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Global classification of isolated singularities

in dimensions (4,3) and (8,5)

LOUIS FUNAR

Abstract. We characterize those closed 2k-manifolds admitting smooth maps
into (k + 1)-manifolds with only finitely many critical points, for k ∈ {2, 4}.
We compute then the minimal number of critical points of such smooth maps for
k = 2 and, under some fundamental group restrictions, also for k = 4. The main
ingredients are King’s local classification of isolated singularities, decomposi-
tion theory, low dimensional cobordisms of spherical fibrations and 3-manifolds
topology.
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1. Introduction and statements

Let ϕ(Mm, Nn) denote the minimal number of critical points (not necessarily non-
degenerate) of smooth proper (i.e. such that the inverse image of the boundary is

the boundary) maps between the smooth manifolds Mm and Nn . When superscripts

are specified they denote the dimension of the respective manifolds.

When we take Nn = R one obtains a classical homotopy invariant, namely the
F-category of the manifold Mm . Using Morse-Smale theory Takens proved that the

F-category of a closed manifold is bounded by m + 1 (see [57] for a refined upper

bound in terms of the connectedness, the homology groups and the dimension). The

F-category is bounded from below by the Lusternik-Schnirelman category. Related

results for h-cobordisms were obtained by Pushkar and Rudyak (see [46]).

We are interested below in the case when m ≥ n ≥ 2 and the manifolds

under consideration are compact and orientable. The invariant ϕ is not anymore a
homotopy invariant of the pair (Mm, Nn) and actually it is sensitive to the smooth
structures. There are actually only a few examples where this invariant can be

calculated. The main problem in this area is to characterize those pairs of manifolds

for which ϕ is finite non-zero and then to compute its value (see [12, page 617]).
The problem of finding non-trivial local isolated singularities was also stated by

Milnor ([44, Section 11, page 100]).
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In [1] the authors found that, in all codimension 0 ≤ m−n ≤ 2, if ϕ(Mm, Nn)
is finite then ϕ(Mm, Nn) ∈ {0, 1}, except for the exceptional pairs of dimensions
(m, n) ∈ {(2, 2), (4, 3), (4, 2)}. Further, if m − n = 3 and there exists a smooth

function Mm → Nn with finitely many critical points, all of them cone-like, then

ϕ(Mm, Nn) ∈ {0, 1} except for the exceptional pairs of dimensions (m, n) ∈
{(5, 2), (6, 3), (8, 5)}. Moreover, under the finiteness hypothesis, ϕ(Mm, Nn) = 1

if and only if Mm is the connected sum of a smooth fibration over Nn with an exotic

sphere and not a fibration itself. A short outline of this and related results for Lef-

schetz fibrations can be found in [2]. These results comfort the idea that, in general,

ϕ is infinite. There is no enough room to plug inside a singular fiber enough of the
topology of the manifold, at least when the codimension is much smaller with re-

spect to the dimension. This might be compared to the Conjecture stated by Milnor

in ([44, page 100]).

There are two essential ingredients in this result. First, the germs of smooth

maps Rm → Rn , in the given range of dimensions, having an isolated singularity

at origin are locally topologically equivalent to a projection. Apparently the first

who noticed that a smooth map of the m-disk in itself with a single interior critical

point should actually be a homeomorphism for m ≥ 3 was Heinz Hopf in the

early thirties. The next step was taken by Antonelli, Church, Hemmingsen and

Timourian who analyzed in the seventies the local structure of smooth maps around

a critical point, in codimension at most 2. Except a few exceptional dimensions

these maps are locally topologically equivalent to projections and thus they are

topological fibrations. The second point is that each critical point can be smoothed

by removing a disk and gluing it back, namely by adjoining a homotopy sphere.

Thus all but possibly one critical points merge together.

The simplest exceptional case is that of pairs of surfaces, which admits an ele-

mentary treatment and is completely understood (see [2] for explicit computations).

In [22] the authors described a series of examples in dimensions (4, 3), (8, 5) and
(16, 9). In these dimensions one knew about the existence of smooth functions

with genuine singular points since the papers of Antonelli ([3, 4]). These are par-

ticular Montgomery-Samelson fibrations ([45]) obtained from a spherical fibration

by pinching a number of fibers to points. Around such a critical point the map is

locally topologically equivalent to the suspension over a Hopf fibration of spheres.

This also explains the occurrences of dimensions (4, 3), (8, 5) and (16, 9). The
novelty brought out in [22] is that the invariant ϕ can be explicitly computed. There
are obstructions to the clustering of genuine singular points, whose number is de-

termined by the algebraic topology of the manifold. In particular, one founds that

ϕ can take now arbitrarily large even values, contrasting with the situation treated
before in [1].

The first aim of this paper is to explore the codimension 3 situation by 3-

manifold topology methods. When the singularities are cone-like the general meth-

ods from [1] permit to settle the problem, at least for n ≥ 4. However, Takens

(see [56]) provided examples of wild (i.e. not cone-like) codimension 3 isolated

singularities. In order to understand wild singularities we revisit King’s ([36, 37])

local classification of isolated singularities in terms of topological data consisting of
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a local fibration and a vanishing compactum. We first obtain that there are actually

uncountably many non-equivalent germs of wild isolated singularities in codimen-

sion 3, so previous techniques cannot work. The equivalence classes here corre-

spond to right composition by (germs of) homeomorphisms. We introduce then the

notion of removable singularity, where one enlarges the orbit of a singularity germ

by allowing right compositions with limits of homeomorphisms. The key techni-

cal result is that codimension 3 singularities are removable, as soon as n ≥ 4. In

particular, we obtain:

Theorem 1.1. Let Mn+3 → Nn be a smooth map with finitely many critical points.

Then Mn+3 is diffeomorphic to "n+3#Qn+3 where:
(1) "n+3 is a homotopy sphere;
(2) there is a smooth (induced ) map Qn+3 → Nn having only finitely many criti-

cal points and fulfilling:
(a) if n ≥ 6 or n = 4 then there are no critical points;
(b) if n = 5 then around each critical point the map is smoothly equivalent to

the cone over the corresponding Hopf fibration.

We do not know whether wild singularities show up for general (m, n). A more
tractable problem in higher dimensions is to understand whether there exist smooth

maps Mm → Nn with only cone-like isolated singularities. The local version

of this problem consists of constructions of non-trivial germs of smooth (or even

polynomial) maps and it was actually reduced by Looijenga, Church and Lamotke

(see [11, 40]) to the existence of high dimensional fibered links. This was further

pursued by Rudolph, Kauffman and Neumann ([35, 49]) who considered general

open book decompositions and more recently in [5]. The global question is how

can we piece together conical extensions of open book decompositions to get well-

defined maps Mm → Nn and whether critical points could be cancelled.

Milnor asked in ([44, page 100]) about the right meaning of being a non-trivial

local isolated singularity and gave as an example the requirement that the local

generic fiber be a disk. It was shown in [40] that an isolated singularity is trivial iff

its germ is right equivalent to a topological projection (at least when the codimen-

sion is different from 4 and 5). In this paper we consider a weaker non-triviality

condition, which we call removability, whose meaning is that we can change the

map in a small neighborhood of the critical point so that the new function has no

(topological) critical points anymore. In other words the critical point does not con-

tribute to ϕ. Notice that the non-trivial examples from [11] are actually removable
isolated singularities. The search for non-removable global examples is therefore

rather subtle.

Remark 1.2. If the group of homeomorphisms of a contractible manifold F (of

dimension m − n ≥ 5) which are identity on the boundary were contractible, then

we could prove by the present methods that ϕ(Mm, Nn) ∈ {0, 1} whenever n ≥
m − n + 1, n ≥ 2 and (m, n) &∈ {(4, 3), (8, 5), (16, 9)}. However, the connectivity
results from [9] are not sufficient for obtaining the triviality of the fibrations with
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fiber F when n ≥ m − n + 1. This is related to Milnor’s Conjecture from ([44,

page 100]) stating the triviality (here in the sense of removability) of local isolated

cone-like singularities in this range of dimensions. This is similar to the constraints

given in [47] for the existence of even non-trivial cone-like isolated singularities.

The second aim of this paper is to use the local description of singularities

in order to analyze the global topology of the involved manifolds in the case of

exceptional dimensions. We provide here a complete solution for this problem in

dimensions (4, 3) and (8, 5). We will show that the examples obtained in [22]

are essentially all examples with finite ϕ, up to a certain operation on manifold
fibrations called fiber sum.

The case of dimensions (4, 3) still relies on the local classification of singu-
larities due to Church and Timourian but the case of dimensions (8, 5) needs The-
orem 1.1, which enables us to work with local models which are cones over Hopf

fibrations. The main difficulty is then to determine which are the smooth manifolds

obtained by piecing together these local models.

It appears that the gluing process is surprisingly rigid and we obtain always

connected sums of S2 × S2 and respectively of S4 × S4. Eventually, we can also

glue along the fibers a multi-spherical fibration which does not contribute to the

critical points. The result of such a construction is abstracted below:

Definition 1.3. Assume given the following data:

(1) an F-bundle g : Em → Qk+1, and a smooth map h : Xm → Dk+1 with
finitely many critical points such that the generic fiber of h is F and

(2) an isomorphism between the F-fibrations g|∂E : ∂E → ∂Q and h|∂X : ∂X →
∂Dk+1, (thus ∂Qk+1 = Sk).

Glue together g and h to obtain a smooth map f : Em ∪ Xm → Qk+1 ∪ Dk+1,
with finitely many critical points, by identifying the boundary fibrations by means

of the fixed bundle isomorphism. We call f the generalized fiber sum of g and h

and denote it by g ⊕ h; sometimes we mention also the isomorphism type α of the
boundary F-fibration h|∂X over Sk and write g⊕αh. Notice that this fibration might

well be non-trivial, in contrast to the usual fiber sum construction used in [22]. One

says that h is the non-trivial summand and g the fibrewise summand of the fiber

sum.

When g : Em → Qk+1 and h : Xm → Dk+1 are obtained from the smooth
maps G : Êm → Q̂k+1, H : X̂m → Sk+1 between closed manifolds, by removing
trivial fibrations over disks, then g ⊕ h is the fiber sum of the maps G and H .

The main result of this paper is the following structure theorem:

Theorem 1.4. Let M2k and Nk+1 be closed orientable manifolds having finite

ϕ(M2k, Nk+1), where k ∈ {2, 4}. Then

(1) either M2k is diffeomorphic to W 2k#"2k , where W 2k is a fibration over Nk+1
and "2k is a homotopy 2k-sphere. In this case ϕ(M2k, Nk+1) ∈ {0, 1}.
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(2) or else, M2k is diffeomorphic to the iterated fiber sum W 2k ⊕D
j=1 #r j S

k ×
Sk#"2k , with ri ≥ −1, but at least one ri ≥ 0, where:
(a) the fibrewise summand W 2k is a Sk−1-fibration over some closed manifold

N̂ k+1, where N̂ k+1 → Nk+1 is a non-ramified covering of finite degree D.
(b) the fiber sum W 2k ⊕D

j=1 #r j S
k × Sk is the fiber sum along the fiber of the

fibration W 2k → Nk+1 (which consists of D disjoint copies of Sk−1) with
the disjoint union *D

j=1#r j S
k × Sk . Each connected component of the later

is endowed with a smooth map #r j S
k × Sk → Sk+1 whose generic fiber is

Sk−1 (to be defined below).
(c) #−1Sk × Sk denotes Sk−1× Sk+1, #0Sk × Sk denotes S2k and "2k a homo-

topy 2k-sphere.

Moreover, in this case we have:

ϕ(M2k, Nk+1) ≤ 2r1 + · · · + 2rD + 2D.

Remark 1.5. The fiber sum of W 2k with #−1Sk × Sk = Sk−1 × Sk+1 has no effect
on the topology of W 2k since it is diffeomorphic to W 2k . Thus, if all ri = −1 then
we recover the manifold W 2k and thus M2k fibers over Nk+1.

Remark 1.6. There is one extra piece in the fiber sum data, namely the choice of

a bundle isomorphism between each pair of trivial Sk−1 fibrations over Sk . Such
bundle isomorphisms up to isotopy correspond to the set of homotopy classes of

maps Sk → Homeo+(Sk−1).
If k = 2 this set is in bijection with π2(SO(2)) = 0 and thus the fiber sum

construction is unambiguously defined.

When k = 4, using Hatcher’s solution to the Smale Conjecture, this set is in

bijection with π4(Homeo
+(S3)) = π4(SO(4)) = Z/2Z + Z/2Z and the fiber sum

depends on the choice of D elements of this group, which will be called gluing

parameters in the sequel.

When M2k satisfies the first alternative of Theorem 1.4 it is a topological fibra-

tion over Nk+1. If M2k is not a smooth fibration then ϕ(M2k, Nk+1) = 1.

Remark 1.7. The manifold Mm = "m#Sm−n−1 × Sn+1 is not diffeomorphic to
Sm−n−1× Sn+1 if "m is an exotic sphere (see [50]). This yields effective examples

where ϕ = 1. For instance, if "8 is the exotic 8-sphere which generates the group

&8 = Z/2Z of homotopy spheres of dimension 8 then ϕ("8#S3× S5, S5) = 1 (see

e.g. [22]).

When the second alternative of Theorem 1.4 holds, M2k will be called non-

fibered (over Nk+1). Of course these furnish the most interesting examples with
non-trivial ϕ. Moreover, Theorem 1.4 leads to effective topological obstructions to
the finiteness of ϕ, as follows:
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Corollary 1.8.

(1) If ϕ(M8, N5) is finite and M8 is non-fibered over N5 then π1(M
8) is a finite

index subgroup of π1(N
5).

(2) If ϕ(M4, N3) is finite and M4 is non-fibered over N3 then π1(M
4) ∼= π1(N

3).

Further, there are global constraints of topological nature to the clustering of gen-

uine critical points. This situation seems rather exceptional and specific to the di-

mensions (4, 3), (8, 5) and (16, 9). Moreover, the number of genuine critical points
is independent on the smooth function considered and coincides with ϕ, which is
therefore controlled by the topology, as follows:

Theorem 1.9. Let M2k and Nk+1 be closed orientable manifolds with finite

ϕ(M2k, Nk+1), with k ∈ {2, 4}, and M2k non-fibered over Nk+1. Let r = r1 +
r2 + · · · + rD , where r j , D are those furnished by Theorem 1.4.

