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Ricci almost solitons

STEFANO PIGOLA, MARCO RIGOLI, MICHELE RIMOLDI

AND ALBERTO G. SETTI

Abstract. We introduce a natural extension of the concept of gradient Ricci
soliton: the Ricci almost soliton. We provide existence and rigidity results, we
deduce a-priori curvature estimates and isolation phenomena, and we investigate
some topological properties. A number of differential identities involving the
relevant geometric quantities are derived. Some basic tools from the weighted
manifold theory such as general weighted volume comparisons and maximum
principles at infinity for diffusion operators are discussed.
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1. Introduction

Let (M, 〈 , 〉) be a Riemannian manifold. A Ricci soliton structure on M is the

choice of a smooth vector field X (if any) satisfying the soliton equation

Ric+ 1

2
LX 〈 , 〉 = λ 〈 , 〉 (1.1)

for some constant λ ∈ R. Here, Ric denotes the Ricci tensor of M and LX stands

for the Lie derivative in the direction of X .

In the special case where X = ∇ f for some smooth function f : M → R, we
say that (M, 〈 , 〉 ,∇ f ) is a gradient Ricci soliton with potential f . In this case the
soliton equation (1.1) reads

Ric+ Hess ( f ) = λ 〈 , 〉 . (1.2)

Clearly, equations (1.1) and (1.2) can be considered as perturbations of the Einstein

equation

Ric = λ 〈 , 〉
and reduce to this latter in case X or ∇ f are Killing vector fields. When X = 0 or

f is constant we call the underlying Einstein manifold a trivial Ricci soliton.

Received March 15, 2010; accepted in revised form July 11, 2011.



758 STEFANO PIGOLA, MARCO RIGOLI, MICHELE RIMOLDI AND ALBERTO G. SETTI

As in the case of Einstein manifolds, Ricci solitons exhibit a certain rigidity.

This is expressed by triviality and classification results, or by curvature estimates.

For instance, in the compact case it is well known that an expanding (or steady)

Ricci soliton is necessarily trivial (see, e.g., [4]). Generalizations to the complete,

non-compact setting can be found in the very recent [27].

On the other hand, since the appearance of the seminal works by R. Hamilton,

[11], and G. Perelman, [21], the classification of shrinking gradient Ricci solitons

has become the subject of a rapidly increasing investigation. In this direction, we

limit ourselves to quote the far-reaching [3] by H.-D. Cao, B.-L. Chen and X.-P.

Zhu where a complete classification in the three-dimensional case is given, [33] by

Z.-H. Zhang for the extension in the conformally flat, higher dimensional case, and

the very recent [16] by O. Munteanu and N. Sesum where, on the base of rigidity

works by P. Petersen andW.Wylie, [22,23], andM. Fernández-López and E.Garcı́a-

Rı́o, [7], the authors extend Zhang’s classification result to complete shrinkers with

harmonic Weyl tensor. The classification of expanding Ricci solitons appears to be

more difficult and relatively few results are known. For instance, the reader may

consult [22] for the case of constant scalar curvature expanders.

As an instance of curvature estimates, we quote the recent papers by B.-L.

Chen, [2], and by Z.-H. Zhang, [34], where it is shown that the scalar curvature

of any gradient Ricci soliton is bounded below. In another direction, upper and

lower estimates for the infimum of the scalar curvature of a gradient Ricci soliton

are obtained in [27], where some triviality and rigidity results at the endpoints are

also discussed.

In this paper we propose an extension of the concept of Ricci soliton that, as

we are going to explain, appears to be natural and meaningful. First of all we set

the following:

Definition 1.1. We say that (M, 〈 , 〉 ,∇ f ) is a gradient Ricci almost soliton (al-
most soliton for short) with potential f and soliton function λ if (1.2) holds on M
with λ a smooth function on M .

Clearly, the above definition generalizes the notion of gradient Ricci solitons.

Note that since a Shur type theorem does not hold, this is a non trivial generaliza-

tion. One could consider almost Ricci solitons which are not necessarily gradient,

replacing the Hessian of f with the Lie derivative 1
2
LX 〈 , 〉 of the metric along a

vector field, and study the properties of this new object. For instance, it is an inter-

esting problem to find under which conditions an almost Ricci soliton is necessarily

gradient. This is going to be the subject of a forthcoming paper. Here we are going

to deal with gradient almost Ricci solitons.

We also note that generalizations in different directions have been recently

considered. For instance, J. Case, Y.-J. Shu and G. Wei introduce in [1] the concept

of a “quasi Einstein manifold”, i.e., a Riemannian manifold whose modified Bakry-

Emery Ricci tensor is constant. This definition originates from the study of usual

Einstein manifolds that are realized as warped products. Further generalizations

have been considered by G. Maschler in [15], where equation (1) is replaced by
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what the author calls the“Ricci-Hessian equation”, namely,

αHess f + Ric = γ 〈 , 〉,

where α and γ are functions. Note that since the author is interested in confor-

mal changes of Kähler-Ricci solitons which give rise to new Kähler metrics, the

presence of the function α is vital in his investigation.
Extending to our new setting the soliton terminology, we say that the gradient

Ricci almost soliton (M, 〈 , 〉 ,∇ f ) is shrinking, steady or expanding if respectively
λ is positive, null or negative on M . If λ has no definitive sign the gradient Ricci
almost soliton will be called indefinite. In case f is constant the almost soliton

is called trivial and if dimM ≥ 3 the underlying manifold (M, 〈 , 〉) is Einstein
by Schur Theorem. This also suggests that for an almost soliton an appropriate

terminology could be that of an almost Einstein manifold.

In view of the fact that the soliton function λ is not necessarily constant, one
expects that a certain flexibility on the almost soliton structure is allowed and, con-

sequently, the existence of almost solitons is easier to prove than in the classical sit-

uation. This feeling is confirmed in Section 2 below where we shall give a number

of different examples of almost solitons, showing in particular that all the previous

possibilities (shrinking and expanding) with a non-constant soliton function λ can
indeed occur. On the other hand, the rigidity result contained in Theorem 2.3 be-

low indicates that almost solitons should reveal a reasonably broad generalization

of the fruitful concept of classical soliton. In particular, one obtains that not every

complete manifold supports an almost soliton structure; see Example 2.4.

The investigation in this paper is mainly concerned with triviality and point-

wise curvature estimates of gradient Ricci almost solitons in case (M, 〈, 〉) is a
complete, connected manifold. From now on we let m = dimM; we fix an origin

o ∈ M and we let r (x) denote the distance function from o. Br and ∂Br are respec-
tively the geodesic ball of radius r centered at o and its boundary. Given the poten-

tial function f ∈ C∞ (M) we consider the weighted manifold
(
M, 〈 , 〉 , e− f dvol

)
,

where dvol is the Riemannian volume element. We set

vol f (Br (p)) =
∫

Br (p)
e− f dvol, vol f (∂Br (p)) =

∫

∂Br (p)
e− f dvolm−1,

where dvolm−1 stands for the (m − 1)-dimensional Hausdorff measure. Finally we
call f -laplacian, % f , the diffusion operator defined on u by

% f u = e f div
(
e− f ∇u

)
= %u − 〈∇ f,∇u〉

which is clearly symmetric on L2
(
M, e− f dvol

)
.

Note that in the terminology of weighted manifolds the LHS of (1.2) is the

Bakry-Emery Ricci tensor of
(
M, 〈 , 〉, e− f dvol

)
that is usually indicated with Ric f .

We are now ready to state our first result.
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Theorem 1.2. Let (M, 〈 , 〉 ,∇ f ) be a complete, expanding gradient Ricci almost
soliton with soliton function λ. Let α, σ , µ ∈ R be such that

α > −2 ; 0 ≤ σ ≤ 2/3

min {0,−α} ≤ µ ≤
{
1− 3σ/2 if σ ≥ α

1− σ − α/2 if σ < α .
(1.3)

Assume

lim sup
r(x)→+∞

|∇ f |2
r (x)σ

{
= 0 if 0 < σ ≤ 2/3

< +∞ if σ = 0
(1.4)

− (m − 1) B2
(
1+ r (x)2

) α
2 ≤ λ (x) ≤ − (m − 1) A2

(
1+ r (x)2

)−µ
2

(1.5)

on M for some constants B ≥ A > 0.

Suppose either m = 2 or

〈∇ f,∇λ〉 ≤ 0 on M. (1.6)

Then the almost soliton is trivial.

Note that (1.3) implies that (1.5) is meaningful.

Corollary 1.3. Let (M, 〈 , 〉 ,∇ f ) be a complete, expanding gradient Ricci soliton
such that

lim sup
r(x)→+∞

|∇ f |2
r (x)σ

{
= 0 0 < σ ≤ 2

3

< +∞ σ = 0.
(1.7)

Then the soliton is trivial.

The case σ = 0 of Corollary 1.3 has been proved in [27]. The next result

extends Theorem 3 in [27] to the case of almost solitons; see also [35]. Note that,

contrary to [23], we do not assume that the scalar curvature is either constant or

bounded.

Theorem 1.4. Let (M, 〈 , 〉 ,∇ f ) be a complete gradient Ricci almost soliton with
scalar curvature S and soliton function λ such that %λ ≤ 0 on M . Set

S∗ = inf
M
S, λ∗ = inf

M
λ, λ∗ = sup

M

λ.

(i) If the almost soliton is expanding with −∞ < λ∗ ≤ λ ≤ 0, λ +≡ 0, then mλ∗ ≤
S∗ ≤ 0. Moreover, if m ≥ 3 and there exists xo such that S(xo) = S∗ = mλ∗,
then the soliton is trivial and M is Einstein.

(ii) If the almost soliton is a steady soliton then S∗ = 0. Morever, if m ≥ 3 and

there exists xo such that S(xo) = 0, then M is a cylinder over a totally geodesic

hypersurface.
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(iii) If the almost soliton is shrinking with 0 ≤ λ, λ +≡ 0, then 0 ≤ S∗ ≤ mλ∗. More-
over if m ≥ 3 and there exists xo such that S(xo) = S∗ = 0 then M is isometric

to the standard Euclidean space. Finally if S∗ = mλ∗ and (M, 〈 , 〉, e− f dvol) is
f -parabolic, then the almost soliton is trivial and (M, 〈 , 〉) is compact Einstein.
This latter case occurs in particular if

A2(1+ r(x))−µ ≤ λ(x)

on M for some A > 0, 0 ≤ µ ≤ 1.

Note that the case µ = 0 contains, of course, the soliton case.

Corollary 1.5. In the assumptions of Theorem 1.4, in cases (i) and (iii), (M, 〈 , 〉)
has non negative scalar curvature.

In the next result we shall assume the validity of a weighted Poincaré-Sobolev

inequality on M .

Theorem 1.6. Let (M, 〈 , 〉 ,∇ f ) be a complete gradient Ricci almost soliton with
soliton function λ. For some 0 ≤ α < 1 assume on M the validity of

∫

M

|∇ϕ|2 e− f ≥ S (α)−1
{∫

M

|ϕ| 2
1−α e− f

}1−α

(1.8)

for all ϕ ∈ C∞
c (M) and some constant S (α) > 0. Suppose that

∫

Br

|∇ f |p e− f = o
(
r2

)
(1.9)

as r → +∞, for some p > 1, and that

‖λ+‖
L
1
α (M,e− f dvol)

<
4

S (α)

p − 1

p2
,

with λ+ (x) = max {0, λ (x)}. Suppose that either m = 2 or (1.6) is satisfied. Then

the almost soliton is trivial and, when m ≥ 3, M is Einstein with non-positive Ricci

curvature.

