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On the de Rham cohomology of solvmanifolds

SERGIO CONSOLE AND ANNA FINO

Abstract. Using results by D.Witte [35] on the superigidity of lattices in solvable
Lie groups we get a new proof of a recent remarkable result obtained by D. Guan
[15] on the de Rham cohomology of a compact solvmanifold, i.e., of a quotient
of a connected and simply connected solvable Lie group G by a lattice !. This
result can be applied to compute the Betti numbers of a compact solvmanifold
G/! even in the case that the solvable Lie group G and the lattice ! do not
satisfy the Mostow condition.

Mathematics Subject Classification (2010): 53C30 (primary); 22E25, 22E40
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1. Introduction

Let M be a compact solvmanifold, i.e. a quotient of a connected and simply con-

nected solvable Lie group G by a lattice !. Denote by AdG(G) (respectively,

AdG(!)) the subgroup of GL(g) generated by eadX , for all X in the Lie algebra
g of G (respectively, in the Lie algebra of !). It is well known that if G is a sim-

ply connected solvable Lie group, then AdG(G) is a solvable algebraic group and
Aut(G) ∼= Aut(g). We will denote by A(AdG(G)) and A(AdG(!)) the real alge-
braic closures of AdG(G) and AdG(!) respectively.

In general, as a consequence of the Borel density theorem (see [34, Corollary

4.2] and Theorem 3.1 here) applied to the adjoint representation, one has that if ! is
a lattice of a connected solvable Lie group G, thenA(AdG(G)) = TcptA(AdG(!))
is a product of the groups Tcpt andA(AdG(!)), where Tcpt is any maximal compact
torus ofA(AdG(G)).

If A(AdG(G)) = A(AdG(!)), i.e., if G and ! satisfy the Mostow condition,

then the de Rham cohomology H∗
dR(M) of the compact solvmanifold M = G/!

can be computed by the Chevalley-Eilenberg cohomology H∗(g) of the Lie algebra
g of G (see [26] and [30, Corollary 7.29]); indeed, one has the isomorphism

H∗
dR(M) ∼= H∗(g). (1.1)
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In the special case that G is nilpotent, or equivalently that M = G/! is a nil-

manifold, the Lie group AdG(G) is unipotent and therefore its real algebraic clo-
sure A(AdG(G)) coincides with AdG(G). Moreover, the real algebraic closure
A(AdG(!)) of the lattice AdG(!) coincides with AdG(G). For nilmanifolds the
isomorphism (1.1) was previously shown by K. Nomizu [27] using the Leray-Serre

spectral sequence. A similar isomorphism for the Dolbeault cohomology in the case

of some classes of complex structures on nilmanifolds was proved in [7, 8, 31].

Nilpotent Lie groups are a subclass of solvable Lie groups, called the com-

pletely solvable ones. We recall that a solvable Lie group G is completely solvable

if all the linear operators adX : g → g have only real eigenvalues (zero eigenvalues
in the nilpotent case), for all X ∈ g. For nilpotent, or more generally completely
solvable, Lie groups G, any lattice ! of G satisfies the Mostow condition, so (1.1)
holds and the isomorphism was first proved by A. Hattori [19] using a different

method.

In the case where A(AdG(G)) %= A(AdG(!)), it is in general very difficult to
compute the de Rham cohomology of G/!. As far as we know, the only known
result has been obtained recently by D. Guan and it has been applied to the classifi-

cation of compact complex homogeneous manifolds with pseudo-Kähler structures

(see [15, main theorem 1] and [16,17]). He proved that, if M = G/! is a compact

solvmanifold, then there exists a finite covering space M̃ = G/!̃, i.e., !/!̃ is a

finite group, such that M̃ = G̃/!̃, where G̃ is another simply connected solvable

real Lie group G̃, diffeomorphic to G, and satisfiying the Mostow condition

A(AdG̃(G̃)) = A(AdG̃(!̃)).

Guan proved the previous theorem by using the results of V. V. Gorbatsevich [11,

12] on Malcev and algebraic splitting of a solvable Lie group. The construc-

tion of the Malcev splitting (also called semisimple splitting) was introduced by

A. Malcev [20] and later improved by L. Auslander [1]. The general idea con-

sists in embedding solvable and general simply connected Lie groups into split

groups, i.e., in groups which are representable as semidirect products T ! N ,

where N is the nilradical and T is an Abelian subgroup acting on N by semisimple

automorphisms.

The nilradical of the semisimple splitting is called in the literature the nil-

shadow. The traditional nilshadow construction (see also [3]) kills an entire max-

imal torus. D. Witte in [35] refined the previous construction and he introduced a

method for killing a specific compact subtorus of the maximal torus.

Using this result of Witte, we find a different proof of Guan’s theorem. More

precisely, we show the following:

Main theorem. Let M = G/! be a compact solvmanifold, quotient of a simply

connected solvable Lie group G by a lattice !, and let Tcpt be a compact torus such
that

TcptA(AdG(!)) = A(AdG(G)).
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Then there exists a subgroup !̃ of finite index in ! and a simply connected normal

subgroup G̃ of Tcpt ! G such that

A(AdG̃(!̃)) = A(AdG̃(G̃)).