(1) If k = 4, assume that π1(M
8) ∼= π1(N

5) is a co-Hopfian group or a finitely
generated free non-Abelian group. Then ϕ(M8, N5) = 2r + 2D.

(2) If k = 2, then ϕ(M4, N3) = 2r + 2D.

One might conjecture that the assumptions on π1(M
8), when k = 4, are superfluous

and that we have ϕ(M8, N5) = 2r + 2D for any non-fibered M8, so that the right

hand side is independent on the particular choices we made for writing the non-

fibered M8 as a fiber sum.

Remark 1.10. If the fibration of W 2k is the connected sum of S1-products of Hopf

fibrations, namely it is the fibration #cS
1 × S2k−1 → #cS

1 × Sk then the manifold

M2k is diffeomorphic to "2k#r+cSk × Sk#cS
1 × S2k−1 and the value for ϕ given

above is consistent with that obtained in the main theorem of [22].

Remark 1.11. For k ∈ {2, 4}, the isomorphism classes of smooth Sk−1-fibrations
over #cS

1×Sk are classified by elements of πk−1(SO(k))c which are either (Z⊕Z)c

(for k = 4) or else Zc (for k = 2).

As a consequence of the present paper and [1] we obtain the global classifi-

cation of isolated singularities in codimension at most 3 except for the dimensions

(4, 2), (5, 2) and (6, 3).
The local classification of isolated cone-like singularities in dimensions (6, 3)

corresponds to that of fibered links *kj=1S2 into S5 for k ≥ 2, which is given by

the linking matrix. However, new methods are necessary for obtaining the global

classification of isolated singularities in dimensions (6, 3). For instance, we don’t
know whether in the process of pasting together local singularities we could have

any cancellation of critical points.

The case of dimensions (4, 2) offers another interesting perspective, because
of the abundance of non-equivalent fibered links in S3. Their suspensions yield

examples in dimensions (5, 2).
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The plan of the paper is as follows. The first section describes the local clas-

sification of isolated singularities of codimension at most 2, following Church and

Timourian and of cone-like isolated singularities of codimension 3 and dimension

at least 4. The next section deals with wild isolated singularities. In order to un-

derstand them better we revisit King’s classification of cone-like and general singu-

larities. Each local singularity corresponds to some topological data consisting of

a fibration E (like in a open book structure) over a sphere, a vanishing compactum

A ⊂ E whose complementary is a trivial fibration over the sphere and a retraction

r of E onto the singular fiber V obtained from the regular fiber by crushing the

vanishing compactum. King’s classification of isolated singularities states that this

data up to a certain equivalence relation determines the right equivalence class of the

germ. In the cone-like case the statement is more precise as one showed that all such

data with tame vanishing compactumA are realized by a cone-like singularity. Our
contribution is to explain that in general, what we require is that the mapping cylin-

der of the retraction r be a topological manifold. We intend further to use this to the

classification of wild isolated singularities of codimension 3. It appears that fibra-

tions whose fiber is a manifold with boundary of dimension at most 3 and whose

boundary is already a product (over a high dimensional sphere) tend to be triv-

ial. This is a consequence of the contractibility of the group of homeomorphisms,

due to Earle, Eells and Schatz for large surfaces and to Hatcher for irreducible 3-

manifolds. Some work is needed to understand that the reducible case would lead

to non-trivial homotopy of the singular fiber, which cannot happen in large dimen-

sions. When the associated fibration is trivial the mapping cylinder of the retraction

r is the quotient of a product by the vanishing compactum. Decomposition theory

will tell us that such a quotient space is a manifold only when the crushed com-

pactum is cellular and then the quotient surjection is a near-homeomorphism. This

actually explains how the wild singularities can be constructed (by using suitable

Artin -Fox wild arcs in S3) and why their local structure is almost-trivial: although

there are uncountably many wild singularities non-equivalent by right composition

with homeomorphisms, they are all equivalent by right composition with a near-

homeomorphism. The near-homeomorphisms are precisely the cell-like maps, as

it was proved by Siebenmann and thus they are limits of homeomorphism. This

leads to Theorem 1.1. We further want to describe a global structure result for man-

ifolds M2k admitting smooth maps with finitely many critical points into Nk+1, for
k ∈ {2, 4}, where we know how the local germs look like. We split off a fibration
factor to obtain a sub-manifold X2k having finite ϕ(X2k, Dk+1), which is called
a disk block. If ϕ(X2k, Sk+1) is finite then X2k is called a spherical block. We
can first use general classification results of manifolds to find the diffeomorphism

type of spherical blocks in dimension 8 and of the homeomorphism type of spher-

ical blocks in dimension 4. These manifolds are actually Montgomery-Samelson

fibrations with finite branch set and their algebraic invariants are known since the

seventies. In order to pursue further we need some ad-hoc techniques. We remark

that disk blocks are obtained by gluing together the cones over the Hopf fibrations.

Constructing such a disk block amounts to find a cobordism between the associated

fibrations. However the theory of cobordisms of spherical fibrations is quite simple
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in these dimensions. This shows that such disk blocks are connected sums of spher-

ical blocks from which one delete a neighborhood of a generic fiber. This gives the

structure Theorem 1.4 in dimension 8. In order to obtain the 4-dimensional situation

we have to understand the spherical blocks with 2 critical points. As a consequence

of Cerf’s theorem &4 = 0 these are smooth S4. We can further show that all spher-

ical blocks are connected sums of S2 × S2 up to adding some homotopy 4-sphere.

We obtain also an upper bound for the number ϕ of critical points, which we are
able in the last section to prove that it is sharp. In fact, when the fundamental group

is co-Hopfian we can show that ϕ is determined by the homology of the manifolds
involved. Using Thurston’s geometrization Conjecture in dimension 3 (as settled by

Perelman) and the results of Wang, Yu and Wu which characterize all 3-manifolds

whose fundamental group is non co-Hopfian we can settle completely the case of

dimensions (4, 3), by showing that the previous value of ϕ is independent on the
choices of intermediary coverings.

Proviso. We will make use through out the present paper of the validity of the

Thurston geometrization Conjecture and, in particular, of the Poincaré conjecture

in dimension 3, as settled by Perelman (see [7] for a detailed proof), but we will

specify its use each time when applied.

ACKNOWLEDGEMENTS. The author is indebted to Denise de Mattos, Christine

Lescop, Patrick Popescu-Pampu, Colin Rourke, Mihai Tibăr and Ping Zhang for

useful discussions on this topic and acknowledge partial support from the ANR

Repsurf: ANR-06-BLAN-0311.

2. Local structure of isolated singularities of small codimension

2.1. Local classification of isolated singularities of codimension at most 2

Let f : Mm → Nn be a smooth map with finitely many critical points throughout

this section.

Church and Timourian (see [12,14]) proved the following:

Proposition 2.1. Ifm−n ≤ 2 and x ∈ M then f is locally topologically equivalent

to one of the following local models:

(1) a projection;
(2) the map g : C → C given by g(z) = zd , d ∈ Z+, when m = n = 2;
(3) the Kuiper map τ2,1 : C×C → C×R given by τ2,1(z, w) = (2zw̄, |w|2−|z|2),

when m = 4, n = 3;
(4) a map ρ : R4 → R2 which is locally topologically equivalent to the projection

except at one point, when m = 4 and n = 2.
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Remark 2.2. There are more general Kuiper maps (see [44, page 103]) τa,k :
R2ak → Ra+1, where a ∈ {1, 2, 4} and k ∈ Z+, defined as

τa,k : Ak × Ak → A × R, τa,k(x, y) = (〈x, y〉, |x |2 − |y|2).
Here A ∈ {C, H, O}, whereH denotes the quaternions,O denotes the Cayley num-

bers, a ∈ {2, 4, 8} corresponds to the dimension of A as a real vector space and
〈∗, ∗〉 denotes a Hermitian inner product. The map τa,1 restricts to the Hopf fibra-
tion between the corresponding unit spheres S2a−1 → Sa and thus it is equivalent

to the suspension of the Hopf fibration. For any k ∈ Z+ the map τa,k has an isolated
singularity at the origin whose local fiber is a disk bundle over Sak−1.

One might wonder whether there are only finitely many non-equivalent germs

of isolated singularities, when m − n = 3. First we should add one more germ

appearing when m = 8 and k = 5, namely the Kuiper map τ4,1, which is the
cone of the Hopf fibration S7 → S4. However, it is still not enough (see the next

section) since there exist infinitely many non-equivalent isolated germs, in general.

But there are some slightly weaker statements which are true. We could restrict

ourselves to cone-like isolated singularities, as those arising from functions which

are locally real analytic around the critical points. On the other hand we will define

the concept of removability and show that those singularities which are not cone-

like are actually removable.

The aim of the next two sections is to give a more conceptual and self-contained

proof of Proposition 2.1 and its various extensions to codimension 3.

Definition 2.3. Let V = f −1( f (x)), where x is a critical point. Following King
(see [36]) the singular point x is called cone-like if it admits a cone neighborhood

in V , i.e. there exists some closed manifold L ⊂ V \ {x} and a neighborhood N
of x in V which is homeomorphic to the cone C(L) over L . Recall that the cone is
defined as the quotient C(L) = L × (0, 1]/L × {1}. Then the manifold L is called
the local link at x . If x is not cone-like then x (and also V ) are called wild. An

isolated point will be considered to be cone-like, as being the cone over the empty

set.

The first examples of smooth maps with isolated wild singularities were ob-

tained by Takens (see [56]) in codimension 3. From [12, 14] such examples cannot

occur in smaller codimension because of the following:

Proposition 2.4. Isolated singularities of smooth functions in codimension at most

2 are cone-like.

Proof. This is clear from Proposition 2.1, except when m = 4 and k = 2. This

case is settled in ([14, Lemmas 2.1 and 2.4]). We will give another proof in the next

section.

2.2. Local classification of cone-like isolated singularities in codimension 3

Denote by S( f ) the topological branch locus of the map f . Namely x &∈ S( f ) if f
is locally topologically equivalent to a projection around x .
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Proposition 2.5. Let f : Mn+3 → Dn , n ≥ 4 be a smooth proper map from the

compact manifold Mn+3 onto the n-disk having a single critical point x ∈ M and

suppose that f (x) = 0. Then one of the following holds:

(1) x &∈ S( f );
(2) x is an isolated point of V = f −1(0);
(3) or else x ∈ S( f ), V is wild at x .

In the proof of this Proposition we use the following lemma stated also in [22]:

Lemma 2.6. If Mn+q and Nn are smooth manifolds and f : Mn+q → Nn is a

smooth map with finitely many critical points, then the inclusions M \V ↪→ M and

N \ B ↪→ N are (n − 1)-connected.

Proof. For the sake of completeness we give here the proof. The result is obvious

for N \ B ↪→ N . It remains to prove that π j (M,M \ V ) ∼= 0, for j ≤ n − 1. Take

α : (D j+1, S j ) → (M,M \ V ) to be an arbitrary smooth map of pairs. Since the
critical set C( f ) of f is finite and included in V , there exists a small homotopy of α
relative to the boundary such that the image α(D j+1) avoidsC( f ). By compactness
there exists a neighborhood U of C( f ) consisting of disjoint balls centered at the
critical points such that α(D j+1) ⊂ M \U . We can arrange by a small isotopy that
V become transversal to ∂U .

Observe further that V \ U consists of regular points of f and thus it is a

properly embedded sub-manifold of M \U . General transversality arguments show
that α can be made transverse to V \U by a small homotopy. By dimension counting
this means that α(D j+1) ⊂ M \ U is disjoint from V and thus the class of α in
π j (M,M \ V ) vanishes.

Lemma 2.7. If Mn+3 is contractible and n ≥ 4 then the fiber F3 of the fibration

f : Mn+3 \ V → Dn \ {0} is diffeomorphic to a 3-disk.

Proof. Lemma 2.6 states that π j (M,M \ V ) = 0, for j ≤ n − 1 and thus π j (M \
V ) = 0, for j ≤ n − 2. The long exact sequence in homotopy of the fibration

f : Mn+3 \ V → Dn \ {0} implies that the generic fiber F3 has π j (F) = 0, for

j ≤ n − 3. If n ≥ 5 then F3 is contractible and thus, by the Poincaré conjecture,

diffeomorphic to a 3-disk.

If n = 4 then F3 is a simply connected 3-manifold with boundary and hence

its boundary consists of several 2-spheres. Thus H2(F) is free Abelian. The base
space of the fibration f : Mn+3 \ V → Dn \ {0} is homotopy equivalent to Sn−1
and thus there is a Wang exact sequence for this fibration which reads:

0 = H3(F) → H3(M
n+3 \ V ) → H0(F) → H2(F) → H2(M

n+3 \ V ) = 0.

Assume that π3(M \ V ) &= 0. Then, using Hurewicz the group H3(M \ V ) &= 0 is

a non-trivial subgroup of H0(F) = Z and hence it is isomorphic to Z. This implies
that the rank of H2(F) over Q is zero and hence H2(F) = 0 because it is free
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abelian. By Hurewicz, we have π2(F) = 0 and thus, by the Poincaré Conjecture,

F is diffeomorphic to the 3-disk, as claimed.

Otherwise, π3(M \ V ) = H3(M \ V ) = 0 and the Wang sequence above gives

us H2(F) = Z and H4(M \V ) = 0. By the Poincaré Conjecture a simple connected

3-manifold is a holed disk and thus F = S2 × [0, 1]. Moreover, from Hurewicz we
obtain π4(M \ V ) = 0. Furthermore, from the long exact sequence in homotopy of

the fibration f : M \ V → D4 \ {0} we derive:

0 = π4(M \ V ) → π4(D
4 \ {0}) → π3(F) = π3(S

2) → π3(M \ V ) = 0

But π4(S
3) = Z/2Z while π3(S

2) = Z, which contradicts the exacteness of the
sequence above. This proves the claim.

Proposition 2.8. If the isolated critical point x of f : Mn+q → Nn is cone-like

then there exists a compact manifold with boundary Kn+q ⊂ Mn+q containing x
and a disk neighborhood Dn containing the critical value f (x) such that:

(1) the restriction f : Kn+q → Dn is proper and has only one critical point x;
(2) Kn+q is contractible.