As an immediate consequence we obtain:

Corollary 1.7. Let (M, 〈, 〉 ∇ f ) be a complete, expanding, gradient Ricci soliton
and assume that (1.8) and (1.9) hold for some 0 ≤ α < 1 and p > 1. Then the

soliton is trivial.

Remarks 1.8. (a) Note that, according to the variational characterization of the
bottom of the spectrum of the f -Laplacian, assumption (1.8) with α = 0 means

λ
−% f

1 (M, e− f dvol) > 0.
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Thus, in particular, inequality (1.8) with α = 0 holds if the almost soliton

(M, 〈, 〉 ,∇ f ) is expanding and satisfies:

Secrad ≤ −K ≤ 0 and
∂ f

∂r
≤ 0.

This follows from [29, Theorem 3.4].

(b) Condition (1.8) implies that vol f (M) = +∞. Indeed, let ϕ ∈ C∞
c be such that

ϕ = 1 on BR , ϕ = 0 off B2R , |∇ϕ| ≤ C
R
. Then, from (1.8)

C2

R2

∫

B2R\BR
e− f ≥

∫

M

|∇ϕ|2 e− f

≥S (α)−1
(∫

M

|ϕ| 2
1−α e

− f

)1−α

≥S (α)−1
(∫

BR

e− f

)1−α

,

i.e.
C2

R2

{
vol f (B2R) − vol f (BR)

}
≥ S (α)−1 vol f (BR)1−α .

Denoting by T = RicM − 1
m
S 〈, 〉 the trace free Ricci tensor of (M, 〈, 〉) the next

result is a gap theorem for the values of

|T |∗ = sup
M

|T | .

Theorem 1.9. Let (M, 〈, 〉 ,∇ f ) be a complete, conformally flat almost soliton
with scalar curvature S, trace free Ricci tensor T and soliton function λ such that

〈Hess (λ) , T 〉 ≥ 0 (1.10)

on M . Assume m = dimM ≥ 3,

S∗ = sup
M

S < +∞, (1.11)

λ∗ = inf
M

λ > −∞. (1.12)

Then either (M, 〈, 〉) is Einstein and the classification of Theorem 2.3 below applies
or

|T |∗ ≥ 1

2

(√
m (m − 1)λ∗ − S∗ m − 2√

m (m − 1)

)
.
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Our results will follow from considering elliptic equations or inequalities for

various geometric quantities on almost solitons and rely on analytic techniques.

This is the same philosophy used, for instance, in [4,22]. More specifically, we will

see that the differential (in)equalities at hand naturally involve the f -Laplace op-

erator. Since the almost soliton equation means precisely that the f -Bakry-Emery

Ricci curvature is proportional to the metric tensor, we are naturally led to introduce

a number of weighted manifolds tools whose range of applications goes beyond the

investigation of almost solitons. This point of view is in the spirit of [31]. An im-

portant instance of these tools is represented by the maximum principles at infinity

under both weighted Ricci lower bounds and weighted volume growth conditions.

As an example, we shall observe the validity of the following:

Theorem 1.10. Let (M, 〈, 〉 , e− f dvol) be a complete weighted manifold whose

Bakry-Emery Ricci tensor satisfies

Ric f ≥ −(m − 1)G(r(x))

where G is a smooth function on [0,+∞) satisfying

(i) G (0) > 0 (ii) G ′ (t) ≥ 0 on [0,+∞)

(iii)G (t)−
1
2 /∈ L1 (+∞) (iv) lim supt→+∞

tG

(
t
1
2

)

G(t) < +∞.

Assume also that

|∇ f | ≤ CG (r)1/2 .

Then, for every smooth function u such that supM u = u∗ < +∞ there exists a

sequence {xn} along which

(i) u (xk) > u∗ − 1

k
; (ii) |∇u (xk)| <

1

k
; (iii) % f u (xk) <

1

k
.

The paper is organized as follows. In Section 1 we provide some examples of

almost gradient solitons and we prove the rigidity result contained in Theorem 2.3.

Section 2 is devoted to derive the basic elliptic equations that we shall use in the

proofs of our results. Some of these equations, for λ = const., are well known,
see for instance [4, 22]. Others seem to be new, even in this case (see for instance

(3.21) below). In Section 3 we give some improved versions of the Laplacian and

volume comparison theorems obtained by Wei and Wylie, [31], and we recall a

version of a weak maximum principle, recently proved in [14], appropriate for our

present purposes. We also prove a weighted version of a result in [25] from which

Theorem 1.10 above immediately follows. The proofs of the main geometric results

are contained in Sections 3, 4, 5, 6. We end with Section 7 where we extend to

almost solitons some topological results known in the classical case.

ACKNOWLEDGEMENTS. The authors are grateful to Manuel Fernández-López for

having sent them the preprints [6] and [7].
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2. Examples and rigidity of Einstein almost solitons

Let M = I×g( denote the g-warped product of the real interval I ⊆ Rwith 0 ∈ I,
and the Riemannian manifold ((, ( , )() of dimension dim( = m. Namely, the

(m + 1)-dimensional, smooth product manifold I × ( is endowed with the metric

〈 , 〉 = dt ⊗ dt + g (t)2 ( , )( ,

where t is a global parameter of I and g : I → R+
0 is a smooth function. Using the

moving-frame formalism, the geometry of M can be described as follows.

Fix the index convention 1 ≤ i, j, k, l, ... ≤ m and 1 ≤ α,β, γ , ... ≤ m + 1.

Let
{
e j

}
be a local orthonormal frame of ( with dual frame

{
θ j

}
so that ( , )( =

∑
θ j ⊗ θ j .We denote the corresponding connection 1-forms by θ

j
k = −θkj and the

curvature 2-forms by +i
j = −+

j
i . Accordingly, the structural equations of ( are

dθ j = −θ
j
k ∧ θk

dθ
j
i = −θ

j
k ∧ θki + +

j
i .

Furthermore, the curvature forms are related to the (components of) the Riemann

tensor by

+
j
i = 1

2
(R

j
iklθ

k ∧ θ l .

Let us introduce the local orthonormal coframe {ϕα} on M such that

ϕ j = g (t) θ j , ϕm+1 = dt.

The corresponding connection and curvature forms are denoted, respectively, by

ϕα
β = −ϕ

β
α and ,α

β = −,
β
α = 1

2
M Rα

βδγ ϕδ ∧ ϕγ . A repeated use of exterior

differentiations of ϕα and ϕα
β and of the structure equations of M and (, together

with the well known characterization of the Levi Civita connection forms, yield

ϕkj = θkj (2.1)

ϕkm+1 = g′

g
ϕk = −ϕm+1

k ,

and consequently,

,k
j = −

(
g′

g

)2
ϕk ∧ ϕ j + +k

j

,m+1
k =

{(
g′

g

)2
+

(
g′

g

)′}
ϕk ∧ ϕm+1 = g′′

g
ϕk ∧ ϕm+1 = −,k

m+1.
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Let {Eα} denote the dual frame of {ϕα} so that E j = g (t)−1 e j . Then,

MRicαβ = ,γ
α

(
Eγ , Eβ

)
, and (Rickt = g2+

j
k

(
E j , Et

)
.

It follows from (2.1) that

MRickt =
{

− (m − 1)

(
g′

g

)2
− g′′

g

}
δkt + 1

g2
(Rickt (2.2)

MRicm+1t = 0

MRicm+1 m+1 = −m g
′′

g
.

In light of these relations, we have that M is Einstein with MRic = −mc 〈, 〉 if and
only if

(Rickt =
{

(m − 1)

(
g′

g

)2
+ g′′

g
− mc

}
g2δkt ,

and

g′′ = cg. (2.3)

Therefore
(Rickt = − (m − 1)

(
−g′2 + cg2

)
δkt . (2.4)

We explicitly note that the general solution of (2.3) is given by

g (t) = g′ (0) sn−c (t) + g (0) cn−c (t) , (2.5)

where

snk (t) =






1√−k sinh
(√−kt

)
if k < 0

t if k = 0
1√
k
sin

(√
kt

)
if k > 0.

and

cnk (t) = sn′
k (t) .

Inserting (2.5) into (2.4) we obtain the following:

Lemma 2.1. Let ((, ( , )() be a Riemannian manifold of dimension m ≥ 3. Con-

sider the warped product M = I ×g ( where 0 ∈ I ⊆ R and g : I → R+ is a

smooth function. Then, M is Einstein with

MRic = −mc 〈 , 〉 , c ∈ R,

if and only

g (t) = g′ (0) sn−c (t) + g (0) cn−c (t) (2.6)

and ( is Einstein with

(Ric = − (m − 1)
{
−g′ (0)2 + cg (0)2

}
( , )( . (2.7)
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Now, consider a smooth function f : M → R of the form f (t, x) = f (t). Its
Hessian expresses as

Hess ( f ) = f ′ g
′

g

∑
ϕk ⊗ ϕk + f ′′ϕm+1 ⊗ ϕm+1. (2.8)

Thus, in case M is an Einstein manifold with MRic = −mc 〈 , 〉 (hence ( is

Einstein), the almost Ricci soliton equation on M with respect to the potential

f (x, t) = f (t) reads 



f ′ g

′

g
− mc = λ

f ′′ − mc = λ.

Integrating this latter we deduce





f (t) = a

∫ t

0

g (s) ds + b

λ (t) = ag′ (t) − mc,

(2.9)

for some constants a, b ∈ R. Summarizing, we have obtained the following exam-
ples of Einstein, almost Ricci solitons.

Proposition 2.2. Let g (t) : I → R+ be the smooth function defined in (2.6),

0 ∈ I ⊆ R. Let ((, ( , )() be an m-dimensional Einstein manifold satisfying (2.7).
Then, the warped product M = I ×g ( is Einstein with MRic = −mc 〈 , 〉 and
it is an almost Ricci soliton with potential f (t) and soliton function λ (t) defined
in (2.9).

The next rigidity theorem, in the complete case, shows that basically there are

no further examples when (M, 〈 , 〉) is Einstein.

Theorem 2.3. Let (M, 〈 , 〉) be a complete, connected, Einstein manifold of dimen-
sion m ≥ 4 and

MRic = − (m − 1) c 〈 , 〉 , c ∈ R.

Assume that M is an almost Ricci soliton, namely, for some λ ∈ C∞ (M), there is
a solution f ∈ C∞ (M) of the equation

MRic+ Hess ( f ) = λ (x) 〈 , 〉 .

(a) If c = 0, then λ must be constant and the following possibilities occur:

(a.1) If λ = 0 then M is isometric to a cylinder R × ( over a totally geodesic,

Ricci flat hypersurface ( ⊂ M . Furthermore, f (t, x) = at + b, for some

constants a, b ∈ R.
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(a.2) If λ = const. += 0 then M is isometric to Rm and

f (x) = λ

2
|x |2 + 〈b, x〉 + c, (2.10)

for some b ∈ Rm and c ∈ R.

