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Multiple constant sign and nodal solutions

for nonlinear Neumann eigenvalue problems

DUMITRU MOTREANU, VIORICA V. MOTREANU

AND NIKOLAOS S. PAPAGEORGIOU

Abstract. We consider a nonlinear Neumann eigenvalue problem driven by a
possibly nonhomogeneous differential operator which incorporates as a special
case the p-Laplacian. We assume that the right-hand side nonlinearity is (p −
1)-superlinear, but need not satisfy the Ambrosetti-Rabinowitz condition or to
be monotone. We show that, for all values of the parameter λ in an upper half
line, the problem has two positive and two negative solutions. Subsequently, for
the case of the p-Laplacian, we also produce a nodal solution. Finally, for the
semilinear case we show that the problem has two nodal solutions.

Mathematics Subject Classification (2010): 35J25 (primary); 35J80, 58E05
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1. Introduction

Let " ⊂ RN , N ≥ 1, be a bounded domain with a C2-boundary ∂". We study the
following nonlinear eigenvalue Neumann problem:

(Pλ)





−div a(x,∇u(x)) + λ|u(x)|p−2u(x) = f (x, u(x)) in "
∂u

∂n
= 0 on ∂",

where n(x) denotes the outward unit normal at x ∈ ∂" and ∂u
∂n stands for the nor-

mal derivative of u on ∂". Here a : " × RN → RN is a map which is strictly

monotone in the second variable and satisfies certain regularity conditions (see hy-

potheses H(a) in Section 3). The p-Laplacian, with any p > 1, is a particular case

of the differential operator div a(x,∇(·)(x)), but generally this operator need not
be homogeneous, which is a source of difficulties in the application of minimax
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methods. Different such nonlinear operators in divergence form are discussed in

Example 3.4. Our hypotheses on the map a(x, y) make the normal derivative the
right one to be considered for the Neumann boundary condition of problem (Pλ)
(see the nonlinear Green’s identity in [11]). In fact, nonlinear regularity theory al-

lows to interpret the boundary condition in a pointwise sense. In the formulation of

problem (Pλ), the nonlinearity f (x, u) is a Carathéodory function and λ ∈ R is a

parameter. Under our hypotheses, the nonlinear term f (x, u) is (p−1)-superlinear,
but it is not required to satisfy the Ambrosetti-Rabinowitz condition or to be mono-

tone.

Eigenvalue problems for nonlinear elliptic boundary value problems were in-

vestigated primarily in the context of Dirichlet equations driven by the p-Laplacian

differential operator. In this respect, we mention the works [3,16,17,19,20], where

the authors consider problems which involve the combined effects of (p − 1)-
superlinear and (p − 1)-sublinear terms, so problems with convex and concave
nonlinearities if p = 2, and prove the existence of a pair of positive solutions. A

multiplicity result for nonlinear eigenvalue Dirichlet problems guaranteeing three

nontrivial solutions, two of which having opposite constant sign, was proven by

the authors [26]. Other results regarding multiple and positive solutions for Dirich-

let eigenvalue problems can be found in [28]. Nodal solutions were obtained for

Dirichlet problems with the p-Laplacian in the works [1, 6, 7, 9, 10, 27, 36, 37].

To the best of our knowledge, no such results exist for the Neumann problems.

Only recently the authors [29] examined a class of equations with the Neumann p-

Laplacian, and under conditions of near resonance proved multiplicity results, but

without providing information about the sign of solutions.

In the present paper, we first obtain in Theorem 4.11 multiple solutions of

constant sign for problem (Pλ) when the parameter λ > 0 is in an upper half-line.

Specifically, we show that, under our hypotheses and for λ > 0 sufficiently large,

problem (Pλ) possesses two positive solutions and two negative solutions. This
theorem is based on two auxiliary results that are of independent interest. The first

one, stated as Proposition 3.5, sets forth that the nonlinear operator associated in an

appropriate Sobolev setting to the principal part −div a(x,∇u(x)) of the equation
in (Pλ) is maximal monotone, strictly monotone and satisfies the (S)+-property.
The second basic auxiliary result, which is formulated as Proposition 3.6, points

out the relationship betweenW 1,p- and C1- local minimizers for functionals related

to the variational structure of Neumann problem (Pλ). Then, in the case where the
differential operator is the p-Laplacian, we produce in Theorem 5.5 a nodal (sign

changing) solution of (Pλ), whenever λ > 0 is large enough, in addition to the four

constant sign solutions already found. The argument leading to the existence of the

sign changing solution strongly relies on Proposition 5.4 ensuring the existence of

extremal solutions provided λ > 0 is sufficiently large, namely, a smallest positive

solution and a biggest negative solution. Finally, in the semilinear case (i.e., p = 2),

we generate an additional nodal solution. The existence of the second nodal solution

is established by combining the minimax methods with Morse theoretic techniques.

The rest of the paper is organized as follows. Section 2 contains mathemati-

cal background which is needed in the sequel. Section 3 presents some auxiliary
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results. Section 4 is devoted to constant sign solutions. Section 5 focuses on the

existence of a sign changing solution. Section 6 studies the existence of a second

sign changing solution in the semilinear case.

ACKNOWLEDGEMENTS. The authors express their gratitude to the referee for the

helpful suggestion.

2. Mathematical background

In this section we briefly present the related basic definitions and facts which we

will use in the sequel.

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that ϕ satisfies the
Cerami condition at level c ∈ R (the (C)c-condition, for short), if every sequence
{xk}k≥1 ⊂ X such that ϕ(xk) → c and (1+ ‖xk‖)ϕ′(xk) → 0 in X∗ as k → ∞ has

a strongly convergent subsequence. It is said that ϕ satisfies the Cerami condition
(the (C)-condition, for short) if it verifies the (C)c-condition at every level c ∈ R.
As shown in [4], the deformation theorem and consequently the minimax theory of

a function ϕ ∈ C1(X) holds if we employ the (C)-condition.
For later use, we recall the mountain pass theorem, which provides a minimax

characterization for certain critical values of a C1-functional.

Theorem 2.1. If ϕ ∈ C1(X), x0, x1 ∈ X and r > 0 satisfy

max{ϕ(x0),ϕ(x1)} ≤ inf{ϕ(x) : ‖x − x0‖ = r} =: ξr , ‖x0 − x1‖ > r,

and ϕ fulfills the (C)c-condition, where

c := inf
γ0∈'0

max
−1≤t≤1

ϕ(γ0(t)),

'0 := {γ0 ∈ C([−1, 1], X) : γ0(−1) = x0, γ0(1) = x1},

then c ≥ ξr and c is a critical value of ϕ. Moreover, if c = ξr , there exists a critical
point x of ϕ such that ϕ(x) = c and ‖x − x0‖ = r .

The following notion will help us verify the (C)-condition.

Definition 2.2. Let X be a reflexive Banach space and V : X → X∗. We say that
V is of type (S)+ if for every sequence {xk}k≥1 ⊂ X such that xk

w→ x and

lim sup
k→∞

〈V (xk), xk − x〉 ≤ 0,

one has that xk → x in X .
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For every ϕ ∈ C1(X) and c ∈ R, we use the notation: ϕc = {x ∈ X : ϕ(x) ≤
c} and K = {x ∈ X : ϕ′(x) = 0}. The critical groups of ϕ ∈ C1(X) at an isolated
critical point x0 ∈ X with ϕ(x0) = c are defined by

Ck(ϕ, x0) = Hk(ϕ
c ∩U, (ϕc ∩U) \ {x0}) for every k ≥ 0,

where U is a neighborhood of x0 such that K ∩ ϕc ∩ U = {x0} and Hk(V,W )
denotes the kth singular homology group with coefficients in Z for the topological
pair (V,W ) (see, e.g., [12, 23]). The definition of critical groups is independent
of U .

Suppose that ϕ satisfies the (C)-condition and that infϕ(K ) > −∞. Fix c <
infϕ(K ). The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0

(see [5]). The deformation theorem implies that the definition of critical groups of

ϕ at infinity is independent of the choice of c < infϕ(K ).
If K is finite, the Morse-type numbers of ϕ are defined by

Mk =
∑

x∈K
rankCk(ϕ, x) for all k ≥ 0.

The Betti-type numbers of ϕ are introduced by

βk = rankCk(ϕ,∞) for all k ≥ 0.