Proof. This is basically contained in [36]. Here is a simple proof. We consider a

small enough manifold neighborhood Kn+q of x intersecting transversely f −1(Dn)
and containing only one critical point. Let Fq be the fiber. Then Kn+q deformation
retracts onto V ∩ Kn+q which is a cone C(L) and thus contractible.

Remark 2.9. Actually if n+ q &= 4, 5 we can assume that Kn+q is homeomorphic
to a ball and its boundary to a sphere (see [36]). This implies that the fiber F3 is

simply connected also when n = 3.

Proposition 2.10. If m − n = 3 and x ∈ Mm is a cone-like isolated singularity

then f is locally topologically equivalent to one of the following local models:

(1) a projection;
(2) the Kuiper map τ4,1 : H×H → H×R, when m = 8, n = 5 (see Remark 2.2);

Proof. If x is an isolated point of V then, by [58], f is locally topologically equiv-

alent to the cone of a Hopf fibration and thus to the Kuiper map τ4,1. Henceforth,
we assume that z is not an isolated point in f −1( f (z)), for any z ∈ M . Then f has

a cone-like critical point x implies that x &∈ S( f ) and hence the result follows from
above.

2.3. King’s classification revisited

We consider germs of isolated singularities up to right composition by a homeo-

morphism, as described by King in [36] for continuous functions and in [37] for

smooth functions.
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Let f : Nn+q
1 → Nn

2 be a smooth map with finitely many critical points. Fix

a critical point p. A smooth codimension zero compact manifold with boundary

Mn+q ⊂ N
n+q
1 containing x in its interior such that the restriction f : Mn+q → Dn

is a proper smooth map having only one critical point onto the disk Dn ⊂ Nn
2 is

called an adapted neighborhood of the critical point. According to the construction

of [36] (see below) there exist arbitrarily small adapted neighborhoods of p.

Let f −1(Sn−1) = En+q−1 ⊂ ∂Mn+q , V = f −1( f (p)) ⊂ Mn+q and Fq
denote the generic fiber, which is a manifold with non-empty boundary.

The restriction f : En+q−1 → Sn−1 is a fibration with fiber Fq . Moreover, the
restriction to the boundary is a trivial fibration ∂E → Sn−1. Further ∂V ∼= ∂F is a
closed submanifold in ∂M having trivial normal bundle and which is endowed with

a natural trivialization t : ∂F × Dn → ∂M , extending the trivial fibration ∂E →
Sn−1. Specifically we obtain t by using the identification of f : ∂M \ int(E) → Dn

with the trivial fibration over Dn .

There is a retraction r : E → V obtained by contracting a vanishing compact

A ⊂ E as follows:

(1) E \A is a product, i.e. it is homeomorphic toW×Sn−1 such that the restriction
of f : E → Sn−1 to E \ A, namely f |E\A : E \ A ∼= W × Sn−1 → Sn−1
is the projection on the second factor. In particular, the boundary fibration

f |∂E : ∂E → Sn−1 is trivial;
(2) W = F \ A, where A ⊂ F is some compact and A ∩ F = A. Here F is an

arbitrary fiber in E and a priori A might depend on the particular fiber;

(3) V = F/A and the class of A in F/A is the singular point p of the fiber V .
Thus V \ {p} is homeomorphic to W = F \ A;

(4) the retraction r : E → V is obtained as follows: r |E\A : E\A ∼= W×Sn−1 →
W ∼= V − {p} is given by the projection on the first factor of the product and
r(x) = p, if x ∈ A.

Let En,q be the set of data (E → Sn−1,A ⊂ E) as above up to the following

equivalence relation. We set (E1 → Sn−1,A1) ∼ (E2 → Sn−1,A2) if there
exist sub-fibrations E ′

j ⊂ E j such that A j ⊂ E ′
j , which are homeomorphic by

a fibered homeomorphism ϕ : E ′
1 → E ′

2 (over S
n−1) and there exists a fibered

isotopy ht : E ′
1 \A1 → E ′

2 such that

(1) h1 is the restriction of ϕ|E ′
1\A1 ;

(2) h0(E
′
1 \ A1) = E ′

2 \ A2 and the fibered homeomorphism h0 : E ′
1 \ A1 →

E ′
2 \ A2 comes from a homeomorphism between the compactified fibers i.e.

the fiber restriction h0 : F1−A1 → F2−A2 is induced from a homeomorphism

F1/A1 → F2/A2.

Proposition 2.11 (King). The class δ( f ) = (E → Sn−1,A ⊂ E) in En,q is a

complete invariant of the germ of f , up to right equivalence i.e. up to right compo-

sition by a germ of homeomorphism of M at p.
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Proof. This is the main result of [36] in a slightly changed setting.

Definition 2.12. The compact A ⊂ F is tame if it has a mapping cylinder neighbor-

hood i.e. a neighborhood N which is a codimension zero compact submanifold of F

which deformation retracts onto A such that N \ A is homeomorphic to ∂N×(0, 1].
Remark 2.13. If A is a polyhedron in F then it has a regular neighborhood and

thus it is tame. If A is an Artin-Fox wild arc (see [6]) in D3 then it is not tame.

Proposition 2.14. Let EPL
n,q ⊂ En,q be the subset of equivalence classes of pairs

(E → Sn−1,A ⊂ E) for which A is tame. Then δ( f ) ∈ EPL
n,q classifies isolated

cone-like singularities of germs up to right equivalence.

Proof. If A ⊂ E is tame then A is tame and thus it has a mapping cylinder neigh-

borhood N (A) ⊂ F . We could further assume that F = N (A) by restricting to a
smaller representative in EPL

n,q . In fact, if E
′ denotes E \ (F \ N (A))× Sn−1) ⊂ E ,

then (E ′ → Sn−1,A) = (E → Sn−1,A) ∈ En,q .

Further, we have V = N (A)/A. As N (A) \ A ∼= ∂N (A) × (0, 1], it follows
that N (A)/A is homeomorphic to the one point compactification of ∂N (A)× (0, 1]
and thus to the cone C(∂N (A)). In particular V is cone-like at p.

Conversely, assume that p is cone-like and let N = C(L) be a conical neigh-
borhood in V . Let then E ′ = E \ (F \N )× Sn−1) ⊂ E , so that (E ′ → Sn−1,A) =
(E → Sn−1,A) ∈ En,q . This way we replaced V in the new representative by

a conical neighborhood N and thus we can assume that V = C(∂V ). Moreover,
∂V = ∂F and thus F/A is homeomorphic to C(∂F). We can therefore consider
that A is a spine of F \ N (∂F), where N (∂F) is a collar of ∂F into F . In particular
we can take A to be tame, for any fiber F . This proves that there is a representative

of f for whichA is tame.

The cone-like singularities were completely described in the second part of

[36], where it is shown that any class in EPL
n,q is realized as δ( f ) for some f with a

cone-like isolated singularity. The missing part for completing the general classifi-

cation (of not necessarily cone-like singularities) was the characterization of the set

of data in En,q which could be realized as obstructions δ( f ) for some f . We have
an immediate but implicit description from above:

Proposition 2.15. A class in En,q can be realized by a map f : Mn+q → Dn with

an isolated critical point if and only if the mapping cylinder M(r) is a manifold
(at p).

Proof. Given the data (E → Sn−1,A ⊂ E) we can recover both Mn+q and
the map f as follows. The manifold Mn+q (which is supposed to be an adapted
neighborhood of p) is the mapping cylinder M(r) of the retraction r i.e. M(r) =
E × [0, 1] ∪(x,1)∼r(x) V . Moreover, the map f : Mn+q → Dn is given by the

formula f (x, t) = ( f (x), t), where Dn is identified with the mapping cylinder of

the trivial map Sn−1 → {∗} to a point. This proves the claim.
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2.4. Contractibility of adapted neighborhoods and tameness

The main result of this section gives a topological characterization of cone-like

singularities in high dimensions:

Proposition 2.16. If the codimension is q ≤ 3 then there exists a contractible

adapted neighborhood Mn+q (n ≥ 4 if q = 3) iff the singularity is cone-like.

Proof. One direction is clear. If the singularity is cone-like the intersection V ∩ M

with a small adapted neighborhood M is C(∂V ) and thus contractible. But M
deformation retracts onto V ∩ M .

In order to prove the reverse implication we need the following technical lem-

ma:

Lemma 2.17. There exist open subsets Vs ⊂ V , Ms ⊂ M and the sequence of

concentric disks Ds ⊂ D fulfilling the following conditions:
(1) Vs \ {x} is a manifold with compact boundary ∂Vs .
(2) Vs ⊂ V \ ∂V .
(3) Each component of V \ Vs meets ∂V .
(4) Each component of Vs meets x .

(5) Vs = V ∩ Ms and the restriction f : Ms → Ds is proper with one critical

point.

(6) Ms is a compact manifold having the same components as Ms .

(7) the diameter of Ms tends to zero, when s goes to infinity.

(8) We have Ms ⊂ Ms+1.
(9) The restriction f : Ms ∩ f −1(Ds+1) \ Ms+1 → Ds+1 is a fibration over the

disk Ds+1 of radius.
(10) We have Dm ⊂ Dm+1 and ∩∞

m=0Dm = {0}.
Proof. This is part of the content of ([13, Lemma 3.3, page 951]), where the lemma

is stated for codimension 2. However, the same proof applies word-by-word without

any codimension restriction for the statements above. An alternative approach is

given in the [36, proof of Proposition 1], as an application of Siebenmann’s Union

Lemma from [53, Lemma 6.9].

Let Fs denote the generic fiber of f : Ms → Ds and F be the generic fiber

associated to f : M → D.

The converse is given by:

Lemma 2.18. If M is contractible and n ≥ 4 then the singular fiber V ∩ M is

homeomorphic to the 3-disk.

Proof. Consider the sequences Vs,Ms, Ds, Fs furnished by Lemma 2.17 where Ms

are contractible. Lemma 2.7 says that Fs is a 3-disk, for all s.

By hypothesis we have Ms ∩ f −1(Ds+1) \ Ms+1 → Ds+1 is a fibration and
thus (Fs \ Fs+1, ∂Fs+1) is diffeomorphic to (V s \ Vs+1, ∂V s). Therefore ∂Vs is a
2-sphere and V s \ Vs+1 is a cylinder.
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The fiber V ∩ M \ {x} is the union ∪s(Vs \ Vs+1) i.e. the ascending union of
cylinders. Since it has an exhaustion by compact sub-manifolds whose boundary

are spheres it follows that V ∩ M \ {x} is simply connected at infinity and thus it
is diffeomorphic to D3 \ {0}. This implies that V ∩ M is homeomorphic to the

3-disk.

Proposition 2.16 follows.

2.5. Isolated singularities with trivial singular fibers after Hamstrom

The main result of this section concerns the singularities whose singular fiber is a

disk.

Proposition 2.19. If the codimension is 3 and the singular fiber is homeomorphic

to a 3-disk then f is a topological fibration.

Proof. Recall, after Hamstrom ([27]) the following:

Definition 2.20. An open proper mapping f : X → Y between metric spaces X

and Y is homotopy r-regular if for each x in X and ε > 0 there is a δ > 0 so that

every mapping of a s-sphere Ss , with s = 0, 1, . . . , r , into D(x, δ) ∩ f −1(y), for y
in Y , is homotopic to 0 in D(x, ε) ∩ f −1(y). Here D(x, ε) denotes the metric disk
centered at x , consisting of points whose distances to x are less than ε.

Assume now that we have an isolated singularity of codimension 3, as in the

previous section. We know that ∂V s is a 2-sphere embedded in the disk V and thus

Vs is homeomorphic to a 2-disk, by the Schoenflies theorem. Since the diameter

of V s goes to zero it follows that the singular fiber V ∩ M satisfies the homotopy

2-regularity condition at 0. Thus f is homotopy 2-regular.

It is proved in ([27, Theorem 6.1]) that a homotopy 2-regular map f of a com-

plete metric space X onto a finite dimensional space Y such that each fiber f −1(y)
(for y ∈ Y ) is homeomorphic to a given compact 3-manifold Q with boundary

without fake 3-disks (i.e. having the property that each homotopy 3-cell in M is

homeomorphic to the 3-cell) is actually a locally trivial fiber map. This proves the

claim.

Remark 2.21. The problemwe faced above is the fact that the singularity might not

be cone-like at x . If the singularity were tame in the sense developed by Kauffman

and Neumann in [35] (for instance f is locally topologically equivalent to a real

polynomial mapping) then we could take for Mn+q a ball and the arguments in
[44] would immediately show that the local Milnor fiber F3 is contractible (when

dimension is n ≥ 4) or simply connected if n = 3. Thus F3 is a disk and thus

the singularity is trivial, as proved in [11]. It is actually proved in ([36, page 396])

that cone-like singularities have adapted neighborhoods which are homeomorphic

to balls at least if the dimension n + q is not 4 or 5.

Now, if the singularity is not cone-like, we can always assume that the sin-

gular fiber V is transverse to all small enough spheres Sε centered at x , but for
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an infinite discrete set of radii εn accumulating to 0. However, we have no local
Milnor fibration and no local cone structure around a singularity. We have instead

approximations of this fibration, as provided by Lemma 2.17.

2.6. Removable singularities

Definition 2.22. A smooth map f : M → D with a single critical point has a

removable isolated singularity at p if there exists a smooth manifold X , a smooth

map g : X → D without critical points and a homeomorphism h : M → X

which is a diffeomorphism in a neighborhood of the boundary such that outside of

an open neighborhood of the critical point we have f = g ◦ h. The singularity is
called strongly removable if one can obtain X by excising a smooth disk out of M

and gluing it back.

A typical example of a map with a removable isolated singularity is that ob-

tained from a map g without critical points by composing with a near-homeomor-

phism. Recall that near-homeomorphisms are limits of homeomorphisms in the

compact-open topology and they were characterized by Siebenmann ([52]) as being

the cell-like maps between manifolds.

Proposition 2.23. If the codimension is at most 2 then isolated singularities are

removable.

Proof. Assume that we have an orientable fibration E → Sn−1 having the fiber F2
of dimension at most 2.

If the codimension is 0 then either n = 2 and E is a finite covering and thus

A ⊂ F is obviously tame since it is a finite set of points or else n ≥ 3 and thus F is

a point and A is empty.