(b) If c += 0, then either λ is constant and the soliton is trivial, or one of the

following cases occurs:

(b.1) c ∈ R\ {0} and M is a space-form of constant curvature −c. Furthermore
{

λ (x) = acn−c (r (x)) − (m − 1) c

f (x) = c−1acn−c (r (x)) + b,
(2.11)

for some constants a, b ∈ R. Here, r (x) denotes the distance from a fixed

origin.

(b.2) c > 0 and M is isometric to the warped product R ×g ( where

g (t) = g′ (0)√
c
sinh

(√
ct

)
+ g (0) cosh

(√
ct

)
> 0,

and ( ⊂ M is an Einstein hypersurface with

(Ric = − (m − 2) (−g′(0)2 + cg(o)2).

Furthermore 




λ (t, x) = ag′ (t) − mc

f (t, x) = a

∫ t

0

g (s) ds + b,
(2.12)

for some constants a, b ∈ R. Here, t is a global coordinate on R.

Proof. By assumption, with respect to a local orthonormal coframe, we have

fi j = ((m − 1) c + λ) δi j . (2.13)

Differentiating both sides and using the commutation rule

fi jk − fik j = Rli jk fl , (2.14)

we deduce

Rli jk fl = λkδi j − λ jδik .

Tracing this latter with respect to i and k, recalling that Ri j = − (m − 1) cδi j , and
simplifying we conclude that

c f j = λ j . (2.15)
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We now distinguish several cases.

(a) Suppose c = 0, i.e., M is Ricci flat. Then λ j = 0 proving that λ is constant.
The soliton equation reads

Hess ( f ) = λ 〈, 〉 .

(a.1) In case λ = 0, then f is affine. In particular |∇ f | is constant proving that
either f is constant, and the soliton is trivial, or f has no critical point at

all. Suppose this latter case occurs. Up to rescaling f we can assume that
|∇ f | = 1, i.e., f is a function of distance type. Then, a Cheeger-Gromoll
type argument (see (b.2.ii1) below for details) shows that the flow φ of the
vector field X = ∇ f establishes a Riemannian isometry φ : R × ( → M ,

where ( is any of the (totally geodesic) level sets of f and f is a linear

function of t . Finally, since M is Ricci flat then also ( must be Ricci flat.

This proves the first part of statement (a) of the Theorem.

(a.2) Assume λ += 0. Then, it is known that M is isometric to Rm and f (x)
takes the form given in (2.10). See [30] and the Appendix in [27] for a

straightforward proof. The proof of case (a) is completed.

(b) Suppose c += 0. By (2.15) we have

f = c−1λ + d, (2.16)

for some constant d ∈ R. Inserting into (2.13) gives

Hess (λ) = c {(m − 1) c + λ} 〈 , 〉 .

If λ (x) = const., i.e. M is a classical Ricci soliton, then, in view of (2.16), f

must be constant and the soliton is trivial.

Assume then that λ (x) is nonconstant. Note that the function

v (x) = (m − 1) c + λ (x) (2.17)

is a nontrivial solution of

Hess (v) = cv 〈, 〉 . (2.18)

(b.1.i) If c < 0, then by the classical Obata theorem, [18], M is isometric to a

spaceform of constant curvature −c > 0 and

v (x) = a cos
(√

−cr (x)
)
,

for some constant a += 0. Here, r (x) denotes the distance function from
a fixed origin. It follows that the functions λ (x) and f (x) take the form
given in (b.1), (2.11), for c < 0.

It remains to consider the case c > 0. Two possibilities can occur:
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(b.1.ii) The function v, which is a nontrivial solution of (2.18), v has at least one
critical point o ∈ M and, therefore, it is a nontrivial solution of the problem

{
Hess (v) = cv 〈, 〉
|∇v| (o) = 0,

with c > 0. Thus, for every unit speed geodesic γ issuing from o, the

function y = v ◦ γ satisfies the initial value problem

{
y′′ = cy

y(0) = v(o), y′(0) = 〈∇v(o), γ̇ (0)〉,

and since v is nonconstant, we have must have v (o) += 0. Using Kanai’s

version of Obata theorem, [13], we conclude that M is isometric to hyper-

bolic space of constant curvature −c < 0 and v (x) = v (o) cosh
(√

cr (x)
)

where r (x) is the distance function from o. Inserting this expression into

(2.17) and (2.16) completes the proof of case (b.1)
(b.2) The function v has no critical points. A classification of M under this as-

sumption, and the corresponding form of v, f, λ, can be deduced from
some works by Ishihara and Tashiro, [12], and Tashiro, [30]. However we

provide a concise and complete proof for the sake of completeness. Let

( = {v (x) = s} be a non-empty, smooth, level hypersurface.
Note that, up to multiplying v by a non-zero constant, we can always as-
sume that either s = 0 or s = 1. A computation that uses (2.18) shows

that the integral curves of the complete vector field X = ∇v/ |∇v| are
unit speed geodesics orthogonal to (. Moreover, the flow of X gives

rise to a smooth map φ : R × ( → M which coincides with the nor-

mal exponential map exp⊥ of (. In particular, φ is surjective. Evaluating
(2.18) along the integral curve φ (t, x) issuing from x ∈ ( we deduce that

y (t) = v (φ (t, x)) satisfies






y′′ = cy

y (0) = s ∈ {0, 1}
y′ (0) = |∇v| (x)

and therefore

v (φ (t, x)) = |∇v| (x) sn−c (t) + scn−c (t) . (2.19)

Since
dv (φ (t, x))

dt
= |∇v| ◦ φ (t, x) > 0 (2.20)

it follows from (2.19) that, necessarily, c > 0. Moreover, if s = 1 we have

the further restriction |∇v| (x) ≥ √
c. The function v is strictly increasing
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along the geodesic curves φx (t) issuing from x ∈ (. Whence, it is easy
to conclude that φ is also injective, hence a diffeomorphism. Since M ≈
R × ( is connected, also ( must be connected. As a consequence, |∇v| is
constant on (. Indeed, for any smooth curve γ ⊂ (, we have

d

dt
(|∇v| ◦ γ ) = Hess (v)

( ∇v

|∇v| ◦ γ , γ̇ (t)

)

= cv (γ )
〈
Xγ , γ̇ (t)

〉

= 0,

because γ̇ (t) ∈ T( and Xγ is orthogonal to (. Therefore |∇v| (x) = a ≥√
c, for every x ∈ (. Using this information into (2.19) with c > 0 gives

v (φ (t, x)) = α (t)

where we have set

α (t) = a√
c
sinh

(√
ct

)
+ s cosh

(√
ct

)
.

In particular, φ moves ( onto every other level set of v. To conclude, we
show that

φ∗ 〈 , 〉 = dt2 +
(
α′)2 (t) 〈 , 〉(0 , (2.21)

where 〈 , 〉( =(φ0)
∗〈 , 〉 denotes the metric induced by M on the smooth hy-

persurface(. Indeed, by the above reasonings (or applying Gauss Lemma)
we have

φ∗ 〈 , 〉 = dt2 + (φt )
∗ 〈 , 〉 .

Furthermore, using (2.18), (2.20) and the definition of the Lie derivative,

we see that, on T(φt = X⊥
φt
,

d

dt
(φt )

∗ 〈 , 〉 = 2α′′

α′ φ∗
t 〈 , 〉 .

Whence, integrating on [0, t] we conclude the validity of (2.21). Summa-
rizing, we have obtained that, if v has no critical point, then (M, 〈 , 〉) is
isometric to the warped product manifold

(
R × (, dt2 + α′ (t)2 〈 , 〉(

)
,

with ( a smooth hypersurface of M . By assumption, M is Einstein with

constant Ricci curvature − (m − 1) c, therefore ( is Einstein and the ex-

pression of its Ricci curvature follows from Lemma 2.1.
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(b.2.ii) To conclude, assume that v possesses at least one critical point o ∈ M and,

therefore, it is a nontrivial solution of the problem

{
Hess (v) = cv 〈 , 〉
|∇v| (o) = 0,

with c > 0. Since v is nonconstant, we have v (o) += 0. Using Kanai ver-

sion of Obata theorem, [13], we conclude that M is isometric to the hyper-

bolic space of constant curvature −c < 0 and v (x) = v (o) cosh
(√

cr (x)
)

where r (x) is the distance function from o. Inserting this expression into

(2.17) and (2.16) completes the proof of case (b) and, hence, of the theorem.

Example 2.4. Let M be any (possibly trivial) quotient of the Riemannian product

of standard spheres S2×S2 or a non trivial quotient of Sm . Then, M is Einstein, and

according to Theorem 2.3, (b.1) M has no nontrivial almost Ricci soliton structure.

A similar conclusion holds for possibly trivial quotients of the Riemannian

product of standard hyperbolic spaces H2 × H2. Clearly it suffices to consider

H2 × H2 itself. Since H2 × H2 is Einstein with Ric = −〈 , 〉, if it had the structure
of a nontrivial almost soliton structure, by Theorem 2.3 it would be isometric to the

warped product R ×g ( where ( is a 3 dimensional Einstein hypersurface and g

has the form given in the statement of the Theorem. It follows that ( has constant

negative curvature, and, from the expression of the Riemann tensor of a warped

product (see e.g., [20]), R ×g ( ≈ H2 × H2 would have strictly negative sectional

curvature, which is clearly impossible. Notice that the above reasoning shows that

in case b.2 if m = 4 and M is simply connected then ( is a hyperbolic space.

Now, suppose that we are given a warped product M = I×g( where ((, ( , ))
is an m-dimensional Einstein manifold and 0 ∈ I . If m ≥ 3, then, for some con-

stant a,
(Ric = − (m − 1) a ( , )( .

According to Lemma 2.1 in order that M be Einstein with MRic = −mc 〈, 〉 for
some c ∈ R, g must be given by (2.6) and cg (0)2 − g′ (0)2 = a. Therefore if (2.6)
is not satisfied, then M is not Einstein. We consider a function f (x, t) = f (t),
so that, using (2.2) and (2.8) we see that to give M = I ×g ( the structure of an

almost soliton we need to solve the system






f ′ g
′

g
= λ + (m − 1)

(
g′

g

)2
+ g′′

g
+ (m − 1) a

g2

f ′′ = λ + m
g′′

g

(2.22)

on I . Subtracting the first equation from the second we obtain

(
f ′

g

)′
= (m − 1)

gg′′ −
(
g′)2 − a

g3
= (m − 1) h (t)
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on I, and integrating

f (t) = B +
∫ t

0

g (s)

[
A + (m − 1)

∫ s

0

g′′g −
(
g′)2 − a

g3
dx

]
ds (2.23)

for some constants A, B ∈ R. Going back to (2.22) we then deduce

λ(t)=−(m−1) (g
′)2+ a

g2
−g′′

g
+g′

[
A + (m−1)

∫ t

0

g′′g− (g′)2 − a

g3
dx

]
. (2.24)

Summarizing we have obtained the following new set of examples.

Example 2.5. Let M = I ×g (m where (m is an Einstein manifold satisfying
(Ric = − (m − 1) a. Then, M supports an almost soliton structure f ′ ∂

∂t with

soliton function λ (t) where f (t) and λ (t) are defined respectively in (2.23) and
(2.24).

