−β∗
log σ ) and using (3.2) yields (3.11) (respectively (3.14)), for sufficiently

large σ ≥ R1.

3.3. Proof of Theorem 3.1 (ii)

We suppose 0 < (2 − γ )/(p − 1) = β∗ < α∗(F). Define v := %τ where

τ := β∗/α∗(F) ∈ (0, 1). In the case % ∈ C2, we have

D2v = τ%τ−1D2% − τ (1− τ )%τ−2 (D% ⊗ D%) ,

so by (H1) and (H2) we obtain

F(D2v) ≥ τ%τ−1F(D2%) + τ (1− τ )%τ−2P−
λ,#(−D% ⊗ D%)

= λτ (1− τ )%τ−2|D%|2

in Rn \ {0}. This is routine to confirm in the viscosity sense in the case % /∈ C2.

By differentiating %(x) = σα%(σ x) with respect to σ , we see that x · D% =
−α%, hence |D%| ≥ α|x |−1%. Therefore,

F(D2v) ≥ c|x |−2%τ ≥ c|x |−τα∗−2 in Rn \ {0}.

Since 0 < c|x |−β∗ ≤ v(x) ≤ C|x |−β∗
and−β∗ p− γ = −τα∗ − 2, we deduce that

F(D2v) ≥ c|x |−γ v p in Rn \ {0}. (3.16)
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Suppose in addition that γ ≤ 0. For a > 0, let w ∈ C(B̄1) be the unique
solution of the Dirichlet problem

{
F(D2w) = a in B1,

w = 0 on ∂B1.

The ABP inequality ([9, Theorem 3.6]) provides us the estimate 0 < w ≤ Ca.

Thus if a > 0 is sufficiently small, the function w satisfies

F(D2w) ≥ |x |−γ w p in B1. (3.17)

By multiplying v = %τ by a small constant, if necessary, we may assume without

loss of generality that v satisfies (3.16) and v < w in B1/2 \ B1/4. Since v(x) → ∞
as |x | → 0, there exists δ > 0 such that w < v in B2δ . Now define the function

u(x) :=






w(x) x ∈ Bδ,

min{v(x), w(x)} x ∈ B1/3 \ Bδ,

v(x) x ∈ Rn \ B1/3.

By construction, u is a supersolution of (3.5) in the whole space Rn , since the

minimum of two supersolutions is also a supersolution. This completes the proof

of Theorem 3.1 (ii), in the special case f (x, u) = |x |−γ u p.

Moreover, inequalities (3.16) and (3.17) continue to hold if we replace v (re-
spectively w) by av (respectively aw), for any a ≤ 1. Since we can find a so small

that av ≤ ε0 in Rn \ {B1/3} (respectively aw ≤ ε0 in B1), Theorem 3.1 (ii) follows
from the existence result we just established.

3.4. Proof of Theorem 1.5

It is convenient to define the space

Xα :=
{
u ∈ C(Rn \ {0}) : u(x) = σαu(σ x) for every x ∈ Rn \ {0}, σ > 0

}

for every α > 0, as well as

Hα := {x ∈ Xα : u ≥ 0} and H+
α := {u ∈ Xα : u > 0} .

Observe that Xα is a Banach space under the norm ‖u‖Xα = max∂B1 |u|, and Hα is

a closed convex cone in Xα with interior H
+
α .

Our argument is based on the following well-known fixed point theorem, due

to Krasnosel’skiı̌ (see [19]). It also appears in the appendix of Benjamin [4], and is

applied to semilinear elliptic equations in [12].

Theorem 3.5 (Krasnosel’skiı̌). Let X be a Banach space, and C a closed convex

cone in X with vertex at the origin. Consider a compact map A : C → C which

satisfies A(0) = 0. Suppose there exist 0 < r̄ < R̄ and ξ ∈ C \ {0} such that:
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(i) u /= t A(u) for every 0 ≤ t ≤ 1 and ‖u‖X = r̄ , and

(ii) u /= A(u) + tξ for every t ≥ 0 and ‖u‖X = R̄.

Then there exists u ∈ C satisfying A(u) = u and r̄ < ‖u‖X < R̄.

