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Boundary trace of positive solutions
of semilinear elliptic equations
in Lipschitz domains: the subcritical case

MOSHE MARCUS AND LAURENT VERON

Abstract. We study the generalized boundary value problem for nonnegative
solutions of —Au + g(u) = 0 in a bounded Lipschitz domain €2, when g is
continuous and nondecreasing. Using the harmonic measure of €2, we define a
trace in the class of outer regular Borel measures. We amphasize the case where

gw) =u |91y, g > 1. When Q is (locally) a cone with vertex y, we prove sharp
results of removability and characterization of singular behavior. In the general
case, assuming that 2 possesses a tangent cone at every boundary point and ¢
is subcritical, we prove an existence and uniqueness result for positive solutions
with arbitrary boundary trace.
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1. Introduction

In this article we study boundary value problems with measure data on the bound-
ary, for equations of the form

—Au+gu)=0 inQ (1.1)

where Q is a bounded Lipschitz domain in R and g is a continuous nondecreasing
function vanishing at O (in short ¢ € G). A function u is a solution of the equation if
u and g(u) belong to LIIOC(SZ) and the equation holds in the distribution sense. The
definition of a solution satisfying a prescribed boundary condition is more complex
and will be described later on.

Boundary value problems for (1.1) with measure boundary data in smooth do-
mains (or, more precisely, in C? domains) have been studied intensively in the
last 20 years. Much of this work concentrated on the case of power nonlinear-
ities, namely, g(u) = |u |-y with ¢ > 1. For details we address the reader
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to the following papers and the references therein: Le Gall [17, 18], Dynkin and
Kuznetsov [6-8], Mselati [26] (employing in an essential way probabilistic tools)
and Marcus and Veron [20-24] (employing purely analytic methods).

The study of the corresponding linear boundary value problem in Lipschitz
domains is classical. This study shows that, with a proper interpretation, the basic
results known for smooth domains remain valid in the Lipschitz case. Of course
there are important differences too: in the Poisson integral formula the Poisson
kernel must be replaced by the Martin kernel and, when the boundary data is given
by a function in L', the standard surface measure must be replaced by the harmonic
measure. The Hopf principle does not hold anymore, but it is partially replaced
by the Carleson lemma and the boundary Harnack principledue to Dahlberg [5]. A
summary of the basic results for the linear case, to the extent needed in the present
work, is presented in Section 2.

One might expect that in the nonlinear case the results valid for smooth do-
mains extend to Lipschitz domains in a similar way. This is indeed the case as long
as the boundary data is in L'. However, in problems with measure boundary data,
we encounter essentially new phenomena.

Following is an overview of our main results on boundary value problems
for (1.1).

A. General nonlinearity and finite measure data
We start with the weak L' formulation of the boundary value problem
—Au+gu)=0 inQu=pn ono2, (1.2)
where u € MM(ON).
Let xo be a point in €2, to be kept fixed, and let p = pg denote the first eigen-

function of —A in Q normalized by p(xg) = 1. It turns out that the family of test
functions appropriate for the boundary value problem is

X(Q) = {n e W@ p'An e LOO(Q)}. (1.3)

If n € X(2) then sup |n|/p < oo.
Let K[x] denote the harmonic function in € with boundary trace w. Then u is
an L'-weak solution of (1.2) if

uely(Q), g eLy(Q) (1.4)

and
/Q(—MAU +gw)n)dx = — /Q (K[u]An)dx Vn e X(R). (1.5)

Note that in (1.5) the boundary data appears only in an implicit form. In the next
result we present a more explicit link between the solution and its boundary trace.
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A sequence of domains {€2,} is called a Lipschitz exhaustion of 2 if, for every
n, 2, is Lipschitz and

Q, C Qn C Quy1, Q=UQ,, Hy_1(02,) — Hy_1(0). (1.6)

In Lischitz domains, the natural way to represent harmonic functions solutions of
Dirichlet problems with continuous boundary data is use the harmonic measure. Its
definition and mains properties are recalled in Section 2.1. As an illustration of this
notion we prove the following:

Proposition 1.1. Let {Q2,} be an exhaustion of 2, let xo € Q1 and denote by w,
(respectively w) the harmonic measure on 02y (respectively dS2) relative to xo. If
u is an L'-weak solution of (1.2) then, for every Z € C (),

lim Zudwn:f Zduw. (1.7)
2, a2

n—oo

We note that any solution of (1.1) is in WIL’CP (2) for some p > 1 and consequently
possesses an integrable trace on 9€2),.

In general problem (1.2) does not possess a solution for every . We denote
by 9ME(92) the set of measures u € 9M(IN) for which such a solution exists.
The following statements are established in the same way as in the case of smooth
domains:

(1) If a solution exists it is unique. Furthermore the solution depends monotoni-
cally on the boundary data.

(ii) If u is an L'-weak solution of (1.2) then |u| (respectively u ) is a subsolution
of this problem with u replaced by |u| (respectively ).

A measure u € M) is g-admissible if g(K[|u|]) € LL(Q). When there is
no risk of confusion we shall simply write “admissible” instead of “g-admissible”.
The following provides a sufficient condition for existence.

Theorem 1.2. If i1 is g-admissible then problem (1.2) possesses a unique solution.

B. The boundary trace of positive solutions of (1.1); general nonlinearity

We say thatu € LIIOC(Q) is a regular solution of the equation (1.1) if g(u) € L})(Q).

Proposition 1.3. Let u be a positive solution of the equation (1.1). If u is regular
then u € L},(Q) and it possesses a boundary trace € IM(02). Thus u is the
solution of the boundary value problem (1.2) with this measure L.

As in the case of smooth domains, a positive solution possesses a boundary
trace even if the solution is not regular. The boundary trace may be defined in
several ways; in every case it is expressed by an unbounded measure. A definition
of trace is “good” if the trace uniquely determines the solution. A discussion of the
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various definitions of boundary trace, for boundary value problems in C? domains,
with power nonlinearities, can be found in [6,24] and the references therein. In [20]
the authors introduced a definition of trace — later referred to as the “rough trace”
by Dynkin [6] — which proved to be “good” in the subcritical case, but not in the
supercritical case (see [21]). Mselati [26] obtained a “good” definition of trace
for the problem with g(u) = u? and N > 4, in which case this non-linearity is
supercritical. His approach employed probabilistic methods developed by Le Gall
in a series of papers. For a presentation of these methods we refer the reader to
his book [18]. Following this work the authors introduced in [24] a notion of trace,
called “the precise trace”, defined in the framework of the fine topology associated
with the Bessel capacity C/4 4 on 9€2. This definition of trace turned out to be
“good” for all power nonlinearities g(#) = u?, g > 1, at least in the class of o-
moderate solutions. In the subcritical case, the precise trace reduces to the rough
trace. At the same time Dynkin [7] extended Mselati’s result to the case (N +
1)/(N —1) < g < 2. Finally, Marcus [19] proved that, for g(#) = u? and arbitrary
ge(N + 1) = (N — 1), every positive solution of (1.1) is o-moderate. This result,
combined with [24], implies that every positive solution (for any ¢ > 1) is uniquely
determined by its precise boundary trace.

In the present paper we confine ourselves to boundary value problems with
rough trace data and in the subcritical case (see the definitions below). In a forth-
coming paper we shall study equations with power non-linearities in polyhedral
domains. In this case we obtain necessary and su cient condi- tions for removabil-
ity of singular sets [25]. Using these results it is possible to extend the precise trace
theory [24] to the case of polyhedral domains.

Here are the main results of the present paper, including the relevant defini-
tions.

Definition 1.4. Let u be a positive supersolution, respectively subsolution, of (1.1).
A point y € 02 is a regular boundary point relative to u if there exists an open
neighborhood D of y such that gou € L})(Q N D). If no such neighborhood exists
we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). Evidently R (u) is relatively open.

Theorem 1.5. Let u be a positive solution of (1.1) in Q2. Then u possesses a trace
on R(u), given by a Radon measure v.
Furthermore, for every compact set F C R(u),

fQ(—uAn +g)n)dx = —/Q(K[VXF]AU)dx (1.8)

for every n € X (2) such that suppn N 9L C F and vxr € IME(0Q).

Definition 1.6. Let ¢ € G. Let u be a positive solution of (1.1) with regular bound-
ary set R(u) and singular boundary set S («). The Radon measure v in R (1) associ-
ated with u as in Theorem 1.5 is called the regular part of the trace of u. The couple
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(v, S(w)) is called the boundary trace of u on 9€2. This trace is also represented by
the (possibly unbounded) Borel measure v given by

(E) = v(E), ifE C.R(u) (19)
00, otherwise.

The boundary trace of u in the sense of this definition will be denoted by tryqu.
Let
Vi i=sup{uyy, : F C R(u), F compact} (1.10)

where u,,, denotes the solution of (1.2) with u = vxr. Then V, is called the
semi-regular component of u.

Definition 1.7. A compact set F' C 9S2 is removable relative to (1.1) if the only
non-negative solution u € C(2\ F) which vanishes on 2\ F is the trivial solution
u=0.

An important subclass of G is the class of functions g satisfying the Keller-
Osserman condition, that is

/oo\/% <00 where G(s)=/sg(7:)d'c, (1.11)
a ) 0

for some a > 0. It is proved in [16,27] that, if g satisfies this condition, there exists
a non-increasing function 4 from R to R with limits

lim A(s) = o0 vl_i>rroloh(s) =ay :=inf{a > 0: g(a) > 0} (1.12)

5—0

such that any solution u of (1.1) satisfies

u(x) < h (dist (x, 0R2)) Vx € Q. (1.13)
Lemma 1.8. Let g € G and assume that g satisfies the Keller-Osserman condition.
Let F C 02 be a compact set and denote by UF the class of solutions u of (1.1)
which satisfy the condition,

ueC@Q\F), u=0 ondQ\F. (1.14)
Then there exists a function Ur € Ur such that

u<Ur Yueclf.