If the codimension is 1 then the fiber is a bunch of intervals. As the boundary

fibration must be trivial it follows that E is a product.

If the codimension is 2 then F is an orientable surface with boundary. A home-

omorphism which is identity on the boundary should preserve the orientation. Fur-

ther, a celebrated result due to Earle, Eells and Schatz tells us that all connected

components of Homeo+(F, ∂F) are contractible (see [19, 20]), if F is neither a

disk nor an annulus. In particular, such a surface fibration over Sn−1 (with n ≥ 2)

must be trivial. This implies that either E is trivial or the fiber is a disk or an

annulus.

Moreover, if the surface is either a disk or an annulus then Homeo+(F, ∂F)
has the homotopy type of a circle. In particular a disk or annulus fibration over

Sn−1 is trivial whenever n ≥ 3.

If the fibration E is trivial then the mapping cylinder M(r) of any map r :
E → F/A can be globally described as a quotient. In fact, M(r) is given by the
quotient F × Dn/A × {0}. This is the simplest example of a decomposition space
obtained from a upper semi-continuous decomposition, which in our case has only

one non-degenerate element, namely A × {0}.



ISOLATED SINGULARITIES 835

The theory of decompositions of manifolds is largely described in the Daver-

man monograph [16]. According to ([16, Exercise 7, page 41]) F × Dn/A× {0} is
a manifold iff A×{0} ⊂ F×Dn is cellular. Recall that a subset A of an n-manifold

is called cellular if there exists a nested sequence of n-cells Bi in that manifold such

that Bj ⊂ int(Bj−1) for any j and A = ∩∞
j=1Bj .

Remark 2.24. Cellular sets are compact and connected but not necessarily locally

connected, as the graph of sin
(
1
x

)
is such a cellular subset of R2.

Moreover, it is known that the decomposition consisting of a single cellular

set is shrinkable (see [16, Corollary 2.2A, page 36]) and thus the quotient of a

manifold by a cellular subset is again a manifold (see [16, Theorem 2.2, page 23])

homeomorphic to the former manifold.

Alternatively, a cellular subset A in a manifold is cell-like (see [16, Corol-

lary 3.2.B, page 120]) namely, for each neighborhood U of A in that manifold one

can contract A to a point in U . Compact ANR are cell-like if and only if they

are contractible. Cell-like maps are those continuous maps whose point inverses

are cell-like sets. Siebenmann characterized in [52] the cell-like maps between

manifolds of the same dimension as being precisely those maps which are near-

homeomorphisms. Therefore the projection map F × Dk → F × Dk/A, which is
a cell-like map, is a near-homeomorphism.

In particular we can replace the map M → Dn by composing with the near-

homeomorphism F × Dn → M by the projection F × Dn → Dn which has no

critical points and has the same boundary restrictions. In other words the singularity

of the map f is removable.

Otherwise the manifold F is a 2-disk or an annulus. Recall that we actually

have a nested sequence of fibers Fs ⊂ Fs−1 ⊂ F , whose intersection is the vanish-

ing compactum A ⊂ F in the fiber.

If all but finitely many Fs are disks then A is cellular in F . From [16] A is

shrinkable and thus V = F/A is homeomorphic to a disk. We can apply Ham-
strom’s theorem from above to obtain that f has no topological critical points.

If all but finitely many Fs are cylinders and n = 2 then A is a circle in F . In

fact the boundary of the cylinders ∂Fs should be parallel and thus they consist in
arbitrarily thin adapted neighborhoods of the intersection circle A = ∩∞

s=0Fs . Thus
A is tame and hence the singularity is cone-like.

If F is non-orientable then the group of homeomorphisms is SO(3) (for S2,
RP2) or else a circle (for the Klein bottle, disk, annulus or the Mobius band). The
argument above for the annulus extends for the Mobius band as well.

Remark 2.25. We can actually show that all codimension 2 singularities are cone-

like, as claimed in Proposition 2.4. We give here an alternative proof below.

Proof. It suffices to show that A ⊂ F is tame by constructing a regular neighbor-

hood of it. Recall that A = ∩∞
s=0Fs , where Fs+1 ⊂ int(Fs), for all s. Moreover, we

can show that the number of components of ∂Fs is uniformly bounded. It is clear
that genus of Fs is decreasing. Thus a descending sequence of surfaces like above
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has the homeomorphism type eventually constant. Further by finiteness and the

Gruschko theorem it follows that the surfaces have eventually parallel boundaries.

This implies that we have a mapping cylinder neighborhood for A.

Proposition 2.26.

(1) In codimension 3 there exist uncountably many non-equivalent germs of con-

tinuous maps with an isolated singularity.

(2) Any codimension 3 smooth map with an isolated singularity M → Dn for

n ≥ 4 is either strongly removable or else an isolated point in the fiber.

Proof. The first point is to observe that there exist A ⊂ F3 which are wild. For

instance we can take any Artin-Fox wild arc (see [6]) in D3 or a Whitehead contin-

uum such that its complement in S3 is a Whitehead manifold. It is known (see [8])

that there exist uncountably many (one-holed) Whitehead manifolds W 3 which are

pairwise non-homeomorphic. According to the King classification of germs it fol-

lows that maps associated to the data (E = D3 × Sn−1,A = (D3 − W 3) × Sn−1)
are not right equivalent if the respective W 3 are not homeomorphic. On the other

hand the mapping cylinder is M = D3 × Dn/A × {0}.
Let A be an arbitrary contractible closed subset of D3, for instance a wild arc.

It follows that the decomposition given by the singleton A × {0} of D3 × Dn is

shrinkable, as soon as n ≥ 2 (see [16, Corollary 8A, page 196]). Therefore M

is homeomorphic to D3 × Dn and thus it is a manifold. In particular, we obtain

uncountably many germs of continuous maps Rn+3 → Rn which are pairwise non-

equivalent by right composition with a homeomorphism.

Let us prove now the second claim, namely that all codimension 3 singularities

are arising as claimed. We suppose henceforth that the singular fiber is not reduced

to one point.

If the fiber F3 is irreducible and the boundary is non-empty then either F3 is

a disk or else Homeo+(F, ∂F) has contractible components, according to Hatcher
(see [28–30]). Therefore, either F is a 3-disk or else F3-fibrations over Sn−1 are
trivial, as soon as n ≥ 3.

Let us analyze the case where F is not irreducible. Recall that we have a

sequence of nested manifold neighborhoods Fs+1 ⊂ Fs ⊂ F . If there exists at least

one Fs which is irreducible then we can apply the argument from above.

Lemma 2.27. If n ≥ 4 then there exists some representative of the germ f of iso-

lated singularity for which some associated fiber F3 is irreducible.

Proof. Suppose that all Fs are reducible. According to the Sphere theorem (see

[31, 43]) we can detect the essential 2-spheres as follows: F3s is reducible if and

only if π2(Fs) &= 0, modulo the Poincaré conjecture.

Therefore, by the Haken-Kneser finiteness theorem there exist only finitely

many embedded essential and pairwise non-parallel 2-spheres Ss,t ⊂ Fs . For fixed s

the spheres Ss,t are disjoint. Further, if for some pair s1 < s2 we have Ss1,t ∩Ss2,v &=
∅, then we can replace Ss2,v by a number of spheres obtained by pushing them
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along the intersections. In fact the intersection of two spheres S1 and S2 can be

made transverse by a small isotopy and S1 \ S1 ∩ S2 is a genus zero surface with

boundary a number of circles. Each such circle, when viewed in S2, bounds a disk

in S2. We start from a circle bounding an innermost such disk δ and then consider
two parallel copies of δ corresponding to the parallel boundary circles of a cylinder
neighborhoodU of the circle in S1. We remove then the cylinderU from the sphere

S1 and glue back the two copies of δ. This replaces S1 by two spheres whose product
as class in π2(M) is the class of S1. Moreover the intersection between S1 and S2
countains one circle less than before. We can continue this procedure until S2 gets

disjoint from the spheres we create.

There are finitely many such spheres, and among them there exists at least one

which is non-trivial in π2(Fs2) since the product of all the spheres obtained this way
is the class of the original sphere Ss2,v . By using a double recurrence on s2 and s1
we obtain that the spheres Ss1,t are pairwise disjoint for all s1 and t .

Recall now that we have a fibration of Ms \ Vs → Dn \ {0} with fiber Fs . Its
homotopy exact sequence reads:

πi+1(Sn−1) → πi (Fs) → πi (Ms \ Vs) → πi (S
n−1) → .

From Lemma 2.6 and the proof of Lemma 2.7 the inclusion Fs ↪→ Ms induces

πi (Fs) ∼= πi (Ms), for i ≤ 2, as soon as n ≥ 4. Since Ms deformation retracts onto

Vs the composition Fs ↪→ Ms → Vs induces an isomorphism:

πi (Fs) ∼= πi (Fs/A), for i ≤ 2.

We will show below that this is contradicted for i = 2 when all Fs are reducible.

Using again the Haken-Kneser finiteness theorem there exists some s such that

one of the following holds:

(1) either there exists some infinite sequence of spheres Ski ,vi which are parallel to

some Ss,t within Fs ;

Let now Ui be the annuli bounding Ski ,vi ∪ Ski+1,vi+1 in Fs and Oi be their
image in Fs/A, where Sk0,v0 denotes Ss,t . Set O∞ = ∪∞

i=0Oi ∪ A ⊂ Fs/A
be the union of the annuli and the singular point A. As ∪∞

i=0Ui is a punctured
3-disk and Ski ,vi accumulate on A it follows that O∞ is the continuous image

of the compactified 3-disk into Fs/A. This implies that the image of the class
of Ss,t under the map π2(Fs) → π2(Fs/A) vanishes. But the class of Ss,t in Fs
is non-zero since this is an essential sphere. This contradicts the isomorphism

above;

(2) or else the 2-spheres Sk,v , for k ≥ s + p are null-homotopic in Fs , for some p.

Then Sk,v is essential in Fk ⊂ Fs but null-homotopic in Fs . By the Sphere

theorem, possibly changing the collection of essential spheres, we can assume

that each Sk,v bounds an embedded 3-ball Bk,v in Fs . Let Mk , Ek → Sn−1
be the adapted neighborhood and respectively fibration of the germ f , cor-

responding to the fiber Fk . Then Mk = Mk ∪v Bk,v × Dn ⊂ Ms , because

Ms \ Mk is a trivial fibration over the disk D
n . Let k ≥ s + p and consider the
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restriction of the germ f : Ms → Dn to Mk . The restriction of the fibration

Es to Es \ Ek is a trivial fibration over Sn−1 with fiber Fs \ Fk , because it ex-
tends over Dn . Thus Ek = Es ∩ Mk is a sub-fibration of Es over S

n−1 whose
fiber is Fk = Fk ∪v Bk,v . The fibration Ek → Sn−1 (with the same vanishing
compactum) defines therefore the same germ f .

Now the 2-spheres Sk,v are pairwise disjoint and ∂Fk ⊂ ∪vBk,v . Therefore

every essential 2-sphere S contained in the interior of Fk \ ∪vBk,v is parallel

to one of the boundary spheres Sk,v . In fact such a 2-sphere should be homo-

topically trivial in Fs and thus, by the Sphere theorem we can suppose that S

bounds a ball B in Fs . Thus either B is disjoint from the balls Bk,v or there ex-

ists some v so that Bk,v ⊂ int(B). In the first case S is trivial in Fk \∪vBk,v and

in the second case we could use Brown’s solution to the Schoenflies Conjec-

ture to obtain that S ∪ Sk,v bounds an annulus in Fk and hence in Fk \ ∪vBk,v .

Eventually Fk is irreducible since all essential spheres of Fk \ ∪vBk,v were

capped off by 3-balls. Thus, in this case there exists a representative of the

germ f whose fiber Fk is irreducible.

Now we can conclude as above: either Fs are disks for all large enough s or else

the Fs-fibrations are trivial. If all Fs are 3-disks then A is cellular in F and thus

the map F → F/A = V is a near-homeomorphism and thus the singular fiber

is homeomorphic to a disk. Then Hamstrom’s theorem from the previous section

implies that the singularity is removable.

If some Fs fibration is trivial it follows that M(r) is Fs×Dn/A×{0}. From [16]
M(r) is a manifold only if A × {0} is cellular in Fs × Dn and in this case the

projection Fs × Dn → Fs × Dn/A × {0} is a near-homeomorphism.
Moreover, in both cases we are able to be more precise. As A×{0} is cellular it

admits a sequence of arbitrarily small disk neighborhoods in F × Dn . Furthermore

one can choose then a PL and thus a smooth neighborhood B of it. Then B/A× {0}
is also homeomorphic to a disk since it is a quotient by a cellular subset and the

restriction of the map B → B/A × {0} to a collar of the boundary is the identity.
Thus the boundary of B/A× {0} is a smooth sphere embedded in the smooth man-
ifold M and hence B/A × {0} is a smooth manifold homeomorphic to a disk. As
n ≥ 2 Smale’s theorem implies that B/A × {0} is diffeomorphic to a disk.

Let q : B → B/A × {0} be a homeomorphism (recall that the projection is

a near-homeomorphism), which can be assumed to be smooth on the boundary. It

follows that we can obtain the manifold F × Dn from M by excising a (n+ 3)-disk
corresponding to B/A × {0} and gluing it back by twisting the gluing map by the
homeomorphism q; this is the same as gluing back B.

Therefore, with the notations from Definition 2.22, one puts X = F × Dn to

find that the singularity is strongly removable, as claimed.

Remark 2.28. It seems that isolated singularities in dimensions (6, 3) are either
cone-like or else removable. From above it suffices to analyze the case when Fs are

reducible. If we knew that there are adapted neighborhoods which are contractible,

then the claim would follow. In fact Remark 2.9 shows that Fs should be disks-with-

holes (using the Poincaré conjecture). Then one could prove that the number of
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components of ∂Fs is uniformly bounded, as shown in ([13, Lemma 3.4, page 952])
for codimension 2 singularities. Therefore ∂Fs should be parallel, for large enough
s. Since we have embeddings Fs ⊂ int(Fs−1) for each s, there is no knotting
phenomena and thus A = ∩s Fs is a tame subset of the fiber F . Thus the singularity

is cone-like.