In this subsection we set β = β∗(p), where p > 1 is fixed such that β <
α∗(F). We are going to apply Theorem 3.5 using the nonlinear map A : Hβ → Hβ

which is defined for each v ∈ Hβ by A(v) := u, where u ∈ Hβ is the unique

solution of the equation

F(D2u) = v p in Rn \ {0}.

That A is well-defined is a consequence of [3, Lemma 3.8], our assumption that

0 < β < α∗(F), and the relation between β and p. Precisely, the number β
has the property that if βp = β + 2, and therefore if v ∈ Hβ , then v p ∈ Hβ+2.
Now [3, Lemma 3.8] asserts that if 0 < α < α∗(F) and f ∈ Hα , then the equation

F(D2u) = f in Rn \ {0}

has a unique solution u ∈ Hα . It follows that A : Hβ → Hβ is well-defined.

Clearly A(0) = 0, while the strong maximum principle implies that A(v) ∈
H+

α for every v ∈ Hα \ {0}. By the Hölder regularity result which we quoted in
the previous section, and since viscosity solutions are stable under local uniform

convergence (see for example [8, Theorem 3.8]), the map A is compact and contin-

uous.

In the next lemma we verify that hypothesis (i) in Theorem 3.5 holds for A,

that is, we find our inner radius r̄ > 0.

Lemma 3.6. Suppose that u ∈ Hβ , u /≡ 0, is a solution of u = t A(u) for some
0 ≤ t ≤ 1. Then there exists a constant r̄ > 0, which does not depend on u, such

that

‖u‖Xβ > r̄ . (3.18)

Proof. Note that t = 0 by our assumption u /≡ 0. The equation u = t A(u) means
that u ∈ Hβ is a solution of the equation

F(D2u) = tu p in Rn \ {0}.

Hence u ∈ H+
β by the strong maximum principle.

By [3, Lemma 3.8] there exists a function v ∈ H+
β satisfying

F(D2v) = |x |−β−2 in Rn \ {0}.

Since −β − 2 = −βp, we may set w := av for some small 0 < a < 1 to discover

that

F(D2w) ≥ 2w p in Rn \ {0}.
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Set r̄ := min∂B1 w and suppose that (3.18) fails. Thenw ≥ u, and so by multiplying

w by a positive constant at most 1, we may assume that min∂B1(w − u) = 0, which

by the homogeneity of u and w means that minRn\{0}(w − u) = 0. By the strong

maximum principle, we deduce that w ≡ u, which is impossible since t ≤ 1.

In the next lemma, we find the outer radius R̄ > 0 in Theorem 3.5. Here we

set

ξ = ξβ = |x |−β ∈ H+
β .

Lemma 3.7. Assume that equation (1.3) has no bounded positive solutions. Sup-
pose that u ∈ Hβ satisfies u = A(u) + tξ for some t ≥ 0. Then there exists a

constant R̄ > 0, which does not depend on u and t , such that

‖u‖Xβ < R̄. (3.19)

Proof. We can assume that u /≡ 0. The equation

u = A(u) + tξ (3.20)

means that the function w := u − tξ is in Hβ and satisfies the equation

F(D2w) = u p in Rn \ {0}.

In particular w = u − tξ ≥ 0. By the strong maximum principle w ∈ H+
β and

hence u ∈ H+
β .

Put m := min∂B1 u > 0. We first claim that there exists T > 0, which does not

depend on u and t , such that t ≤ m ≤ T . Notice u ≥ tξ ≥ 0 implies t ≤ m.

Recall βp = β + 2. Let v ∈ H+
β be the solution of

F(D2v) = ξ p.

Set a = min∂B1 v > 0 and notice that a depends only on F and n. Then we have

F(D2w) = u p ≥ mpξ p = F(D2(mpv))

in Rn \ {0}, so that [3, Proposition 3.2(iii)] implies w ≥ mpv in Rn \ {0}. In
particular,

u − t = w ≥ amp on ∂B1.

Thus

m ≥ m − t ≥ amp > 0.

Hence t ≤ m ≤ a−1/(p−1) =: T , and we have the claim.
We now prove the bound (3.19) by contradiction. If it fails, then for each k ≥ 1

there exist 0 ≤ tk ≤ T and uk ∈ H+
β such that the function wk := uk − tkξ satisfies

F(D2wk) = u
p
k in Rn \ {0},
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but

‖uk‖Xβ = max
∂B1

uk ≥ k.