Furthermore, S(Up) =: F' C F; F' need not be equal to F .

Definition 1.9. Uy is called the maximal solution associated with F. The set F’ =
S(UF) is called the g-kernel of F and denoted by kg (F).
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Theorem 1.10. Let ¢ € G and assume that g is convex and satisfies the Keller-
Osserman condition.

EXISTENCE. The following set of conditions is necessary and sufficient for exis-
tence of a solution u of the generalized boundary value problem

—Au+gu)=0 inQ, trgqu= O, F), (1.15)
where F C 02 is a compact set and v is a Radon measure on 02\ F.

(i) For every compact set E C 0Q\ F, vxg € ME(9RQ2).
(i) Ifky(F) = F', then F \ F' C S(V,).

When this holds,
Vo <u<V,+Ur. (1.16)

Furthermore if F is a removable set then (1.2) possesses exactly one solution.

UNIQUENESS. Given a compact set F C 0%, assume that
Ug is the unique positive solution with trace (0, kg (E)) (1.17)
for every compact E C F. Under this assumption:
(a) Ifu is a solution of (1.15) then
max(V,,Ur) <u <V, + Uf. (1.18)

(b) Equation (1.1) possesses at most one solution satisfying (1.18).
(c) Condition (1.17) is necessary and sufficient in order that (1.15) possess at most
one solution.

MONOTONICITY.

(d) Let uy, up be two positive solutions of (1.1) with boundary traces (vy, F1) and
(v2, F?) respectively. Suppose that Fi C F» and that vi < vaxp, =: vé. If
(1.17) holds for F = F, then uy < us.

In the remaining part of this paper we consider equation (1.1) with power nonlin-
earity:

—Au+ [ulfu =0 (1.19)
withg > 1.
C. Classification of positive solutions in a conical domain possessing an isolated
singularity at the vertex

Let C; be a cone with vertex 0 and opening S C SN=1  where S is a Lipschitz
domain. Put Q2 = Cg N B1(0). Denote by Ag the first eigenvalue and by ¢g the first

eigenfunction of —A’ in WOl ’2(S) normalized by max ¢ = 1. Put

as = %(N—2+\/(N—2)2+4)\S)
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and 1
Di(x) = ;IXIfasfﬁg(X/ lx])

where yg is a positive number. ®; is a harmonic function in Cg vanishing on
dCs \ {0} and y is chosen so that the boundary trace of ®; is §yp (=Dirac measure
on dCyg with mass 1 at the origin). Further denote Q25 = Cg N B1(0).

It was shown in [9] that, if g > 1 + % there is no solution of (1.19) in © with
isolated singularity at 0. We obtain the following result.

Theorem 1.11. Assume that 1 < g < 1 + % Then &g is admissible for Q2 and
consequently, for every real k, there exists a unique solution of this equation in Q
with boundary trace kéqy. This solution, denoted by uy satisfies

ur(x) =k®1(x)(1 +o0(1)) asx — 0. (1.20)

The function
Uso = lim uy
k— 00

is the unique positive solution of (5.1) in Qg which vanishes on 02 \ {0} and is
strongly singular at 0, i.e.,

/ ul pdx = oo (1.21)
Q

where p is the first eigenfunction of —A in Q normalized by p(xy) = 1 for some
(fixed) xo € Q2. Its asymptotic behavior at 0 is given by,

2
Uoo(x) = |x| “Twsx/|x])(1 +0(1)) asx —>0 (1.22)
where w is the (unique) positive solution of

—ANw—ly,o+ o o=0 (1.23)

e =2 24 _y (1.24)
=1 (o2 . .

As a consequence one can state the following classification result.

on SN with

Theorem 1.12. Assume that1 < q < g; =1+ 2/ag and denote

as = %(2—N+\/(N—2)2+4k5).

Ifu € C(Q5\{0}) is a positive solution of (1.19) vanishing on (0C;N By, (0)\ {0},
the following alternative holds:
Either y
limsup [x]| ™% u(x) < o0
x—0
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or
there exist k > 0 such that (1.20) holds,

or
(1.22) holds.

In the first case u € C(Q); in the second, u possesses a weak singularity at the
vertex while in the last case u has a strong singularity there.

D. Criticality in Lipschitz domains

Let €2 be a Lipschitz domain and let § € 9€2. We say that g is the critical value for
(1.19) at & if, for 1 < g < ge, the equation possesses a solution with boundary trace

8¢ while, for g > g¢ no such solution exists. We say that q? is the secondary critical

value at § if for 1 < g < qg there exists a non-trivial solution of (1.19) which

vanishes on 92 \ {£} but for g > qg no such solution exists. Thus, if g¢ < g < qg

there exist solutions with isolated singularity at £ but these solutions do not possess
a nite boundary trace.

In the case of smooth domains, g: = qg and g¢ = (N + 1)/(N — 1) for
every boundary point &. Furthermore, if ¢ = g¢ there is no solution with isolated
singularity at €, i.e., an isolated singularity at £ is removable.

In Lipschitz domains the critical value depends on the point. Clearly ge < qg ,

but the question whether, in general, g: = qg remains open. However we prove

that, if 2 is a polyhedron, g: = q? at every point and the function & — ¢ obtains

only a finite number of values. In fact it is constant on each open face and each
open edge, of any dimension. In addition, if g = g¢, an isolated singularity at & is
removable. The same holds true in a piecewise C2 domain  except that £ — qge is
not constant on edges but it is continuous on every relatively open edge.

For general Lipschitz domains, we can provide only a partial answer to the
question posed above.

We say that €2 possesses a tangent cone at a point § € 92 if the limiting inner
cone with vertex at £ is the same as the limiting outer cone at &.

Theorem 1.13. Suppose that Q possesses a tangent cone C gz at a point § € 022
and denote by q. ¢ the critical value for this cone at the vertex §. Then

qe = q§ =dck-
Furthermore, if 1 < q < gz then 8¢ is admissible, i.e.,
M :=/ K(x,&)p(x)dx < co.
Q

We do not know if, under the assumptions of this theorem, an isolated singularity
at £ is removable when g = ¢, ¢. It would be useful to resolve this question.
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E. The generalized boundary value problem in Lipschitz domains: the subcritical
case

In the case of smooth domains, a boundary value problem for equation (1.19) is
either subcritical or supercritical. This is no longer the case when the domain is
merely Lipschitz since the criticality varies from point to point. In this part of the
paper we discuss the generalized boundary value problem in the strictly subcritical
case.

Under the conditions of Theorem 1.13 we know that, if £ € 92 and 1 <
q < q¢ then K(-,§) € L L(Q). In the next result, we derive, under an additional
restriction on g, uniform estimates of the norm || K (-, £)|| L@ Such estimates are
needed in the study of existence and uniqueness. For its statement we need the
following notation:

If z € 9€2, we denote by S; , the opening of the largest cone Cg with vertex at
z such that Cg N B, (z) C Q U {z}. If E is a compact subset of €2 we denote:

* =l 1z€ 0, dist(z, E .
dE rgr(l) ({qu.r < 18 (Z ) < I‘})
‘We observe that

(]Z =< inf{‘Ic,z 1z € E}

but this number also measures, in a sense, the rate of convergence of interior cones
to the limiting cones. If  is convex then g5 < (N + 1)/(N — 1) for every non-
empty set E. On the other hand if Q2 is the complement of a bounded convex set
then gf, = (N + 1)/(N — 1).

Theorem 1.14. If E is a compact subset of 92 and 1 < q < qj; then, there exists
M > 0 such that

/Kq(x, Vox)dx <M VyeekE. (1.25)
Q

Using this theorem we obtain:

Theorem 1.15. Assume that 2 is a bounded Lipschitz domain and u is a positive
solution of (1.19). If y € S(u) (i.e. y € 09 is a singular point of u) and 1 < q <
q{*y} then, for every k > 0, the measure kéy is admissible and

u > ugs, = solution with boundary trace kéy. (1.26)

Remark 1.16. It can be shown that, if g > q{*y}, (1.26) may not hold. For instance,
such solutions exist if €2 is a smooth, obtuse cone and y is the vertex of the cone.
Therefore the condition ¢ < qu} for every y € 92 is, in some sense necessary for
uniqueness in the subcritical case.

As a consequence we first obtain the existence and uniqueness result in the
context of bounded measures.
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Theorem 1.17. Let E C 92 be a closed set and assume that 1 < q < q},. Then,
for every € IM(2) such that supp u C E there exists a (unique) solution u,, of
(5.1) in Q with boundary trace L.

Further, using Theorems 1.10, 1.11 and 1.14, we establish the existence and
uniqueness result for generalized problems.

Theorem 1.18. Let Q2 be a bounded Lipschitz domain which possesses a tangent
cone at every boundary point. If

l<q<gqjq

then, for every positive, outer regular Borel measure v on 02, there exists a unique
solution u of (1.19) such that tr,, (u) = v.

2. Boundary value problems

2.1. Classical harmonic analysis in Lipschitz domains

A bounded domain & C RY is called a Lipschitz domain if there exist positive
numbers rg, Ag and a cylinder

Ory = (€ = (61,8 e RN 1 |E/| <10, |&1] < 1o} (2.1)
such that, for every y € 0<2 there exist:

(i) A Lipschitz function ” on the (N — 1)-dimensional ball Br’0 (0) with Lipschitz
constant > Aq;
(ii) Anisometry TY of R" such that

() =0, (T)7'(0y) = 0p,
TN 0;) = (Y€, &) : £ € B (0)} 2.2)
TY(QN O} ={(1,&) : £ € B (0), —ro < &1 < Y7 (EN).