Remark 2.6. As observed above , if g does not satisfy (2.6), these almost solitons
are not Einstein hence necessarily different from those produced in Proposition 2.2

above. We also note that if ( is the standard (m − 1)-dimensional sphere, and g is
defined on I = [−1,+∞) satisfies g(2k)(−1) = 0, g′(−1) = 1 then we obtain a

model manifold in the sense of Greene and Wu (with radial variable r = t+1), and
the almost soliton structure, which is in general defined only on (−1,+∞) extends
to [−1,+∞) provided the functions f and λ can be smoothly extended in t = −1.
We note that expanding the function h as t → −1+ we obtain that

h (t) ∼ −a − 1+ o
(
(t − 1)3

)

(t − 1)3
.

Thus h integrable in a neighborhood of t = −1 and f and λ can be extended to
t = −1 if and only if a = −1.

3. Some basic formulas

The aim of this section is to prove some basic formulas for gradient Ricci almost

solitons. Some of them are well known for solitons, but we have chosen to re-

produce computations here since in our more general setting λ is a function and
significant extra terms appear along the way. Throughout this section computations

are performed with the method of the moving frame in a local orthonormal coframe

for the metric 〈 , 〉.
Lemma 3.1. Let (M, 〈 , 〉 ,∇ f ) be a gradient Ricci almost soliton. Then

1

2
% f |∇ f |2 = |Hess ( f )|2 − λ |∇ f |2 − (m − 2) 〈∇λ,∇ f 〉 . (3.1)
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Proof. We recall the defining equations

Ri j = λδi j − fi j . (3.2)

Taking covariant derivatives

Ri j,k = λkδi j − fi jk . (3.3)

Tracing with respect to j and k

Rik,k = λi − fikk . (3.4)

Next tracing the second Bianchi identities

Ri jkl,s + Ri jls,k + Ri jsk,l = 0

with respect to i and s we have

Ri jkl,i = R jl,k − R jk,l

and tracing again with respect to j and l

2Rik,i = Sk , (3.5)

where S denotes the scalar curvature. Using the commutation relations

Ri j,k = R ji,k

we then deduce

Rki,i = 1

2
Sk . (3.6)

Using (2.14) and (3.6) into (3.4) we finally obtain

1

2
Si = λi − fkki − ft Rti . (3.7)

Now, tracing (3.3) with respect to i and j yields

Si = mλi − fkki (3.8)

so that, substituting into (3.7) gives

Si = 2 (m − 1) λi + 2 fk Rki . (3.9)

In particular, from (3.9) we obtain

〈∇S,∇ f 〉 = 2 (m − 1) 〈∇λ,∇ f 〉 + 2Ric (∇ f,∇ f ) . (3.10)
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Next we recall Bochner formula

1

2
% |∇ f |2 = |Hess ( f )|2 + Ric (∇ f,∇ f ) + 〈∇% f,∇ f 〉 . (3.11)

Tracing (3.2)

S = mλ − % f

so that

∇% f = m∇λ − ∇S. (3.12)

Inserting (3.12) into (3.11) and using (3.10)

1

2
% |∇ f |2 = |Hess ( f )|2 + Ric (∇ f,∇ f ) + m 〈∇λ,∇ f 〉 − 〈∇S,∇ f 〉

= |Hess ( f )|2 − Ric (∇ f,∇ f ) − (m − 2) 〈∇λ,∇ f 〉 .

On the other hand, using

1

2

〈
∇ |∇u|2 , X

〉
= Hess (u) (∇u, X)

and (3.2) from the above we obtain

1

2
% f |∇ f |2 =1

2
% |∇ f |2 − 1

2

〈
∇ f,∇ |∇ f |2

〉

= |Hess ( f )|2 − (m − 2) 〈∇λ,∇ f 〉
− Ric (∇ f,∇ f ) − Hess ( f ) (∇ f,∇ f )

= |Hess ( f )|2 − λ |∇ f |2 − (m − 2) 〈∇λ,∇ f 〉 ,

that is, (3.1)

Corollary 3.2.

|∇ f |% f |∇ f | ≥ −λ |∇ f |2 − (m − 2) 〈∇λ,∇ f 〉 . (3.13)

Proof. From Kato’s inequality

|Hess ( f )|2 ≥ |∇ |∇ f ||2 .

Inserting into (3.1) we obtain (3.13).

We let S denote the scalar curvature and W the Weyl tensor of (M, 〈, 〉).
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Lemma 3.3. Let (M, 〈 , 〉 ,∇ f ) be a gradient Ricci almost soliton of dimension
m ≥ 3. Then

% f Rik = %λδik + (m − 2) λik + 2λRik − 2

m − 2

(
|Ric|2 − S2

m − 1

)
δik

− 2m

(m − 1) (m − 2)
SRik + 4

m − 2
Ris Rsk − 2Wi jks Rs j .

(3.14)

Therefore, tracing with respect to i and k

1

2
% f S = λS − |Ric|2 + (m − 1)%λ. (3.15)

Remark 3.4. Note that for (3.15) we do not need the restriction m ≥ 3. Indeed

(3.15) can also be obtained by tracing (3.18) below for which it is not required

m ≥ 3.

Proof. It follows from (3.3) and the commutations relations fi jk − fik j = Rli jk fl
that

Rik, j − R jk,i = fs Ri jks + λ jδki − λiδk j , (3.16)

and taking covariant derivatives we obtain the commutation relations

Rik, j t − R jk,i t = fst Ri jks + fs Ri jks,t + λ j tδki − λi tδk j . (3.17)

Also, from the commutation relations for the second covariant derivative of Rik we

have

Ri j,kl − Ri j,lk = Rit Rt jkl + R jt Rtikl ,

whence, contracting we obtain

R jk,i j = R jk, j i + Rsi Rsk + R jiks Rs j .

We now use (3.17) to obtain

%Rik = Rik, j j = R jk,i j + fs Ri jks, j + fs j Ri jks + %λδki − λik .

On the other hand, from the second Bianchi identities we have

fs Ri jks, j = Rik,s fs − Ris,k fs

and inserting this into the above identity yields

%Rik = fs j Ri jks− fs Ris,k + fs Rik,s+ R jk, j i+ Rsk Ris+ Rsj R jiks+ %λδik− λik .

Hence, from (3.5) and (3.2)

%Rik = 1

2
Ski+λRik+Rsk Ris+%λδik−λik−2Ri jks Rs j−Ris,k fs+Rik,s fs . (3.18)
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We shall now deal with the sum

Z = 1

2
Ski + Rsk Ris − fs Ris,k . (3.19)

Towards this aim we first observe that taking covariant derivative of (3.9) we have

1

2
Sik = f jk Ri j + f j Ri j,k + (m − 1) λik .

Substituting this into (3.19) and using the almost soliton equation (3.2) we obtain

Z = (m − 1)λik + λRik .

Substituting into (3.18) we therefore obtain

% f Rik =%Rik − fs Rik,s (3.20)

=2λRik + %λδik + (m − 2)λik − 2Ri jks R js .

The conclusion now follows recalling the decomposition of the curvature tensor

into its irreducible components.

Ri jks =Wi jks + 1

m − 2

(
Rikδ js − Risδ jk + R jsδik − R jkδis

)

− S

(m − 1) (m − 2)

(
δikδ js − δisδ jk

)
.

Substituting into (3.20) we obtain (3.14).

Corollary 3.5. Let (M, 〈 , 〉 ∇ f ) be a conformally flat gradient Ricci almost soli-
ton of dimension m ≥ 3. Then

% f Rik = %λδik + (m − 2) λik + 2λRik − 2

m − 2

(
|Ric|2 − S2

m − 1

)
δik

− 2m

(m − 1) (m − 2)
SRik + 4

m − 2
Ris Rsk .

Corollary 3.6. Let (M, 〈 , 〉 ,∇ f ) be as in Corollary 3.5 and let T = Ric− S
m

〈 , 〉
be the trace free Ricci tensor. Then

1

2
% f |T |2 = |∇T |2 + 2

(
λ − S

m − 2

m (m − 1)

)
|T |2

+ (m − 2) 〈Hess (λ) , T 〉 + 4

m − 2
tr

(
T 3

)
,

(3.21)

with T 3 = T ◦ T ◦ T . In particular, using Okumura’s lemma
1

2
% f |T |2 ≥2

(
λ − S

m − 2

m (m − 1)

)
|T |2 − 4√

m (m − 1)
|T |3 (3.22)

+ (m − 2) 〈Hess (λ) , T 〉 .
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Proof. We compute

% f |T |2 = 2 |∇T |2 + 2 〈T,%T 〉 −
〈
∇ f,∇ |T |2

〉

= 2Tik,l Tik,l + 2Tik% f Tik .

Using equation (3.15) and the definition of T , we have

% f Tik = % f Rik − 1

m
δik% f S = %λδik + (m − 2) λik + 2λRik

− 2

m − 2
|Ric|2 δik + 2

(m − 2) (m − 1)
S2δik − 2m

(m − 1) (m − 2)
SRik

+ 4

m − 2
Ris Rsk − 2

m
λSδik + 2

m
|Ric|2 δik − 2

m
(m − 1)%λδik

= −m − 2

m
δik%λ + (m − 2) λik + 2λTik − 2mS

(m − 1) (m − 2)
Tik

− 4

m (m − 2)
δik |Ric|2 + 4

m − 2

(
TisTsk + S2

m2
δik + 2S

m
Tik

)
.

Thus, recalling that T is trace free, we obtain

Tik% f Tik = 2λ |T |2 + (m − 2) λikTik

− 2(m − 2)S

m (m − 1)
|T |2 + 4

m − 2
tr(T 3),

and (3.21) follows. Inequality (3.22) follows immediately, since by Okumura’s

Lemma, [19],

tr
(
T 3

)
≥ − m − 2√

m (m − 1)
|T |3 .

4. Volume comparison results

In order to prove Theorem 1.2 we need two auxiliary results. The first is an im-

provement of Theorem 1.2 (a) of Wei and Wylie [31], where they assume θ and G
below to be constant.

Theorem 4.1. Let
(
M, 〈 , 〉 , e− f dvol

)
be a complete weighted manifold such that

〈∇r,∇ f 〉 ≥ −θ (r) , (4.1)

for some non-decreasing function θ ∈ C0
(
R+
0

)
. Assume

Ric f ≥ − (m − 1)G (r) 〈 , 〉 (4.2)
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for a smooth positive function G on R+
0 , even at the origin. Let g be a solution on

R+
0 of {

g′′ − Gg ≥ 0

g (0) = 0, g′ (0) ≥ 1 .
(4.3)

Then there exists a constant D > 0 such that ∀r ≥ 0

vol f (Br ) ≤ D

∫ r

0

g (t)m−1 e
∫ t
0 θ(s)dsdt. (4.4)

Proof. Let h be the solution on R+
0 of the Cauchy problem

{
h′′ − Gh = 0

h (0) = 0, h′ (0) = 1 .
(4.5)

Note that h > 0 on R+ since G ≥ 0. Fix x ∈ M \ (cut (o) ∪ {o}) and let γ :
[0, l] → M , l = length (γ ), be a minimizing geodesic with γ (0) = o, γ (l) = x .