The Poincaré-Hopf formula holds

∑

k≥0
(−1)kMk =

∑

k≥0
(−1)kβk (2.1)

if all Mk , βk are finite and the series converge.
In the analysis of problem (Pλ), we will use the spaces

C1n(") =
{
u ∈ C1(") : ∂u

∂n
= 0 on ∂"

}

and W
1,p
n (") defined as the closure of C1n(") in the norm ‖ · ‖ of W 1,p(") (see

also [29, 31]). Actually, we have W 1,p(") = W
1,p
n ("). As it is usual, we write

H1n (") = W
1,2
n ("). The Banach space C1n(") is an ordered Banach space with the

positive cone

C+ = {u ∈ C1n(") : u(x) ≥ 0 for all x ∈ "}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(x) > 0 for all x ∈ "}.
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Finally, we recall a few basic facts about the spectrum of the negative Neumann

p-Laplacian, with 1 < p < ∞, defined by

〈−)p u, v〉 =
∫

"
‖∇u‖p−2(∇u,∇v)RN dx for all u, v ∈ W

1,p
n (").

Consider the following nonlinear eigenvalue problem:





−)p u(x) = λ|u(x)|p−2u(x) in ",
∂u

∂n
= 0 on ∂".

(2.2)

A number λ ∈ R is an eigenvalue of (−)p,W
1,p
n (")) if problem (2.2) has a non-

trivial solution. An eigenvalue satisfies λ ≥ 0. Note that λ0 = 0 is an eigenvalue

with the corresponding eigenspace R and it is isolated. By virtue of the Ljusternik–

Schnirelmann theory, we have a whole strictly increasing sequence of eigenval-

ues {λk}k≥0 , λk → +∞ as k → ∞. If p = 2, these are all the eigenvalues of

(−), H1n (")).
In what follows, we will use the notation r± = max{±r, 0} for all r ∈ R, and

| · |N for the Lebesgue measure on RN .

3. Auxiliary results

The hypotheses on the map a(x, y) are the following:

H(a) a(x, y) = h(x, ‖y‖)y, where h(x, t) > 0 for all (x, t) ∈ " × (0,+∞) and

(i) a ∈ C
0,α
loc (" × RN , RN ) ∩ C1(" × (RN \ {0}), RN ) with 0 < α ≤ 1;

(ii) for every x ∈ " and y ∈ RN \ {0}, we have

‖Dya(x, y)‖ ≤ c1‖y‖p−2 for some c1 > 0, 1 < p < ∞;

(iii) for every x ∈ " and y ∈ RN \ {0}, we have

(Dya(x, y)ξ, ξ)RN ≥ c0‖y‖p−2 ‖ξ‖2

whenever ξ ∈ RN , for some c0 > 0;

(iv) the function G(x, y) determined by ∇yG(x, y) = a(x, y) for all x ∈ ",

y ∈ RN and G(x, 0) = 0 for all x ∈ " satisfies

p G(x, y) − (a(x, y), y)RN ≥ η(x) for a.a. x ∈ ", y ∈ RN ,

with some η ∈ L1(").
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Remark 3.1. Such hypotheses are used frequently when dealing with quasilinear

elliptic problems (see [14, 24, 35]). Here assumption H(a)(iv) is weakened with
respect to the usual condition. Setting g(x, t) = h(x, t)t for all x ∈ " and t ≥ 0,

hypotheses H(a) imply the following unidimensional estimate

c0t
p−2 ≤ g′

t (x, t) ≤ c1t
p−2 for all x ∈ ", t > 0.

These inequalities follow from

a(x, (t, 0, . . . , 0)) = (g(x, t), 0, . . . , 0) for all x ∈ ", t > 0,

by differentiation with respect to t ∈ R and making use of H(a)(ii)-(iii). Denoting

G0(x, t) =
∫ t
0 g(x, s) ds for all (x, t) ∈ " × R+, it is seen that G0(x, ·) is strictly

convex and strictly increasing onR+. Now letG(x, y) = G0(x, ‖y‖). ThenG(x, ·)
is convex for all x ∈ ", G(x, 0) = 0 and

∇yG(x, y) = (G0)
′
t (x, ‖y‖)

y

‖y‖ = g(x, ‖y‖) y

‖y‖ = h(x, ‖y‖)y = a(x, y)

for all (x, y) ∈ "× (RN \ {0}). Therefore G is uniquely defined in H(a)(iv). Since
G(x, ·) is convex and ∇yG(x, y) = a(x, y), it turns out that

(a(x, y), y)RN ≥ G(x, y) for all (x, y) ∈ " × RN . (3.1)

Using H(a) and (3.1), it is straightforward to justify the lemma below.

Lemma 3.2. If hypotheses H(a) hold, then

(a) for all x ∈ ", y 0→ a(x, y) is maximal monotone and strictly monotone;
(b) for all (x, y) ∈ " × RN , ‖a(x, y)‖ ≤ c1

p−1 ‖y‖p−1;
(c) for all (x, y) ∈ " × RN , (a(x, y), y)RN ≥ c0

p−1 ‖y‖p.

Lemma 3.2 leads to:

Corollary 3.3. If H(a) hold, then for all (x, y) ∈ " × RN , we have

c0

p(p − 1)
‖y‖p ≤ G(x, y) ≤ c1

p(p − 1)
‖y‖p.

Example 3.4. A typical example of a map a satisfying hypotheses H(a) is a(x,y)=
θ(x)‖y‖p−2y for any θ ∈ C1("), θ > 0. As different examples satisfying H(a),
we indicate in the case p > 2 and with θ(x) as above, a(x, y) = θ(x)(‖y‖p−2y +
ln(1+ ‖y‖p−2)y) and

a(x, y) =
{

θ(x)(‖y‖p−2y + ‖y‖q−2y), ‖y‖ ≤ 1

θ(x)(‖y‖p−2y + c‖y‖τ−2y − (c − 1)y), ‖y‖ > 1,
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for c = q−2
τ−2 , 1 < τ < p ≤ q, τ 1= 2. An example different of a(x, y) =

θ(x)‖y‖p−2y for any θ ∈ C1("), θ > 0, for the situation 1 < p < 2 is

a(x, y) = θ(x)

(
‖y‖p−2y + c

‖y‖p−2y
1+ ‖y‖p

)
,

with 0 < c < 4p(p−1) and θ(x) as above. In the case p ≥ 2, it satisfies hypotheses

H(a) provided 0 < c < 4p

(p−1)2 . For instance, taking c = 1 then we need to have

1+
√
2

2
< p < 3+ 2

√
2.

Let V : W 1,p
n (") → W

1,p
n (")∗ be the map defined by

〈V (u), v〉 =
∫

"
(a(x,∇u),∇v)RN dx for all u, v ∈ W

1,p
n (").

Proposition 3.5. If hypotheses H(a) hold, then V is maximal monotone, strictly

monotone and of type (S)+ (see Definition 2.2).

Proof. By hypotheses H(a) and Lemma 3.2, V is demicontinuous, strictly mono-

tone, hence it is maximal monotone (see, e.g., [18, page 310]). To show that V is

of type (S)+, let uk
w→ u in W

1,p
n (") with lim supk→∞〈V (uk), uk − u〉 ≤ 0. Then,

by virtue of the monotonicity of V , it follows that

lim
k→∞

〈V (uk) − V (u), uk − u〉 = 0. (3.2)

Letwk(x) = (a(x,∇uk(x))−a(x,∇u(x)),∇uk(x)−∇u(x))RN . We havewk(x) ≥
0 for a.a. x ∈ ", all k ≥ 1 and, from (3.2), we infer that wk → 0 in L1(") as
k → ∞. By passing to a subsequence, we may assume that

wk(x) → 0 a.e. on " and 0 ≤ wk(x) ≤ ζ(x) for a.a. x ∈ ", k ≥ 1, (3.3)

with ζ ∈ L1("). Using (3.3) together with Lemma 3.2 (b), (c), we obtain

ζ(x) ≥ c0

p − 1
(‖∇uk(x)‖p + ‖∇u(x)‖p) − c1

p − 1
‖∇uk(x)‖p−1 ‖∇u(x)‖

− c1

p − 1
‖∇u(x)‖p−1 ‖∇uk(x)‖ for a.a. x ∈ ", all k ≥ 1.

(3.4)

From (3.4), we see that we can find S ⊂ " with |S|N = 0 such that {∇uk(x)}k≥1 is
bounded in RN for all x ∈ " \ S. Passing to an appropriate subsequence (which, in
general, depends on x ∈ " \ S), we have

∇uk(x) → ξ(x) in RN as k → ∞.