Remark 2.29. Examples in the next section will show that the statement of Lemma

2.27 fails when n = 3, since there exist fibered links whose fibers are not irre-

ducible. Moreover, our proof of Proposition 2.26 could not work for n = 3 since

the fibered links fibrations might also be non-trivial.

2.7. Cone-like isolated singularities in dimensions (6,3)

There exists a general recipe for constructing fibered links *d Sn−1 into S2n−1. We
will restrict to the high dimensional case n ≥ 3 below. According to Haefliger

(see [24,25]) embeddings of Sn−1 into S2n−1 are trivial up to isotopy, when n ≥ 3.

Thus to each Sn−11 ⊂ S2n−1 one can associate a Hopf dual Sn−12 which links Sn−11

once. In fact Sn−12 is the core of the complement of a regular neighborhood of Sn−11 .

Consider then Sn−12 , . . . Sn−1d be a set of pairwise disjoint Hopf duals to Sn−11 .

Then, by Haefliger classification theorem (see [24, 25]) the link L = *dj=1Sn−1j is

uniquely determined, up to isotopy, by its linking matrix AL . Since the first column

and row are made of ±1, the most important information is the linking matrix AL∗

of the sub-link L∗ = *dj=2Sn−1j . Observe also that links were oriented for the

purpose of computing linking numbers, although the fibering property concerns

unoriented links.

By convenience the diagonal of the matrix AL will have trivial entries 0 as

the links are not framed. We also set LA for the link L with AL∗ = A. The

linking numbers lk(a, b) of the (n − 1)-spheres a, b in S2n−1 satisfy lk(a, b) =
(−1)nlk(b, a).
Proposition 2.30.

(1) For every choice of an integral (−1)n-symmetric (d − 1) × (d − 1) matrix A
with trivial diagonal the link LA is fibered.

(2) If n = 3 then every fibered link (with simple connected fiber) is isotopic to

some LA.

Proof. The complement of a regular neighborhood of an Sn−1 in S2n−1 is Sn−1 ×
Dn , which fibers trivially over Sn−1.

Let us consider now sub-fibrations of Sn−1 × Dn for which the first projection

restricts to a locally trivial fibration over Sn−1 with fiber Dn \*d−1
i=1 D

n . Such locally

trivial fibrations η are determined up to isotopy among fibrations by the homotopy
class of the classifying map cη : Sn−1 → Fd−1(Dn), where Fd−1(Dn) denotes the
configuration space of (d − 1) disjoint disks of equal (very small) radii in Dn . The

value cη(x) is the class in Fd−1(Dn) of the fiber η(x) ⊂ Dn . Moreover Fd−1(Dn)
has the homotopy type of the configuration space Fd(Rn) of d points on Rn .
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The map Fd(Rn) → Fd−1(Rn) which forgets the first point of the d-tuple is
a fibration whose fiber F1,d−1(Rn) has the homotopy type of a wedge ∨d−1Sn−1
of (d − 1) spheres of dimension (n − 1) (see [21]). In particular, Fd−1(Rn) is
(n − 2)-connected.

To every map f : Sn−1 → Fd(Rn) one associates d disjoint embeddings f j :
Sn−1 → Sn−1 × Dn by the formula f j (x) = (x, f(x) j ), where f(x) j is the j-th
component of the d-tuple f(x) ∈ Fd(Rn), and one identifies int(Dn) to Rn .

Lemma 2.31. We have an isomorphism πn−1(Fd−1(Rn)) → Z(d−2)(d−1)/2 which
associates to the class of the map f : Sn−1 → Fd−1(Rn) the (−1)n-symmetric ma-
trix whose upper triangular entries are given by (lk( fi (S

n−1), f j (Sn−1)))1≤i< j≤d−1.

Proof. It is known that πn−1(Fd−1(Rn)) is the direct sum πn−1(Fd−1(Rn))) ⊕
πn−1(Fd−2(Rn)). By functoriality it suffices then to consider only the case when
d = 2, where the proof is elementary. In fact, let π denote the projection F2(Rn) →
Sn−1 given by π(x, y) = x−y

|x−y| . Then lk( f1(S
n−1), f2(Sn−1)) equals the degree of

π(f), as an element of πn−1(Sn−1).

It follows that for every (−1)n-symmetric matrix A with trivial diagonal there
exists some sub-fibration η with fiber Dn \ *d−1

i=1 D
n whose associated link is LA.

Thus LA are fibered links.

Consider next (m, n) = (6, 3). Then the fiber F3 of a fibered link is simply

connected and hence a disk-with-holes D3 \ *d−1
i=1 D

3. The associated fibration is

then a sub-fibration of a D3-fibration over S2, which is trivial (by the Hatcher so-

lution to the Smale Conjecture in the smooth category and by the Alexander trick

in the PL and topological categories). Therefore the fibered link arises as in the

previous construction. Observe that the singular fiber is the cone over the union of

d disjoint 2-spheres, namely a wedge of d disks of dimension 3.

Remark 2.32. The proof from above shows that the isolated singularity so obtained

is locally topologically a fibration, if d = 1 and n = 3.

Once we know all fibered links in dimension (6, 3) we can construct exam-
ples of pairs of manifolds with finite ϕ by using a Lego construction. Let & be

a (decorated) graph whose vertices have valence at least 3. Each vertex v of & is

decorated by some symmetric integral (d − 1) × (d − 1) matrix A(v). To every
vertex v there is associated a fibration S5 − N (LA(v)) → S2 which extends to a

smooth map with one critical point fv : D6v → D3. We glue together the disks

Dv using the pattern of the graph & by identifying one component of ∂N (LA(v)) to
one component of ∂N (LA(w)) if v and w are adjacent in &. The identification has

to respect the trivializations ∂N (LA(v)) → D3 and hence one can take them to be

the same as in the double construction. We obtain then a manifold with boundary

X (&, A(v)v∈&) endowed with a proper smooth map f& : X (&, A(v)v∈&) → D3

with n singular points (n being the number of vertices of &) inside one fiber. The
generic fiber is #gS

1 × S2, where g is the rank of H1(&). If orientation revers-
ing gluing homeomorphisms are allowed then one could also obtain non-orientable
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factors homeomorphic to the twisted S2-fibration over the circle. The restriction of

f& to the boundary is a #gS
1 × S2-fibration over S2. Let &1,&2, . . . ,&p be a set

of graphs associated to a family of cobounding fibrations, namely such that there

exists a fibration over D3 \ *p−1
i=1 D

3 extending the boundary fibrations restrictions

of f&i , 1 ≤ i ≤ p. Then we can glue together f& j
to obtain some smooth map with

finitely many critical points into S3. In particular, we can realize the double of f&
by gluing together f& and its mirror image.

Remark 2.33. All 6-manifolds M6 admitting a smooth map M6 → S3 with finitely

many cone-like singularities should arise by this construction. However, at present

we don’t know whether there are any non-trivial examples, in particular we are

unable to find whether ϕ(M6, S3) equals the total number of vertices of the graphs
& j . Notice that a similar construction produces the examples in dimensions (4, 3)
and (8, 5), but in the later case the value of ϕ(M, N ) can be expressed in terms of
algebraic topology invariants of the manifolds M, N .

2.8. Essential singularities in codimension 3 and proof of Theorem 1.1

Let Mn+3 → Nn be a smooth map with finitely many critical points. We have to

prove that Mn+3 is diffeomorphic to "n+3#Qn+3 where:

(1) "n+3 is a homotopy sphere;
(2) there is a smooth (induced) map Qn+3 → Nn having only finitely many criti-

cal points and fulfilling:

(a) if n ≥ 6 or n = 4 then there are no critical points;

(b) if n = 5 then around each critical point the map is smoothly equivalent to

the Kuiper map k4,1 i.e. the cone over the corresponding Hopf fibration.

Around each critical point of f : M → N we can find adapted neighborhoods

Mi ⊂ M and disks Di ⊂ N centered at the critical points so that f : Mi → Di is a

proper smooth map with precisely one critical point, for i ∈ {1, 2, . . . , r}.
A theorem of Timourian (see [58]) states that a critical point which is an iso-

lated point of its fiber is such that locally the map is topologically equivalent to the

cone over a Hopf fibration (and thus n = 5). Thus the Mi , 1 ≤ i ≤ s, corresponding

to such critical points are homeomorphic to a disk Dn+3 and thus diffeomorphic to
Dn+3, by Smale’s theorem, for n ≥ 2.

From the strong removability of the remaining critical points we can find maps

fi : M ′
i → Di , where Mi and M

′
i are homeomorphic, for all i with s + 1 ≤ i ≤ r .

Moreover Mi \ Ui is identified with M ′
i \ U ′

i for some open disks Ui and U
′
i and

then fi and f |Mi
coincide when restricted to the subset Mi \Ui . Therefore we can

glue together the various mappings fi to obtain a smooth map f
′ : M ′ → N , where

M ′ = ∪i≥s+1U ′
i ∪

(
M \ ∪i≥s+1Ui

)
. This amounts to excise a number of disjoint

disks and glue them back differently. The result is then the connected sum of M

with a homotopy sphere.

We excise now each Mi ⊂ M ′ for all i ≤ s and glue it back by using the

restriction of the homeomorphism which identifies f |Mi
with the cone over the
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Hopf fibration. This amounts to change M by making one more connected sum

with a homotopy sphere, since these Mi (with i ≤ s) are disks. Let then M ′′ be the
resulting manifold. Then the induced map M ′′ → N is smooth and has no other

critical points but the s points where it is smoothly equivalent to the Kuiper map.

Moreover, M ′′ is homeomorphic to M and obtained from M by a connected sum

with a homotopy sphere.

3. Proof of the structure Theorem 1.4

3.1. Spherical blocks and Montgomery-Samelson fibrations

Here and henceforth the dimensions m, n will be of the form m = 2k, n = k + 1,

where k ∈ {2, 4}, unless the opposite is explicitly stated. The subject of this section
is the description of the structure of spherical blocks, namely of manifolds M2k

admitting a smooth map with finitely many critical points into Sk+1. Specifically,
we have first:

Proposition 3.1. Assume that M2k is a compact orientable manifold.

(1) If (2k, k + 1) = (4, 3) and ϕ(M4, S3) is finite non-zero then M4 is either

homeomorphic to #r S
2 × S2, for some r ≥ 0 or else homeomorphic to a

fibration over S3.

(2) If (2k, k + 1) = (8, 5) and ϕ(M8, S5) is finite non-zero then M8 is diffeomor-

phic either to

(a) "8#r S
4 × S4 for some r ≥ 0, with "8 a homotopy sphere, or to

(b) "8#N8, where N → S5 is a fibration, "8 is an exotic sphere (actually the

generator of the group of homotopy 8-spheres &8 = Z/2Z), while "8#N8

is not a fibration over S5.

Recall now the following definition from [45]:

Definition 3.2. A Montgomery-Samelson fibration f : Mm → Nn with singular

set A ⊂ M is a smooth map whose restriction to M − A is a locally trivial fiber

bundle while the restriction to A is a homeomorphism.

As a consequence of Proposition 2.1 and Theorem 1.1 it follows that, ifm−n ≤
3 and (m, n) &∈ {(4, 2), (5, 2), (6, 3)} then a smooth map f : Mm → Nn with

finitely many critical points is a Montgomery-Samelson fibration with finite set A.

We used the result of Timourian ([58]), stating that x is not an isolated point of

f −1( f (x)) unless f is locally topologically equivalent to the suspension of a Hopf
fibration.

Moreover, Montgomery-Samelson fibrations of closed orientable manifolds

Mm over spheres were completely characterized topologically by Antonelli,Church,

Timourian and Conner (see [4, 12, 14, 15]) as follows:

Proposition 3.3. Let Mm → Nn be a Montgomery-Samelson fibration with finite

non-empty singular set A and n ≥ 2.
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(1) Then (m, n) ∈ {(2, 2), (4, 3), (8, 5), (16, 9)} and, if the codimension is positive
then the fiber is a sphere. In particular m = 2k, n = k+1, for k ∈ {1, 2, 4, 8}.

(2) If Mm is simply connected then |A| = χ(M) = βk(M) + 2.

(3) When N = Sk+1 then M2k is homeomorphic to #r (S
k × Sk), where r =

1
2
βk(M).

Proof. See [3, 4, 58]. When N = S2 it was only shown in [4] that M4 has the

oriented homotopy type of #r (S
2 × S2), but the classification theorem for topolog-

ical 4-manifolds due to Freedman permits to conclude. We used here the Poincaré

conjecture for the 3-dimensional fiber.

Proof of Proposition 3.1. Consider now that (m,n)∈{(4,3),(8,5)}. If ϕ(M2k,Sk+1)
is finite non-zero then M2k is either homeomorphic to a fibration (when the map is

locally topologically equivalent to a projection) or else it is a genuine Montgomery-

Samelson fibration with non-empty critical locus A.

If (m, n) = (4, 3) then the claim follows from Proposition 3.3. Let us ana-

lyze now the case (m, n) = (8, 5). Antonelli proved in [4] that a 2k-manifold M
admitting a Montgomery-Samelson fibration over Sk+1 is a (k − 1)-connected π-
manifold. It is known (see [39, Proposition X.3.7, page 205]) that for even k ≥ 3

any closed (k−1)-connected π-manifold M2k is diffeomorphic to"2n#r (S
k × Sk).

At last, if M8 is homeomorphic to a fibration the arguments from [1] show that

M8 = "8#N̂ , where N̂ is a fibration over S5 and"8 is an exotic sphere, as claimed.

This settles Proposition 3.1.

Remark 3.4. Kosinski ([38]) also proved that"2k
1 #r (S

k × Sk) is not diffeomorphic

to "2k
2 #r (S

k × Sk) unless "1 is diffeomorphic to "2 so that we obtain distinct
smooth structures.

3.2. Splitting off fibrations in dimension (8,5)

Proposition 3.1 says that there is essentially a unique way to find simply connected

manifolds with finite ϕ(Mm, Sn), in dimensions (4, 3) and (8, 5). Manifolds Mm

endowed with some proper smooth map Mm → Dn having only finitely many

critical points will be called disk blocks, by analogy with the spherical blocks above.

The topology of disk blocks represents the essential part of the structure of pairs

with finite ϕ(Mm, Nn).