The constant rg is called a localization constant of 2; Aq is called a Lipschitz con-
stant of Q. The pair (ro, Lo) is called a Lipschitz character (or, briefly, L-character)
of . Note that, if © has L-character (rg, Ag) and r’ € (0, rg), ' € (A9, 00) then
(r’, \') is also an L-character of Q.

By the Rademacher theorem, the outward normal unit vector exists H ~1 —a.e.
on K2, where HV~! is the N-1 dimensional Hausdorff measure. The unit normal
ata point y € 92 will be denoted by n,.

We list below some facts concerning the Dirichlet problem in Lipschitz do-
mains.
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Ad-Letxo € 2, h € C(9%2) and denote Ly, (h) := vi(xg) where vy, is the solution
of the Dirichlet problem
{ —Av=0 €Q 23)

v=~h on 0%2.

Then L,, is a continuous linear functional on C(9€2). Therefore there exists a
unique Borel measure on 9€2, called the harmonic measure in €2, denoted by a)g’
such that

vy (x0) :f hda)g’ Vh € C(0R2). (2.4)
aQ

When there is no danger of confusion, the subscript €2 will be dropped. Because of
Harnack’s inequality the measures ™ and w*, x9, x € Q2 are mutually absolutely
continuous. For every fixed x € Q denote the Radon-Nikodym derivative by

X

K(x,y):= (y) forw™-ae.y€ Q. (2.5)

dwXo

Then, for every x € 2, the function y — K (x, y) is positive and continuous on 92
and, for every y € 0€2, the function x — K (x, y) is harmonic in 2 and satisfies

lim K(x,7) =0 VyeaQ\ {7}
xX—=>Yy

By [12]
G(x,z2)
im
2=y G(xo, 2)
Thus the kernel K defined above is the Martin kernel.
The following is an equivalent definition of the harmonic measure [12]:
For any closed set £ C 92

= K(x,y) VyeaQ. (2.6)

™ (E)
= inf{¢p(x0) : ¢ € C(2)+ superharmonic in €2, limi£f¢(x) > 1}. 2.7)
X—
The extension to open sets and then to arbitrary Borel sets is standard.
By (2.4), (2.5) and (2.7), the unique solution v of (2.3) is given by
v(x) = / K (x, yh(y)dw™(y)
aQ (2.8)

= inf{¢p € C(2) : ¢ superharmonic, liminf¢(x) > h(y), Yy € 92}.
X—)y

For details see [12].

A.2- Let (xg, yo) € 2 x dQ2. A function v defined in 2 is called a kernel function at
yo if it is positive and harmonic in €2 and verifies v(xp) = 1 and lim,_, y v(x) =0
forany y € 92\ {yo}. It is proved in [12, Section 3] that the kernel function at yg
is unique. Clearly this unique function is K (-, yp).
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A.3- We denote by G(x, y) the Green kernel for the Laplacian in 2 x €. This
means that the solution of the Dirichlet problem

—Au=f in€,
: u=0 " ondQ, 29)
with f € C%(R), is expressed by
u) = [ G sy vyew 2.10)

We shall write (2.10) as u = G[ f].

A.4- Let A be the first eigenvalue of —A in W(}’Z(Q) and denote by p the corre-
sponding eigenfunction normalized by maxg p = 1.
Let0 < & < dist (xp, 2) and put

Cxo,8 :=| max G(x, x0)/p(x).

x—xg|=§
Since Cy,.s o — G (-, xp) is superharmonic, the maximum principle implies that
0= G(x,x0) < Cxysp(x) Vx €\ Bs(xo). (2.11)

On the other hand, by [15, Lemma 3.4]: for any x¢o € €2 there exists a constant
Cy, > 0 such that
0<px) <CypGx,x9) Vx e Q. (2.12)

A.5- For every bounded regular Borel measure ¢ on 92 the function

v(x):/ K(x,y)du(y) Vx e, 2.13)
Q2

is harmonic in €. We denote this relation by v = K[u].

A.6- Conversely, for every positive harmonic function v in 2 there exists a unique
positive bounded regular Borel measure p on €2 such that (2.13) holds. The mea-
sure u is constructed as follows [12, Theorem 4.3].

Let SP(S2) denote the set of continuous, non-negative superharmonic func-
tions in €2. Let v be a positive harmonic function in €2.

If E denotes a relatively closed subset of €2, denote by Rf the function defined
in Q by

Rf(x) =inf{¢p(x) : ¢ € SP(RQ), ¢ > vin E}.

Then RZ is superharmonic in 2, RE decreases as E decreases and, if F is another
relatively closed subset of €2, then

REVF < RE L RE.
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Now, relative to a point x € €2, the measure  is defined by
pwi(F) =inf{RE(x): E=DNQ, DopeninRY, D> F}, (2.14)

for every compact set ' C 9€2. From here it is extended to open sets and then to
arbitrary Borel sets in the usual way.

It is easy to see that, if D contains 9<2 then R,f_’ N2 — . Therefore
W, (02) = v(x). (2.15)
In addition, if F is a compact subset of the boundary, the function x +— w3 (F) is
harmonic in 2 and vanishes on 92\ F.

A.7- If x, xo are two points in €2, the Harnack inequality implies that u} is abso-
lutely continuous with respect to u,°. Therefore, for ,’-a.e. point y € 9%, the
density function du}/d wy’ () is a kernel function at y. By the uniqueness of the
kernel function it follows that
dw}
dw’
Therefore, using (2.15),

(y)=K(x,y), wpl-ae. yecdQ. (2.16)

(@) wy(F) =/K(x,y)dux°(y),
F (2.17)

®) o) = / K (x, y)di (y).
Q2

A.8- By a result of Dahlberg [5, Theorem 3], the (interior) normal derivative of
G (-, xo) exists Hy—1-a.e. on 9$2 and is positive. In addition, for every Borel set
E C o<,

@ (E) = yN/ 0G (&, x0)/0ng d S, (2.18)
E

where yy (N — 2) is the surface area of the unit ball in RN and d is surface mea-
sure on d€2. Thus, for each fixed x € €2, the harmonic measure w* is absolutely
continuous relative to Hy 1 | 90 with density function P (x, -) given by

P(x,5) =0G(§,x)/0ng forae. § € 0Q2. (2.19)

In view of (2.8), the unique solution v of (2.3) is given by

v(x) =/Q P(x,8)h(§)dSe (2.20)

for every h € C(02). Accordingly P is the Poisson kernel for 2. The expression
on the right hand side of (2.20) will be denoted by IP[i]. We observe that,

K[hw™] = P[h] Vh € C(3Q). 2.21)
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A.9- The boundary Harnack principle, first proved in [5], can be formulated as
follows [13].

Let D be a Lipschitz domain with L-character (rg, Ag). Let £ € 9D and § €
(0, o). Assume that u, v are positive harmonic functions in D, vanishing on dD N
Bs(&). Then there exists a constant C = C (N, ro, Ag) such that

C7lu)/v(x) <u)/v(y) < Cu(x)/v(x) V¥x,y € Bsp(). (2.22)
A.10- Let D, D’ be two Lipschitz domains with L-character (rg, Ag). Assume that
D’ C D and 3D N 3D’ contains a relatively open set I". Let xg € D’ and let w, o’
denote the harmonic measures of D, D’ respectively, relative to xg. Then, for every
compact set F' C I, there exists a constant cp = C(F, N, rg, Ao, Xg) such that

o' |[F<wlr< cro'|F. (2.23)

Indeed, if G, G’ denote the Green functions of D, D’ respectively then, by the
boundary Harnack principle,

BG/(E,xo)/ang <0G, x0)/0ng < crpdG(§,x0)/0ng forae. & € F. (2.24)
Therefore (2.23) follows from (2.18).
A.11- By [15, Lemma 3.3], for every positive harmonic function v in €2,

/v(x)G(x,xo)dx < 0. (2.25)
Q

In view of (2.12), it follows that v € L})(Q).

2.2. The dynamic approach to boundary trace

Let ©2 be a bounded Lipschitz domain and {€2,} be a Lipschitz exhaustion of Q.
This means that, for every n, €2, is Lipschitz and

Q, C Qn C Qn—Ha Q= UQ,, HN—I(aQn) - HN—I(aQ)- (226)

Lemma 2.1. Let xo € 21 and denote by w,, (respectively ) the harmonic measure
in Q, (respectively Q) relative to xo. Then, for every Z € C(S2),

lim/ Zda)n=/ Zdo. 2.27)
=00 Jaq, Q

Proof. By the definition of harmonic measure

/ dw, = 1.
9,
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We extend w, as a Borel measure on Q by setting @, (Q \ 9Q,) = 0, and keep
the notation w, for the extension. Since the sequence {w,} is bounded, there exists
a weakly convergent subsequence (still denoted by {w,}). Evidently the limiting
measure, say @, is supported in Q2 and @(92) = 1. It follows that for every

Z e C(Q),
/ Zdw, — / Zdo.
02, Q2

Let¢ :=Z7 |ygand z := KQ[; ]. Again by the definition of harmonic measure,

/ zdw, = ¢ dw = z(xg).
I IR

f {d&):/ {dw,
a2 2

for every ¢ € C(9€2). Consequently @ = w. Since the limit does not depend on the
subsequence it follows that the whole sequence {w;} converges weakly to w. This
implies (2.27). U

It follows that

In the next lemma we continue to use the notation introduced above.
Lemma 2.2, Let xo € 2y, let ju be a bounded Borel measure on 92 and put v :=
K®[]. Then, for every Z € C(),

lim Zvdwy, :/ Zdun. (2.28)
EloM Q2

n—o0

Proof. It is sufficient to prove the result for positive w. Let h, := v |3q,. Evidently
v = K [h,w,] in §,. Therefore

v(xg) = / hpdw, = nw(02).
02,

Let 1, denote the extension of &, w, as a measure in € such that 1, (€2 \03%2,) =0.
Then {u,} is bounded and consequently there exists a weakly convergent subse-
quence {i,;}. The limiting measure, say /i, is supported in 9€2 and

p(9€2) = v(xp) = u(9€2). (2.29)
It follows that for every Z € C (Q),

/ Zdn, —>/ Zdp.
89,,./. IR

To complete the proof, we have to show that i1 = . Let F be a closed subset of
0$2 and put,

= pxe, vF =K.
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LethF := vF |3q, and let uf denote the extension of h w, as a measure in 2 such

that ,u,f (2\ 90€2,) = 0. As in the previous part of the proof, there exists a weakly

convergent subsequence of {uf /,}. The limiting measure /i7" is supported in F and
Ay = 270 = v" () = " (09) = u(F).