Therefore, G̃/!̃ is diffeomorphic to G/!̃ and H∗
dR(G/!̃) ∼= H∗(g̃), where g̃ is the

Lie algebra of G̃.

Observe that H∗
dR(G/!) ∼= H∗

dR(G/!̃)!/!̃ (the invariants by the action of the

finite group !/!̃).

In Section 6 we give a proof of the previous theorem and we apply it to the

special class of almost Abelian Lie groups. We recall that a simply connected Lie

group G is called almost Abelian if its Lie algebra g has an Abelian ideal of codi-
mension 1. In [13] the Mostow condition was studied for simply connected almost

Abelian Lie groups and the first Betti number of a compact quotient of a simply

connected almost Abelian Lie group by a lattice was already determined in [5].

ACKNOWLEDGEMENTS. We would like to thank Diego Conti and Daniel Guan

for useful comments. We also would like to thank the referee for valuable remarks

which improved the contents of the paper.

2. General properties of lattices in solvable Lie groups

Let G be a real Lie group. We recall that an element g ∈ G is unipotent (Ad-

unipotent) if the operator Adg on the Lie algebra g of G is unipotent, i.e. all of its

eigenvalues are equal to 1 or equivalently there exists a positive integer k such that

(Adg − id)k = 0. A subgroup H ⊂ G is unipotent if all its elements are unipotent.

An element g ∈ G is called semisimple (Ad-semisimple) if the operator Adg on the

Lie algebra g of G is C-diagonalizable.
Given two subgroups H and H ′ of G, the commutator [H, H ′] is the subgroup

of G generated by the elements

{h, k} = hkh−1k−1, h ∈ H, k ∈ H ′.

Given a Lie group G one may consider the descending chain of normal subgroups

G0 = G ⊃ G1 = [G,G] ⊃ · · · ⊃ Gi+1 = [Gi ,G] ⊃ . . . .

The Lie group G is nilpotent if the previous descending chain degenerates, i.e. if

Gi = {e}, where e is the identity element, for all i greater than or equal to some k.
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One may consider another descending chain of normal subgroups, called the

derived series

G(0) = G ⊃ G(1) = [G,G] ⊃ · · · ⊃ G(i+1) = [G(i),G(i)] ⊃ . . . .

and G is solvable if the previous chain degenerates. A solvable Lie group is called

completely solvable if every eigenvalue λ of every operator Adg, g ∈ G, is real.

The unipotent radical RaduG of a Lie group G is its largest normal subgroup

consisting of unipotent elements. In particular RaduG is a nilpotent subgroup of G.

We recall that the nilradical N of a Lie group G is its largest connected nilpotent

normal subgroup. In the general case RaduG ⊂ N . The nilradical N is unique and

the quotient G/N is a simply-connected Abelian Lie group. Thus G is an extension
of N by an Abelian Lie group Rk , i.e. G satisfies the exact sequence

1 → N → G → Rk → 1,

for some k ≥ 0. If G is solvable, the commutator [G,G] is nilpotent and therefore
the commutator [G,G] is a subgroup of RaduG and thus it is a subgroup of N . Any
compact solvable Lie group is commutative and hence it is a torus. Any simply

connected solvable Lie group is homeomorphic to a vector space, although the ex-

ponential map exp : g → G is not necessarily injective or surjective. Moreover,

a connected solvable Lie group G is simply connected if and only if G has no non

trivial compact subgroups.

A discrete subgroup ! of a solvable Lie group G is a lattice if G/! has a

finite invariant measure. By [30, Theorem 3.1] if G is a solvable Lie group with

countably many connected components and H is a closed subgroup, then G/H has

a G-invariant finite measure if and only if G/H is compact. Therefore, a uniform

discrete subgroup of a connected solvable Lie group G is always a lattice. The

identity component !0 of a lattice ! of G belongs to the nilradical N of G and the
space N/N ∩ ! is compact.

For any lattice ! of G we have that ! ∩ N is a lattice in the nilradical N

[1,25,30]. In general if G is a connected Lie group and G/! is a compact quotient
of G by a uniform discrete subgroup, then the normalizer NG(!0) is uniform in G
(!0 denotes the connected component of the identity). In the case of solvable Lie
groups there is no simple criterion for the existence of a lattice in a connected and

simply connected solvable Lie group. The only general necessary condition is that

the Lie group G has to be unimodular (see [22, Lemma 6.2]), i.e. the trace tr(adX )
vanishes for any X in the Lie algebra g of G. Since the Lie algebra g is unimodular,
Poincaré duality holds for the (co)-homology of g (see for instance [14, Section
5.11]).

3. Linear algebraic groups

We recall that a subgroup A of SL(n, R) is a real algebraic group or Zariski closed
if A is the set of zeros of a polynomial in matrix entries with real coefficients.
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One can also define a real algebraic group as a subgroup of GL(n, R) using the
embedding ρ : GL(n, R) → SL(n + 1, R) defined by

ρ(A) =





0

A
...

0

0 · · · 0 1

det A




.