Note that G (r ◦ γ ) (t) = G (t). From the Bochner formula applied to the distance
function r we have

0 = |Hess (r)|2 + 〈∇r,∇%r〉 + Ric (∇r,∇r) (4.6)

so that, using the Schwarz inequality, it follows that the function ϕ (t) = (%r) ◦
γ (t), t ∈ (0, l], satisfies the Riccati inequality

ϕ′ + 1

m − 1
ϕ2 ≤ −Ric (∇r ◦ γ ,∇r ◦ γ ) (4.7)

on (0, l]. With h as in (4.5) and using the definition of Ric f , (4.2) and (4.7) we
compute

(
h2ϕ

)′
= 2hh′ϕ + h2ϕ′

≤ 2hh′ϕ − h2ϕ2

m − 1
+ (m − 1)G (t) h2 + Hess ( f ) (∇r ◦ γ ,∇r ◦ γ ) h2

= −
(

hϕ√
m − 1

−
√
m − 1h′

)2
+ (m − 1)

(
h′)2 + (m − 1)G (t) h2

+ h2 ( f ◦ γ )′′ .

We let

ϕG (t) = (m − 1)
h′

h
(t)

so that, using (4.5)

(
h2ϕG

)′
= (m − 1)

(
h′)2 + (m − 1)G (t) h2.
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Inserting into the above inequality we obtain
(
h2ϕ

)′
≤

(
h2ϕG

)′
+ h2 ( f ◦ γ )′′ . (4.8)

Integrating (4.8) on [0, r] and using (4.5) yields

h2 (r)ϕ (r) ≤ h2 (r)ϕG (r) +
∫ r

0

h2 ( f ◦ γ )′′ dt. (4.9)

Next we recall that

ϕ f =
(
% f r

)
◦ γ = (%r) ◦ γ − 〈∇ f,∇r〉 ◦ γ = ϕ − ( f ◦ γ )′ . (4.10)

Thus, using (4.9), (4.5) and integrating by parts we compute

h2ϕ f ≤ h2ϕG − h2 ( f ◦ γ )′ +
∫ r

0

h2 ( f ◦ γ )′′ dt

= h2ϕG − h2 ( f ◦ γ )′ +
(
h2 ( f ◦ γ )′ )

∣∣∣
r

0
−

∫ r

0

(
h2

)′
( f ◦ γ )′ dt

= h2ϕG −
∫ r

0

(
h2

)′
( f ◦ γ )′ dt,

that is,

h2ϕ f ≤ h2ϕG −
∫ r

0

(
h2

)′
( f ◦ γ )′ dt (4.11)

on (0, l]. We observe that, because of (4.5) and G ≥ 0,
(
h2

)′ = 2hh′ ≥ 0 so that,

using (4.1), (4.5) and the monotonicity of θ , (4.11) yields

h2ϕ f ≤ h2ϕG + θ (r) h2

on (0, l], and
ϕ f ≤ ϕG + θ (r)

on (0, l]. In particular

% f r (x) ≤ (m − 1)
h′ (r (x))

h (r (x))
+ θ (r (x)) (4.12)

on M \ ({o} ∪ cut(o)). Proceeding as in [26, Theorem 2.4] one shows that (4.12)
holds weakly on all of M and reasoning as in [26, Theorem 2.14] one shows that

vol f (∂Br ) ≤ Dh (r)m−1 e
∫ r
0 θ(t)dt (4.13)

for some constant D > 0. Integrating over [0, r] and using the co-area formula we
get

vol f (Br ) ≤ D

∫ r

0

h (t)m−1 e
∫ t
0 θ(s)dsdt. (4.14)

Since g in (4.3) is a subsolution of (4.5) it follows, in [26, Lemma 2.1], that h ≤ g

on R+
0 so that (4.14) immediately implies (4.4)
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A second estimate on ϕ f can also be derived, replacing assumption (4.1) with

ξ (r) ≤ f ≤ ω (r) , (4.15)

for some functions ω, ξ ∈ C1
(
R+
0

)
with ω non decreasing and such that ξ ′ (r) ≤

ω′ (r) .
Towards this aim we integrate (4.11) again by parts to obtain

h2ϕ f ≤ h2ϕG −
[(
h2

)′
( f ◦ γ )

]∣∣∣∣
r

0

+
∫ r

0

(
h2

)′′
( f ◦ γ ) dt.

Now, using (4.5), (
h2

)′′
= 2

(
h′)2 + 2Gh2 ≥ 0,

because of the sign of G. Thus using (4.15), (4.5) and the fact that ω is non-

decreasing, from the above we obtain

h2ϕ f ≤ h2ϕG −
(
h2

)′
( f ◦ γ )|r0 + ω (r)

(
h2

)′∣∣∣∣
r

0

≤ h2ϕG −
(
h2

)′
(r) ( f ◦ γ ) (r) +

(
h2

)′
(r)ω (r)

≤ h2ϕG +
(
h2

)′
(r) [ω (r) − ( f ◦ γ ) (r)] .

Now (
h2

)′
= 2hh′ = 2

m − 1
h2 (m − 1)

h′

h
= 2

m − 1
h2ϕG, r > 0

so that the above inequality may be rewritten as

h2ϕ f ≤ h2
(
1+ 2

m − 1
(ω (r) − ( f ◦ γ ) (r))

)
ϕG, r > 0

and using (4.15)

ϕ f ≤
(
1+ 2

m − 1
(ω (r) − ξ (r))

)
ϕG, r > 0.

Let ω̃ (r) ≥ ω (r)−ξ (r) ≥ 0. Similarly to what we did in Theorem 4.1 we arrive at

(4.13), where θ (t) is now substituted by 2
m−1 ω̃ (t)ϕG (t). Thus we need to estimate

e

∫ r
r0
2ω̃(t) h

′
h .

∫ r

r0

2

m − 1
ω̃ (t)

h′

h
= 2

m − 1
ω̃ (r) log hm−1 (r) − 2

m − 1
ω̃ (r0) log h

m−1 (r0)

−
∫ r

r0

2

m − 1
ω̃′ (t) log hm−1 (t) dt.
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Now, by (4.5), h(t)↗+∞ as t → +∞. Choose r0 sufficiently large that h (r0)≥1.
Since ω̃′ ≥ 0

∫ r

r0

2

m − 1
ω̃ (t)

(
log hm−1

)′
dt ≤ log (h (r))2ω̃(r) − A,

and

e

∫ r
r0

2
m−1 ω̃(t)ϕG ≤ h (r)2ω̃(r) e−A.

Hence, from (4.13),

vol f (∂Br ) ≤ Dh (r)m−1+2ω̃(r) .

Since h ≤ g we have thus proven the following result, which improves on [31,

Theorem 1.2 (b)] of Wei and Wylie.

Theorem 4.2. Let
(
M, 〈 , 〉 , e− f dvol

)
be a complete weighted manifold such that

ξ (r) ≤ f ≤ ω (r)

for some functions ω, ξ ∈ C1
(
R+
0

)
with ω non decreasing and such that ξ ′ (r) ≤

ω′ (r). Assume
Ric f ≥ − (m − 1)G (r) 〈, 〉

for a smooth positive function G on R+
0 , even at the origin.

Let ω̃ (r) = ω (r) − ξ (r) and g be a solution on R+
0 of

{
g′′ − Gg ≥ 0

g (0) = 0, g′ (0) ≥ 1 .

Then there exist constants C ,B > 0 such that, ∀r ≥ r0 > 0,

vol f (Br ) ≤ C + B

∫ r

r0

g (t)(m−1)+2ω̃(t) dt.

We end this discussion with the following simple proposition which marginally

extends a previous result by Wei and Wylie, [31], and which will be used in the

proof of Theorem 1.4.

Proposition 4.3. Let (M, 〈 , 〉, e− f ) be a weighted manifold and assume that

Ric f ≥ D(1+ r)−µ.

(i) If D > 0 and 0 ≤ µ ≤ 1, then there exist constants C j > 0 such that for every

r > 2,

vol f (∂Br ) ≤
{
C1e

−C2r log(1+r) if µ = 1

C1e
−C2r2−µ

if 0 ≤ µ < 1
and vol f (Br ) ≤ C3
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(ii) If D = 0 then there exist constants C j > 0 such that for every r > 2,

vol f (∂Br ) ≤ C1e
r and vol f (Br ) ≤ C2e

r .

(iii) If D < 0 then there exist constants C j > 0 such that for every r > 2,

vol f (∂Br ) ≤






C1e
C2r if µ > 1

C1e
C2r log r if µ = 1

C1e
C2r

2−µ
if 0 ≤ µ < 1

and

vol f (Br ) ≤






C3e
C2r if µ > 1

C3(log r)
−1eC2r log r if µ = 1

C3r
µ−1eC2r

2−µ
if 0 ≤ µ < 1.

Proof. Maintaining the notation introduced above, it follows from (4.7), (4.10) and

the definition of Ric f that if ϕ f = % f r ◦ γ then

ϕ′
f = ϕ′ − ( f ◦ γ )′′ ≤ − ϕ2

m − 1
− Ric(γ̇ , γ̇ ) − Hess f (γ̇ , γ̇ ) ≤ −Ric f (γ̇ , γ̇ ).

Thus, if we assume that Ric f ≥ θ(r(x)) and that the ball Bε is contained in the

domain of the normal coordinates at o, setting C = max∂Bε % f r and integrating

between ε and r(x) we obtain

% f r(x) ≤ C −
∫ r(x)

ε
θ(t)dt

pointwise in the M \ (Bε ∪ cut(o)) and weakly on M \ Bε. From this, arguing as

in [26, Theorem 2.4] we deduce that

vol f (∂Br ) ≤ e
C(r−ro)−

∫ r
ro

(
∫ t
ε θ(s)ds)dt

vol f (∂Bro).

The conclusion now follows estimating the integral on the right hand side for

θ(s) = D(1+ s)−µ.

The second ingredient we shall need in the proof of Theorem 1.2 is the follow-

ing version of [14, Theorem 5.2].

Theorem 4.4. Let
(
M, 〈 , 〉 , e− f dvol

)
be a complete weighted manifold. Given

σ, µ ∈ R, let ν = µ + 2 (σ − 1) and assume that σ ≥ 0, σ − ν > 0. Let

u ∈ C1 (M) be a function such that

û = lim sup
r(x)→+∞

u (x)

r (x)σ
< +∞
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and suppose that

lim inf
r→+∞

log vol f (Br )

rσ−ν
= d0 < +∞. (4.16)

Then given γ ∈ R such that

3γ = {x ∈ M : u (x) > γ } += ∅
we have

inf
3γ

(1+ r (x))µ % f u ≤ C max
{
û, 0

}

with

C =






0 if σ = 0

d0 (σ − ν)2 if 0 < ν < σ

d0σ (σ − ν) if σ > 0, ν ≥ σ.