As v < v, we have [LF < jt. Consequently

p(F) < a(F). (2.30)

Observe that fi depends on the first subsequence { K }, but not on the second sub-
sequence. Therefore (2.30) holds for every closed set F' C 9€2, which implies that
i < fi. On the other hand, i and [i are positive measures which, by (2.29), have
the same total mass. Therefore yu = fi. O

Lemma 2.3. Let u € 9M(3Q2) (= space of bounded Borel measures on 32). Then
K[u] € L}) (2) and there exists a constant C = C(2) such that

KLl 2 @) = € liellonoe) - (2.31)
In particular if h € L' (3S2; w) then
IPIAIN L1 ) < C RN L1 (59;0) - (2.32)

Proof. Let xg be a point in €2 and let K be defined as in (2.5). Put ¢ (-) = G(-, xg)
and dy = dist (xg, €2). Let (rg, A¢) denote the Lipschitz character of 2.

By [3, Theorem 1], there exist positive constants c1 (N, ro, Ao, dg) and co (N,
r0, Ao, dp) such that for every y € 92,

o ¢ (x)
b g2(x)

for all x, x’ €  such that

PP Ko s -y, @)

1
colx —yl <dist(x',9Q) < |x' —y| < |x —y| < Zmin(do,ro/S). (2.34)

Therefore, by (2.12) and (2.11), there exists a constant c2 (N, rg, Ag, dp) such that

() B #00) )
621¢2(x/) IX— |2 N < p(X)K(.X, y) §C2¢2(x/) |X— |2 N

for x, x” as above. There exists a constant ¢, depending on cg, N, such that, for
every x € 2 satisfying |x —y| < % min(dy, ro/8) there exists x” € Q which satisfies
(2.34) and also

|x — x’| < ¢o min(dist (x, 98), dist (x’, 9R)).
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By the Harnack chain argument, ¢ (x)/¢ (x’) is bounded by a constant depending
on N, ¢g. Therefore

e x = yPN < p(OK (x,y) < eslx — yPN (2.35)

for some constant c3(N, ro, Lo, dp) and all x € €2 sufficiently close to the boundary.
Assuming that > 0,

/ K[u](x)p(r)dx = / / K (v, £)p(@)dx du(®) < C llamo
Q Q2 JQ

In the general case we apply this estimate to ;4 and p—. This implies (2.31). For
the last statement of the theorem see (2.21). L]

Definition 2.4. Let D be a Lipschitz domain and let { D, } be a Lipschitz exhaustion
of D. We say that {D,} is a uniform Lipschitz exhaustion if there exist positive
numbers 7, A such that D, has L-character (7, A) for all n € N. The pair (7, A) is
an L-character of the exhaustion.

Lemma 2.5. Assume D, D' are two Lipschitz domains such that
rcobnabD' ca(DuD)

where T is a relatively open set. Suppose D, D', DU D' have L-character (rg, Lo).
Let xq be a point in D N D' and put

do = min(dist (xg, 3D), dist (xg, dD")).

Let u be a positive harmonic function in D U D' and denote its boundary trace on
D (respectively D) by  (respectively u'). Then, for every compact set F C T,
there exists a constant cp = c(F, ro, Ao, do, N) such that

P WIF< ulr<cridLF. (2.36)

Proof. We prove (2.36) in the case that D’ C D. This implies (2.36) in the general
case by comparison of the boundary trace on d D or d D’ with the boundary trace on
a(DU D).

Let Q be an open set such that Q N D is Lipschitz and

FcQ, OnNnDcD, QnaDcCT.

Then there exist uniform Lipschitz exhaustions of D and D', say {D,} and {D),,},
possessing the following properties:

() D,NQ=D,NQ.

(i) xo € D} and dist (xo, dD}) > %do.
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(iii) There exist rg > 0 and Ay > O such that both exhaustions have L-character
(ro,A0)-

PutT, := 3D, N Q = 3D, N Q and let w, (respectively /) denote the harmonic
measure, relative to xo, of D, (respectively D;). By Lemma 2.2,

/ ¢ u(y) dw,(y) — frdﬁdu,

and

/ ¢u(y)dw§,(y)—>/¢du/
T, r

for every ¢ € C.(Q). By A.10 there exists a constant cg = ¢(Q,r¢, Ag,do, N)
such that

wylr, < wplr, < cowyLr, -

This implies (2.36). ]

2.3. L! data

We denote by X (£2) the space of test functions,
X(Q) = {n e Wh2Q): p'An e L°°(sz)} : (2.37)

Let X4 (€2) denote its positive cone.
Let f € L°°(R2), and let u be the weak WOI’2 solution of the Dirichlet problem

—Au=f inQ, u=0 onodQ2. (2.38)

If © is a Lipschitz domain (as we assume here) then u € C () (see [28]). Since
G[ f]is a weak Wol’2 solution, it follows that the solution of (2.38), which is unique
in C(Q), is given by u = G[f]. If, in addition, | f| < c¢1p then, by the maximum
principle,

lul < (c1/M)p, (2.39)

where A is the first eigenvalue of —A in 2.
In particular, if n € X (2) then n € C(2) and it satisfies

—G[An] =1, (2.40)

nl = a7 o~ an| o 2.41)

If, in addition, €2 is a C? domain then the solution of (2.38) is in C1 ().
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Lemma 2.6. Let Q2 be a Lipschitz bounded domain. Then for any f € L})(Q) there
exists a unique u € L})(Q) such that

—/uAndx:/fndx Vn e X(Q2). (2.42)
Q Q

Furthermore u = G[ f]. Conversely, if f € L (), f > 0 and there exists xo €

loc

such that G[ f1(xg) < oo then f € L})(Q). Finally

lull, 0 < A 1L, - (2.43)

Proof. First assume that f is bounded. We have already observed that, in this case,

the weak WOI’2 solution  of the Dirichlet problem (2.38) is in C(2) and u = G[ f].
Furthermore, it follows from [4] that

/Vn-Vudx = —/ uAndx.
Q Q

Thus u = G[ f] is also a weak L}) solution (in the sense of (2.42)).

Let nog be the weak WOI’2 solution of (2.38) when f = sgn(u)p; evidently
no € X(Q). Ifu € L})(Q) is a solution of (2.42) for some f € L})(Q) then

/ ulpdx =/ Frodx sAI/ \fIpdx. (2.44)
Q Q Q

The second inequality follows from (2.39). This proves (2.43) and implies unique-
ness.
Now assume that f € L /1) (£2) and let { f,} be a sequence of bounded functions

such that f, — f in this space. Let u, be the weak WOI’2 solution of (2.38) with
f replaced by f,. Then u, satisfies (2.42) and u, = G[f,]. By (2.43), {un}
converges in L/I)(Q), say u, — u. In view of (2.11) it follows that u = G[ f] and
that u satisfies (2.42).

If f € Lj,.(Q), f = 0and G[f](x0) < cothen, by (2.12), f € L (). O

Lemma 2.7. Let Q2 be a Lipschitz bounded domain. If f € L})(Q) and h €
LY (3092 w), there exists a unique u € L})(Q) satisfying

/ (—ulAn — fn)dx = —/ PlhlAndx Vn e X () (2.45)
Q Q

or equivalently

u = G[f] - P[h]. (2.46)
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The following estimate holds
el @ < ¢ (1@ + PO 3 o) (247)

= ¢ (1f g + M2 a0) -

Furthermore, for any nonnegative element n € X (2), we have

—/ lu| Andx < —/ P[lA|]1Andx + / nfsgn(u)dx, (2.48)
Q Q Q

and

—/ urAndx < —/ Plhy]Andx + / nfsgn, (u)dx. (2.49)
Q Q Q

Proof. Existence. By Lemma 2.3, the assumption on % implies that P[|A|] € L}) ().
If we denote by v the unique function in L }J (£2) which satifies

—vandx:—/fndx Vn € X(L2),
Q Q

thenu = v — P[h] € L})(SZ) and (2.45) holds.
By Lemma 2.6, (2.46) is equivalent to (2.45).
Estimate (2.47). This inequality follows from (2.45) and (2.43).
Estimate (2.49). Let {2,} be an exhaustion of Q by smooth domains. If u is the

solution of (2.45) and A, := ”iaﬂn then, in 2,,,

u =G f]—P%[h,] inQ,,
or equivalently,
/ (—ulAn— fn)dx = —/ Plh,)Andx
Q, o

(2.50)
= —/ (On/om)h,dx Vn € X(2,).
02,

We recall that, since €2, is smooth, € X (R2,,) implies that € C'(£2,,). In addition
it is known that (see e.g. [29]), for every non-negative n € X (£2,),

/ (—lu|lAn — fnsignu)dx < —/ an/on|h,|dx. (2.51)
Q, 082,

Let p,, be the first eigenfunction of —A in €2, normalized by p, (x) = 1 for some
x € Q1. Let n be a non-negative function in X (£2) and let 5, be the solution of the
problem

Az = (An)pn/p in 2y, z=0 onad,.
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Then n, € X(L2,) and, since p, — p,
An, = An, np — 1.
If v := P[|h|] then v > |u] so that

h

n = v|39n Z |hi’l|

Therefore

- f O /Omlnldx < — / o /omlfimldx =
A, 082,

(2.52)
— P [h, | Andx = —/ VAR, dx — —/ vAndx.
Qﬂ Qn Q
Finally, (2.51) and (2.52) imply (2.48).
Estimate (2.49). This inequality is obtained by adding (2.45) and (2.48). O

Definition 2.8. We shall say that a function g : R — R belongs to G(R) if it is
continuous, nondecreasing and g(0) = 0.