So, a subgroup A of GL(n, R) is a real algebraic group if it is the set of zeros of
some collection of regular functions on GL(n, R), where for regular functions we
mean real valued functions on GL(n, R) for which there is a polynomial p in n2+1
variables, such that f (g) = p(gi j , det(g

−1)). As a subset of Rn2 , a real algebraic

group carries both the natural Euclidean topology which turns it into a real Lie

group and also the Zariski topology induced from GL(n, R).
A subgroup A of GL(n, R) is an almost algebraic group or almost Zariski

closed if there is a real algebraic group B ⊂ GL(n, R) such that B0 ⊂ A ⊂ B,

where B0 is the identity component of B in the Euclidean topology. The difference

between being real algebraic and almost real algebraic is slight, since B0 has always

finite index in B.

A real algebraic groupU is unipotent if every element g ofU is unipotent, i.e.,

there exists a positive integer k such that (g− I )k = 0. A real algebraic group T is a

torus if T is Abelian, Zariski connected and every element g of T is semisimple, i.e.

g is C-diagonalizable. A torus T is R-split if every element of T is diagonalizable
over R.

If G is a Zariski-connected, solvable real algebraic group, then (cf. [6]):

(1) the set U of all unipotent elements of G is a normal subgroup, which is called

the unipotent radical of G;

(2) G/U is Abelian;

(3) for every maximal torus T of G, one has G = T !U .

In particular, a Zariski-connected, solvable real algebraic group G has a decompo-

sition

G = (Tsplit · Tcpt) !U,

where Tsplit is the maximal R-split subtorus of T , Tcpt is the maximal compact
subtorus of T and Tsplit ∩ Tcpt is finite. In any connected almost algebraic group G

all the maximal compact tori are conjugate.

The (almost) Zariski closure A(H) of a subgroup H of an (almost) algebraic

group is the unique smallest (almost) algebraic subgroup that contains H . If K

is the Zariski closure of H , then A(H) = K 0H , i.e., A(H) is the union of all
connected components of K that intersect H . For instance, if H is connected, then

A(H) = K 0, so the almost Zariski closure of a connected group is connected.
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In general, given a Lie group G, we recall that AdG(G) is the subgroup of
GL(g) generated by eadX , for all X ∈ g. Since Ad exp X = eadX , we have that

AdG(G) has ad(g) as Lie algebra. Moreover AdGG is isomorphic to G/C , where
C is the center of G. It turns out that if G is a simply connected solvable Lie group

then AdG(G) is a solvable algebraic group. If H is a subgroup of a connected Lie

group G, we will denote by A(AdG(H)) the (almost) Zariski closure of AdG(H)
in the real algebraic group Aut(g), where g is the Lie algebra of G. Since G is

connected, by [35, Proposition 3.8]A(AdG(G)) acts onG and centralizes the center
of G. If G is in addition simply connected, Aut(G) ∼= Aut(g) so A(AdG(G)) lifts
to a group of automorphisms of G.

The set of unipotent elements in A(AdG(G)) forms a normal subgroup U, the
unipotent radical, and ifT is any maximal reductive subgroup ofA(AdG(G)) (a max-
imal algebraic torus), we have a semidirect product decomposition A(AdG(G)) =
T !U . If ! is a lattice of G, one has that A(AdG(!)) contains U (cf. [30, p. 45])

and soA(AdG(!)) can be written as S!U where S = A(AdG(!)) ∩ T . Note that

S leaves the Lie algebra n of the nilradical of G invariant as well as the Lie algebra
of the identity connected component of !.

Theorem 3.1 (Borel density theorem [35, Corollary 3.29]). Let ! be a lattice of

a simply connected solvable Lie group G, then there exists a maximal compact torus

Tcpt ⊂ A(AdG(G)), such that

A(AdG(G)) = TcptA(AdG(!)).

Since for a completely solvable Lie group G the adjoint representation has only real

eigenvalues, as a consequence (see for instance [35]), we have the following:

Proposition 3.2. Let ! be a lattice of a simply connected completely solvable Lie

group G, then A(AdG(G)) has no non trivial connected compact subgroups and
thus as a consequenceA(AdG(G)) = A(AdG(!)).

In particular this is the case when G is nilpotent, since in this case AdG(G)
is unipotent and thus A(AdG(G)) coincides with AdG(G). Note that when G is a

simply connected nilpotent Lie group, by the Birkhoff embedding theorem [1] there

exists a monomorphism B : G → B(n, R), where B(n, R) ⊂ SL(n, R) denotes the
group of strictly upper triangular matrices of order G (with all diagonal elements

equal to 1), which allows to treat G as an algebraic group all of whose connected

subgroups are algebraic. In the special case of a solvable Lie group G for which all

the eigenvalues of Ad(g), g ∈ G, belong to the the unit circle, then the algebraic

torus T inA(AdG(G)) = T !U is compact.

4. de Rham Cohomology of solvmanifolds

An important result related to lattices for compact solvmanifolds is the following:

Theorem 4.1 ([30, Theorem 3.6]). If !1 and !2 are lattices in simply connected
solvable Lie groups G1 and G2, respectively, and !1 ∼= !2, then G1/!1 is diffeo-
morphic to G2/!2.
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As a consequence two compact solvmanifolds with isomorphic fundamental

groups are diffeomorphic.

Example 4.2. Let G be the semidirect product R !ϕ R2, where

ϕ(t) =
(
cos(2π t) sin(2π t)

− sin(2π t) cos(2π t)
)

, t ∈ R.