Remark 3.5. Isomorphism classes of S3-fibrations over S4 are classified by the el-

ements of π3(Homeo
+(S3)). Cerf’s theorem ([10]) and Hatcher’s proof of Smale’s

Conjecture ([29]) yield π3(Homeo
+(S3)) ∼= π3(SO(4)). It is standard that SO(4)

is diffeomorphic to SO(3) × S3 and π3(SO(4)) ∼= π3(SO(3) × S3) ∼= Zr ⊕ Zs,
where the generators r and s are the following:

r : S3 → SO(4), r(x)y = xyx−1

s : S3 → SO(4), s(x)y = xy
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and S3 = {x ∈ H, |x | = 1} is identified with set of quaternions of unit norm. Here
H denotes the set of quaternions. We consider here the same generators (r, s) as
those used by James and Whitehead in [34], which are different from the generators

(h, j) used in [41]. If we denote by η[a, b] the fibration associated to ar + bs and

by ξα,β the fibration associated to αh + β j then η[a, b] is the same as ξα,β when

α +β = b and β = −a. Moreover, as it is well-known, these two invariants are the
same as the classical invariants of a rank 4 vector bundle on S4, namely the Euler

class e and the Pontryaguin class p1. Specifically, we have

p1(η[a, b]) = (2b + 4a)[S], e(η[a, b]) = b[S]

where [S] is the generator of H4(S4). The Hopf fibration is η[0, 1] = ξ1,0 and has
non-zero Euler class.

Let us start now from a smooth map f : Mm → Nn between compact mani-

folds, having only finitely many critical points. We notice first that:

Lemma 3.6. The map f is a generalized fiber sum g ⊕α h of a disk block and a

fibration over Nn .

Proof. Let Dn ⊂ Nn be a disk containing the critical values in its interior and

Xm = f −1(Dn). Then the restriction f |Mm\Xm : Mm \ Xm → Nn \ Dn is a

fibration and f splits as the generalized fiber sum of f |Mm\Xm and f |Xm .

Consider now that (m, n) = (8, 5). If the disk block is empty or topologically
trivial it follows that the manifold M8 is a fibration up to the connect sum with a

homotopy sphere. Assume from now on that the disk block h is non-trivial. There-

fore, by the local structure of singularities (see Theorem 1.1) h is a Montgomery-

Samelson fibration with at least one critical point. Moreover, all its critical points

are locally modelled by the cone over the Hopf fibration.

Recall that the double of a manifold X with boundary is the union of two copies

of X with their boundaries identified.

Proposition 3.7. Let h : X8 → D5 be a smooth proper map such that h|∂X is a

fibration over S4. We denote by h⊕h : X8∪∂X X
8 → S5 the double of h, namely the

map induced from the double of X8 to the sphere. Let X81, X
8
2, . . . , X

8
d , . . . X

8
d+ f

be the connected components of X . Assume that each X8i for 1 ≤ i ≤ d contains at

least one critical point, while those for d + 1 ≤ i ≤ d + f contain none.

Then, for each connected component X8i with 1 ≤ i ≤ d the boundary fibration

f |∂Xi : ∂X8i → S4 is a fiber sum of Hopf fibrations (possibly trivial) and thus is

isomorphic to η[0, r], for some r ∈ Z.

Proof. According to the local structure the map f : X8i → D5 has s critical points

p j , j = 1, . . . , s whose topological local model is the suspension of the Hopf

fibration. Thus there exist local charts U8j around p j and V
5
j around q j = H(p j )

such that f : U8j → V 5j is the cone over the Hopf fibration h : ∂Uj → ∂Vj . Thus
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U8j (and V
5
j ) are 8-dimensional (respectively 5-dimensional) disks. Moreover, the

map f : X8i \ ∪s
j=1U

8
j → D5 \ ∪s

j=1V
5
j is a topological fibration.

As in [1], one of the disks U8j could be removed and then glued back in order

to obtain the homotopy sphere summand "8 and that the restriction of f to X8i \
∪s
j=1U

8
j is a smooth fibration.

The fibration on each boundary component ∂Uj has fiber S
3, and thus the

fiber of the restriction of f should be a disjoint union of S3’s. However, the base

D5 \ ∪s
j=1V

5
j is simply connected and thus X

8
i \ ∪s

j=1U
8
j has as many connected

components as the fiber. This implies that the fiber should be S3.

Lemma 3.8. Let α1,α2, . . . ,αs+1 be isomorphism classes of S3-fibrations over S4.

Then there exists a S3-fibration over S5\∪s+1
j=1D

5
j , whose restriction to the boundary

∂D5j of each 5-disk is the class α j if and only if

α1 + α2 + · · · + αs+1 = 0 ∈ π3(SO(4)) ∼= Z ⊕ Z.

Proof. The holed sphere S5 \∪s+1
j=1D

5
j retracts onto the wedge of s spheres ∨s

λ=1S
4
j ,

which is embedded in S5 \ ∪s+1
j=1D

5
j . Let α be the class of a S

3-fibration over the

holed 5-sphere. We associate to α the collection (ηλ)1≤λ≤s of restrictions to each
factor S4λ of the wedge of spheres. This yields an injective map from the set of

isomorphism classes α into the group⊕s
λ=1π3(SO(4)). This map is also surjective.

Given an element γ of ⊕s
λ=1π3(SO(4)) we consider trivial S3-fibrations on the 4-

disks D4λ,+, λ = 1, . . . , s and, respectively, on the wedge of disks ∨s
λ=1D

4
j,−. We

glue together these fibrations along their boundaries, namely for each λ, ∂D4λ,+ is
identified to ∂D4λ,− by using the twist γλ ∈ π3(SO(4)). This yields a fibration over

∨s
λ=1S

4
j which extends to S

5 \ ∪s+1
j=1D

5
j .

We have to relate now the classes ηλ and the classes α j of the restrictions of

α to the boundary components ∂D5j . We choose a particular embedding of ∨s
λ=1S

4
j

into S5 \ ∪s+1
j=1D

5
j as follows:

• S41 and ∂D51 bound a cylinder;

• S4λ ∨ S4λ+1 and ∂D5λ+1 bound a 5-sphere deprived of three disks, among which
two disks intersect in a boundary point, for λ = 1, 2, . . . , s;

• S4s and ∂D5s+1 bound a cylinder.

Taking into account the orientations on each boundary component it follows that

α1 = η1,α j = η j − η j−1, for 2 ≤ j ≤ s, αs+1 = ηs .

Thus the classes (α j )1≤ j≤s+1 extend to the holed 5-sphere if and only if their sum
vanishes.
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We resume the proof of Proposition 3.7. We have a fibration f : Xi\∪s
j=1Uj →

D5\∪s
j=1Vj and all boundary fibrations over ∂Vj are Hopf fibrations. Let us denote

by α j the class of the boundary Hopf fibration h : ∂Uj → ∂Vj . We identify each
factor π3(SO(4)) with Z ⊕ Z by taking account the boundary orientation of the

fibrations. Thus each α j is either the Hopf fibration, or its negative.

For example, the suspension of the Hopf fibration S8 → S5 has two critical

points and the classes of the associated boundary fibrations are the positive and the

negative Hopf fibrations.

Since the classes α j and f |∂Xi bound it follows from the Lemma 3.8 that the
isomorphism class of the S3-fibration f |∂Xi is the (algebraic) sum of a number of
Hopf fibrations and thus isomorphic to η[0, r] for some integer r . It is easy to see
that this is the same as r fiber sums of Hopf fibrations.

Lemma 3.9. The connected components X8i , for d+ 1 ≤ i ≤ d+ f are diffeomor-

phic to D5 × S3 and the fibrations f |∂Xi are trivial S3-fibrations.

Proof. The restrictions f : X8i → D5 are fibrations whenever d + 1 ≤ i ≤ d + f

and we set F3i for their respective fibers. We also set F
3
i = S3 for i ≤ d. According

to our assumptions the restriction of f is also a fibration in a neighborhood of

*d+ f

i=1 ∂Xi and thus its fiber is *d+ f

i=1 Fi .
Recall that the restriction to the fibrewise summand f |M8\X8 : M8 \ X8 →

N5 \ D5 is also a fibration and that M8 is connected. The fiber on the boundary is

known so that the fiber of f |M8\X8 is *d+ f

i=1 F
3
i . If there exist a fiber F

3
i which is not

diffeomorphic to S3 then the monodromy cannot exchange the respective connected

components of the fiber and thus M8 \ X8 is not connected. This would imply that
M8 is not connected, since all disk blocks X8i are connected. This contradiction

shows that all F3i are diffeomorphic to S
3 and the claim follows.

Lemma 3.10. Let g : M8 \ X8 → N5 \ D5 be a fibration with fiber *ri=1S3.
Then the restrictions of g to each boundary component is a trivial fibration and the

fibration g factors as follows: there exists a non-ramified covering N̂5 \ *ri=1D5i
of N5 \ D5 of degree r and an S3-fibration M8 \ X8 → N̂5 \ *ri=1D5i and their
composition is g.

Proof. The main idea is that a S3 fibration over S4 extends over N5 \D5 if and only
if it is trivial. This is a simple application of the following well-known facts: these

invariants of the fibration can also be interpreted as Pontryaguin and Euler numbers

of the manifold and the latter are cobordism invariants.

In order to classify (orientable) fibrations with fiber *ri=1S3 one has to con-
sider the group of homeomorphisms of *ri=1S3. As a consequence of the Cerf and
Hatcher theorems this homeomorphisms group has the homotopy type of SO(4)r "
Sr , where Sr denotes the permutation groups on r elements acting on SO(4)r by
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permuting the factors. In particular isomorphism classes of such fibrations over N

are classified by the elements of the set of homotopy classes [N , B(SO(4)r " Sr )].
The exact sequences between Lie groups induce the following exact sequence

in homotopy:

[N , BSO(4)]r → [N , B(SO(4)r " Sr )] → [N , BSr ].

Then [N , BSr ] is isomorphic to the set of homomorphisms Hom(π1(N ), Sr ), by
associating to each finite covering its monodromy homomorphism. Moreover, given

a fibration with fiber *ri=1S3 we can associate a monodromy covering N̂ of N by

crushing each sphere to a point, or equivalently, by considering the monodromy

action on the set of components of the fiber.

This can be interpreted as follows. Given a homomorphism ρ : π1(N ) → Sr ,

the isomorphism classes of fibrations with fiber *ri=1S3 and monodromy cover-
ing associated to ρ is in bijection with [N , BSO(4)]r . Furthermore each factor
[N , BSO(4)] contains a Euler class e and a Pontryaguin class p1, which are pull-
backs of the corresponding elements in K (Z, n) and K (Z, 4).

It is known that π j (BSO(4)) = π j−1(SO(4)) (see e.g. [55, Chapter19]) and
thus

π1(BSO(4))=π3(BSO(4)) = 0,π2(BSO(4))=Z/2Z,π4(BSO(4)) = Z ⊕ Z.

By general facts concerning the Moore-Postnikov decomposition of BSO(4) (see
[54, Chapter 8]) we have a map

θ : [N , BSO(4)] → [N , K (Z/2Z, 2) × K (Z, 4) × K (Z, 4)]

or equivalently

θ : [N , BSO(4)] → H2(N , Z/2Z) ⊕ H4(N , Z) ⊕ H4(N , Z).

When N is of dimension 4 the components of θ(η) are the characteristic classes
of the fibration η, namely the Stiefel-Whitney class w2 ∈ H2(N , Z/2Z), the Pon-
tryaguin class p1 ∈ H4(N , Z) and the Euler class e ∈ H4(N , Z). Let us denote
by e ∈ H4(N , Z) the corresponding element θ(η) also when N is of arbitrary di-

mension, namely the image in cohomology of the pull-back of the generator of

H4(K (Z, 4), Z). Notice that e is not an Euler class if the dimension of N is not 4.
Assume now that we have a fibration α with fiber *ri=1S3 over N \ D and

fixed monodromy homomorphism ρ : π1(N \ D) → Sr . We want to compute

the invariants of its restriction α|∂D . The set of isomorphisms corresponds bijec-
tively to elements in [N \ D, BSO(4)]r and thus we have characteristic classes
c = (ci )i=1,r ∈ ⊕r

1H
4(M) corresponding to each one of the r factors.

For any characteristic class c ∈ H4(M) we have

c(α|∂D) = i∗c(η)



848 LOUIS FUNAR

where c, i : ∂D → N \ D is the inclusion and i∗ : H4(N \ D) → H4(∂D) is
the map induced in cohomology. However the map i∗ is trivial. For instance in the
Mayer-Vietoris sequence

0 → H4(N ) → H4(N \ D) ⊕ H4(D5) → H4(∂D) →

the map H4(N ) → H4(N \ D) is an isomorphism and thus the kernel of i∗ is all of
H4(N \D). Thus the characteristic classes of each S3-fibration component of α|∂D
vanish.

This result holds more generally for any boundary 4-manifold instead of the

sphere ∂D, since according to Dold and Whitney (see [18,62]) the classesw2, p1, e
classify S3-fibrations over 4-manifolds.

By Remark 3.5 each component of α|∂D is a trivial fibration.

Lemma 3.11. Each connected component X8i with 1 ≤ i ≤ d is diffeomorphic to

some manifold"8
i #ri S

4× S4 \ D5× S3, so that the restriction of f to the boundary

is identified with the projection S3 × ∂D5 → ∂D5 on the second factor.

Proof. The boundary fibration f |∂Xi is a trivial fibration, and hence we can glue to
X8i the trivial fibration over D

5 in order to obtain a manifold Y 8i endowed with a

smooth map with only finitely many critical points into S5.

Further ∂Xi and Xi \ ∪s
j=1Uj , and hence Xi , are simply connected as S

3-

fibrations over simply connected bases. Thus the manifold Yi is a simply connected

spherical block. The structure of spherical blocks from Proposition 3.1 implies

that Y 8i is diffeomorphic to "8
i #ri S

4 × S4 for some ri ≥ 0, with "8
i a homotopy

sphere.

Remark 3.12. The isomorphism classes of S3-fibrations over #cS
1× S4 are classi-

fied by an element in ⊕c
1π3(SO(4)) = (Z ⊕ Z)c, each factor Z ⊕ Z corresponding

to the isomorphism class of the restriction of the S3-fibration to a factor {∗} × S4.