We are now ready to give the:

Proof of Theorem 1.2. First of all from Lemma 3.1 and assumption (1.6) we know

that |∇ f |2 satisfies the differential inequality

% f |∇ f |2 ≥ −2λ |∇ f |2 (4.17)

on M . Furthermore, from (1.4) we deduce

〈∇r,∇ f 〉 ≥ −a (1+ r)
σ
2 ,

for some constant a > 0. Using (1.5) we apply Theorem 4.1 with the choice θ (r) =
a (1+ r)

σ
2 to obtain

vol f (Br ) ≤ D

∫ r

0

g (t)m−1 e
2a

(σ+2)(m−1) (1+t)
σ+2
2
dt

for some constant B > 0 and where g solves (4.5) with G (r) = B2
(
1+ r2

) α
2 .

By [26, Proposition 2.11] it follows that, for r = 1,

g(r) ≤ C1 exp
(
C2e

α+2
2

)
,

for some constants C1,C2. Thus, a simple computation shows that

log vol f (Br )

r2−µ−σ
≤ C

(
rµ+σ−1+ α

2 + rµ−1+ 3
2σ

)

for r = 1 and some constant C > 0. Using (1.3) we see that assumption (4.16) of

Theorem 4.4 is satisfied with ν = µ + 2 (σ − 1) so that σ − ν = 2 − µ − σ . On
the other hand, from (4.17) and (1.5) we have

(1+ r (x))µ % f |∇ f |2 ≥ H |∇ f |2 (4.18)
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for some appropriate constant H > 0. Assume that |∇ f | is different from 0 and

choose γ > 0 so that

3γ =
{
x ∈ M : |∇ f |2 > γ

}
+= ∅.

From (1.4), (4.18) and Theorem 4.4 we immediately obtain a contradiction.

5. A weighted Omori-Yau maximum principle

Theorem 4.4 stated in the previous section represents a refined and generalized

version of what is known in the literature as the weak maximum principle at infinity;

[24, 25]. Indeed, taking σ = µ = 0, we deduce that, for a smooth function u on M

satisfying supM u = u∗ < +∞, there exists a sequence {xn} along which

u(xn) > u∗ − 1

n
, and % f u(xn) <

1

n
.

In general, under volume growth conditions, nothing can be said about the behavior

of the gradient of u. If, along the same sequence {xn}, we have that

|∇u(xn)| <
1

n

then we say that the full Omori-Yau maximum principle for the f -Laplacian holds.

The following result, which is a generalization of [25, Theorem 1.9], gives function-

theoretic sufficient conditions for a weighted Riemannian manifold (M,〈,〉,e− fdvol)
to satisfy the Omori-Yau maximum principle.

Theorem 5.1. Let
(
M, 〈 , 〉 , e− f dvol

)
be a weighted Riemannian manifold and as-

sume that there exists a non-negative C2 function γ satisfying the following condi-

tions

γ (x) → +∞ as x → ∞ (5.1)

∃A > 0 such that |∇γ | ≤ Aγ
1
2 off a compact set (5.2)

∃B > 0 such that % f γ ≤ Bγ
1
2G

(
γ
1
2

) 1
2
off a compact set (5.3)

where G is a smooth function on [0,+∞) satisfying

(i) G (0) > 0 (ii) G ′ (t) ≥ 0 on [0,+∞)

(iii) G (t)−
1
2 /∈ L1 (+∞) (iv) lim sup

t→+∞
tG(t

1
2 )

G(t) < +∞.
(5.4)

Then, given any function u ∈ C2 (M) with u∗ = supM u < +∞, there exists a

sequence {xn}n ⊂ M such that

(i) u (xk) > u∗ − 1

k
; (ii) |∇u (xk)| <

1

k
; (iii) % f u (xk) <

1

k
; (5.5)
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for each k ∈ N, i.e. the Omori-Yau maximum principle for % f holds on

(M, 〈, 〉, e− f dvol).

The proof of this theorem is similar to that of [25, Theorem 1.9] and we refer

to this one for more details.

Proof. We define the function

ϕ (t) = e
∫ t
0 G(s)

− 1
2 ds .

Proceeding as in [25] and using assumption (5.4) (iv), we have that

0 ≤ ϕ′ (t)
ϕ (t)

< c
(
tG

(
t
1
2

))− 1
2

(5.6)

for some constant c > 0. Next, we fix a point p ∈ M and, ∀k ∈ N, we define

Fk(x) = u (x) − u (p) + 1

ϕ (γ (x))
1
k

.

Then Fk (p) = 1/ϕ (γ (p))1/k > 0. Moreover, since u∗ < +∞ and ϕ (γ (x)) →
+∞ as x → +∞, we have lim supx→∞ Fk (x) ≤ 0. Thus, Fk attains a positive

absolute maximum at xk ∈ M . Iterating this procedure, we produce a sequence
{xk}. It is shown in [25] that

lim sup
k→+∞

u (xk) = u∗,

and by passing to a subsequence if necessary, we may assume that

lim
k→+∞

u (xk) = u∗.

If {xk} remains in a compact set, then xk → x̄ as k → +∞ and the sequence

zk = x̄ , for each k, clearly satisfies (5.5). We only need to consider the case when

xk → ∞ so that, according to (5.1), γ (xk) → +∞. Since Fk attains a positive

maximum at xk we have

(i) (∇ log Fk) (xk) = 0; (ii)% f (log Fk) (xk) = % (log Fk) (xk) ≤ 0. (5.7)

Note that from (5.7)(i) we have that

∇u(xk) = 1

k
(u(xk) − u(p) + 1)

ϕ′(γ (xk))

ϕ(γ (xk))
∇γ (xk).
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Furthermore, reasoning as in [25] we have

%u (xk) ≤ u (xk) − u (p) + 1

k

{
ϕ′ (γ (xk))

ϕ (γ (xk))
% (γ ) (xk)

+1
k

(
ϕ′ (γ (xk))

ϕ (γ (xk))

)2
|∇γ (xk)|2

}
.

Assume now that (5.2) and (5.3) hold so that they hold at xk for sufficiently large k.

A computation shows that

|∇u (xk)| ≤ a

k
· u (xk) − u (p) + 1

G
(
γ (xk)

1/2
)1/2

for some costant a > 0. Therefore, using (5.3) and (5.6), we obtain

% f u (xk) = %u (xk) − 〈∇u,∇ f 〉 (xk)

≤u (xk) − u (p) + 1

k

{
ϕ′(γ (xk))

ϕ(γ (xk))
%γ (xk) + 1

k

(
ϕ′(γ (xk))

ϕ(γ (xk))

)2
|∇γ |2(xk)

−ϕ′(γ (xk))

ϕ(γ (xk))
〈∇γ ,∇ f 〉 (xk)

}

=u (xk) − u (p) + 1

k

{
ϕ′(γ (xk))

ϕ(γ (xk))
% f γ (xk) + 1

k

(
ϕ′(γ (xk))

ϕ(γ (xk))

)2
|∇γ |2(xk)

}

≤u (xk)−u (p)+1
k

{
c

γ1/2G
(
γ1/2

)1/2 Bγ 1/2G
(
γ1/2

)1/2
+ 1

k
· c2

γG
(
γ 1/2

) A2γ
}

and the RHS tends to zero as k → +∞.

We now consider two important situations where Theorem 5.1 applies. First,

we recover a result by M. Fernández-López and E. Garcı́a Rı́o, [6].

Corollary 5.2. Let (M, 〈 , 〉 ,∇ f ) be a gradient shrinking Ricci soliton. Then, the
Omori-Yau maximum principle for the f -Laplacian holds.

Proof. Set G(t) = t2 + 1 and γ = f . It is proved in [6] that

γ → +∞ as x → ∞
|∇ f | = |∇γ | ≤ √

f = √
γ

% f γ = % f − |∇ f |2 ≤ % f ≤ γ 1/2G
(
γ 1/2

)1/2
,

that is, conditions (5.1), (5.2) and (5.3) of Theorem 5.1 are satisfied.
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The second situation concerns with general weighted manifolds whose Bakry-

Emery Ricci tensor is suitably controlled. Clearly it represents an extension of

Corollary 5.2 to non necessarily shrinking almost solitons.

Corollary 5.3. Let
(
M, 〈,〉 , e− f dvol

)
be a complete weighted manifold such that

Ric f ≥ − (m − 1)G (r) 〈,〉

for a smooth positive function G satisfyng (5.4), even at the origin. Assume also

that

|∇ f | ≤ CG (r)1/2 .

Then the Omori-Yau maximum principle for the f -Laplacian holds on M .

Proof. Let h be as in Theorem 4.1. Then

% f r ≤ (m − 1)
h′

h
+ |∇r | |∇ f | ≤ (m − 1)

h′

h
+ CG (r)1/2 ≤ DG (r)1/2 ,

and thus

% f r
2 = 2+ 2r% f r ≤ 2+ 2rG (r)1/2 ≤ CrG (r)1/2 ,

and the hypotheses of Theorem 5.1 are satisfied with γ = r2 outside the cut-locus

of o. This is enough to conclude. Indeed, since G is non-decreasing, we can use the

Calabi trick to show that, without loss of generality, the sequence {xk} constructed
in the proof of Theorem 5.1 can be always taken in M \ cut(o).

6. Triviality in the presence of weighted Poincaré-Sobolev inequalities

This section aims to prove Theorem 1.6 of the Introduction. In a sense it can be

considered as an isolation result for the soliton function of almost solitons with L p

soliton structure. Again we need a preliminary result. The next proposition can be

deduced by simple modifications to the proof of [26, Theorem 9.12].

Proposition 6.1. Let
(
M, 〈 , 〉 , e− f dvol

)
be a complete weighted manifold and as-

sume that, for some 0 ≤ α < 1, the Poincaré-Sobolev inequality

∫

M

|∇ϕ|2 e− f dvol ≥ S (α)−1
{∫

M

|ϕ| 2
1−α e− f dvol

}1−α

, (6.1)

holds for all ϕ ∈ C∞
0 (M) and some constant S (α) > 0. Let B ∈ R, q (x) ∈

C0 (M) and let ψ ∈ Liploc (M) be a non-negative weak solution of

ψ% f ψ + q (x)ψ2 ≥ −B |∇ψ |2

on M . Assume that, for some

σ > max {1, B + 1}
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we have ∫

Br

ψσ e− f = o
(
r2

)

as r → +∞. Then either ψ ≡ 0 or otherwise

‖q+ (x)‖
L
1
α (M,e− f )

≥ 4

S (α)

p − 1

p2
.

Remark 6.2. As we already observed in the Introduction, the validity of a Poincaré-
Sobolev inequality forces M to have infinite weighted volume. Furthermore, if

α = 0, (6.1) means precisely that the manifold has positive weighted spectral radius.

An immediate consequence of Proposition 6.1 is the following:

Theorem 6.3. Let (M, 〈 , 〉 ,∇ f ) be a complete, gradient Ricci almost soliton with
soliton function λ. Suppose either m = 2 or otherwise

〈∇ f,∇λ〉 ≤ 0. (6.2)

Assume the validity of the Poincaré-Sobolev inequality (6.1) for some 0 ≤ α < 1

and suppose that for some p > 1

∫

Br

|∇ f |p e− f = o
(
r2

)

as r → +∞. Then either the almost soliton is trivial or

‖λ+ (x)‖
L
1
α (M,e− f )

≥ 4

S (α)

σ − 1− B

σ 2
. (6.3)

Proof. From Corollary 3.2 and (6.2) we deduce

|∇ f |% f |∇ f | + λ |∇ f |2 ≥ 0.