The element 1 ∈ R and the standard integer lattice Z2 generate a lattice ! isomor-
phic to Z3. Applying the previous theorem one has that G/! is diffeomorphic to
the torus T 3.

In general AdG(!) and AdG(G) do not have the same Zariski closures. A
simple example for whichA(AdG(G)) %= A(AdG(!)) is the following.

Example 4.3. For the previous Example 4.2 we have by [25] that AdG (!) is
Abelian and thenA (AdG(!)) is also Abelian. But AdG (G) is not Abelian. Indeed,
A(AdG(G)) is locally isomorphic toG. Then in this caseA(AdG(!)) %=A(AdG(G)).

Let H∗(g) be the Chevalley-Eilenberg cohomology of the Lie algebra g of
G. In general, there is a natural injective map H∗(g) → H∗

dR(M) which is an
isomorphism in the following cases:

Theorem 4.4. Let G/! be a compact solvmanifold.

(1) [19] If G is completely solvable, then H∗
dR(G/!) ∼= H∗(g).

(2) [30, Corollary 7.29] If AdG(!) and AdG(G) have the same Zariski (i.e. real
algebraic) closure in GL(g), then H∗

dR(G/!) ∼= H∗(g).

For the sake of completness we will include the proof of (2), generalizing that given

by Nomizu [27] in the case of a nilmanifold.

Proof of (2). Let G(k) = [G(k−1),G(k−1)] and !(k) = [!(k−1),!(k−1)] be the de-
rived series for G and !. Remark that G(k) is nilpotent for any k ≥ 1 and that since

A(AdG(G)) = A(AdG(!)) a general result on lattices in nilpotent Lie groups ( [30,
Theorem 2.1]) implies that G(k)/!(k) is compact for any k. Hence G(k)/! ∩ G(k)

is compact for any k.

Let r be the last non-zero term in the derived series of G. Namely G(r+1) = (e)
and G(r) =: A %= (e). Observe that A is Abelian. So A/A ∩ ! := Tm is a compact

torus. Thus, M := G/A! is a compact solvmanifold with dimension smaller than

M := G/! and Tm ↪→ M
π→ M is a fibration.

Next, consider the Leray-Serre spectral sequence E
p,q
∗ associated with the

above fibration. One has

E
p,q
2 = H

p

dR(M, H
q

dR(T
m)) ∼= H

p

dR(M) ⊗ ∧q Rm ,

E
p,q
∞ ⇒ H

p+q
dR (M) .
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We now define a second spectral sequence Ẽ
p,q
∗ which is the Leray-Serre spectral

sequence relative to the complex of G-invariant forms (i.e., the Chevalley-Eilenberg

complex). Since
∧∗ g∗ is subcomplex of

∧∗
M , Ẽ

p,q
∗ ⊆ E

p,q
∗ and

Ẽ
p,q
2 = H p(g/a) ⊗

∧qRm , Ẽ
p,q
∞ ⇒ H p+q(g) ,

where a denotes the Lie algebra of A.
Now, since M is a compact solvmanifold of lower dimension than M , an in-

ductive argument on the dimension shows that H
p

dR(M) ∼= H p(g/a) for any p.

Thus E2 = Ẽ2 and one has the equality E∞ = Ẽ∞. Therefore, Hk
dR(M) =

Hk
dR(G/!) ∼= Hk(g) for any k.

Remark 4.5. By Proposition 3.2 it turns out that (1) is then a particular case of (2).

Moreover, one can have the isomorphism H∗(g) ∼= H∗
dR(G/!) even if AdG(!) and

AdG(G) do not have the same algebraic closure (see Example 6.5).

For a solvable Lie algebra g one has always that [g, g] %= g. Thus, as a conse-
quence, the first Betti number b1(G/!) of a compact solvmanifold G/! satisfies
the inequality:

b1(G/!) ≥ 1.

(see also [5, Corollary 3.12]). In the particular case of a nilmanifold G/!, one has
b1(G/!) ≥ 2.

5. Semisimple splitting and nilshadow

Let G be a connected and simply-connected solvable Lie group. We recall that G

can be viewed as the extension of the nilradical N by an Abelian Lie group Rk ,

but in general this extension does not split. If G is a solvable algebraic real group,

then G = A ! U , where U is a unipotent radical and A is an Abelian subgroup,

consisting of semisimple elements [21]. Thus in this case G splits.

Definition 5.1. A solvable simply connected Lie group G is splittable if G can

be represented in the form of a semidirect product G = A !ϕ N , where N is

the nilradical of G, A is an Abelian subgroup and the subgroup ϕ(A) ⊂ Aut(N )
consists of semisimple automorphisms.

By definition kerϕ is a discrete subgroup of A. Malcev introduced for an

arbitrary simply connected Lie group the general notion of splitting.