Since wk(x) → 0 for a.a. x ∈ ", in the limit as k → ∞, we have

(a(x, ξ(x)) − a(x,∇u(x)), ξ(x) − ∇u(x))RN = 0 for a.a. x ∈ ".
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We derive from Lemma 3.2 (a) that ξ(x) = ∇u(x) a.e. on ", so

∇uk(x) → ∇u(x) a.e. on ". (3.5)

On the basis of the boundedness of {∇uk(·)}k≥1 ⊂ L p(", RN ) and Hölder’s in-
equality, we infer that {‖∇uk(·)‖p}k≥1 ⊂ L1(") is uniformly integrable. This fact
and (3.5) permit the use of Vitali’s theorem (see, e.g., [18, p. 901]), which implies

‖∇uk‖pp → ‖∇u‖pp . Recalling that ∇uk w→ ∇u in L p(", RN ) and L p(", RN ) is

uniformly convex, we deduce that ∇uk → ∇u in L p(", RN ). Thus V is of type

(S)+.

The next result relates local minimizers in W
1,p
n (") with local minimizers in

the smaller Banach space C1n("). A result of this type was first proven for the

Dirichlet Laplacian in [8], then extended to the Dirichlet p-Laplacian in [16, 20]

(in the latter, for p ≥ 2). Recently, the authors [29] established the result to the

Neumann p-Laplacian (1 < p < ∞). Here we extend it to the Neumann nonlinear

operators satisfying hypotheses H(a).
Let f0 : " × R → R be a Carathéodory function with subcritical growth

| f0(x, s)| ≤ a(x) + c|s|r−1 for a.e. x ∈ ", all s ∈ R,

where a ∈ L∞(")+, c > 0 and

1 < r < p∗ =






Np

N − p
if N > p

+∞ if N ≤ p .

We set F0(x, t) =
∫ t
0 f0(x, s) ds and consider the continuously differentiable func-

tional ϕ0 : W 1,p
n (") → R defined by

ϕ0(u) =
∫

"
G(x,∇u(x)) dx −

∫

"
F0(x, u(x)) dx for all u ∈ W

1,p
n (").

Proposition 3.6. If u0 ∈ W
1,p
n (") is a local C1n(")-minimizer of ϕ0, i.e., there

exists r1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1n("), ‖h‖C1n (") ≤ r1 ,

then u0 ∈ C1n(") and it is a local W
1,p
n (")-minimizer of ϕ0, i.e., there exists r2 > 0

such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W
1,p
n ("), ‖h‖ ≤ r2 .
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This result has been proven in [32]. The proof therein is done by arguing by con-

traction and relies on an appropriate application of Lagrange multiplier rule for the

functional ϕ0 together with the Moser iteration technique (see [21, Section 4.7])
and the regularity result in [22, Theorem 2]. Proposition 3.6 extends the corre-

sponding result in [29], which treated the case of the Neumann p-Laplacian with

any 1 < p < ∞.

Remark 3.7. In this section, it is not used that the map a(x, y) satisfies hypothesis
H(a)(iv). This hypothesis will be used in Theorem 4.8.

4. Solutions of constant sign

In this section we produce solutions of constant sign for problem (Pλ) for certain
range of the parameter λ > 0. To this end, we impose the following conditions on

the nonlinearity f (x, s):

H1 f : " × R → R is a function such that f (x, 0) = 0 a.e. on " and

(i) f is Carathéodory (i.e., for all s ∈ R, x 0→ f (x, s) is measurable, and for a.a.
x ∈ ", s 0→ f (x, s) is continuous);

(ii) f (x, s)s ≥ 0 for a.a. x ∈ " and all s ∈ R;
(iii) for almost all x ∈ " and all s ∈ R, we have

| f (x, s)| ≤ a(x) + c|s|r−1 with a ∈ L∞(")+, c > 0, p < r < p∗;

(iv) lim|t |→∞ F(x,t)
|t |p =+∞ uniformly for a.a. x ∈", where F(x,t)=

∫ t
0 f (x,s) ds;

(v) there exists θ ∈ ((r − p)max{1, N
p
}, r] with θ ≥ 1 such that

0 < lim inf
|t |→∞

f (x, t)t − pF(x, t)

|t |θ uniformly for a.e. x ∈ ";

(vi) there exist δ ∈ (0, 1) and τ ∈ [1, p) such that

F(x, s) ≥ c̃|s|τ for a.a. x ∈ ", all |s| ≤ δ and some c̃ > 0;

(vii) for every 0 > 0 there exists c0 > 0 such that the function s 0→ f (x, s) +
c0|s|p−2s is nondecreasing on [−0, 0] for a.a. x ∈ ".

Remark 4.1. Hypothesis H1(iv) implies that for almost all x ∈ ", the nonlinearity
f (x, ·) exhibits a (p − 1)-superlinear growth near infinity. However, we do not
assume that f (x, ·) satisfies the usual in such cases Ambrosetti–Rabinowitz condi-
tion. Instead, we employ hypothesis H1(v), which was first introduced in [13] and

covers new situations. Hypothesis H1(vii) is more general than f (x, ·) be nonde-
creasing.



738 DUMITRU MOTREANU, VIORICA V. MOTREANU AND NIKOLAOS S. PAPAGEORGIOU

Example 4.2. For the sake of simplicity we drop the x-dependence. Consider the

function f on R defined by

f (s) =
{

|s|τ−2s + s+ if |s| ≤ 1

|s|θ−2s(θ ln |s| + 1) + s+ − sin((π(s+)α) if |s| > 1

with constants 1 < τ < p ≤ θ < p∗, θ > 2, and α ≥ 0, satisfies hypotheses H1.

It is worth noting that f does not verify the Ambrosetti-Rabinowitz condition, it is

not odd and generally, for α > 0, it is not nondecreasing.

For the sake of clarity, we recall the notions of upper and lower solutions for

problem (Pλ) which will play a major role subsequently.

Definition 4.3. (a) We say that u ∈ W 1,p(") is an upper solution for problem (Pλ)
if ∫

"
(a(x,∇u),∇v)RN dx + λ

∫

"
|u|p−2uv dx ≥

∫

"
f (x, u)v dx

for all v ∈ W 1,p("), v ≥ 0. We say that u is a strict upper solution for problem

(Pλ) if u is an upper solution but not a solution of (Pλ).

(b) Reversing the inequality in the above definition, we obtain the notions of

lower solution and strict lower solution u ∈ W 1,p(") for problem (Pλ).

We proceed by introducing the set

S+ = {λ ∈ R+ : problem (Pλ) has a positive solution}.

Proposition 4.4. S+ 1= ∅, and if λ ∈ S+ then [λ,+∞) ⊂ S+.

Proof. In view of Proposition 3.5, the nonlinear operator V+Kp, where Kp(u)(·)=
|u(·)|p−2u(·), is maximal monotone, strictly monotone and coercive on W 1,p

n (").

So there is a unique u ∈ W
1,p
n (") such that V (u) + Kp(u) = 1. Acting with

−u− ∈ W
1,p
n ("), Lemma 3.2 (c) yields u ∈ C+ \ {0} because

c0

p − 1
‖∇u−‖pp + ‖u−‖pp ≤ 〈V (u),−u−〉 + ‖u−‖pp ≤ 0.

By [24, Theorem 6] (see also [35, Theorem 1.2]), there exists θ0 > 0 such that

u(x) ≥ θ0 for all x ∈ ". Setting λ̂ = 1+ ‖ f (·,u(·))‖∞
θ
p−1
0

, we obtain that u ∈ intC+ is

a strict upper solution of problem (Pλ̂). For

f0(x, s) =






0 if s ≤ 0

f (x, s) if 0 ≤ s ≤ u(x)

f (x, u(x)) if u(x) ≤ s,
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we consider the auxiliary nonlinear Neumann problem:





−div a(x,∇y(x)) + λ̂|y(x)|p−2y(x) = f0(x, y(x)) in ",
∂y

∂n
= 0 on ∂".

(4.1)

Let ϕ0 : W 1,p
n (") → R be the Euler functional for problem (4.1), that is

ϕ0(z) =
∫

"
G(x,∇z(x)) dx + λ̂

p
‖z‖pp −

∫

"
F0(x, z(x)) dx for all z ∈ W

1,p
n ("),

where F0(x, t) =
∫ t
0 f0(x, s) ds. Since ϕ0 is coercive and sequentially weakly

lower semicontinuous, there exists y0 ∈ W
1,p
n (") such that

ϕ0(y0) = inf{ϕ0(y) : y ∈ W
1,p
n (")}. (4.2)

By H1(vi) and using τ < p, we infer that ϕ0(z) < 0 provided z ∈ R, z > 0 is

sufficiently small. Hence, by (4.2), it is seen that y0 1= 0 and

V (y0) + λ̂Kp(y0) = f0(·, y0(·)). (4.3)

Acting on (4.3) with −y−
0 ∈ W

1,p
n (") yields y0 ≥ 0. Knowing V (u) + λ̂Kp(u) ≥

f (·, u(·)) = f0(·, u(·)) and (4.3), by acting with (y0−u)+ ∈ W
1,p
n (") we find that

∫

{y0>u}
(a(x,∇u) − a(x,∇y0),∇y0 − ∇u)RN dx

+ λ̂

∫

{y0>u}
(|u|p−2u − |y0|p−2y0)(y0 − u) dx

≥
∫

{y0>u}
( f0(x, u) − f0(x, y0))(y0 − u) dx = 0.