Thus we can apply Proposition 6.1 with p = σ , B = 0, q (x) = λ (x) to deduce
that either the almost soliton is trivial or (6.3) holds.

Theorem 1.6 now follows immediately from Theorem 6.3. Indeed, since m ≥ 3,

a trivial almost soliton is necessarily Einstein and the soliton function λ must be
constant. On the other hand, the Poincaré-Sobolev inequality implies that M has

infinite volume, therefore λ+ = 0.
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7. Scalar curvature estimates

In this section we prove Theorem 1.4 stated in the Introduction. Namely, we show

that under a pointwise control on the soliton function, the scalar curvature of an

almost soliton is bounded from below. Furthermore, the lower bound of the scalar

curvature can be estimated both from above and from below and some rigidity at

the endpoints occurs.

We recall that a weighted manifold
(
M, 〈, 〉 , e− f dvol

)
is said to be f -parabolic

if whenever w is bounded below and satisfies % f w ≤ 0 then w is constant.

Proof of Theorem 1.4. Since |Ric|2 ≥ S2/m by the Cauchy-Schwarz inequality,

and %λ ≤ 0 by assumption, (3.15) in Lemma 3.3 yields

1

2
% f S = λS − |Ric|2 + (m − 1)%λ ≤ λS − S2

m
. (7.1)

Note next that since Ric f = λ ≥ λ∗ > −∞, by Proposition 4.3 we have

vol f (Br ) ≤ C1e
C2r

2

,

for some positive constants C1, C2, and, in particular,

lim inf
r→∞

log vol f (Br )

r2
≤ C2 < +∞. (7.2)

Applying [27, Theorem 12] to the function S− = max{−S, 0}, which is a weak
solution of

% f S− ≥ 2λS− − 2

m
S2−,

with a (x) = 2λ (x), b (x) = 2
m
, σ = 2, and deduce that

S−(x) ≤ sup
M

λ−(x)

1/m
,

from which we conclude that

S(x) ≥ min{mλ∗, 0}.

In particular, S∗ ≥ 0 if λ ≥ 0, and S∗ ≥ mλ∗ if λ∗ ≤ λ ≤ 0.

Next, again by (7.2), the weak minimum principle at infinity for% f holds (see

Theorem 4.4), and therefore we may find a sequence {xn} such that % f S(xn) ≥
−1/n and S(xn) → S∗. Computing the liminf of (7.1) along this sequence and
setting λ = lim inf λ(xn) we deduce that

0 ≤ λS∗ − S2∗/m.
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Thus, if λ = 0, then S∗ = 0, while if λ += 0, then solving the inequality yields
mλ ≤ S∗ ≤ 0 if λ < 0 and 0 ≤ S∗ ≤ mλ if λ > 0. Since obviously λ∗ ≤ λ ≤ λ∗,
this gives the scalar curvature estimates in (i), (ii) and (iii).

We now suppose that the scalar curvature achieves its lower bound and, ac-

cording to the classification in Theorem 2.3, we prove rigidity.

In case (i) using (7.1), we see that S(x) ≥ S∗ = mλ∗ satisfies

1

2
% f S ≤ − S

m
(S − mλ) ≤ − S

m
(S − mλ∗) (7.3)

on the open set 3 = {x ∈ M : S(x) < 0}. Therefore, if S(x0) = S∗ = mλ∗ < 0

for some x0, we deduce that the function u = S − mλ∗ ≥ 0 achieves its minimum

value u(x0) = 0 and satisfies the differential inequality

1

2
% f u + λ∗u ≤ 0

on 3. By the minimum principle, u(x) = 0 on the connected component 30 of

3 containing x0. It follows that the open set 30 is also closed, thus 30 = M and

u(x) = 0 on M . This means that S(x) = mλ∗ is constant. Using this information
into (7.3) we get that λ is constant. Going back to (7.1), by the equality case in the
Cauchy-Schwarz inequality, we obtain

Ric = λ 〈, 〉 ,

showing that M is Einstein and the soliton is trivial.

Assume next that the soliton is steady, so that λ ≡ 0. Then S(x) ≥ S∗ = 0

solves
1

2
% f S ≤ 0.

Therefore, if S(x0) = 0, arguing as above we conclude that M must be Ricci-flat

and, by case (a.1) of Theorem 2.3, M is a cylinder over a Ricci-flat, totally geodesic

hypersurfaces (.
Finally assume that the almost soliton is shrinking. Then, S(x) ≥ S∗ = 0

satisfies
1

2
% f S ≤ λS.

If S(x0) = 0 for some x0 ∈ M , by the minimum principle (see e.g. [10, page 35])

we deduce that S(x) = 0 is constant and all the inequalities used in (7.1) become

equalities. In particular, |Ric|2 = S2/m = 0 proving that M is Ricci-flat. By

case (a.2) in Theorem 2.3, λ is a positive constant and M must be isometric to the

standard Euclidean space.

It remains to prove the last statement. Suppose then that S∗ = mλ∗ > 0. Since

S ≥ S∗ = mλ∗ ≥ mλ > 0, it follows that mλS − S2 ≤ 0 on M . Thus from (7.1),

% f S ≤ 0
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and S > 0 is a nonnegative % f -superharmonic function. It follows that, if

(M, 〈, 〉, e− f dvol) is f -parabolic, then S = mλ∗ is constant. Using (7.1) we im-
mediately deduce S(λ− S

m
) = 0 so that λ = S

m
is constant. From (7.1) we have that

|Ric|2 = S2

m
, and, again by the equality case in the Cauchy-Schwarz inequality

Ric = λ 〈 , 〉 ,

with λ > 0. Thus M is Einstein and compact by Myers’ Theorem. Now from (1.2)

and the above considerations it follows that Hess ( f ) = 0 on M and compactness

implies that f is constant. Finally, if λ ≥ A2(1 + r)−µ with 0 ≤ µ ≤ 1, then by

Proposition 4.3 vol f (∂Br ) tends to zero as r → ∞, so, in particular,

1

vol f (∂Br )
+∈ L1(+∞)

and adapting to the diffusion operator % f standard proofs valid for the ordinary

Laplace-Beltrami operator, [28], one shows that (M,〈,〉,e− f dvol), is f -parabolic.

8. A gap theorem for the traceless Ricci tensor

Proof of Theorem 1.9. As noted in the previous proof, since Ric f is bounded below

by (1.12), the weak maximum principle for % f holds on (M, 〈 , 〉 ,∇ f ). Next, by
Corollary 3.6, (1.10), (1.11), and (1.12), we deduce that

1

2
% f |T |2 ≥ 2

(
λ∗ − S∗ m − 2

m (m − 1)

)
|T |2 − 4√

m (m − 1)
|T |3 .

Assuming that |T |∗ = supM |T | < +∞ (for otherwise there is nothing to prove)

we may apply the weak maximum principle for% f and deduce that either |T |∗ = 0

or |T |∗ ≥ 1
2
(
√
m(m − 1)λ∗ − S∗ m−2√

m(m−1) ). In the former case, T = 0 that is

Ric = S/m〈 , 〉 and sincem ≥ 3, S is constant by Schur’s lemma and M is Einstein,

as required to conclude the proof of Theorem 1.9.

9. Some topological remarks

We shall prove the next theorem, which extends results obtained in [4, 5, 17, 32].

Theorem 9.1. Let
(
M, 〈, 〉 , e− f dvol

)
be a geodesically complete weighted man-

ifold, and assume that there exists a point o ∈ M and functions µ ≥ 0 and g

bounded such that for every unit speed geodesic γ issuing from γ (0) = o we have

Ric f (γ̇ , γ̇ ) ≥ µ ◦ γ + 〈∇g ◦ γ , γ̇ 〉
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and ∫ +∞

0

µ ◦ γ (t)dt = +∞.

Then the following hold:

(a) If the above conditions hold then |π1 (M)| < ∞.

(b) If in addition Ric ≤ c < +∞ and µ = µo(r(x)) is radial, where r (x) =
dist (x, o), then M is diffeomorphic to the interior of a compact manifold N

with ∂N += ∅.
(c) If µ (x) ≥ µ0 > 0 and supM(|∇ f |+ |g|) ≤ F < +∞, then M is compact and

diam(M) ≤ 1
µ0

[
2F +

√
4F2 + π2 (m − 1) c

]

Clearly the Theorem applies to almost Ricci solitons for which the soliton function

λ satisfies the conditions listed in the statement.
These three conclusions can be deduced from the following lemmas which

estimates the integral of Ric along geodesics.

Lemma 9.2. Let (M, 〈, 〉) be a Riemannian manifold. Fix o ∈ M and let r (x) =
dist (x, o). For any point q ∈ M , let γq : [0, r (q)] → M be a minimizing geodesic

from o to q such that
∣∣γ̇q

∣∣ = 1.

(A) If h ∈ Liploc (R) is such that h ≥ 0 and h (0) = 0, then, for every q +∈ cut(o),

h2 (r (q))%r(q) ≤ (m − 1)

∫ r(q)

0

(
h′)2 ds −

∫ r(q)

0

h2Ric
(
γ̇q , γ̇q

)
ds.

If in addition h (r (q)) = 0, then for every q ∈ M ,

0 ≤ (m − 1)

∫ r(q)

0

(
h′)2 ds −

∫ r(q)

0

h2Ric
(
γ̇q , γ̇q

)
ds.

(B) For all q ∈ M such that r (q) > 2, we have

∫ r(q)

0

Ric
(
γ̇q , γ̇q

)
≤ 2 (m − 1) + Ho + Hq ,

where, as in [32], we have set

Hp = max

{
0, sup

B1(p)

Ric

}
, ∀ p ∈ M .

Proof. Part (A) is well known. We provide a proof which avoids the use of the

second variation formula for arc-length.
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Fix a point q ∈ M and suppose that q /∈ cut (o). Proceeding as in the proof of
Theorem 4.1 we rewrite (4.7) as

(
%r ◦ γq

)2

m − 1
+ d

ds

(
%r ◦ γq

)
+ Ric

(
γ̇q , γ̇q

)
≤ 0. (9.1)

If h ∈ Liploc (R) is such that h ≥ 0, h (0) = 0, multiplying by h2 equation (9.1)

and integrating on [0, t] we get

∫ t

0

h2

(
%r ◦ γq

)2

m − 1
ds +

∫ t

0

d

ds

(
%r ◦ γq

)
h2ds +

∫ t

0

h2Ric
(
γ̇q , γ̇q

)
ds ≤ 0.

Integrating by parts and noting that
(
%r ◦ γq

)
h2 → 0 as r → 0 we obtain

0 ≥
∫ t

0

h2

(
%r ◦ γq

)2

m − 1
ds + h2 (t)%r ◦ γq (t)

− 2

∫ t

0

hh′ (%r ◦ γq
)
ds +

∫ t

0

Ric
(
γ̇q , γ̇q

)
h2ds.

Since

2hh′ (%r ◦ γq
)

=2h%r ◦ γq√
m − 1

√
m − 1h′

≤h2
(
%r ◦ γq

)2

m − 1
+ (m − 1)

(
h′)2 ,

we deduce that

0 ≥ h2 (t)%r ◦ γq (t) − (m − 1)

∫ t

0

(
h′)2 ds +

∫ t

0

h2Ric
(
γ̇q , γ̇q

)
ds

and, setting t = r (q), we conclude that

h2 (r (q))%r(q) ≤ (m − 1)

∫ r(q)

0

(
h′)2 ds −

∫ r(q)

0

h2Ric
(
γ̇q , γ̇q

)
ds.