Definition 5.2. A semisimple splitting or a Malcev splitting of a simply connected

solvable Lie group G is an imbedding ι : G → M(G) of the group G in a splittable
simply-connected solvable Lie group M(G), such that if M(G) = TG !UG , where

UG is the nilradical of M(G) and TG is an Abelian subgroup acting on UG by

semisimple automorphisms, then

(1) M(G) = ι(G)UG (product of subgroups);

(2) M(G) = TG!ι(G) (semidirect product of TG with the normal subgroup ι(G)).
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Gorbatsevich proved in [11] that, for any simply connected solvable Lie group, a

Malcev splitting exists and it is unique. Then the general idea for semisimple split-

ting is to embed solvable and simply connected Lie groups in splits groups. We

briefly recall the construction. Let G be a simply connected solvable Lie group

and Ad : G → Aut(g) the adjoint representation of G in the automorphism

group Aut(g) of the Lie algebra g of G. The real algebraic group Aut(g) splits as
follows:

Aut(g) = (PT ) !U,

where P is a maximal semisimple subgroup, T is an Abelian subgroup of semisim-

ple automorphisms of g that commute with P (and the intersection P∩T is discrete)
and U is the unipotent radical of Aut(g).

The group AdG(G) is a connected solvable normal subgroup of Aut(g) and
thus it is contained in the radical T !U of the algebraic group Aut(g). Let θ : T !
U → T be the epimorphism induced by projection and TG = θ(AdG(G)). Thus
TG is a connected Abelian group of semisimple automorphisms of g and therefore
of G itself. The connected solvable Lie group M(G) = TG ! G is precisely the

semisimple splitting of G. It is possible to show that (see [2]) ifUG is the nilradical

of M(G), then M(G) is the semidirect product M(G) = TG !νs UG . Moreover,

M(G) = GUG , i.e. G and UG generate M(G). The new Lie group M(G) is
splittable, since the exact sequence

1 → UG → M(G) → Rk → 1

splits. The nilradical UG is also called the nilshadow of G. If we denote by

p : M(G) = TG !UG → TG, π : M(G) = TG !UG → UG,

the projections over TG and UG , then the restriction p : G → UG is a group

epimorphism and the restriction π : G → UG is a diffeomorphism. Moreover,

[UG,UG] ⊂ N , [TG,UG] ⊂ N

(see for instance [32]). Following [5] we give an explicit description of UG and

of the action νs of TG on UG . More precisely, if N is the nilradical of G, we

have that there exists a maximal connected and simply connected nilpotent Lie

subgroup K of G such that G is the product K · N [10, Proposition 3.3]. The

nilpotent Lie group K is also called a supplement for N in G and it is unique up to

conjugation.

There is a natural action of K on N induced by conjugation in G. Consider the

action

φ̃ : K −→ Aut (G),

given by

φ̃(a)(k · n) = k · (Ia|N )s(n),
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where (Ia|N )s(n) is the semisimple part of the inner automorphism of N , obtained
by conjugating the elements of N by a. Then, there is an induced action φ of

TG = K/(N ∩ K ) ∼= (K N )/N ∼= G/N ∼= Rk .

on G which makes the following diagram commutative:

K Aut(G)

TG = K/(K ∩ N)
!

π

"φ̃

φ

!

The semisimple splitting M(G) coincides with the semidirect product

TG !φ G.

Indeed, one has an imbedding ι : G −→ TG !φ G of G into TG !φ G such that

ι(G) is a closed normal subgroup of TG !φ G. Moreover, by [5] the nilradical of

TG !φ G is:

UG = {π(k−1) · k | k ∈ K } · N = {(π(k−1), k · n) | k ∈ K , n ∈ N } ⊂ TG !φ G

and TG ∩UG = {e}. Then
TG !φ G = TG !νs UG,

coincides with the semisimple splitting M(G) of G, where UG is the nilradical of

M(G) and νs is the semisimple automorphism:

νs(t)(π(k−1) · (k · n)) := t · π(k−1) · (k · n) · t−1 = π(k−1) · (k · φ̃(kt )(n)),

for any t ∈ TG, k ∈ K , n ∈ N and any kt ∈ π−1({t}). In this way, one has the
diagonal embedding:

+ : G = K · N → M(G) = Rk ! G, k · n 0→ (π(k−1), k · n)
and the nilradical UG coincides with the image +(G). By construction, UG is

diffeomorphic to G but it has a different product that makes it nilpotent.

More explicitly, at the level of Lie algebras we have that there exists a vector

space V ∼= Rk such that g = V ⊕ n and ad(A)s(B) = 0, for any A, B ∈ V , where

ad(A)s is the semisimple part of ad(A). By considering V ∼= Rk as an Abelian Lie

algebra, then the Lie algebra of the semisimple splitting M(G) of G is V !ad(...)s g,
i.e.

[(A, X), (B,Y )] = (0, [X,Y ] + ad(A)s(Y ) − ad(B)s(X)),

with nilradical (the Lie algebra of UG)

uG = {(−XV , X), | X ∈ g},
where XV denotes the component of X in V . Note that uG is isomorphic to g only
as a vector space.
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Example 5.3. If G is nilpotent, then by definition M(G) = G. Now suppose in

addition that G is splittable, i.e. G = A!N , where N is the nilradical of G and the

Abelian group A acts on N by semisimple automorphisms. Let ∗ : A → Aut(N ) be
the natural homomorphism, then the image ∗(A) = A∗ is an Abelian subgroup of
Aut(N ) consisting of semisimple elements and A∗ can be considered as a subgroup
of Aut.