We derive that 0 ≤ y0 ≤ u, y0 1= 0, and through (4.3), y0 solves (Pλ̂). Taking H1(ii)
into account, by [24, Theorem 6], it is seen that y0 ∈ intC+.

Let λ ∈ S+, uλ ∈ intC+ be a solution of (Pλ), and µ > λ. It follows that
uλ is a strict upper solution for problem (Pµ). Then, as above, we get a solution
uµ ∈ intC+ of (Pµ) with uµ ≤ uλ, thereby µ ∈ S+.

Remark 4.5. The proof of Proposition 4.4 shows that if λ1 ∈ S+, λ1 < λ2, and
uλ1 ∈ intC+ is a solution of (Pλ1), then there exists uλ2 ∈ intC+ solution of (Pλ2)
such that uλ2 ≤ uλ1 .

In fact, the following strong comparison principle holds.

Lemma 4.6. If λ1 < λ2, uλ1 ∈ intC+ is a solution of (Pλ1), uλ2 ∈ intC+ is a

solution of (Pλ2), and uλ2 ≤ uλ1 , then uλ1 − uλ2 ∈ intC+.
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Proof. Fix γ1 > 0 satisfying γ1 ≤ uλ2(x) for all x ∈ ". For some δ ∈ (0, γ1
2

) we

set vδ(x) = uλ1(x) − δ, x ∈ ". Then vδ ∈ intC+ and, using the number c0 > 0 in

hypothesis H1(vii) corresponding to 0 = ‖uλ1‖∞, it follows that

− div a(x,∇vδ(x)) + (λ2 + c0)vδ(x)
p−1

≥ −div a(x,∇uλ1(x)) + (λ2 + c0)uλ1(x)
p−1 − 2(δ)

≥ f (x, uλ1(x)) + (λ2 − λ1)γ
p−1
1 + c0uλ1(x)

p−1 − 2(δ) for a.a. x ∈ ",

with 2(δ) = supt∈uλ1
(")(t

p−1 − (t − δ)p−1). Note that 2(δ) → 0 as δ ↓ 0. For

δ > 0 small, we have (λ2 − λ1)γ
p−1
1 ≥ 2(δ), hence

− div a(x,∇vδ(x)) + (λ2 + c0)vδ(x)
p−1 ≥ f (x, uλ1(x)) + c0uλ1(x)

p−1

≥ f (x, uλ2(x)) + c0uλ2(x)
p−1 = −div a(x,∇uλ2(x)) + (λ2 + c0)uλ2(x)

p−1

for a.a. x ∈ " (see H1(vii) and recall that uλ2 ≤ uλ1). Acting with (uλ2 − vδ)
+ ∈

W
1,p
n (") and using the nonlinear Green’s identity (see [11]) yield

∫

{uλ2
>vδ}

(a(x,∇vδ) − a(x,∇uλ2),∇uλ2 − ∇vδ)RN dx

≥ (λ2 + c0)

∫

{uλ2
>vδ}

(u
p−1
λ2

− v
p−1
δ )(uλ2 − vδ) dx .

It turns out that uλ2(x) ≤ vδ(x) for all x ∈ ", thus uλ1 − uλ2 ∈ intC+.

Let ϕλ : W 1,p
n (") → R be defined by

ϕλ(u) =
∫

"
G(x,∇u(x)) dx + λ

p
‖u‖pp −

∫

"
F(x, u(x)) dx for all u ∈ W

1,p
n (").

Hypotheses H1(i) and (iii) ensure that ϕλ ∈ C1(W
1,p
n (")).

Proposition 4.7. Denote λ+ = inf S+. Assume that λ+ < λ1 < µ < λ2, uλ1 ∈
intC+ is a solution of (Pλ1), uλ2 ∈ intC+ is a solution of (Pλ2), and uλ2 ≤ uλ1 .

Then there exists uµ ∈ intC+ solution of (Pµ) such that uλ2 ≤ uµ ≤ uλ1 and uµ is

a local minimizer of ϕµ.

Proof. Since λ1 < µ < λ2, we have that uλ1 ∈ intC+ and uλ2 ∈ intC+ are strict
upper solution and strict lower solution for problem (Pµ), respectively. We truncate
f (x, ·) as follows:

f̃ (x, s) =






f (x, uλ2(x)) if s ≤ uλ2(x)

f (x, s) if uλ2(x) ≤ s ≤ uλ1(x)

f (x, uλ1(x)) if uλ1(x) ≤ s.
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Setting F̃(x, t) =
∫ t
0 f̃ (x, s) ds, the functional ϕ̃µ : W 1,p

n (") → R defined by

ϕ̃µ(u) =
∫

"
G(x,∇u(x)) dx + µ

p
‖u‖pp −

∫

"
F̃(x, u(x)) dx for all u ∈ W

1,p
n ("),

is continuously differentiable, coercive and sequentially weakly lower semicontin-

uous. Consequently, there exists uµ ∈ W
1,p
n (") such that ϕ̃µ(uµ) = inf ϕ̃µ, so

V (uµ) + µKp(uµ) = f̃ (·, uµ(·)).

Let us first act with (uµ −uλ1)
+ ∈ W

1,p
n (") and then with (uλ2 −uµ)+ ∈ W

1,p
n (")

to deduce uλ2 ≤ uµ ≤ uλ1 . Hence uµ is a solution of (Pµ) and uµ ∈ intC+.
Lemma 4.6 implies that uµ − uλ2 ∈ intC+ and uλ1 − uµ ∈ intC+. We infer that
uµ ∈ intC+ is a local C1n(")-minimizer of ϕµ . Then Proposition 3.6 completes the

proof.

Now we state the first main result of this section.

Theorem 4.8. If hypotheses H(a), H1 hold and λ > λ+, then problem (Pλ) has at
least two (positive) solutions uλ, vλ ∈ intC+ with uλ ≤ vλ, uλ 1= vλ.

Proof. Let λ > λ+. Proposition 4.4 ensures the existence of one solution uλ ∈
intC+ of problem (Pλ). Let λ+ < λ1 < λ < λ2, uλ1 ∈ intC+ a solution of (Pλ1)
and uλ2 ∈ intC+ a solution of (Pλ2) for which we can assume that uλ2 ≤ uλ ≤ uλ1
(see Remark 4.5). Consider the truncation

f̂ +
λ (x, s) =

{
f (x, uλ(x)) + c0uλ(x)

p−1 if s ≤ uλ(x)

f (x, s) + c0s
p−1 if s ≥ uλ(x),

with c0 >0 in hypothesis H1(vii) for 0=‖uλ1‖∞. Using F̂+
λ (x, t)=

∫ t
0 f̂ +

λ (x, s) ds,

we define the functional ϕ̂+
λ ∈ C1(W

1,p
n (")) by

ϕ̂+
λ (u) =

∫

"
G(x,∇u(x)) dx + λ + c0

p
‖u‖pp −

∫

"
F̂+

λ (x, u(x)) dx .

Corresponding to µ > λ+, we formulate the auxiliary problem

(Pµ)





−div a(x,∇u(x)) + (µ + c0)|u(x)|p−2u(x) = f̂ +

λ (x, u(x)) in ",
∂u

∂n
= 0 on ∂".