3.3. Splitting off fibrations in dimensions (4,3)

The aim of this section is to prove the corresponding splitting result in dimen-

sion (4, 3). Some extra care is needed to describe the smooth structure of the 4-
manifolds.

The first step in proving the theorem is to understand the smooth structure of

spherical blocks in dimension (4, 3), by a slight strengthening of Proposition 3.1:

Proposition 3.13. If M4 → S3 has finitely many critical points and its generic

fiber is S1, then

(1) either M4 = "4#N4, where N4 is a fibration over S4;
(2) or else M4 is "4#r S

2 × S2, where "4 is a homotopy 4-sphere.
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Remark 3.14. If π1(M
4) = 0 then the generic fiber should be a circle. It will

be proved later (see Proposition 4.1) that a connected spherical block M4 which is

non-fibered is simply connected. On the other hand a fibered connected spherical

block M4 is a circle fibration over S3. Thus, the generic fiber is a circle for any

connected spherical block.

Proof. By the proof of Proposition 3.1 a smooth map f : M4 → S3 with finitely

many critical points is a Montgomery-Samelson fibration. Thus f is locally topo-

logically equivalent to either the standard projection or else to the suspension H of

the Hopf fibration S3 → S2 around branch points. We will use a refinement of the

argument from [1] for converting a topological fibration into a smooth fibration at

the expense of adjoining some homotopy sphere.

Around each critical point p ∈ M4 from the branch locus there exists an open

neighborhood p ∈ U4 ⊂ M4 and a homeomorphism g : V 4 → U4 such that

f ◦ g : V 4 → f (U4) is smoothly equivalent to the suspension H . Moreover, by
choosing a smaller neighborhood V 4, we can assume that V 4 is a 4-disk and that its

image U4 is contained in a 4-disk inside M4. This implies that U4 is a homotopy

4-disk. If we remove the homotopy 4-disk U4 and glue back V 4 instead then we

obtain the manifold M4#"4
1 , where "4

1 is a homotopy sphere, namely the negative

(in the group of homotopy 4-spheres) of the homotopy sphere obtained by capping

off the boundary of U4 by a 4-disk. A theorem of Huebsch and Morse (see [32])

says that whenever 34 is a homotopy 4-disk which can be embedded in a 4-disk

there exists a smooth homeomorphism 34 → D4 with only one critical point. As

a consequence there exists a smooth homeomorphism U4 → V 4 having precisely

one critical point.

It follows that there is an induced smooth map M4#"4
1 → S3, which coincides

with f outside V 4 and it is locally smoothly equivalent around the image of p to

the suspension map H . We continue in the same way for all points of the branch

locus and get a manifold M#"4 endowed with a map to S3 whose branch locus

critical points are locally smoothly equivalent to H and "4 is the connected sum of

the homotopy 4-spheres corresponding to each critical point.

At last, consider the critical points of f which are not in the branch locus. Lo-

cally the map f is topologically equivalent to the projection. As above, by adjoining

a homotopy 4-sphere we can make the map be smoothly equivalent to a projection

and hence a submersion.

At the end of this process we obtained a smooth map f : N4 = "4#M4 → S3

locally modelled on H . If the branch locus is empty then f is a fibration.

Assume that the set of branch points is non-empty from now on.

Further S1-fibrations over S2are classified by an element of π1(Homeo
+(S1))∼=

π1(SO(2)) = Z, namely an integer called the Euler class of the fibration.
Lemma 3.8 has a similar statement in this dimension, as follows:

Lemma 3.15. Let α1,α2, . . . ,αN be isomorphism classes of S1-fibrations over S2.

Then there exists a S1-fibration over S3\∪N
j=1D

3
j , whose restriction to the boundary
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∂D3j of each 5-disk is the class α j if and only if

α1 + α2 + · · · + αN = 0 ∈ π1(SO(2)) ∼= Z.

Proof. We omit it.

If we excise disk neighborhoods around the s critical values of the map f :
N4 → S3 we obtain a S1-fibration over S3 \ ∪s

j=1D
3
j extending the boundary

(signed) Hopf fibrations. Since the Euler class of the Hopf fibration is the generator

1 ∈ π1(SO(2)), and thus it is non-zero, Lemma 3.15 implies that s = 2k is even

and there exist k positive and k negative Hopf fibrations.

Let consider embedded 2-spheres S21 , . . . , S
2
k−1 separating boundary compo-

nents into pairs of opposite signs. Using again Lemma 3.15 a number of times we

obtain that the restriction of the S1-fibration f at S2j is a trivial fibration, for each j .

This means that the fibration f is the fiber sum of spherical blocks with 2 critical

values along trivial fibrations.

Lemma 3.16. If f : N4 → S3 is as above and has two critical values then N4 is

diffeomorphic to S4.

Proof. We have disk neighborhoods D4+ and D
4
− in N

4 around the critical points

and f : N4\(D4+∪D4−) → S2×[0, 1] is a S1-fibration. The restrictions of f to the
boundary spheres ∂D4+ and ∂D4− are isomorphic to the Hopf fibrations over S

2. The

composition of the projection S2 × [0, 1] → [0, 1] with the above restriction of f
is still a fibration of N4 \ (D4+ ∪ D4−) onto [0, 1], and hence a trivial one. Therefore
N4 \ (D4+ ∪ D4−) is diffeomorphic to S3 × [0, 1]. The manifold N4 is obtained by
gluing D4+, S

3 × [0, 1] and D4− along their respective boundaries. Cerf’s theorem
&4 = 0 (see [10]) implies that N4 is diffeomorphic to S4, as claimed.

Let now M4
r denote the total space of the fiber sum of r blocks S4 → S3.

Thus M4
1 = S4 and M4

r+1 = M4
r ⊕ S4, for r ≥ 1. We obtain M4

r+1 by deleting
out neighborhoods S1 × int(D3) of generic fibers from M4

r and S
4 and gluing then

M4
r \ S1 × int(D3) and S4 \ S1 × int(D3) along their boundaries, by a gluing

homeomorphism respecting the product structure on the boundary.

Consider first the case r = 2. Since the fiber S1 ⊂ S4 is unknotted it follows

that S4 \ S1 × int(D3) is diffeomorphic to S2 × D2. Moreover we want to glue

the two copies of S2 × D2 such that the two boundary fibrations S2 × S1 → S2

glue together, i.e. the gluing homeomorphisms 4 : S2 × S1 → S2 × S1 induces a

homeomorphism of the base ϕ : S2 → S2 so that the diagram

S2 × S1
4→ S2 × S1

↓ ↓
S2

ϕ→ S2
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is commutative. This condition implies that the result of the gluing of the two

spherical blocks possesses a smooth map into D3 ∪ϕ D3, which is a sphere S3,

since diffeomorphisms reversing the orientation of S2 are isotopic to a symmetry,

by a classical result of Smale.

The isotopy class of a gluing homeomorphism respecting the product struc-

ture corresponds to a homotopy class of a map S2 → Homeo+(S1), namely to an
element of π2(SO(2)) = 0. Therefore the diffeomorphism type of M2 does not

depend on the choice of this isomorphism.

Therefore M2 is the result of gluing two copies of S
2×D2 by using the bound-

ary identification4. Observe that there is also an obvious projection S2×D2 → S2

extending the boundary projection S2 × S1 → S2. The above diagram shows that

the two projections on the first factor of each copy S2 × D2 glue together to get a

trivial fibration map M4
2 → S2. Moreover, the fiber of this fibration is the union

D2 ∪ D2, namely a 2-sphere S2. It follows then that M2 = S2 × S2.

When r > 2, we should also analyze what happens from S4 when we delete

neighborhoods of two fibers. Since the fibers form a trivial link in S4 and can be

separated by an embedded 3-sphere it follows that S4\(S1×int(D3)∪S1×int(D3))
is diffeomorphic to the connected sum out of the boundary (S4\S1×int(D3))#(S4\
S1 × int(D3)). Recall that Mr is obtained by iterating boundary gluings of S

4 \
S1 × int(D3) with (r − 2) copies of S4 \ (S1 × int(D3) ∪ S1 × int(D3)) glued each
one to the next one and finally with one more copy of S4 \ S1 × int(D3). By the
previous observation this gluing is the connected sum of (r − 1) manifolds, where
each manifold is obtained by gluing two S4 \ S1 × int(D3). It follows then than
Mr = #r−1S2 × S2. This proves Proposition 3.13.

3.4. End of proof of Theorem 1.4

3.4.1. Dimension (8, 5)

The fibrewise summand f |M8\X8 extends a trivial boundary fibration. We can glue
then along the boundary a trivial fibration over the disk D5 to obtain a fibration

g : W 8 → N5 with fiber *d+ f

1 S3. This implies that W 8 is a S3-fibration over the

monodromy covering N̂ , which is a degree (d + f ) covering of N .
Since the disk blocks over D5i are connected and disjoint, the gluing of M

8 \
X8 and X8 to recover M8 corresponds to taking d + f fiber sums (along d + f

components S3, which are fibers of W 8) with the manifolds Y 8i . We put also Y
8
j =

S3 × S5, when d + 1 ≤ j ≤ d + f .

Consider now "8 = "8
1# · · · #"8

d , where "8
j are the homotopy 8-spheres as-

sociated to each factor. Then we can slide the attaching maps of "8
i in order to be

attached to a small disk on W 8. This is possible since the image of the monodromy

of the covering is all of the permutation group Sd+ f , as M
8 \ X8 is connected. We

obtained the structure claimed in the theorem for D = d + f , where all factors Y 8i
(with i ≥ d + 1) are diffeomorphic to #−1S2 × S2.
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Let q = 2
∑d

i=1 ri + 2d. Note that ϕ(M8, N5) ≤ q, because we have already

a smooth map with q critical points.

3.4.2. Dimension (4, 3)

Consider the disk block X4 → D3 and assume that X4 has d + f connected com-

ponents X4i such that the first d have at least one branch point. Then X
4
i minus a

number of spherical caps is a fibration over the holed D3. Since the holed 3-disk is

simply connected it follows that the generic fiber of f |X4i is a single S
1.

Therefore M4 \ X4 is a manifold with d + f boundary components, which are

fibrations over ∂D.

Lemma 3.17. Let g : M4 \ X4 → N3 \ D3 be a fibration with fiber *ri=1S1.
Then the restrictions of g to each boundary component is a trivial fibration and the

fibration g factors as follows: there exists a non-ramified covering N̂3 \ *ri=1D3i
of N3 \ D3 of degree r and an S1-fibration M4 \ X4 → N̂3 \ *ri=1D3i and their
composition is g.

Proof. We can follow the same lines as in the proof of Lemma 3.10 by replacing

BSO(4) with BSO(2). However there is a much simpler proof. In fact a circle
fibration over ∂D3 which extends to N3 \ D3 is trivial because 3-manifolds are

parallelizable. We leave the details to the reader.

Lemma 3.18. Each connected component X4i with 1 ≤ i ≤ d is diffeomorphic to

some manifold"4
i #ri S

2× S2 \ D3× S1, so that the restriction of f to the boundary

is the projection S1 × ∂D3 → ∂D3.

Proof. We construct the manifold Y 4i by adjoining to X
4
i a trivial S

1-fibration over

D3. Although we cannot insure that Y 4i is simply connected we know that Y 4i
admits a smooth map with finitely many critical points into S3 having the generic

fiber S1. Thus we can apply Proposition 3.13 to find that Y 4i is diffeomorphic to

"4
i #ri S

2 × S2.

The proof of the theorem follows from these Lemmas.

4. Computing ϕ and the proof of Theorem 1.9

Computing the precise value for ϕ from the structure Theorem 1.4 is easy when the
fundamental group is trivial or verifies some strong assumptions forcing the finite

covering to be unique. In fact the main point is to understand whether a given Mm

admits several fiber sums decompositions associated to coverings N̂ n of different

degrees.

Henceforth we consider two manifolds M2k, Nk+1 with finite ϕ(M2k, Nk+1)
and k ∈ {2, 4}. According to Theorem 1.4 either M2k is a topological fibration over
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Nk+1 or else it is the iterated fiber sum of a fibrationW 2k over Nk+1 with a number
of spherical blocks. In the second case we say, by a language abuse, that M2k is

non-fibered (over Nk+1).
We have the following result (restatement of Corollary 1.8 from Introduction):

Proposition 4.1. Let M2k , Nk+1 be closed orientable manifolds with finite

ϕ(M2k, Nk+1), k ∈ {2, 4} and M2k non-fibered.

If k = 4 then π1(M
8) is a finite index normal subgroup of π1(N

5).

If k = 2 then π1(M
4) ∼= π1(N

3).

Proof. Let Fk−1 denote the fiber of W 2k → Nk+1.
If k = 4 then π1(W

8) ∼= π1(M
8) by Van Kampen. The homotopy exact

sequence of the fibration W 8 → N5 yields the exact sequence:

0 → π1(M
8) → π1(N

5) → π0(F
3) → 0.

This means that π1(M
8) is a normal finite index subgroup of π1(N

5).

If k = 2 the homotopy exact sequence of the fibration reads

0 → π2(M
4) → π2(N

3) → π1(F
1) → π1(W

4) → π1(N
3) → π0(F

1) → 0.

We obtain M4 from W 4 by capping off some of the S1 components of the fiber. In

fact, for realizing the fiber sum we remove a neighborhood of the fiber component

and replace it with the complement of a neighborhood Z4 of the generic fiber in

some #r S
2 × S2. However, a fiber in the boundary of Z4 is null-homotopic in

#r S
2× S2 \ Z4: translate the fiber until it lies in the boundary of the cone of a Hopf

fibration around a critical point and then collapse it onto the vertex of the cone.

Since the monodromy homomorphism of the covering N̂3 → N3 at the level

of connected components of the fiber is surjective capping off one component is

equivalent to capping off any other component at the level of fundamental group.

Specifically, by Van Kampen

π1(M
4) = π1(W

4)/〈i(π1(F1))〉

where 〈i(π1(F1))〉 is the normal subgroup of π1(N
3) generated by the image

i(π1(F
1)) by the inclusion map i : F1 ↪→ W 4.

The exact sequence above shows that the image i(π1(F
1)) is a normal sub-

group, namely the kernel of π1(W
4) → π1(N

3). Therefore there exists a natural
identification of π1(M

4) with π1(N
3).