Lemma 2.9. Let Q be a Lipschitz bounded domain and g € GR). If f € L })(Q)
and h € L' (3Q; w), there exists a unique u € L:)(Q) such that g(u) € L:)(Q) and

f (—uAn + (g@) — ) dx = — / PlhlAndx VneX(Q).  (2.53)
Q Q

The correspondence (f, h) — u is increasing.
If u, u' are solutions of (2.53) corresponding to data f,h and f', h' respec-
tively then the following estimate holds:
Jlu — “/HL}D(Q) + g ) — g @) “L},(sz)
<c(1f = F oy + Pt =11, q) (2.54)
=c (”f - f/HL))(Q) + [[n— ”HU(&)Q,@) :

Finally, for any nonnegative element n € X (S2), we have

—/ IulAndx—i-/ lg(w)|ndx < —/ ]P’[Ihl]Andx+/nfsgn(u)dx, (2.55)
Q Q Q Q
and

—/ u+Andx+/ gw)yndx < —/ ]P’[h+]Andx+/nfsgn+(u) dx. (2.56)
Q Q Q Q
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Proof. 1If u, u’ are two solutions as stated above then v = u — u’ satisfies
/ (—vAn+ Fn)dx = —f Plh — h'1Ahdx V1 € X () (2.57)
Q Q

where F = gu) —gw) — (f — f)) € L},(SZ). Applying (2.48) to this equation
and using the properties of g described in Definition 2.8 we obtain (2.54). Simi-
larly we obtain (2.55) and (2.56), using (2.48) and (2.49). These inequalities imply
uniqueness and monotone dependence on data.

In the case that f and 4 are bounded, existence is obtained by the standard
variational method. In general we approach f in L})(SZ) by functions in C2°(2)

and 4 in L' (Q; w) by functions in C (d€2) and employ (2.54). L]

3. Measure data

Denote by 91, (£2) the space of Radon measures v in € such that p|v| is a bounded
measure.

Lemma 3.1. Let Q be a Lipschitz bounded domain. Let v € IM,(RQ) and u €
LIIOC(Q) be a nonnegative solution of

—Au=v inQ.

Then u € L})(Q) and there exists a unique positive Radon measure (1 on 02 such
that

u=K[ul+ Gv]. 3.1)

Proof. Let D be a smooth subdomain of €2 such that D C . Since u € WIL’CP (2)

for some p > 1 it follows that u possesses a trace, say hp, in Wl_%’p(aD). Put
v:=u—GP[v]. Then —Av =0in D and v > 0 on 3D and therefore in D. If { D,,}
is an increasing sequence of such domains, converging to 2, then G?7[v] + G[v].
Thus v = u — G¥[v] is a non-negative harmonic function in € and consequently
possesses a boundary trace 1 € MM(I) such that v = K[u]. O

Lemma 3.2. Let Q be a Lipschitz bounded domain. If v € 9M,(Q) and pn €
IM(0K), there exists a unique u € L})(Q) satisfying

/ —uAndx:/ ndv—/ KlulAndx Vn e X (). (3.2)
Q Q Q

This is equivalent to
u = Gv]+ K[ul. (3.3)
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The following estimate holds

gy < € (I llam, @) + 1KLLy )
(3.4)

<c (IIVIlm,,(Q) + IIMIIzm(asz)) .

In addition, if dv = fdx for some f € L})(Q) then, for any nonnegative element
n € X(2), we have

—f lul Apdx < —/ K[| Andx + / nfsgn(u) dx, (3.5)
Q Q Q

and

—/ uyAndx < —/ Klu+]Andx + / nfsgn, (u)dx. 3.6)
Q Q Q

Proof. We approximate u by a sequence {h, P(xp,-)} and v by a sequence {f,}
such that

haP(x0,-) € L'(09), hyP(x0, YHy—_1 — u weakly in measure

and
fn € L:,(Q), fan — v weakly relative to C,(£2),

where C,, denotes the space of functions ¢ € C(2) such that p¢ € L*°(£2). Apply-
ing Lemma 2.7 to problem (2.47) (f, h replaced by f,, h,) and taking the limit we
obtain a solution u € L},(Q) of (3.2) satisfying (3.4).

Lemma 2.6 implies that any solution u of (3.2) satisfies (3.3). Therefore the
solution is unique and hence (3.4) holds for all solutions.

Inequalities (3.5) and (3.6) are proved in the same way as the corresponding
inequalities in Lemma 2.7 O

Definition 3.3. Let Q be a bounded Lipschitz domain and let g € G(R). If u €
IM(0L2), a function u € L})(Q) is a weak solution of

—Au+gu)=0 inQ
{ u=pu in 992 3.7)
if g(u) € L},(Q) and
u+ Glgu)] = Klu] (3-8)

a.e. in 2. Equivalently

/Q (—uln+g)n)dx = —/Q Klulamdx Vne X(Q). (39

The measure u is called the boundary trace of u on 9€2.
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Similarly a function u € LL(Q) is a weak supersolution, respectively subsolu-
tion, of (3.7) if g(u) € L})(Q) and

u+ Glgm)] > K[u] respectively u + G[g(u)] < K[u]. (3.10)

This is equivalent to (3.9), with = replaced by > or <, holding for every positive
n e X ().

Remark 3.4. It follows from this definition and Lemma 2.9 that, if
pn = p weakly in MORQ), uy — u,  g(un) - gu) in L (),

and if
u, = Klpnl — G[g(un)]:

then u = K[u] — G[g(u)].

Lemma 3.5. Ler Q be a Lipschitz bounded domain and let g € G. Suppose that
u € IM(92) and that there exists a solution of problem (3.7). Then the solution is
unique.

If L, 1’ are two measures in 9M(3K2), for which problem (3.7) possesses solu-
tions u, u’ respectively, then the following estimate holds:

||’4 - u/HL})(Q) + ||g(u) — g ||L,1J(sz) = ||K[V~ — ] “L},(Q)) (G.11)
< |n- M/”s)n(asz) :

Ifu < i thenu < u'.
In addition, for any nonnegative element n € X (2), we have

—/;)(Iul An —|g)mdx < —/QK[IMI]Andx (3.12)

and
- fQ (upAn — gu)sm) dx < — fﬂ K1+ 1Andx. (3.13)

Proof. This follows from Lemma 3.2 in the same way that Lemma 2.9 follows from
Lemma 2.7. O

Definition 3.6. Assume that u € WIL’Cp (2) for some p > 1. We say that u pos-
sesses a boundary trace pu € 9M(3R) if, for every Lipschitz exhaustion {€2,} of €2,

lim Zudw, :/ Zduw, (3.14)
Q2

n—oo aQn

holds for every Z € C(Q).
Similarly we say that u possesses a trace p on a relatively open set A C 92 if
(3.14) holds for every Z € C(£2) such that supp Z C Q U A.
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Remark 3.7. If u € le)’cp (R2) for some p > 1 then, by Sobolev’s trace theorem,

for every relatively open (N — 1)- dimensional Lipschitz surface X, u possesses

a trace in Wl_%’p (%). In particular the trace is in L'(Z). In fact there exists an
element of the Lebesgue equivalence class of u# such that the trace on X is precisely
the restriction of u to . When it is relevant, as in (3.14), we assume that u is
represented by such an element.

1
If u € WHP(Q) then, by the same token, u possesses a trace in WI_F’p(B Q).
If {2} is a uniform Lipschitz exhaustion and &, (respectively /) denotes the trace
of u on 02, (respectively 0€2) then

h 1 — ||k 1 .
I n”W]_ﬁ’P(BQn) I ”W]_E’P(BQ)

This follows from the continuity of the imbedding

Whr@) o wiTrP Q)

and the fact that C!(Q) is dense in WP(Q).
Similarly, if {€2,,} is a Lipschitz exhaustion (not necessarily uniform, but satis-
fies (2.26)) then

||hn||Ll(aQ,,) - ||/’l||L1(3Q)~

In particular, if u € Wol’p (£2) then its boundary trace is zero, in the sense of the
above definition.

Proposition 3.8. Let u be aweak solution of (3.7). If {2} is a Lipschitz exhaustion
of 2 then, for every Z € C(Q),

lim Zudowy, :/ Zduw, (3.15)
Q2

n—o Jaq

where w,, is the harmonic measure of 2, (relative to a point xg € 21).

Proof. If v := G[gou]thenv € L})(Q) and u + v is a harmonic function. By (3.8),
u + v = K[u]. Therefore, by Lemma 2.2,

lim Z(u—i—v)dwn:/ Zdu (3.16)
Q2

n—o0 Jaq

for every Z € C(Q). Asv € Wol’p(Q) for some p > 1 its boundary trace is zero.
Therefore (3.16) implies (3.15). U

Definition 3.9. A measure u € 9MN(Q) is called g-admissible if g(K[|x|]) €
LL(Q).
)

Theorem 3.10. If i is g-admissible then problem (3.7) possesses a unique solution.
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Proof. First assume that u > 0. Under the admissibility assumption, U = K[u]
is a supersolution of (3.7). Let { D, } be an increasing sequence of smooth domains
such that D, C D,+; C Q and D, 1 2. Let u, be the solution of problem (3.7) in
D,, with boundary data h, = U | oD, Then {u,} decreases and the limit # = limu,

satisfies (3.7). B

_ In the general case we define U = K[|u|] and U, u,, as before. By assumption
gU)elL })(Q) and U dominates |u,| for all n. Let n be a non-negative function in
X (£2) and let ¢, be the solution of the problem

AL = (An)py/p mD,, L =0 ondD,.
Then ¢, € X(D,) and, since p, — p,
(Agy) — (An), & — 1.