Making use of hypothesis H1(vii), we see that uλ1 is an upper solution and uλ2 is

a lower solution for (Pλ). The reasoning in the proof of Proposition 4.7 applies to

f̂ +
λ (x, s) truncated at {uλ2, uλ1}, thus we obtain a solution ûλ of (Pλ) which is also

a local minimizer of ϕ̂+
λ satisfying ûλ − uλ2 ∈ intC+ and uλ1 − ûλ ∈ intC+.
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If ûλ 1= uλ, the conclusion is achieved because acting with (uλ − ûλ)
+ ∈

W
1,p
n (") on

V (ûλ) − V (uλ) + λ(Kp(ûλ) − Kp(uλ)) + c0Kp(ûλ) = f̂ +
λ (·, ûλ(·)) − f (·, uλ(·))

yields uλ ≤ ûλ, so ûλ ∈ intC+ is a second solution of (Pλ).
Now we suppose that ûλ = uλ . We can assume that uλ is an isolated critical

point and a local minimizer of ϕ̂+
λ . As in the proof of [25, Proposition 6], there is

r > 0 such that

ϕ̂+
λ (uλ) < η̂r =: inf{ϕ̂+

λ (v) : ‖v − uλ‖ = r}. (4.4)

Claim 1: There exists u ∈ W
1,p
n (") such that ‖u − uλ‖ > r and ϕ̂+

λ (u) < η̂r .
Hypotheses H1(iii)-(iv) guarantee that, given ε > 0, there is a constant cε > 0

such that

F̂+
λ (x, s) ≥ 1

p

(
1

ε
+ c0

)
s p − cε for a.a. x ∈ " and all s > 0.

For any constant ξ > 0, it follows that

ϕ̂+
λ (ξ) = λ + c0

p
ξ p|"|N −

∫

"
F̂+

λ (x, ξ) dx ≤ ξ p

p

(
λ − 1

ε

)
|"|N + cε|"|N .

By choosing ε with ελ < 1, Claim 1 is proven since ϕ+
λ (ξ) → −∞ as ξ → +∞.

Claim 2: ϕ̂+
λ satisfies the (C)-condition.

Let {uk}k≥1 ⊂ W
1,p
n (") be a sequence such that

|ϕ̂+
λ (uk)| ≤ M1 for some M1 > 0, all k ≥ 1 (4.5)

and

(1+ ‖uk‖)(ϕ̂+
λ )′(uk) → 0 in W

1,p
n (")∗ as k → ∞. (4.6)

Writing (4.6) in the form

|〈(ϕ̂+
λ )′(uk), u〉| ≤ εk

1+ ‖uk‖
‖u‖ for all u ∈ W

1,p
n ("), with εk ↓ 0, (4.7)

and setting first u = −u−
k and then u = u+

k allow to get that

{u−
k }k≥1 is bounded in W 1,p

n (") (4.8)

and

−
∫

"
(a(x,∇uk),∇u+

k )RN dx−(λ+c0) ‖u+
k ‖pp+

∫

"
f̂ +
λ (x, uk)u

+
k dx ≤ εk . (4.9)
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The inequalities (4.5) and (4.9) together with (4.8) imply that

∫

"

(
p G(x,∇u+

k ) − (a(x,∇u+
k ),∇u+

k )RN

)
dx

+
∫

"

(
f̂ +
λ (x, u+

k )u+
k − p F̂+

λ (x, u+
k )

)
dx ≤ M2 ,

for some M2 > 0. In conjunction with hypothesis H(a) (iv), this gives

∫

"
( f̂ +

λ (x, u+
k )u+

k − p F̂+
λ (x, u+

k )) dx ≤ M3 for all k ≥ 1, (4.10)

with M3 > 0. Hypothesis H1(v) yields

νsθ − M4 ≤ f̂ +
λ (x, s)s − p F̂+

λ (x, s) for a.a. x ∈ ", all s ≥ 0,

with constants ν > 0 and M4 > 0. In view of (4.10), we infer that

{u+
k }k≥1 is bounded in Lθ ("). (4.11)

Assume first that N > p. Since θ ≤ r < p∗, there is a unique t ∈ [0, 1) such that
1
r

= 1−t
θ + t

p∗ . Then the interpolation inequality ‖u+
k ‖r ≤ ‖u+

k ‖1−tθ ‖u+
k ‖tp∗ (see,

e.g., [18, page 903]) and (4.11) lead to the estimate

‖u+
k ‖rr ≤ M5‖u+

k ‖tr , (4.12)

for some M5 > 0. This also holds for N ≤ p by applying the interpolation inequal-

ity with θ ≤ r < q, for q > p θ
θ+p−r . Then, using Lemma 3.2 (c), (4.7), (4.8), H1(iii)

and (4.12), we see that

c0

p − 1
‖∇u+

k ‖pp + (λ + c0)‖u+
k ‖pp

≤
∫

"
(a(x,∇u+

k ),∇u+
k )RN dx + (λ + c0)‖u+

k ‖pp

≤ εk +
∫

"
f̂ +
λ (x, u+

k )u+
k dx ≤ εk + c̄(‖u+

k ‖ + ‖u+
k ‖tr ),

(4.13)

with a constant c̄ > 0. Notice that tr < p because θ > (r − p)max{1, N
p
}.

Consequently, (4.13) renders that {u+
k }k≥1 is bounded inW 1,p

n ("). Combining with

(4.8), we conclude that {uk}k≥1 is bounded in W 1,p
n ("). Passing to a relabelled

subsequence, we may assume that uk
w→ u in W

1,p
n (") and uk → u in Lr (").

From (4.7) it turns out that limk→∞〈V (uk), uk − u〉 = 0. By Proposition 3.5,

Claim 2 is established.
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Since (4.4) and Claims 1 and 2 hold true, we may apply Theorem 2.1. Thus

there exists a critical point vλ ∈ W
1,p
n (") of ϕ̂+

λ satisfying ϕ̂+
λ (uλ) < η̂r ≤ ϕ̂+

λ (vλ).
It follows that uλ 1= vλ and

V (vλ) + (λ + c0)Kp(vλ) = f̂ +
λ (·, vλ(·)), (4.14)

which implies
∫

{uλ>vλ}
(a(x,∇vλ) − a(x,∇uλ),∇uλ − ∇vλ)RN dx

+ (λ + c0)

∫

{uλ>vλ}
(|vλ|p−2vλ − |uλ|p−2uλ)(uλ − vλ) dx = 0,

so uλ ≤ vλ . By means of (4.14) and nonlinear regularity theory, we infer that

vλ ∈ intC+ and it solves problem (Pλ).

In the same way, denoting

S− = {λ ∈ R+ : problem (Pλ) has a negative solution}
and λ− = inf S−, we can show that λ− is finite and

Theorem 4.9. If hypotheses H(a), H1 hold and λ > λ−, then problem (Pλ) has at
least two (negative) solutions

wλ, yλ ∈ −intC+, yλ ≤ wλ , yλ 1= wλ .

Remark 4.10. Theorems 4.8 and 4.9 hold if H1(ii), (iv)-(vii) are only imposed on

the positive and negative half-lines, respectively.

Set λ∗ = max{λ+, λ−}. Theorems 4.8 and 4.9 ensure that:
Theorem 4.11. If hypotheses H(a), H1 hold and λ > λ∗, then problem (Pλ) has at
least four nontrivial solutions of constant sign

uλ, vλ ∈ intC+, uλ ≤ vλ , uλ 1= vλ,

wλ, yλ ∈ −intC+, yλ ≤ wλ , yλ 1= wλ.

5. Nodal solution

We now deal with the special case of problem (Pλ) driven by the p-Laplacian op-
erator )pu = div (‖∇u‖p−2∇u) (i.e., a(x, y) = ‖y‖p−2y), where we produce in
addition a nodal solution. The approach that we employ relies on the construction

of a smallest positive solution u+ and a biggest negative solution u−, and then a
nontrivial solution in the ordered interval [u−, u+] which, thanks to the extremality
of u− and u+, must be nodal (see [9, 15, 27] for related results).

We formulate the new hypotheses on f (x, s):
H2 f : " × R → R is a function such that f (x, 0) = 0 a.e. on ", hypotheses

H1(i), (iii)-(v), (vii) are satisfied, and
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(vi)′ there exist τ, µ ∈ (1, p), ξ > 0 and δ0 > 0 such that

f (x, s) ≥ ξsτ−1 for a.a. x ∈ ", all s > 0,

f (x, s) ≤ ξ |s|τ−2s for a.a. x ∈ ", all s < 0,

µF(x, s) − f (x, s)s ≥ 0 for a.a. x ∈ ", |s| ≤ δ0.

Example 5.1. The function f in Example 4.2 satisfies hypotheses H2. To see this,

it suffices to choose τ < µ < p for fulfilling hypothesis H2(vi)
′.

Our approach will be valid until certain point for the general problem (Pλ)
before restricting to the case of the p-Laplacian.

Given a lower solution u ∈ W 1,p(") and an upper solution u ∈ W 1,p(") for
(Pλ) (see Definition 4.3) with 0 ≤ u ≤ u, we consider the ordered intervals

[u, u] = {h ∈ W
1,p
n (") : u(x) ≤ h(x) ≤ u(x) a.e. on "}

and

T+(u) = {h ∈ W
1,p
n (") : u(x) ≤ h(x) a.e. on "}.