Definition 4.2. The groupG is co-Hopfian if any injective homomorphismG → G

is an automorphism.
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Proposition 4.3. Let M2k, Nk+1 be closed orientable manifolds with finite ϕ(M2k ,

Nk+1), k ∈ {2, 4} and M2k non-fibered.

If k = 4, assume that π1(M
8) ∼= π1(N

5) is a co-Hopfian group or a finitely
generated free non-Abelian group. Then ϕ(M8, N5) = 2r + 2D, where r = r1 +
r2 + · · · + rD .

If k = 2, assume that N3 is an irreducible closed orientable 3-manifold which

is not finitely covered by a torus bundle over S1 nor by " × S1 (for some surface

"). Then ϕ(M4, N3) = 2r + 2D.

Proof. Let k = 4. The structure theorem and Van Kampen imply that π1(W
8) ∼=

π1(M
4). Moreover, the homotopy exact sequence of the fibrationW 8→N5 implies

that the fiber is a single sphere, because the injective homomorphism π1(M
8) →

π1(N
5) should be an automorphism if π1(N

5) is co-Hopfian.

If π1(N
5) is free non-Abelian then an argument also used in [22] can be ap-

plied. The image of π1(M
8) into π1(N

5) should be a normal subgroup of finite
index equal to the number of components of the fiber. By the Nielsen-Schreier the-

orem this is a free non-Abelian group of rank greater than the rank of π1(M
8) and

thus cannot be the image of π1(M
8) unless the fiber is connected.

This implies that there exists only one possible value for D, namely D = 1.

Lemma 4.4. If D = 1 and k ∈ {2, 4} then r is uniquely determined by the homol-
ogy of M2k and Nk+1. Specifically, we have:

2r =
{
bk(M

2k) − 2b1(N
k+1), if bk(M) ≡ 0(mod 2)

bk(M
2k) − 2b1(N

k+1) + 1, if bk(M) ≡ 1(mod 2)

where b j states for the j-th Betti number.

Proof. It suffices to consider r ≥ 0 since otherwise M2k = W 2k and M2k fibers

over Nk+1.
All homology groups below will be considered with rational coefficients. The

Gysin sequence of the fibration W 2k − Sk−1 × Dk+1 → Nk+1 − Dk+1 yields

0 → H1(N
k+1 − Dk+1) → Hk(W

2k − Sk−1 × Dk+1)

→ Hk(N
k+1 − Dk+1)

β→ H0(N
k+1 − Dk+1)

and thus

rkQHk(W 2k − Sk−1 × Dk+1) = 2b1(N
k+1) − rkQIm(β)

where rkQ denotes the rank over Q. Moreover the image of β is contained in

H0(N
3 − D3) and thus 0 ≤ rkQIm(β) ≤ 1. Further Hk(N

k+1 − Dk+1) ∼=
Hk(N

k+1) ⊕ Hk(∂D
k+1) and the map β on Hk(N

k+1) is the cap product with the
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Euler class eW ∈ Hk(Nk+1) of the fibration W 2k → Nk+1 in (k − 1)-spheres and
respectively trivial on the factor Hk(∂D

k+1). It follows that

rkQIm(β) =
{
0, if eW = 0

1, otherwise .

We want now to compute the homology of M2k which is obtained by gluing W 2k −
Sk−1 × Dk+1 with Z2k = #r S

k × Sk \ Sk−1 × Dk+1 along Sk−1 × Sk . The proof

of Proposition 3.13 shows us that Z2k is diffeomorphic to #r S
k × Sk#Sk × Dk and

thus Hk(Z
2k) = Q2r+1 and H1(Z2k) = 0, if r ≥ 0. By Mayer-Vietoris we derive

the exact sequence:

Q = H2(S
1 × S2)

ζ→ Hk(W
2k − Sk−1 × Dk+1) ⊕ Hk(Z

2k)

→ Hk(M
2k)

ν→ Hk−1(Sk−1 × Sk) = Q

so that

rkQHk(M2k)= rkQHk(W 2k − Sk−1 × Dk+1) + 2r + 1+ rkQIm(ν) − rkQIm(ζ ).

The map ζ is injective since Hk(Z
2k) is generated by the homology classes of the

obvious embedded 2-spheres. Thus ker ζ = 0 and hence rkQIm(ζ ) = 1.

Note that

0 ≤ rkQIm(ν) ≤ 1.

Observe now that the map induced by inclusion Hk−1(Sk−1 × Sk) → Hk−1(Z2k)
should be trivial since the fiber Sk−1 × {∗} is null-homologous in Z2k .

We have Hk−1(W 2k − Sk−1×Dk+1) ∼= Hk−1(W 2k) because any (k−1)-cycle
can be homotoped in W 2k outside the fiber Sk−1, by general position arguments.
The map induced by inclusion Hk−1(Sk−1× Sk) → Hk−1(W 2k − Sk−1× Dk+1) ∼=
Hk−1(W 2k) is trivial if and only if the fiber of W 2k → Nk+1 is null-homologous in
W 2k . Therefore, by Mayer-Vietoris we have rkQIm(ν) = 1 if and only if the fiber

of W 2k → Nk+1 is null-homologous, and thus rkQIm(ν) = 0 otherwise.

Now, if eW = 0 then the fiber cannot be null-homologous since the fibration

W is trivial and thus

rkQHk(M2k) = 2b1(N
k+1) + 2r.

When eW &= 0 we have

rkQHk(M2k) = 2b1(N
k+1) + 2r − 1+ rkQIm(ν).

In particular we need that rkQIm(ν) ≡ bk(M
2k)(mod 2) and the claimed formula

follows.
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Remark 4.5. Similar computations can be done for arbitraryDbut instead ofb1(N )
we have to use b1(N̂ ). However, we have no control on the first Betti number of
finite coverings in dimension three, out of the trivial upper bound. Thus the above

result does not extend when D > 1.

Therefore D and r are uniquely determined by the topology of M2k and Nk+1.
Consider a smooth function M2k → Nk+1 with ϕ(M2k, Nk+1) critical points. The
proof of Theorem 1.4 shows that there exists some decomposition of M2k as a fiber

sum W 2k ⊕#r Sk × Sk such that ϕ(M2k, Nk+1) = 2r +2 (recall that D = 1), under

the assumptions of Proposition 4.3. Then Lemma 4.4 shows that any decomposition

of M2k as a fiber sum W 2k ⊕ #s Sk × Sk , where W 2k → Nk+1 factors as a spherical
fibration over some degree D covering of Nk+1, actually forces D = 1 and s = r .

Thus ϕ is as claimed and this ends the proof of the case k = 4.

Let us consider now the case k = 2. We can assume that the closed orientable

3-manifold N3 is geometric, according to Perelman’s solution to Thurston’s ge-

ometrization Conjecture. Since π1(N
3) is co-Hopfian N3 is irreducible. Moreover,

if N3 is not a Seifert fibered manifold covered by a torus bundle over S1 nor by a

" × S1, then π1(N ) is co-Hopfian (see [60,63]).
Let us recall that f : M4 → N3 is a Montgomery-Samelson fibration and thus

it induces a fibration M4 \V → N3 \ B, where B and V are the finite sets of critical
values and critical points, respectively. Then the homotopy exact sequence of this

fibration yields

0→π2(M\V )→π2(N \B)→π1(F)→π1(M\V )→π1(N \B)→π0(F)→0.

Note that π1(M) ∼= π1(M \ V ) and π1(N ) ∼= π1(N \ B). We observed in the
proof of the Proposition 4.1 above that the inclusion F ↪→ M sends π1(F) to 0.
Therefore, we derive the exact sequence:

0 → π1(M) → π1(N ) → π0(F) → 0.

But π1(M) and π1(N ) are isomorphic. Thus, if π1(N ) is co-Hopfian then π0(F)
is 0. This implies that the fibration W has connected fibers. Therefore D = 1 and

hence Lemma 4.4 shows that r is uniquely determined. The same argument which

was used above for k = 4 ends the proof.

Remark 4.6.

(1) The braid group B3, which is the fundamental group of the trefoil knot, is a

well-known non-co-Hopfian group (see [48]). For instance there exist finite

index subgroups of any index k ≡ ±1(mod 6) which are isomorphic to B3. Its
quotient B3/Z = PSL(2, Z) is also non-co-Hopfian.

(2) There exist also non-co-Hopfian 3-manifold groups, for instance the following

groups:

〈a, b, t |ab = ba, tat−1 = aubv, tbt−1 = awbz〉
where

( u v
w z

)
is a (hyperbolic) matrix with two real distinct eigenvalues. These

are fundamental groups of torus bundles over the circle which are sol-groups

i.e. lattices in the group SOL.
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Proposition 4.7. Let M4, N3 be closed orientable manifolds with finite ϕ(M4, N3)
and M4 non-fibered. Suppose that the fundamental group of the closed orientable

3-manifold N3 is not co-Hopfian. Then, for any decomposition of M4 as a fiber

sum, the value of 2r + 2D is independent on the choice of the covering and

ϕ(M4, N3) = 2r + 2D = 2

[
b2(M) + 1

2

]
− 2b1(N ) + 2.

Proof. Consider first N3 be a closed irreducible 3-manifold. Assume that we have

a finite non-trivial covering N̂3 of N3 with π1(N̂3) ∼= π1(N
3). Then π1(N

3) is
infinite and not co-Hopfian.

Lemma 4.8. The covering N̂3 is homeomorphic to N3.

Proof. We will use below the fact that all 3-manifolds are geometric (i.e. Seifert

fibered or hyperbolic or Haken or a connected sum of such manifolds), as it was

established by Perelman.

The geometric 3-manifolds whose groups are not co-Hopfian are either re-

ducible or else are finitely covered by either a torus bundle or else by a product

" × S1, where " is a closed surface (see [60,63]).

If N3 is covered by " × S1 then it is a Seifert fibered 3-manifold. In par-

ticular N3 is a closed aspherical 3-manifold whose homotopy type is completely

described by π1(N
3). The finite covering N̂3 is also an irreducible Seifert fibered

3-manifold with the same fundamental group. The asphericity implies that N3 and

N̂3 are homotopy equivalent. A theorem of Scott ([51]) implies that they are actu-

ally homeomorphic.

If N3 is finitely covered by a torus bundle over S1 then the image of the fiber

is an incompressible surface in N3, corresponding to the embedding of Z ⊕ Z
in π1(N

3). Therefore N3 is Haken. Since N3 and N̂3 are aspherical they are

homotopy equivalent and a classical theorem of Waldhausen shows that they are

homeomorphic.

In particular, the fibration W 3 is diffeomorphic to a S1-fibration over N3.

Therefore M3 is diffeomorphic to the fiber sum along D distinct fibers of the S1-

fibration W 4 with D respective spherical blocks #ri S
2 × S2. Then there exists a

smooth function M4 → N3 with 2r + 2D critical points, which has connected

fibers. Take a disk in N3 containing the critical values and its inverse image un-

der the smooth map, which is a connected disk block. The proof of Theorem 1.4

shows that M4 decomposes as the fiber sum of a spherical block containing the

2r + 2D critical points and a circle fibration V 4 → N3. But the spherical block

is diffeomorphic to #
(
∑D

i=1 ri )+D−1S
2 × S2. In the new fiber sum decomposition of

M4 we have then a covering of N3 of degree 1 and the number of factors S2× S2 is

(
∑D

i=1 ri ) + D − 1. Thus any fiber sum decomposition of M4 leads to a fiber sum

whose associated covering is of degree 1. Then Lemma 4.4 implies that the value
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of (
∑D

i=1 ri ) + D − 1 is independent on the fiber sum decomposition and thus the

number of critical points, namely 2r + 2D, equals ϕ(M, N ), as claimed.

Remark 4.9. If W 2k → Nk+1 is a spherical fibration (with connected fiber) then it
seems that the fiber sum of W 2k with D spherical blocks #ri S

k × Sk along D fibers

is actually diffeomorphic to the fiber sum of W 2k with a single spherical block

#
(
∑D

i=1 ri )+D−1S
k × Sk . This is not anymore clear if the fiber is not connected.

Consider now the case when N3 is reducible. Thus either π1(N
3) = Z or else

N3 splits as a connected sum N31 #N
3
2 # · · · #N3p, where N3i are either irreducible or

have fundamental group Z. It is known that a closed orientable 3-manifold with
fundamental group Z is diffeomorphic to S2 × S1, modulo the Poincaré conjecture

(see e.g. [31]). Let now N̂3 be a finite covering of N whose fundamental group

is isomorphic π1(N ). Then π1(N̂3) is either Z or splits as π1(N1) ∗ π1(N2) ∗
· · · ∗ π1(Np). In the first case the manifolds are both S

1 × S2 and thus they are

diffeomorphic.

Assume that the second alternative holds. By the affirmative solution of

Kneser’s Conjecture (see e.g. [33, 61]) we have that N̂3 geometrically splits as

M3
1#M

3
2# · · · #M3

p where M
3
j are closed 3-manifolds with π1(M

3
j )

∼= π1(N
3
j ).

Lemma 4.10. The irreducible 3-manifolds with the same fundamental group M3
j

and N3j are diffeomorphic.

Proof. By the Jaco-Shalen-Johansson decomposition theorem there exists a family

(possibly empty) of incompressible tori in each one of the manifolds Mj and N j

such that each connected component of the complement is atoroidal.

The family of tori is non-empty if there exists aZ⊕Z in the fundamental group.
Therefore if the family of tori associated to one manifold is non-empty the family of

tori associated to the other one is also non-empty and both 3-manifolds are Haken,

since they are irreducible and contain incompressible surfaces. Waldhausen’s the-

orem claims that a closed 3-manifold which is homotopy equivalent to a Haken

manifold is actually diffeomorphic to it. Since both manifolds are irreducible they

are aspherical and the isomorphism of their fundamental groups implies that they

are homotopy equivalent.

If the family of tori is empty the manifolds are atoroidal. In this case Thurston’s

geometrization Conjecture states that the manifolds are hyperbolic. Then, by Mo-

stow’s rigidity, two hyperbolic manifolds having the same fundamental group are

isometric and hence diffeomorphic.

This implies that N̂3 is diffeomorphic to N3. Now we can apply the argument

used in the case of non-co-Hopfian groups of irreducible 3-manifolds. This settles

Proposition 4.7.
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