Therefore TG = A∗, M(G) = A∗ ! G and the nilshadow UG is

{((a∗)−1, a) | a ∈ A} · N .

In this case one says that the nilshadow is the image of the “anti-diagonal” map

A ! N → A∗ ! (A ! N ), (a, n) 0→ ((a∗)−1, (a, n)).

By construction there is a strict relation between the semisimple splitting of G and

the algebraic closure A(AdG(G)) of AdG(G). Since G is solvable and simply

connected, then Aut(G) ∼= Aut(g), AdG(G) is a solvable algebraic group and it is
connected as algebraic group. Therefore its closureA(AdG(G)), in GL(g), has the
Chevalley decomposition

A(AdG(G)) = T !U (5.1)

where U is the unipotent radical (i.e. the largest normal subgroup of A(AdG(G))
consisting of unipotent elements) and T is an Abelian subgroup (a maximal al-

gebraic torus) acting by semisimple (i.e. completely reducible) linear operators.

Although U is nilpotent, it is important to note that U need not to be the nilradical

of A(AdG(G)). Note that T is any maximal reductive subgroup of A(AdG(G))
and it is a standard fact that all such groups T are conjugate by elements of U .

The group Aut(g) is algebraic and AdG(G) ⊂ Aut(g). Therefore, the group T
may be considered as a subgroup of Aut(g) ∼= Aut(G). There is a natural epimor-
phism with kernel U :

θ : T !U −→ T .

Let T ∗
G = θ(AdG(G)) be the image of AdG(G) by the previous epimorphism, i.e.

T ∗
G can be viewed as the image of AdG(G) in T .
We can view either T or T ∗

G as a group of automorphisms of G. By using the

imbeddings

T ∗
G −→ Aut(G), T −→ Aut(G)

we may construct the two semi-direct products

T ∗
G ! G and T ! G.

The semisimple splitting is the universal covering M(G) = TG ! G = Rk ! G of

the Lie group T ∗
G ! G. In general TG is not an algebraic subgroup of Aut(g) and

it could possibly be not closed in the Euclidean topology, but if G admits lattices,

then the subgroup TG is closed in the Euclidean topology.
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Remark 5.4. The semidirect product T!G splits as a semi-direct product T!UG ,

since the nilradical UG of M(G) coincides with the nilradical of T !G and T !G

admits the structure of algebraic group (defined over the real numbers). Moreover,

G, as a subgroup of T ! G, is Zariski dense and hence one may think of T ! G as

a kind of “algebraic hull” of G.

6. The nilshadow map and its applications to the cohomology

Let G be a connected, solvable real algebraic group, then G is a semidirect product

of the form G = T !U , where T = Tsplit × Tcpt is a torus and U is nilpotent. One

can see, following the paper [35], that the subgroup T acts on G (by conjugation),

thus one can construct the semidirect product:

T ! G = T ! (T !U),

and the nilshadow +(G) can be embedded in T ! G by the map:

(t, u) → (t−1, t, u) ∈ T ! (T !U),

where t−1 acts on G = T !U by conjugation.

The anti-diagonal imbedding of T sends it into the center of T ! G. In this

way the nilshadow UG can be viewed as the image of the map:

+ : G → T ! G, g 0→ +(g) = (π(g)−1, g),

where π : G → T is the projection, i.e. UG = +(G). This antidiagonal embedding
of T is the main idea of the nilshadow construction.

For the general case of a solvable (non nilpotent) Lie group G, which may

not be real algebraic, one has that A(AdG(G)) = T ! U is not unipotent, i.e.

a maximal torus T = Tsplit × Tcpt of A(AdG(G)) is non trivial. The basic idea
for the construction of the nilshadow is to kill T in order to obtain a nilpotent

group. In order to do this one can define, following [35], a natural homomorphism

π : G → T , which is the composition of the homomorphisms:

π : G Ad−−→ → A(AdG(G))
projection−−−−→ T,

and the map

+ : G → T ! G, g 0→ +(g) = (π(g)−1, g).

The traditional nilshadow construction kills the entire maximal torus T in order to

get the nilpotent Lie group +(G). Witte introduced in [35] a variation, killing only
a subtorus S of T . It is well known that, for every subtorus S of a compact torus T ,

there is a torus S⊥ complementary to S in T , i.e. such that T = S × S⊥.
As a consequence of [35, Proposition 8.2] now we are able to prove the main

theorem.

Proof of the main theorem. By [30, Theorem 6.11, p. 93] it is not restrictive to

suppose that A(AdG(!)) is connected. Otherwise we pass from ! to a finite index
subgroup !̃. This is equivalent to passing from M = G/! to the space G/!̃



ON THE DE RHAM COHOMOLOGY OF SOLVMANIFOLDS 813

which is a finite-sheeted covering of M . Let Tcpt be a maximal compact torus of

A(AdGG) which contains a maximal compact torus S⊥
cpt of A(AdG(!̃)). There is

a natural projection fromA(AdG(G)) to Tcpt, given by the splittingA(AdG(G)) =
(A × T ) !U, where A is a maximal R-split torus and U is the unipotent radical.

Let Scpt be a subtorus of Tcpt complementary to S
⊥
cpt so that Tcpt = Scpt × S⊥

cpt.