In addition, (A¢&,)/pn = (An)/p is bounded and, by (2.39), the sequence {&,/0n}
is uniformly bounded.
The solutions u,, satisfy,

(—un Ay + gup)tn) dx = _f PDn [hn] ALy dx. (3.17)
Dy Dy

The sequence {uy : k > n} is bounded in W!?(D,) for every n. Consequently
there exists a subsequence (still denoted by {u,}) which converges pointwise a.e. in
Q. We denote its limit by u. Since {u,} is dominated by U it follows that

lim (—un Ay + g(up)n) dx = f (—ulAn + g)n) dx.
D, Q

n—oo

Furthermore,

/ [P’D"[hn]Agndxzf UAn(,on/,o)dx—>/UAndxz/K[u]Andx.
Dy, Q Q

n

Thus u is the solution of (3.7). ]

Remark 3.11. If we do not assume that g(0) = O the admissibility condition be-
comes,

g(Klpil+p(gO0)4) € LY and g(~Klu_]1-p(g©0)-) € LL(Q). (3.18)

4. The boundary trace of positive solutions

As before we assume that 2 is a bounded Lipschitz domain and g € G. We denote
by p the first eigenfunction of —A in 2 normalized by p(xg) = 1 at some (fixed)
point xg € €.
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A function u € L}

loc (§2) is a solution of the equation

—Au+gu)=0 inQ, 4.1)

ifgou e LIIOC(SZ) and u satisfies the equation in the distribution sense.

A function u € Llloc (R2) is a supersolution (respectively subsolution) of the

equation (4.1)if gou € L] () and
—Au+gou >0 (respectively < 0)
in the distribution sense.

Proposition 4.1. Let u be a positive solution of (4.1). If gou € L}o(Q) then

u e L})(Q) and it possesses a boundary trace ju € IM(ORQ), i.e., u is the solution of
the boundary value problem (3.7) with this measure |L.

Proof. If v := G[g ou] thenv € L})(SZ) and u + v is a positive harmonic function.

Hence u + v € L})(Q) and there exists a non-negative measure pu € 9(3€2) such
that u + v = K[u]. In view of (3.8), this implies our assertion. O

Lemma 4.2. If u is a non-negative solution of (4.1) then u € C1(Q).
Let {u,} be a sequence of non-negative solutions of (4.1) which is uniformly
bounded in every compact subset of 2. Then there exists a subsequence {uy;} which

converges in C'(Q') for every Q' € Q to a solution u of (4.1).

Proof. Since gou € Llloc(Q) it follows that u € WIL’Cp (R2) forsome p € [1, N/(N—
1)). Let Q' be a smooth domain such that Q" € 2. By the trace imbedding theorem,
u possesses atrace h € L'(3S2'). If U is the harmonic function in Q’ with boundary
trace h then u < U. Thus u (and hence g o u) is bounded in every compact subset
of Q. By elliptic p.d.e. estimates, u € C' ().

The second assertion of the lemma follows from the first by a standard argu-
ment. 0

Theorem 4.3.

(i) Let u be a non-negative supersolution (respectively subsolution) of (4.1). Then
u e Wll’cp(Q)for some p € [1, N/(N —1)). In particular, if Q' is a C! domain

O

such that Q' € Q then u possesses a trace h € L' (3S2)).

(1) If u is a positive supersolution, there exists a non-negative solution u < u
which is the largest among all solutions dominated by u.
If u is a positive subsolution and u is dominated by a solution w of (4.1) then
there exists a minimal solution i such that u < u. In particular, if g € G
satisfies the Keller-Osserman condition then such a solution exists.

(iii) Under the assumptions of (ii), if gou € L})(Q) (respectively g ou € L}O(Q))
then the boundary trace of u (respectively u) is also the boundary trace of u in
the sense of Definition 3.6.
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Proof. First consider the case of a supersolution. Since —Au + g(u) > 0 there
exists a positive Radon measure t in €2 such that

—Au+gu) =1 in Q.

Therefore u € WIL’CP () and consequently u possesses an L! trace on ' for every
' as above.

Next, let {€2,,} be a C! exhaustion of £ which is also uniformly Lipschitz. Let
vy, be the solution of the boundary value problem

—Av+g(w) =0 in Q,,v =u on IQ,. (4.2)

Since u possesses a trace in L!(3€2,) this boundary value problem possesses a
(unique) solution. By the comparison principle 0 < v, < u in €2,. Therefore
the sequence {v,} decreases and consequently it converges to a solution u of (4.1).
Evidently this is the largest solution dominated by u.

Now suppose that g ou € L})(Q) (but not necessarily g o u € L:)(Q)). By

Proposition 4.1, u € L })(Q) and u possesses a boundary trace p. By the definition
of v,,

/ udar, = / P2 (x0, )u(y)dS = va(x0) + / G (x, x0)g (vn (X))dx
02, 02,

Q
= H(XO)Jr/ G (x, x0)g(x))dx.
Q

Hence, taking a subsequence if necessary, we may assume that
/
UXdQ,Wn — W

where 1’ is a measure on 9<2 such that

1 (92) = u(xo) +/QGQ()€,XO)g(z(X))dx.

On the other hand, as u is the boundary trace of u,
u(xo) + / G (x, x0)gu(x))dx = u(3%).
Q

Thus ©(92) = w'(32). However, as u < u, we have u < w’. This implies that
w=u.

Next we treat the case of a subsolution. The proof of (i) is the same as before.
We turn to (ii). In the present case, the corresponding sequence {v,} is increasing
and, in general, may not converge. But, as we assume that u is dominated by a
solution w, the sequence converges to a solution u# which is clearly the smallest so-
lution above u. In particular, if g satisfies the Keller-Osserman condition then {v,,}
is uniformly bounded in every compact subset of Q2 and consequently converges to
a solution.

The proof of (iii) for subsolutions is again the same as in the case of superso-
lutions. O
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Corollary 4.4. 1. Let u be a non-negative supersolution of (4.1). Let A be a rela-
tively open subset of 0Q2. Suppose that, for every Lipschitz domain Q' such that

Q' cQ, IQNIQCA, 4.3)

we have
goueLy(Q). (4.4)

Then both u and u possess traces on A and the two traces are equal.

II. Let u be a non-negative subsolution of (4.1). Let A be a relatively open subset
of 32. Suppose that for every Lipschitz domain Q' satisfying (4.3) we have

goil € L}(Q). (4.5)
Then both u and u posses traces on A and the two traces are equal.

Proof. Let u be a supersolution and let &’ be a domain as above. Denote by p’ the
first eigenfunction of —A in €’ normalized by p’(xp) = 1 for some x¢ € €'. Since
o' < cp, (4.3) implies that gou € L:),(Q/). Let u’ denote the largest solution of (4.1)

in " dominated by u. Then gou’ € L}),(Q/) and, by Theorem 4.3, u’ € L})(Q/)
and u’ has a trace v" on 9" which is also the boundary trace of u on 9€2.

Let {€2,} be an increasing uniformly Lipschitz sequence of domains such that
R, N QisaC! surface, D, := Q \ €2, is Lipschitz and

Fn = BQn\QCFnO+l CA, UQn:Q, UFI,?:A,

where F? is the relative interior of F,. Denote by u, the largest solution domi-
nated by u in 2, and observe that {u,} is decreasing and converges to a solution.
Obviously this is the largest solution dominated by u, namely, u.
Let 7, be the trace of u, on 0€2,. Put v, = 7, xF,. Recall that 7, is also the
trace of u so that
V), = Ty — Up = UXaQ,\F,dS.

Assertion A. There exists a Radon measure v on A such that v,, — v and v is the
trace of u, as well as of u, on A.

Let E be a compact subset of A and denote,
n(E) :=infim e N: E C FO}.

In view of the fact that, for n > n(E), v, is the trace of u, relative to £2,, on
a set F r?( ) in which E is strongly contained and the fact that {€2,} is Lipschitz,
Lemma 2.5 implies that the set {v,(E) : n > n(E)} is bounded. By taking a
sequence if necessary we may assume that

vplE— VE.
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Applying this procedure to E = Fj, for each m € N and then using the diagonal-
ization method we obtain a subsequence, again denoted by {v,}, such that

v, =~V

where v is a Radon measure on A (not necessarily bounded).

Next we wish to show that v is the trace of u on A relative to Q2. To this
purpose we construct a C I exhaustion of €, say {Dy}, such that D, € 2, and
dD, =T, UT, where

[ =0Q,N{yeQ:dist(y, F,) > €}
[y C{y € @, :dist(y, Fy) < €},

where 0 < ¢, < %dist (Fy, 02\ A) is chosen so that
Hy—1xr, =~ Hy—1xa and uxr,do" — v.

Here dw" is the harmonic measure in D,. This is possible because, if I, is suffi-
ciently close to 9€2,, then

uxr,do" — vy xr, — 0.

(As usual in this paper, v, x, denotes the Borel measure in RV that is equal to v,
on F, and zero elsewhere.) This implies that v is the trace of u on A.

Since v, is also the trace of u, on F, it follows that, if I';, is sufficiently close
to 082,

u, xr,do" — vy xr, — 0.