For each k, select xk ∈ ∂B1 such that uk(xk) = ‖uk‖Xβ . Observe that by the

homogeneity of u,

uk(yk) = 1, yk := ‖uk‖1/βXβ
xk . (3.21)

Moreover,

uk ≤ 2 in BRk (yk), Rk := ‖uk‖1/βXβ

(
1− 2−1/β

)
. (3.22)

Define vk(z) := uk(yk + z), and observe that vk satisfies vk(0) = 1, 0 ≤ vk ≤ 2 in

BRk (0), and the equation

F(D2vk(z) − tk D
2ξ(yk + z)) = v

p
k in Rn \ {−yk} ⊇ BRk (0). (3.23)

Observe that

D2ξ(z) = β(β + 2)|z|−β−4z ⊗ z − β|z|−β−2 In.

Since |yk | → ∞ and 0 ≤ tk ≤ T , we deduce that tk D
2ξ(yk + z) → 0 locally

uniformly in z ∈ Rn as k → ∞. We also have Rk → ∞ as k → ∞.

We will now argue that we may pass to limits in (3.23) in order to find a func-

tion v satisfying 0 ≤ v ≤ 2, v(0) = 1, and the equation

F(D2v) = v p in Rn.

First, observe that using (3.23) and (H1), we have that for |z| ≤ Rk ,

P−
λ,#(D2vk(z)) ≤ F(D2vk(z) − tk D

2ξ(yk + z)) − F(−tk D2ξ(yk + z))

≤ (vk(z))
p + CT |yk + z|−β−2

≤ (vk(z))
p + CT (|yk | − |z|)−β−2

≤ 2p + CT

(
1

2
‖uk‖Xβ

)−(β+2)/β

using also that |yk | = ‖uk‖1/βXβ
. Similarly, we have

P+
λ,#(D2vk) ≥ −CT

(
1

2
‖uk‖Xβ

)−(β+2)/β
in BRk (0).

Applying local Hölder estimates quoted in the previous section and using that

‖uk‖Xβ → ∞ and Rk → ∞ as k → ∞, we have the bound

sup
k≥1

‖vk‖Cα(BR(0)) ≤ C(R) < ∞
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for every R > 0. Therefore, by passing to a subsequence we may assume that

vk → v ∈ C(Rn) locally uniformly in Rn . It is clear from (3.21) and (3.22) that

0 ≤ v ≤ 2 and v(0) = 1. If we define the operator

Fk(M, z) := F(M − tk D
2ξ(yk + z)),

then Fk(M, z) → F(M) locally uniformly in Sn × Rn as k → ∞, since the matrix

tk D
2ξ(yk+z) tends to 0 locally uniformly in z ∈ Rn . Thus we may use [8, Theorem

3.8] to pass to limits in (3.23) and obtain

F(D2v) = v p in Rn.

Since v(0) = 1, the strong maximum principle implies that v > 0 in Rn . We have

obtained our desired contradiction, since we had assumed in our hypothesis that this

equation has no bounded positive solutions.

Proof of Theorem 1.5. If equation (1.3) has a no bounded positive solution in Rn ,

then Lemmas 3.6 and 3.7 assert that the map A : Hβ → Hβ satisfies the hypotheses

of Theorem 3.5. Therefore there exists u ∈ Hα \ {0} satisfying A(u) = u, that is, u

is a solution of (1.3) inRn \ {0}. The strong maximum principle implies u > 0.
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[14] P. L. FELMER and A. QUAAS, Fundamental solutions and two properties of elliptic maxi-
mal and minimal operators, Trans. Amer. Math. Soc. 361 (2009), 5721–5736.

[15] W. H. FLEMING and H. M. SONER, “Controlled Markov Processes and Viscosity Solu-
tions”, Vol. 25 of Stochastic Modelling and Applied Probability. Springer, New York, sec-
ond edition, 2006.

[16] B. GIDAS and J. SPRUCK, Global and local behavior of positive solutions of nonlinear
elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525–598.

[17] B. GIDAS and J. SPRUCK, A priori bounds for positive solutions of nonlinear elliptic equa-
tions, Comm. Partial Differential Equations 6 (1981), 883–901.
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Université Paris 10
92001 Nanterre Cedex, France
and
CAMS, EHESS
54 bd Raspail
75270 Paris Cedex 06, France
sirakov@ehess.fr