Let σ be the composition of the homomorphisms:

σ : G Ad−−→ A(AdG(G))
projection−−−−−−→ Tcpt

projection−−−−−−→ Scpt
x→x−1

−−−−−−→ Scpt.

One may define the nilshadow map:

+ : G → Scpt ! G, g 0→ (σ (g), g),

which is not a homomorphism (unless Scpt is trivial and then σ is trivial), but one
has

+(ab) = +(σ (b−1)aσ (b))+(b), ∀a, b ∈ G

and +(γg) = γ+(g), for every γ ∈ !̃, g ∈ G. The nilshadow map + is a diffeo-

morphism onto its image and so +(G) is simply connected. The product in +(G)
is given by:

+(a)+(b) = (σ (a), a) (σ (b), b) = (σ (a)σ (b), σ (b−1)aσ (b) b),

for any a, b ∈ G.

By constructionA(AdG(!̃)) projects trivially onto Scpt and σ (!̃)={e}. There-
fore

!̃ = +(!̃) ⊂ +(G).

Let G̃ = +(G). By [35, Proposition 4.10] S⊥
cpt is a maximal compact subgroup of

A(AdG̃(G̃)) and S⊥
cpt ⊂ A(AdG̃(!̃)), therefore one hasA(AdG̃(G̃))=A(AdG̃(!̃))

as shown in [35].

By using Theorem 4.1 we have that G/!̃ is diffeomorphic to G̃/!̃. Finally,
by applying Theorem 4.4 we have that H∗(G/!̃) ∼= H∗(g̃). By considering the
diffeomorphism

+ : G → G̃,

we have that +−1 induces a finite-to-one covering map

+∗ : G̃/!̃ → G/!.

Corollary 6.1. At the level of Lie algebras if we denote by Xs the image σ∗(X), for
X ∈ g, then the Lie algebra g̃ of G̃ can be identified by

g̃ = {(Xs, X) : X ∈ g}
with Lie bracket:

[(Xs, X), (Ys,Y )] = (0, [X,Y ] − ad(Xs)(Y ) + ad(Ys)(X)).

We now obtain some applications of the main theorem by explicitly computing the

Lie group G̃.
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Example 6.2 (Nakamuramanifold). Consider the simply connected complex solv-

able Lie group G defined by

G =










ez 0 0 w1
0 e−z 0 w2
0 0 1 z

0 0 0 1



 | w1, w2, z ∈ C





.

The Lie group G is the semi-direct product C !ϕ C2, where

ϕ(z) =
(
ez 0

0 e−z

)
.

A basis of complex left-invariant 1-forms is given by

φ1 = dz, φ2 = e−zdw1, φ3 = ezdw2

and in terms of the real basis of left-invariant 1-forms (e1, . . . , e6) defined by

φ1 = e1 + ie2, φ2 = e3 + ie4, φ3 = e5 + ie6,

we obtain the structure equations:






de j = 0, j = 1, 2,

de3 = −e13 + e24,

de4 = −e14 − e23,

de5 = e15 − e26,

de6 = e16 + e25,

where we denote by ei j the wedge product ei ∧ e j .

Let B ∈ SL(2, Z) be a unimodular matrix with distinct real eigenvalues: λ, 1λ .
Consider t0 = log λ, i.e. et0 = λ. Then there exists a matrix P ∈ GL(2, R) such
that

PBP−1 =
(

λ 0

0 λ−1

)
.

Let
L1,2π = Z[t0, 2π i] = {t0k + 2πhi, h, k ∈ Z},

L2 =
{
P

(
µ
α

)
| µ,α ∈ Z[i]

}
.

Then, by [33] ! = L1,2π !ϕ L2 is a lattice of G.

Since G has trivial center, we have that AdG(G) ∼= G and thus it is a semidirect

product R2 ! R4. Moreover, for the algebraic closures of AdG(G) and AdG(!) we
obtain

A(AdGG) = (R# × S1) ! R4, A(AdG!) = R# ! R4,
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where the split torus R# corresponds to the action of e 12 (z+z) and the compact torus
S1 to the one of e

1
2 (z−z).

Therefore in this case A(AdG(G)) = S1A(AdG(!)) and A(AdG(!)) is con-
nected. By applying the main theorem there exists a simply connected normal sub-

group G̃ = +(G) of S1!G. The new Lie group G̃ is obtained by killing the action

of e
1
2 (z−z). Indeed, we get that

G̃ ∼=










e
1
2 (z+z) 0 0 w1

0 e−
1
2 (z+z) 0 w2

0 0 1 z

0 0 0 1



 | w1, w2, z ∈ C





.

The diffeomorphism between G/! and G̃/! was already shown in [33]. Then in
this case one has the isomorphism H∗

dR(G/!) ∼= H∗(g̃), where g̃ denotes the Lie

algebra of G̃ and the de Rham cohomology of the Nakamura manifold G/! is not
isomorphic to H∗(g) (see also [9]).