As u, | u we deduce that v is also the trace of  on A.

If u is a subsolution the argument is essentially the same. Let u,, be the smallest
solution that dominates u in €2,. Then the sequence {u,} is increasing, but it is
dominated by a solution w. Therefore it converges to a solution and this is the
smallest solution dominating u, namely, u. By Theorem 4.3, u, and u| possess the
same trace on 9€2,. Let 7, be the trace of u, on 92, and put v, = 7, xF,. The rest
of the proof is as before. O

Definition 4.5. Let u be a positive supersolution, respectively subsolution, of (4.1).
A point y € 9S2 is a regular boundary point relative to u if there exists an open
neighborhood D of y such that gou € L/I)(Q N D). If no such neighborhood exists
we say that y is a singular boundary point relative to u.

The set of regular boundary points of u is denoted by R(u); its complement
on the boundary is denoted by S(u). Evidently R (u) is relatively open.

Theorem 4.6. Let u be a positive solution of (4.1) in Q. Then u possesses a trace
on R(u), given by a Radon measure v.
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Furthermore, for every compact set F C 'R(u),

/Q(—uAn +gwn)dx = — /Q KlvxrlAn)dx (4.6)

for every n € X (2) such that suppn N o2 C F.

Proof. The first assertion is an immediate consequence of Corollary 4.4.

We turn to the proof of the second assertion. Let F' be a compact subset of
R(u) and let n € X(R2) be a function such that the following conditions hold for
some open set E,:

suppn C QNE,, FCE,NdQ, E,NSw)=0, xo€D;:=QNE,.

By Definition 4.5, if D is a subdomain of €2 such that DNS@u)=0thengou €
L})(D), where p is the first normalized eigenfunction of 2. Let E be a C 2 domain
such that

E,CE, Hy_10QNJIE)=0, ENSwu)=7.

Put D := ENQandnote that gou € L})(D).

If ¢ denotes the first normalized eigenfunction in D then ¢ < cp for some
positive constant c¢. Therefore the fact that gou € Lll) (D) implies that gou € L;) (D)
and the properties of n imply that n € X (D). Hence u possesses a boundary trace
72 on D and

/ (—uAn + g(w)n) dx = —/ (KD[rD]An) dx. 4.7)
D D

Let' = E N3 and I:/ = dD \ T; note that ' N S(u) = ¥ and n vanishes in a
neighborhood of d E N Q. Put ‘clp = 1P and ‘L'rD/ =10 tFD. Then d'rFD, =udS
onTand,asu € C(D\T),

KP[tP1e c(D\ D).

Furthermore 7 vanishes in a neighborhood of I’ and consequently

/(KD[TrD/]An> dX=/ </ PD(x,y)M(y)dSy) An(x)dx
D D \JaD\I

=/ (/ PD(x,y)An(x)dx> u(y)dSy = 0.
aD\I' \JD

Thus
/ (—uAn + gu)n) dx = —/ KP[tP1An dx. (4.8)
Q Q

(Changing the domain of integration from D to 2 makes no difference since n
vanishes in Q \ D.)
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Now, er is the trace of u on I relative to D while vr is the trace of u on I’
relative to 2. Since D C 2 it follows that

o <vxr. (4.9)

Let {E/} be an increasing sequence of C? domains such that each domain
possesses the same properties as E and,

E'NaQ=ENdQ=T, and D/ :=E/ NQ 1 Q. (4.10)

Foreach j € Nand y € T, the function K2’ (-, y) is harmonic in D/, vanishes

on 3D’ \ {y} and K P (xo, y) = 1. Furthermore the sequence (KD (., y)} is non-
decreasing. Therefore it converges uniformly in compact subsets of (2 U T") \ {y}.
The limit is the corresponding kernel function in €2, namely K e, v). (Recall that
the kernel function is unique.)

In view of (4.9), the sequence {rFD '/} is bounded. Therefore there exists a sub-
sequence, which we still denote by {rIP '3, such that

‘L’FD g — Tr
weakly relative to C(I'). Combining these facts we obtain,

KPi [tlpj] — Kg[rr].

Hence, by (4.7),

/ (—uAn+ g)n) dx = —/ (K®[zr]An) dx. (4.11)
Q Q

. D; . . . ..
Finally, as 7, /" is the trace of u on I relative to D ; then, in view of (4.10), the limit
7r is the trace of u# on I relative to €2, i.e.,

T = VXT.
This relation and (4.11) imply (4.6). ]

Theorem 4.7. 1. Let u be a positive supersolution of (4.1) in Q2 and let u be the
largest solution dominated by u. Then,

Sw)=S8w), R@) =TRw. (4.12)

Both u and u possess a trace on R(u) and the two traces are equal.
I. Let u be a positive subsolution of (4.1) in Q2 and let u be the smallest solution
which dominates u. If u is dominated by a solution w of (4.1) then both u and u
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possess a trace on R(w) (wWhich is contained in R (1)) and the two traces are equal
on this set.

In particular, if R(w) = R(u) then (4.12), with u replaced by i, holds and
both u and i possess a trace on R(u), the two traces being equal.
III. Let v denote the trace of u on R(u). Then, for every compact set F C R(u),

> — [ KlvxrlAn)dx, u supersolution,

4.13
< — Jo KlvxrlAn)dx, u subsolution @.13)

/Q (—uln+ g(u)n)dx {

for everyn € X(2), n > 0, such that suppn N o2 C F.

Proof. Part1. is a consequence of Corollary 4.4 1.

The first assertion in II. follows from Corollary 4.4 II. with A = R(w). The
second assertion in II. is an immediate consequence of the first.

By Theorem 4.6, u (respectively u) satisfy (4.6), where v is the trace of u
(respectively i) on R(u). Since v is also the trace of u on R (1) we obtain statement
1. O

Theorem 4.8. Assume that g € G satisfies the Keller-Osserman condition.

(i) Let u be a positive solution of (4.1) and let {Q2,} be a Lipschitz exhaustion of
Q. If y € S(u) then, for every nonnegative Z € C(2) such that Z(y) # 0

lim Zudw, = o0. 4.14)
02,

(ii) Let u be a positive supersolution of (4.1) and let {Q2,,} be a C 1 exhaustion of
Q. If y € S(u) then (4.14) holds for every nonnegative Z € C(R2) such that

Z(y) # 0.

Proof. The proof of satement (i) is essentially the same as for the corresponding
result in smooth domains [23, Lemma 2.8] and therefore will be omitted. In fact
the assumption that g satisfies the Keller-Osserman condition implies that the set
of conditions II in [23, Lemma 2.8] is satisfied. Here too, the Keller-Osserman
condition can be replaced by the weaker set of conditions II in the same way as
in [23].

Part (ii) is a consequence of Theorem 4.7 and statement (i). O

Definition 4.9. Let g € G. Let u be a positive solution of (4.1) with regular bound-
ary set R (u) and singular boundary set S(«). The Radon measure v in R (i) associ-
ated with u as in Theorem 4.6 is called the regular part of the trace of u. The couple
(v, S(w)) is called the boundary trace of u on 2. This trace is also represented by
the (possibly unbounded) Borel measure v given by

B(E) = v(E), ifE COR(M) @.15)
00, otherwise.
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The boundary trace of u in the sense of this definition will be denoted by tryqu.
Let
Vy i=sup{uyy, : F C R(u), F compact} (4.16)
where u,,, denotes the solution of (3.7) with & = vxr. Then V, is called the
semi-regular component of u.

Remark 4.10. Let t be a Radon measure on a relatively open set A C 9€2. Suppose
that for every compact set I C A, uy, is defined. If V; is defined as above, it need
not be a solution of (4.1) or even be finite. However, if g satisfies the Keller—
Osserman condition or if #;y, is dominated by a solution w, independent of F,
then V; is a solution.

Definition 4.11. A compact set F' C 9€2 is removable relative to (4.1) if the only
non-negative solution u € C(2\ F) which vanishes on 2\ F is the trivial solution
u=>0.

Remark 4.12. In the case of power nonlinearities in smooth domains there exists a
complete characterization of removable sets (see [22] and the references therein).

Lemma 4.13. Let g € G and assume that g satisfies the Keller-Osserman condi-
tion. Let F C 92 be a compact set and denote by U the class of solutions u of
(4.1) which satisfy the condition,

ueCQ\F), u=0ondQ\F. 4.17)
Then there exists a function Ur € Ur such that
u<Ur Yuelp.
Furthermore, S(Up) =: F' C F; F' need not be equal to F .

The proof is standard and will be omitted.

Definition 4.14. Up is called the maximal solution associated with F. The set
F' = S(Ur) is called the g-kernel of F' and denoted by k, (F).

Note. The situation S(Ur) C F occurs if and only if there exists a closed set
F' C F such that F \ F’ is a non-empty removable set. In this case Ur = Up.

Lemma 4.15. Let Fy, F> be two compact subsets of 0<2. Then,

Fi C F, = Up, < Up, (4.18)

and
Urur, < Up +Up,. 4.19)

If F is a compact subset of 9S2 and { Ny} is a decreasing sequence of relatively open
neighborhoods of F such that Nyy+1 C Ny and NNy = F then

Uy,

k

— Ur (4.20)

uniformly in compact subsets of 2.
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Proof. The first statement is an immediate consequence of the definition of maximal
solution.

Next we verify (4.20). By (4.18) the sequence {U Nk} decreases and therefore
it converges to a solution U. Clearly U has trace zero outside F so that U < Ufr
On the other hand, for every k, U i Ur. Hence U = Ur.