Proposition 5.2. If hypotheses H(a) and H1 hold, and λ ∈ S+, then problem (Pλ)
admits a smallest solution x̂λ in T

+(u) and one has x̂λ ∈ [u, u].

Proof. For any h ∈ Lr
′
("), where 1

r
+ 1

r ′ = 1, we formulate the auxiliary Neumann

problem:





−div a(x,∇u(x)) + (λ + c0)|u(x)|p−2u(x) = h(x) in ",
∂u

∂n
= 0 on ∂",

(5.1)

where c0 corresponds by hypothesis H1(vii) to 0 = ‖u‖∞. Taking into account that
V + (λ+ c0)Kp : W 1,p

n (") → W
1,p
n (")∗ is maximal monotone, strictly monotone

and coercive, there is a unique u =: Sλ+c0(h) ∈ W
1,p
n (") which solves (5.1) and,

by nonlinear regularity theory, u ∈ C1n(").

Claim 1: Sλ+c0 : Lr ′
(") → W

1,p
n (") is completely continuous.

Let hk
w→ h in Lr

′
("). Then uk = Sλ+c0(hk) satisfies

V (uk) + (λ + c0)Kp(uk) = hk . (5.2)

Acting on (5.2) with uk ∈ W
1,p
n (") and using Lemma 3.2 (c) imply that {uk}k≥1

is bounded in W
1,p
n ("). Along a relabelled subsequence, we have that uk

w→ u in

W
1,p
n (") and uk → u in Lr ("). Let us now act on (5.2) with uk − u and then pass

to the limit as k → ∞. Through Proposition 3.5 we infer that uk → u in W
1,p
n (").

In the limit, (5.2) results in u = Sλ+c0(h).
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Claim 2: h1 ≤ h2 in L
r ′
(") =⇒ Sλ+c0(h1) ≤ Sλ+c0(h2) in W

1,p
n (").

Writing for u1 = Sλ+c0(h1) and u2 = Sλ+c0(h2) that

V (u2) − V (u1) + (λ + c0)(Kp(u2) − Kp(u1)) = h2 − h1,

Claim 2 is readily verified by acting with (u1 − u2)
+ ∈ W

1,p
n (").

Now let λ ∈ S+. We introduce Rλ = Sλ+c0 ◦ N0, where N0(u) = c0|u|p−2u +
f (·, u). Then u ∈ intC+ is a solution of (Pλ) if and only if u = Rλ(u). Moreover,
since u ∈ W 1,p(") is an upper solution of (Pλ), by Claim 2 we derive Rλ(u) ≤ u

in W 1,p("). Similarly, it is true that u ≤ Rλ(u) in W
1,p("). In view of hypothesis

H1(vii), and by Claims 1 and 2, we have that the map Rλ : [u, u] → [u, u] is well
defined, completely continuous and increasing. Consequently, Theorem 6.1 in [2]

can be applied yielding the minimal fixed point x̂λ ∈ [u, u] of Rλ in [u, u]. This is
the smallest solution of (Pλ) in T

+(u).

Arguing as above leads to:

Proposition 5.3. Let v ∈ W 1,p(") be a lower solution and let v ∈ W 1,p(") be an
upper solution for problem (Pλ) with v ≤ v ≤ 0. If hypotheses H(a) and H1 hold,
and λ ∈ S−, then problem (Pλ) has a biggest solution v̂λ in

T−(v) = {h ∈ W
1,p
n (") : h(x) ≤ v(x) a.e. on "},

and one has v̂λ ∈ [v, v].

We deal from now on with the following problem:

(P′
λ)





−)p u(x) + λ|u(x)|p−2u(x) = f (x, u(x)) in ",
∂u

∂n
= 0 on ∂".

Proposition 5.4. If hypothesesH2 hold and λ > λ∗, then problem (P′
λ) has a small-

est positive solution u+ ∈ intC+ and a biggest negative solution u− ∈ −intC+.

Proof. We only show the existence of the smallest positive solution because the

proof of the existence of the biggest negative solution is similar. Let λ > λ∗ and
θ̂ ∈ (0, ( ξ

λ )τ−p). Hypothesis H2(vi)
′ ensures that u := θ̂ is a lower solution for

(P′
λ) because

−)p θ̂ + λKp(θ̂) = λθ̂ p−1 ≤ ξ θ̂ τ−1 ≤ f (·, θ̂).

Fix µ ∈ (λ∗, λ). We note that if uµ ∈ intC+ is a solution of problem (P′
µ), then

u := uµ is a (strict) upper solution of (P
′
λ) which, for θ̂ sufficiently small, satisfies

u ≤ u.
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Corresponding to a sequence θ̂k ↓ 0 with θ̂1 = θ̂ , let uk := θ̂k . According to

Proposition 5.2, there is a smallest uk∗ ∈ T+(uk) with

−)p u
k
∗ + λKp(u

k
∗) = f (·, uk∗(·)) for all k ≥ 1, (5.3)

and uk∗ ∈ [θ̂k, u]. It turns out that {uk∗}k≥1 is bounded inW 1,p
n ("). This gives rise to

a relabeled subsequence with uk∗
w→ u+ inW

1,p
n (") and uk∗ → u+ in Lr ("). Acting

on (5.3) with uk∗ − u+ and then letting k → ∞, we obtain through Proposition 3.5

that

uk∗ → u+ in W
1,p
n ("). (5.4)

Claim: u+ 1= 0.

The auxiliary Neumann problem





−)p u + λ|u|p−2u = ξ(u+)τ−1 in "
∂u

∂n
= 0 on ∂"

(5.5)

possesses a nontrivial solution u ∈ intC+. This can be seen from the fact that the
associated Euler functional ψλ defined by

ψλ(u) = 1

p
‖∇u‖pp + λ

p
‖u‖pp − ξ

τ
‖u+‖τ

τ for all u ∈ W
1,p
n (")

is coercive and sequentially weakly lower semicontinuous, so there exists u ∈
W
1,p
n (") such that ψλ(u) = infψλ. Noting that if ξ̂ > 0 is small, since p > τ ,

it follows that ψλ(ξ̂) < 0, so u 1= 0. Furthermore, applying to (5.5) the strong

maximum principle in [34], we get that u ∈ intC+.
Using that uk∗ ∈ intC+ allows to find θk > 0 such that θku ≤ uk∗. Let us denote

by θk the largest positive real for which this inequality holds. Suppose θk < 1. By

(5.3), H2(vi)
′ and (5.5), we have

− )p u
k
∗ + λ(uk∗)

p−1 = f (x, uk∗) ≥ ξ(uk∗)
τ−1

≥ ξ(θku)
τ−1 = −)p(θku) + λ(θku)

p−1 + ξ(θτ−1
k − θ

p−1
k )uτ−1.

Since θk ∈ (0, 1) and τ < p, arguing as in the proof of Lemma 4.6, it is seen that

uk∗ − θku ∈ intC+, which contradicts the maximality of θk . Thereby, θk ≥ 1, and

so u ≤ uk∗ , which proves the Claim taking into account (5.4).
The convergence (5.4) enables us to pass to the limit in (5.3) obtaining that u+

is a nontrivial solution of (P′
λ). By the nonlinear regularity theory and since u ≤ u+

as shown above, we infer that u+ ∈ intC+. In order to show that u+ ∈ intC+
is the smallest positive solution of (P′

λ), let v be a positive solution of (P′
λ). Since

v ∈ intC+, if k is sufficiently large we have uk ≤ v. This forces u+ ≤ v.

The following is the main result of this section supplying a nodal solution.
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Theorem 5.5. Assume hypotheses H2. Then, for every λ > λ∗, problem (P′
λ) has

at least five distinct nontrivial solutions

uλ, vλ ∈ intC+, uλ ≤ vλ , uλ 1= vλ,

yλ, wλ ∈ −intC+, yλ ≤ wλ , yλ 1= wλ,

and

zλ ∈ C1n(") a nodal solution.

Proof. Theorem 4.11 produces four constant sign solutions uλ, vλ ∈ intC+ and

wλ, yλ ∈ −intC+ . Let u+ ∈ intC+ and u− ∈ −intC+ be the two extremal

constant sign solutions given by Proposition 5.4. We introduce the following three

truncations of the nonlinearity f (x, ·):

f̂+(x, s) =






0 if s ≤ 0

f (x, s) if 0 < s < u+(x)

f (x, u+(x)) if u+(x) ≤ s,

f̂−(x, s) =






f (x, u−(x)) if s ≤ u−(x)

f (x, s) if u−(x) < s < 0

0 if 0 ≤ s,

f̂0(x, s) =






f (x, u−(x)) if s ≤ u−(x)

f (x, s) if u−(x) < s < u+(x)

f (x, u+(x)) if u+(x) ≤ s.