Example 6.3. Let consider the 3-dimensional solvable Lie group R ! R2 with
structure equations 





de1 = 0,

de2 = 2πe13,

de3 = −2πe12.
is a non-completely solvable Lie group which admits a compact quotient and the

uniform discrete subgroup is of the form ! = Z ! Z2 (see [29, Theorem 1.9]

and [24]). Indeed, the Lie group R ! R2 is the group of matrices




cos(2π t) sin(2π t) 0 x
− sin(2π t) cos(2π t) 0 y

0 0 1 t

0 0 0 1





and the lattice ! generated by 1 in R and the standard lattice Z2, as in Example 4.2.
By applying the main theorem we have that A(AdG(G)) = S1 ! R2 and

A(AdG(!)) = R2. Therefore in this case G̃ ∼= R3 ⊂ S1!G. By applying the main

theorem we get that G̃ ∼= R3. Indeed, it is well known that G/! is diffeomorphic
to a torus.

The previous exampleR!R2 is a special case of an almost Abelian Lie group.
We recall that a Lie algebra g is called almost Abelian if it has an Abelian ideal of
codimension 1, i.e. if it can be represented as a semidirect sumR!b, where b is an
Abelian ideal of g. In [13] Gorbatsevich found a sufficient and necessary condition
under which given an almost Abelian Lie group G and a lattice ! of G one has the
equalityA(AdGG) = A(AdG!). More precisely, he showed the following:
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Theorem 6.4 ([13, Theorem 4]). Let G = R !ϕ Rn be a simply connected almost

Abelian Lie group and ! = Z ! Zn be a lattice in G. Let z be a generator for the

subgroup Z ⊂ !. The action of z on Rn defines some matrix, i.e., z ∈ GL(g) and
suppose that the one-parameter subgroup corresponding to the subgroup A = R
is exp(t · Z), where Z is some matrix in the Lie algebra of derivations of the Lie

algebra n of the nilradical N of G. Therefore there is a unipotent matrix J such

that z = J · exp(Z).
ThenA(AdGG) = A(AdG!) if and only if the number iπ is not representable

as a linear combination of the numbers λk , k = 1, . . . , n, with rational coefficients,
where {λ1, . . . , λn} is the spectrum of Z .

The idea for the proof of the previous theorem is that

A(AdG(G)) = A(AdG(A)) ! AdG(N ),

A(AdG(!)) = A(AdG(Z)) ! AdG(N ),

since AdG(N ) is algebraic closed. Therefore, finding A(AdG(!)) reduces to find-
ing the algebraic closure of the image of a cyclic subgroup (i.e. Z in the above

decomposition for !). In comparing A(AdG(A)) and A(AdG(Z)) the unipotent
matrix J plays no role, so one can suppose that z = exp(Z). Therefore, we may
assume that A = exp(t Z) is the one-parameter subgroup generated by Z and Z is
the cyclic subgroup generated by z = exp(Z). One can use the decomposition z =
zszu , where zs (the semisimple part) is diagonal, i.e. zs = diag(exp(λ1, . . . , λn))
and zu is unipotent. The semisimple part of the algebraic closure of Z consists of

diagonal matrices and then it is contained in some algebraic torus. It is also clear

that the algebraic closure of the semisimple part zs is the intersection of the kernels

of the diagonal matrices/ke
λknk .

In this way, Gorbatsevich showed that A(AdG(A)) = A(AdG(Z)) if and only
if iπ is not representable as a linear combination of the numbers λk , k = 1, . . . , n,
with rational coefficients. If iπ is not representable as a linear combination of the
numbers λk , k = 1, . . . , n, with rational coefficients, then one may apply Theorem
4.4 to compute the de Rham cohomology of the compact solvmanifold G/! and

one has that H∗
dR(G/!) ∼= H∗(g). Otherwise, i.e. if iπ is a rational linear combi-

nation of the numbers λk , k = 1, . . . , n, the only known result about the de Rham
cohomology of G/! is that (see [5, Proposition 4.7])

b1(G/!) = n + 1− rank(ϕ(1) − id).

By applying the main theorem one obtains a method to compute the de Rham

cohomology of G/! even in the latter case. It is not restrictive to suppose that

A(AdG!) is connected (otherwise one considers a finite index subgroup !̃ of !).
Then A(AdGG) = S1A(AdG!), or equivalently A(AdG(A)) = S1, and we may

apply the main theorem.

Example 6.5. (Hyperelliptic surface) Consider the solvable Lie group G = R!ϕ

(C × R), where the action ϕ : R → Aut(C × R) is defined by

ϕ(t)(z, s) = (eiηt z, s),
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where η = π, 2
3
π, 1

2
π or 1

3
π . By [18] G has seven isomorphism classes of lattices

! = Z !ϕ Z3 where the action ϕ : Z → Aut(Z3) is defined by a matrix ϕ(1)

which has eigenvalues 1, eiη and e−iη. Since ϕ(1) has a pair of complex conjugate
imaginary roots, by applying Theorem 6.4, in this case we have A(AdG(G)) %=
A(AdG(!)). In this caseA(AdG(!)) is not connected, but we have that ! contains
as a finite index subgroup !̃ ∼= Z4. In this way we get that the compact solvmanifold
G/! is a finite covering of a torus. Note that in this case H1dR(G/!) ∼= H1(g) even
if G and ! do not satisfy the Mostow condition. Indeed, G has structure equations






de1 = e24,

de2 = −e14,
de3 = 0,

de4 = 0

and H1(g) = span〈e3, e4〉.
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