If in addition h satisfies h2 (r (q)) = 0, then the above inequality becomes

0 ≤ (m − 1)

∫ r(q)

0

(
h′)2 ds −

∫ r(q)

0

h2Ric
(
γ̇q , γ̇q

)
ds. (9.2)

This completes the proof if q /∈ cut (o). In the general case inequality (9.2) can be
extended to any q ∈ M using the Calabi trick. Indeed, suppose that q ∈ cut (o).
Translating the origin o to oε = γq (ε) so that q /∈ cut (oε), using the triangle
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inequality and, finally, taking the limit as ε → 0, one checks that (9.2) holds also in

this case.

To prove part (B) we note that if h ∈ Liploc (R) is such that h ≥ 0 and h (0) =
h (r (q)) = 0, then by we may rewrite (A) in the form

∫ r(q)

0

Ric
(
γ̇q , γ̇q

)
ds ≤ (m − 1)

∫ r(q)

0

(
h′)2 ds +

∫ r(q)

0

(
1− h2

)
Ric

(
γ̇q , γ̇q

)
ds.

Choosing

h (s) =






s 0 ≤ s ≤ 1

1 1 ≤ s ≤ r (q) − 1

r (q) − s r (q) − 1 ≤ s ≤ r (q) ,

where r (q) > 2, we obtain

∫ r(q)

0

Ric
(
γ̇q , γ̇q

)
ds ≤ 2 (m − 1) +

∫ 1

0

(
1− s2

)
Ric

(
γ̇q , γ̇q

)
ds

+
∫ r(q)

r(q)−1

(
1− (r (q) − s)2

)
Ric

(
γ̇q , γ̇q

)
ds

≤ 2 (m − 1) + Ho + Hq .

Lemma 9.3. Let
(
M, 〈, 〉 , e− f dvol

)
be a complete weighted Riemannian manifold.

Fix o ∈ M and let r (x) = dist (x, o) and assume that there exist functions µ and g

bounded such that for every unit speed geodesic γ issuing from o

Ric f (γ̇ , γ̇ ) ≥ µ(γ (t)) + 〈∇g, γ̇ 〉.
Then for every such geodesic

∫ t

0

Ric (γ̇ , γ̇ ) = 〈∇ f, γ̇ (0)〉 − 〈∇ f, γ̇ (t)〉 +
∫ t

0

µ (γ (s)) ds + g(γ (t)) − g(o)

≥ −
∣∣∇ fγ (0)

∣∣ −
∣∣∇ fγ (t)

∣∣ − 2 sup |g| +
∫ t

0

µ (γ (s)) ds.

Proof. By assumption

Ric (γ̇ , γ̇ ) + Hess ( f ) (γ̇ , γ̇ ) ≥ µ ◦ γ + 〈∇g, γ̇ 〉, (9.3)

which can be written in the form

Ric (γ̇ , γ̇ ) + d

dt
〈∇ f (γ ) , γ̇ 〉 ≥ µ ◦ γ + d

dt
(g ◦ γ ).

Now integrating on [0, t],

∫ t

0

Ric (γ̇ , γ̇ ) + 〈∇ f, γ̇ (t)〉 − 〈∇ f, γ̇ (0)〉 ≥
∫ t

0

µ (γ (s)) ds + g(γ (t)) − g(o).
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We are now in the position to give the:

Proof of Theorem 9.1. Following [32], let us consider the Riemannian universal

covering P : M ′ → M of M . Since P is a local isometry then M ′ is a weighted
complete Riemannian manifold with weight f ′ = f ◦ P . Moreover, since every

unit speed geodesic γ ′ projects to a unit speed geodesic γ = P ◦ γ ′ we see that

Ric′f ′(γ̇
′, γ̇ ′) = Ric f (γ̇ , γ̇ ) ≥ µ ◦ γ + d

dt
(g ◦ γ ) = µ′ ◦ γ ′ + d

dt
(g′ ◦ γ ′),

where the function g′ = g ◦ P is bounded and µ′ = µ ◦ P ≥ 0 satisfies

∫ +∞

0

µ′ ◦ γ ′(t)dt =
∫ +∞

0

µ ◦ γ (t)dt = +∞. (9.4)

We identify

π1 (M, o) = Deck(M ′),

the covering transformation group, and recall that there is a bijective correspon-

dence π1 (M, o) ←→ P−1 (o). Therefore it suffices to show that P−1 (o) ⊂
B′
R

(
o′) for some R = 1. Since π1 (M, o) = Deck(M ′) acts transitively on the

fibre P−1 (o), we have

P−1 (o) =
{
h

(
o′) : h ∈ Deck(M ′)

}
,

and we are reduced to showing that

r ′ (h
(
o′)) ≤ R < ∞, ∀h ∈ Deck(M ′),

where we have set r ′ (x ′) = distM ′
(
o′, x ′). Fix h ∈ Deck(M ′) and a unit speed,

minimizing geodesic γ ′
h(o′) :

[
0, r ′ (h

(
o′))] → M ′, issuing from γ ′

h(o′) (0) = o′.
Recalling that Ric′(γ̇ ′, γ̇ ′) = Ric′f ′(γ̇ ′, γ̇ ′)− d

dt
〈∇′ f ′◦γ ′, γ̇ ′〉 and using Lemma 9.2

(B) and Lemma 9.3 we get

∫ r ′(h(o′))

0

µ′ ◦ γ ′
h(o′) (s) ds ≤ 2 (m − 1) + Ho′ + Hh(o′)

+
∣∣∇′ f ′∣∣ (o′) +

∣∣∇′ f ′∣∣ (h
(
o′)) + 2 sup

M ′
|g′|.

Since P : M ′ → M is a local isometry and o′, h
(
o′) ∈ P−1 (o) we deduce

∣∣∇′ f ′∣∣ (o′) = |∇ f | (o) =
∣∣∇′ f ′∣∣ (h

(
o′)) .

On the other hand Deck(M ′) ⊂ Iso(M ′), so h(B′
1(o

′)) is isometric to B′
1

(
h

(
o′))

and we have
|Ho′ | =

∣∣Hh(o′)
∣∣ .
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Summarizing, we have obtained that, for every h ∈ Deck
(
M ′),

∫ r ′(h(o′))

0

µ′ ◦ γ ′
h(o′) (s) ds ≤ 2 {(m − 1) + Ho′ + |∇ f | (o)} + 2 sup

M

|g|. (9.5)

With this preparation, we now argue by contradiction and suppose that there exists

a sequence of transformations {hn} ⊂ Deck
(
M ′) such that

r ′ (hn
(
o′)) → +∞, as n → +∞. (9.6)

Let γ ′
hn(o′) (s) = expo′

(
sξ ′
n

)
, where

{
ξ ′
n

}
⊂ Sm−1

o′ ⊂ To′M ′. Then, there exists

a subsequence
{
ξ ′
nk

}
→ ξ ′ ∈ Sm−1

o′ as k → +∞ and, by the Ascoli-Arzelà’s

Theorem, the sequence of minimizing geodesics {γ ′
hnk (o

′)} converges uniformly on
compact subintervals of [0,+∞) to the unit speed geodesic γ ′(s) = expo′(sξ ′).
Since, by (9.4) ∫ +∞

0

µ′ ◦ γ ′ (s) ds = +∞,

we can choose T = 1 such that

∫ T

0

µ′ ◦ γ ′ (s) ds > 2 {(m − 1) + Ho′ + |∇ f | (o)} + 2 sup
M

|g|. (9.7)

On the other hand, according to (9.6) we find k0 > 0 such that, for every k ≥ k0,
r ′ (hnk

(
o′)) > T . It follows from this, from inequality (9.5) and the definition of

µ′ (x ′) = µ ◦ P
(
x ′) ≥ 0 that

∫ T

0

µ′ ◦ γ ′
hnk (o

′) (s) ds ≤
∫ r ′(hnk (o

′)
)

0

µ′ ◦ γ ′
hnk (o

′) (s) ds

≤ 2 {(m − 1) + Ho′ + |∇ f | (o)} + 2 sup
M

|g|.

Whence, letting k → +∞ we deduce

∫ T

0

µ′ ◦ γ ′ (s) ds ≤ 2 {(m − 1) + Ho′ + |∇ f | (o)} + 2 sup
M

|g|

which contradicts (9.7).

Now for the proof of (b), suppose Ric ≤ c. Fix q ∈ M such that r(q) =
dist(o, q) > 2, and let γq be a minimizing geodesic joining o to q. As above,
combining (B) of Lemma 9.2 and Lemma 9.3, and recalling that µ(x) = µo(r(x))
is radial we obtain

−|∇ f (o)| − |∇ f (γ (r(q)))| − 2 sup
M

|g| +
∫ r(q)

0

µo(s)ds ≤2(m − 1) + Hq + Ho

≤2(m − 1) + 2c,
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which implies

|∇ f (q)| ≥
∫ r(q)

0

µo(s)ds + {−|∇ f (o)| − 2(m − 1) − 2c} − 2 sup
M

|g|.

Since 0 < µo /∈ L1(+∞) if r(q) = 1, say r(q) ≥ R0, we have |∇ f (q)| > 0. Thus

f has no critical point in M \ BR0(o). Again from Lemmas 9.2 and 9.3, for every
0 ≤ t ≤ r(q),

∫ t

0

µo(s)ds − 〈∇ f ◦ γq , γ̇q〉 + 〈∇ f ◦ γq , γ̇q〉|s=0+ g(q) − g(o) ≤ 2(m − 1) + 2c,

so that

d

ds
f ◦ γq |s=t ≥

∫ t

0

µo(s)ds − {|∇ f (o)| + 2 sup
M

|g| + 2(m − 1) + 2c}.

Thus, integrating on [2, r(q)],

f (q) ≥
∫ r(q)

2

∫ t

0

µo(s)ds − | f (γq(2))|

−
{
|∇ f (o)| + 2 sup

M

|g| + 2(m − 1)2c
}(
r(q) − 2

)

≥
∫ r(q)

2

∫ r(q)

0

µo(s)ds − max
∂B2(o)

| f |

−
{
|∇ f (o)| + 2 sup

M

|g| + 2(m − 1) + 2c
}(
r(q) − 2

)
→ +∞,

for r(q) → +∞. Therefore f is a smooth exhaustion function whose critical points

are confined in a compact set. By standard Morse theory, there exists a compact

manifold N with boundary such that M is diffeomorphic to the interior of N .

Finally, we prove (c). Suppose that supM(|∇ f | + |g|) ≤ F < +∞. Then, by

(9.3) in Lemma 9.3, for every unit speed geodesic γ issuing from o we have

Ric(γ̇ , γ̇ ) ≥ µ0 + d

dt
G ◦ γ ,

where G ◦ γ = −〈∇ f ◦ γ , γ̇ 〉 + g ◦ γ satisfies |G ◦ γ | ≤ supM(|∇ f | + |g|). Using
Theorem 1.2 in [8] we obtain the desired diameter estimate.
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