Corresponding to these truncations, we set

F̂±(x, t) =
∫ t

0

f̂±(x, s) ds, F̂0(x, t) =
∫ t

0

f̂0(x, s) ds.

Then we define the C1-functionals ϕ̂λ
±, ϕ̂λ

0 : W 1,p
n (") → R by

ϕ̂λ
±(u) = 1

p
‖∇u‖pp + λ

p
‖u‖pp −

∫

"
F̂±(x, u(x)) dx,

ϕ̂λ
0 (u) = 1

p
‖∇u‖pp + λ

p
‖u‖pp −

∫

"
F̂0(x, u(x)) dx for all u ∈ W

1,p
n ("),

and consider the order intervals in W
1,p
n ("): T+ = [0, u+], T− = [u−, 0] and

T0 = [u−, u+].
Claim 1: The critical points of ϕ̂λ

± and ϕ̂λ
0 are in T± and T0, respectively.



MULTIPLE SOLUTIONS FOR NONLINEAR NEUMANN PROBLEMS 749

We prove the assertion only for ϕ̂λ
+ because the others are similar. Let u ∈

W
1,p
n (") be a critical point of ϕ̂λ

+ . This means

−)p u + λKp(u) = f̂+(·, u(·)). (5.6)

Then a direct comparison with u+ and 0 ensures u ∈ T+.

Claim 2: The sets of critical points of ϕ̂λ
+ and ϕ̂λ

− are {0, u+} and {u−, 0}, respec-
tively.

We only provide the proof for ϕ̂λ
+ since the other is analogous. If u ∈ W

1,p
n (")

is a critical point of ϕ̂λ
+ , then Claim 1 implies that u ∈ T+. By the nonlinear

regularity theory and strong maximum principle [34] we find out that either u = 0

or u ∈ intC+. Then we can conclude because u+ is the smallest positive solution
of (P′

λ).

Claim 3: u+ ∈ intC+ and u− ∈ −intC+ are local minimizers of ϕ̂λ
0 .

Taking into account that ϕ̂λ
+ is coercive and sequentially weakly lower semi-

continuous, there exists u ∈ W
1,p
n (") such that

ϕ̂λ
+(u) = inf ϕ̂λ

+ . (5.7)

Claim 2 implies that u ∈ {0, u+}. Set β = min"{u+,−u−} > 0. The first part of

hypothesis H2(vi)
′ yields that if 0 < s ≤ β is small enough, then

ϕ̂λ
+(s) ≤

(
λ

p
s p − ξ

τ
sτ

)
|"|N < 0 = ϕ̂λ

+(0).

This guarantees that u 1= 0, which forces u = u+ ∈ intC+. By (5.7) and since
ϕ̂λ

+|C+ = ϕ̂λ
0 |C+ , we derive that u+ is a local C1n(")-minimizer of ϕ̂λ

0 . Then

Proposition 3.6 implies that u+ is a local W
1,p
n (")-minimizer of ϕ̂λ

0 . The proof

for u− ∈ −intC+ proceeds in the same way, which establishes Claim 3.

We may assume that ϕ̂λ
0 (u−) ≤ ϕ̂λ

0 (u+) and there is 0 < δ < ‖u− − u+‖
satisfying

ϕ̂λ
0 (u+) < η̂λ

ρ := inf
∂Bδ(u+)

ϕ̂λ
0 , (5.8)

where ∂Bρ(u+) = {v ∈ W
1,p
n (") : ‖v − u+‖ = ρ}. By Theorem 2.1 we find

zλ ∈ W
1,p
n (") such that

(ϕ̂λ
0 )

′(zλ) = 0, (5.9)

η̂λ
ρ ≤ ϕ̂λ

0 (zλ) = inf
γ0∈'0

max
t∈[−1,1]

ϕ̂λ
0 (γ0(t)) , (5.10)

where '0 = {γ ∈ C([−1, 1],W 1,p
n (")) : γ (−1) = u−, γ (1) = u+}. Combining

(5.8) and (5.10) we see that zλ 1∈ {u−, u+}, while (5.9) and Claim 1 show that zλ is
a solution of (P′

λ) that belongs to C
1
n(") by the regularity theory.
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The final step of the proof is to check that zλ 1= 0 because then zλ is necessarily

nodal thanks to the extremality of u− and u+. Without any loss of generality we
may suppose that zλ and 0 are isolated critical points of ϕ̂λ

0 . Property (5.8) implies

that H1((ϕ̂
λ
0 )
b, (ϕ̂λ

0 )
a) 1= 0, for a = ϕ̂λ

0 (u+) and any b > maxt∈[0,1] ϕ̂λ
0 ((1− t)u− +

tu+) (see [12, pages 84-86]). According to [12, pages 89-90]), it is possible to
choose zλ so that

C1(ϕ̂
λ
0 , zλ) 1= 0. (5.11)

On the other hand, we claim that

Ck(ϕ̂
λ
0 , 0) = 0 for every k ≥ 0. (5.12)

The proof of (5.12) closely follows [30, Proposition 5]. For the sake of clarity we

give it. First, by using H2(vi)
′ and H1(iii) we notice that, for each v ∈ W

1,p
n ("),

v 1= 0, there exists t∗ = t∗(v) ∈ (0, 1) fulfilling

ϕ̂λ
0 (tv) < 0 for all t ∈ (0, t∗). (5.13)

By H2(vi)
′, we see that

µF̂0(x, s) − f̂0(x, s)s = µF(x, s) − f (x, s)s ≥ 0

for a.a. x ∈ " and all |s| ≤ min{δ0,β}. By the above estimate and taking into
account hypothesis H1(iii), and the boundedness of u− and u+, we derive

µF̂0(x, s) − f̂0(x, s)s ≥ −c2|s|r for a.a. x ∈ " and all s ∈ R ,

for a constant c2 > 0. Consequently, for v ∈ W
1,p
n (") with ϕ̂λ

0 (v) = 0, we infer

that

d

dt
ϕ̂λ
0 (tv)

∣∣∣
t=1

= 〈(ϕ̂λ
0 )

′(v), v〉 − µϕ̂λ
0 (v)

=
(
1− µ

p

) (
‖∇v‖pp + λ‖v‖pp

)
+

∫

"
(µF̂0(x, v(x)) − f̂0(x, v(x))v(x)) dx

≥
(
1− µ

p

) (
‖∇v‖pp + λ‖v‖pp

)
− c3‖v‖r ,

with c3 > 0. Since r ∈ (p, p∗) and µ < p, there is r0 ∈ (0, 1) such that

d

dt
ϕ̂λ
0 (tv)

∣∣∣
t=1

>0 for all v∈W 1,p
n (") with 0<‖v‖≤r0 and ϕ̂λ

0 (v) = 0. (5.14)

For r0 > 0 small enough we may admit that 0 is the unique critical point of ϕ̂λ
0

in Br0 = {v ∈ W
1,p
n (") : ‖v‖ ≤ r0}. We show that if v ∈ W

1,p
n (") satisfies

0 < ‖v‖ ≤ r0 and ϕ̂λ
0 (v) ≤ 0, then

ϕ̂λ
0 (tv) ≤ 0 for all t ∈ [0, 1]. (5.15)
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If the assertion were not true, there would exist t0 ∈ (0, 1) such that ϕ̂λ
0 (t0v) > 0.

Let t1 stand for the maximal point in (t0, 1] with the property
ϕ̂λ
0 (tv) > 0 for all t ∈ [t0, t1). (5.16)

Observing that 0 < ‖t1v‖ ≤ r0 and ϕ̂λ
0 (t1v) = 0, (5.14) yields

d

dt
ϕ̂λ
0 (t t1v)

∣∣∣
t=1

> 0.

We reach a contradiction in view of the fact that (5.16) implies

d

dt
ϕ̂λ
0 (t t1v)

∣∣∣
t=1

= t1
d

dt
ϕ̂λ
0 (tv)

∣∣∣
t=t1

= t1 lim
t↑t1

ϕ̂λ
0 (tv)

t − t1
≤ 0.

Therefore (5.15) holds true.

On the basis of (5.15) we can define h : [0, 1] × (Br0 ∩ (ϕ̂λ
0 )
0) → Br0 ∩ (ϕ̂λ

0 )
0

by h(t, v) = (1− t)v. So Br0 ∩ (ϕ̂λ
0 )
0 is contractible in itself.

We now check that (Br0 ∩ (ϕ̂λ
0 )
0) \ {0} is contractible in itself. To this end it

suffices to construct a retraction ω : Br0 \ {0} → (Br0 ∩ (ϕ̂λ
0 )
0) \ {0} and to invoke

that W
1,p
n (") is infinite dimensional since then Br0 \ {0} is contractible in itself.

Specifically, we set

ω(v) = η(v)v for all v ∈ Br0 \ {0},

with the function η : Br0 \ {0} → (0, 1] given by

η(v) =
{
1 if v ∈ Br0 \ {0}, ϕ̂λ

0 (v) ≤ 0

t (v) if v ∈ Br0 \ {0}, ϕ̂λ
0 (v) > 0,

where, for v ∈ Br0 with ϕ̂λ
0 (v) > 0, t (v) ∈ (0, 1) is the unique number that satisfies

ϕ̂λ
0 (t (v)v) = 0. The existence of t (v) comes from (5.13). The uniqueness of t (v) is
a consequence of (5.15) and (5.14). Indeed, arguing by contradiction, suppose that

0 < t (v)1 < t (v)2 < 1 and ϕ̂λ
0 (t (v)k v) = 0, k = 1, 2.

By (5.15), it is known that ϕ̂λ
0 (t t (v)2v) ≤ 0 for all t ∈ [0, 1]. Hence t (v)1

t (v)2
∈ (0, 1)

is a maximizer of the function t 0→ ϕ̂λ
0 (t t (v)2 v), t ∈ [0, 1], so

d

dt
ϕ̂λ
0 (t t (v)1 v)

∣∣∣
t=1

= t (v)1

t (v)2

d

dt
ϕ̂λ
0 (t t (v)2 v)

∣∣∣
t= t (v)1

t (v)2

= 0.

This contradicts (5.14). Therefore t (v) ∈ (0, 1) is unique. Property (5.15) and the
uniqueness of t (v) lead to

ϕ̂λ
0 (tv) < 0 if t ∈ (0, t (v)) and ϕ̂λ

0 (tv) > 0 if t ∈ (t (v), 1]. (5.17)
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We claim that η is continuous. We have to check the continuity of η at any v with
ϕ̂λ
0 (v) = 0, because otherwise it is a direct consequence of the implicit function

theorem (due to ϕ̂λ
0 (t (v)v) = 0 and (5.14)). Let vk → v with ϕ̂λ

0 (vk) > 0. Arguing

by contradiction and passing to a relabelled subsequence, suppose that there exists

t̄ ∈ (0, 1) such that t (vk) ≤ t̄ . By (5.17) we have that ϕ̂λ
0 (tvk) > 0 for all t ∈ (t̄, 1].

Letting k → ∞ we derive that ϕ̂λ
0 (tv) ≥ 0 for all t ∈ (t̄, 1]. Combining with

(5.15), it turns out ϕ̂λ
0 (tv) = 0 for all t ∈ (t̄, 1], which implies that d

dt
ϕ̂λ
0 (tv)

∣∣∣
t=1

=
0. This contradicts (5.14). Therefore η is continuous. This implies that the map
[0, 1]× Br0 \ {0} → Br0 \ {0}, (t, v) 0→ (tη(v)+ 1− t)v is a homotopy between ω

and the identity, thus ω is indeed a retraction of Br0 \ {0} onto (Br0 ∩ (ϕ̂λ
0 )
0) \ {0}.

We have shown that (Br0 ∩ (ϕ̂λ
0 )
0) \ {0} is contractible in itself. We obtain

Ck(ϕ̂
λ
0 , 0) = Hk(Br0 ∩ (ϕ̂λ

0 )
0, (Br0 ∩ (ϕ̂λ

0 )
0) \ {0}) = 0 for all k ≥ 0,

which establishes (5.12).

In view of (5.11) and (5.12), we conclude that zλ 1= 0.

6. Semilinear problem

In this section, we consider the following semilinear version of (P′
λ):

(P′′
λ)





−)u(x) + λu(x) = f (u(x)) in ",
∂u

∂n
= 0 on ∂".

In what follows, by {λk}k≥0 we denote the increasing sequence of distinct eigenval-
ues of (−), H1n (")). The hypotheses on the nonlinearity f (s) are:

H3 f ∈ C1(R), f (0) = 0, hypotheses H1 (ii), (iv)-(v) and H2(vi)
′

are satisfied with p = 2, and

(i) | f ′(s)| ≤ c(1+ |s|r−2) for all s ∈ R, some c > 0 and 2 < r < 2∗;
(ii) there exists an integer m ≥ 1 such that f ′(0) − λm+1 ≥ λ∗.

Theorem 6.1. If hypotheses H3 hold and λ ∈ ( f ′(0) − λm+1, f ′(0) − λm), then
problem (P′′

λ) has at least six nontrivial solutions

vλ, uλ ∈ C2("), vλ − uλ ∈ intC+,

wλ, yλ ∈ C2("), wλ − yλ ∈ intC+,

and

zλ ,ωλ ∈ C2(") nodal solutions.
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Proof. Fix λ ∈ ( f ′(0) − λm+1, f ′(0) − λm). We notice that hypothesis H1(vii) is
fulfilled. This is valid because, as f being continuously differentiable, correspond-

ing to the compact interval [−0, 0] we can choose a sufficiently large c0 > 0 such

that f ′(s) + c0 > 0 for all s ∈ [−0, 0]. As all the other hypotheses are satisfied,
Theorem 5.5 applies. We thus have the five solutions uλ, vλ ∈ intC+, uλ ≤ vλ ,

uλ 1= vλ , yλ, wλ ∈ −intC+, yλ ≤ wλ , yλ 1= wλ , and zλ ∈ C1n(") nodal.
Since the solutions are bounded, there is a constant c > 0 such that )(vλ − uλ) ≤
(λ + c)(vλ − uλ), which yields vλ − uλ ∈ intC+ (see [34]). Similarly, we show
that wλ − yλ ∈ intC+. Moreover, the regularity theory (see, e.g., [33, page 219])
implies that uλ , vλ , wλ , yλ , zλ ∈ C2(").

Let ϕ̂λ
0 be the functional in the proof of Theorem 5.5, where it was proven that

u−, u+ are local minimizers of ϕ̂λ
0 , that can be assumed to be isolated, and zλ is a

critical point of ϕ̂λ
0 of mountain pass type. Therefore, we have

Ck(ϕ̂
λ
0 , u+) = Ck(ϕ̂

λ
0 , u−) = δk,0Z for all k ≥ 0 (6.1)

(see [12, page 33] and [23, page 175]) as well as

Ck(ϕ̂
λ
0 , zλ) = δk,1Z for all k ≥ 0 (6.2)

(by arguing as in [29, proof of Theorem 3.6] on the basis of [23, page 195]). Note

that, if u ∈ ker (ϕ̂λ
0 )

′′(0), then u satisfies




−)u(x) = ( f ′(0) − λ)u(x) in ",
∂u

∂n
= 0 on ∂".

(6.3)

By hypothesis, we know that λm < f ′(0) − λ < λm+1 which, in conjunction with
(6.3), implies that u = 0. This ensures that 0 is a nondegenerate critical point of ϕ̂λ

0
and its Morse index is equal to dm = dim⊕m

k=0E(λk) (E(λk) being the eigenspace

of (−), H1n (")) corresponding to the eigenvalue λk). Hence

Ck(ϕ̂
λ
0 , 0) = δk,dmZ for all k ≥ 0 (6.4)

(see [12, page 34] and [23, page 188]). Since the functional ϕ̂λ
0 is coercive, from

the definition of critical groups at infinity, we have

Ck(ϕ̂
λ
0 ,∞) = δk,0Z for all k ≥ 0. (6.5)

Suppose that 0, u− , u+ , zλ were the only critical points of ϕ̂λ
0 . Then from (6.1),

(6.2), (6.4), (6.5) and the Poincaré–Hopf formula (see (2.1)), we obtain 2(−1)0 +
(−1)1 + (−1)dm = (−1)0, that is (−1)dm = 0, a contradiction. So, ϕ̂λ

0 has one

more critical point ωλ ∈ H1n (") distinct from 0, v− , u+ , wλ . In addition, from

Claim 1 in the proof of Theorem 5.5, we know that ωλ ∈ [u−, u+]. Hence ωλ is a

nontrivial solution of (P′′
λ) which belongs to C

2(") by the regularity theory. Taking
into account that u+ is the least positive solution and u− is the greatest negative

solution, this enables us to conclude that ωλ is a second nodal solution of (P
′′
λ).
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