We turn to the verification of (4.19). Let u be a positive solution of (5.1) which
vanishes on 92\ (F] U F>). We shall show that there exists solutions u1, uy of (5.1)
such that

up =0 ondQ2\ F;,u <uy+uj. 4.21)
First we prove this statement in the case where Fy N F, = . Let Ey, E be C!
domains such that £ N Ey = W and F; C E; N 92, (i=1,2). Let {2,} be a
Lipschitz exhaustion of €2 and put A, ; = 02, NE;, (i=1,2). Let v, ; be the solution

of (5.1) in §2,, with boundary data u x 4, ; and v, be the solution in £2,, with boundary
data u(l — x4, ,ua,,)- Then

U < Uy + vp1+ V2.
By taking a subsequence if necessary we may assume that the sequences {v,},
{vn.1}, {vn.2} converge. Then lim v, ; = U; where U; vanishes on Q2 \ E;, (i=1,2).
In addition, as the trace of u on €2 \ (F| U F3) is zero, we have lim v,, = 0. Thus
u<U; + U,.
Now take decreasing sequences of C! domains {Ek.1}, {Ek,2} such that
Ex1NEx=0, F CEL NN, EL NIQ|F i=12
Construct Uy ; corresponding to Ey ; in the same way that U; corresponds to E;.

Then,
u < Ug1+ U2

and, by (4.20), taking a subsequence if necessary,

ui:= lim Uy; =0 ondQ\ F;, i=12.
k— 00

This proves (4.21) in the case where F, F; are disjoint.
In the general case, let { N} be a decreasing sequence of relatively open neigh-
borhoods of F| N F, such that
Nj+1CNj, ﬁNj=F1ﬂF2.

Put F/, = F, \ N;.
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Let {M;} be a decreasing sequence of relatively open neighborhoods of Fj
such that

Mjy  CMj, NMj=F, MjNFj,=0.
Put FJ/ L= M.
Let v; be the largest solution dominated by u# and vanishing on the complement
of F/ |UF/,:
Js Js
a2\ (F]/‘,1 U F]/-’z) =0Q\ ((F1 UF)\ (N;\ Mj))
= (0Q\ (F1 U F)) U (N; \ M)).

Furthermore, (1 — U N\M; )+ is a subsolution which is dominated by # and vanishes
on the complement of F} | U F ,. Therefore v; satisfies

u=vj>u— U}\‘/j\Mj)—i-,

which implies,
0<u-— vj < UIV_,-\M_/- < UNj'

By (4.20), U N ! UF,nF,. Taking a converging subsequence v;, — v we obtain
O<u—v< UFlsz.

By the previous part of the proof there exist solutions v; 1, v; 2, whose boundary
trace is supported in F ; ,and F ; , respectively, such that

Vj SV 1+ V2.

Taking a subsequence we may assume convergence of {v; 1} and {v;2}. Then u; =
limv;; has boundary trace supported in F;. Finally,

u <v+Upnp <ur +uz+Upnp

and tryqu is supported in F; while trypq(u + Ur,nF,) is supported in F,. Since
u — u1 is a subsolution dominated by the supersolution u» + Uf,nF, there exists a
solution w, between them and we obtain

u=<ur+wp
where trypqw, is supported in F. O

The next theorem deals with some aspects of the generalized boundary value
problem:
—Au+gou=0, u>0 in€,

ttae = (v, F), (4.22)

where F' C 0€2 is a compact set and v is a (non-negative) Radon measure on 02\ F.
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Theorem 4.16. Let ¢ € G and assume that g is convex and satisfies the Keller-
Osserman condition.

EXISTENCE. The following set of conditions is necessary and sufficient for the
existence of a solution u of (4.22):

(i) For every compact set E C 9Q\ F, the problem
—Au+gw) =0 inQ u=vxg onds, (4.23)

possesses a solution.
(ii) Ifky(F) = F', then F \ F' C S(V,).

When this holds,
Vo <u <V, +Up. (4.24)

Furthermore if F is a removable set then (4.22) possesses exactly one solution.

UNIQUENESS. Given a compact set F C 0%, assume that
Ug is the unique solution with trace (0, kq (E)) (4.25)

for every compact E C F. Under this assumption:

(a) Ifu is a solution of (4.22) then
max(V,, Ur) <u <V, + Ur. (4.26)

(b) Equation (5.1) possesses at most one solution satisfying (4.26).
(c) Condition (4.25) is necessary and sufficient in order that (4.22) posses at most
one solution.

MONOTONICITY.

(d) Let uy, up be two positive solutions of (4.1) with boundary traces (vy, F1) and
(v2, F») respectively. Suppose that F\ C F, and that vi < vaxp, =: vé. If
(4.25) holds for F = F, then uy < us.

Proof. First assume that there exists a solution u of (4.22). By Theorem 4.6 condi-
tion (i) holds. Consequently V;,, is well defined by (4.16).

Since V,, < u the function w := u — V), is a subsolution of (4.1). Indeed, as g
is convex and g(0) = 0 we have

gla)+gb) <gla+b) Va,beR,. 4.27)

Therefore
0=—-Aw+(gw) —g(Vy) > —Aw + g(w).

By Theorem 4.3, as g satisfies the Keller-Osserman condition, there exists a solution
w of (4.1) which is the smallest solution dominating w.
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By Theorem 4.7, the traces of w and w are equal on A = R(u) C R(w).
Clearly the trace of w on R(u) is zero. The definitions of V,, and w imply,

max(V,,w) <u <V, +w. (4.28)

Therefore

Sw)USV,) =Su).

In addition, as w has trace zero in 92\ F, it follows, by the definition of the maximal
function, that
w < Ur and consequently S(w) C kg(F).

These observations imply that condition (ii) must hold. Inequality (4.24) follows
from (4.28) and this inequality implies that if F is a removable set then (4.22)
possesses exactly one solution.

Now we assume that conditions (i) and (ii) hold and prove existence of a so-
lution. The function V,, is well defined and V,, 4+ Up is a supersolution of (4.1)
whose boundary trace is (v, F). Therefore, by Theorem 4.7, the largest solution
dominated by it has the same boundary trace, i.e. solves (4.22).

Next assume that condition (4.25) is satisfied. It is obvious that (4.25) is nec-
essary for uniqueness. In addition, (4.25) implies that Ur < u and consequently
(4.24) implies (4.26). It is also clear that (b) implies the sufficiency part of (c).

Therefore it remains to prove statements (b) and (d). Let u be the smallest
solution dominating the subsolution max(V,,, Ur) and let v be the largest solution
dominated by V), + UF.

To establish (b) we must show that u = v. By (4.26) v — u < V,,. In addition
the subsolution v — u has trace zero on d<2 \ F. Therefore

v—u <min(V,, Uf). (4.29)

Let { Ny} be a decreasing sequence of open sets converging to F such that Nyy| €
Ni. Assuming for a moment that v is a finite measure, the trace of V,, on Ny is
vk = vxn, and it tends to zero as k — oo. Therefore, in this case,

min(V,, Ur) <V, =0

and hence u = v. Of course this also implies uniqueness (statement (c)) in the case
where v is a finite measure.

In the general case we argue as follows. Let vt be the unique solution with
boundary trace (v,’{, Ny) where U;{ =v(l - XNk)' By taking a subsequence if nec-
essary, we may assume that {vi} converges to a solution v’. By (4.26),

max(Vyy, Ug) < v < Vi + Ug,

and, by the previous part of the proof, vy is the largest solution dominated by Vi +
Uy, We claim that if w is a solution of (5.1) then

vawfVU+Up:>w§VV;€+UNk. (4.30)
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Indeed,
wfVv+UF:w§Vvl’(+vvk+UF:>wSVU]/(+UNk+UF:>wSVUI’(+2U]\’/k-

Thus
OSw_VV,LSZUI\_/k

which implies
w — VU]/( < Uﬁk’

because any solution (or subsolution) dominated by 2U N, 18 also dominated by U N,
Hence v; > v and consequently v’ > v.

By (4.20) Ug, | Ur and by definition VV;( 1 V. Therefore
max(V,, Up) <v' <V, + Ur.

Since v is the largest solution dominated by V), + U and v < v’ it follows that
v="1'.
Let uj be the unique solution with boundary trace (v,/{, k¢(F)). By (4.26),

max(Vyy, Uk, (F)) <tk < Viy + Usy(F)-
Since ur < u and {u} increases (because {VVIQ} increases) it follows that u’ =
limuy; < u. Furthermore,

max(Vy, Uk (r)) < u' < Vo + Upy(F).-

If (4.22) possesses a solution then condition (ii) holds. Therefore for any solution
w of (5.1)
max(V,, ng([:)) < w =— max(V,, Ur) < w.

Hence max(V,, Ur) < u’ and, as u’ < u we conclude that u’ = u.
Finally, for every € > 0,

(I —e)Vy + Uk, r) < uk
and consequently
ve —uk < Vy + Uy, — (L= Vy + €Ug,r))
= UA-,k - - e)ng(p) —|—6Vv]/< < UW+ Urp —(1-— e)ng(F) —|—6Vvl/<
<e(Ur+ VV/Q) — e(Ur +W).

This implies u; = v; and hence u = v. This establishes statement (b) and hence
the sufficiency in (c).

Finally we establish monotonicity. Let v; be the unique solution of (5.1) with
boundary trace (v;, F;), (i=1,2). Then v; is the largest solution dominated by V,, +
Uf, (i=1,2). The argument used in proving (4.30) yields

Voy 2wV, +Up = w=<V,+Ug. “4.31)

This implies v; < vj. ]
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5. Equation with power nonlinearity in a Lipschitz domain

In this section we study the trace problem and the associated boundary value prob-
lem for equation
—Au+ul"'u=0 (5.1)

in a Lipschitz bounded domain €2 and ¢ > 1. The main difference between the
smooth cases and the Lipschitz case is the fact that the notion of critical exponent
is pointwise. If G is any domain in R we denote

U(G) := {the set of solutions (5.1) in G} . (5.2)

and U, (G) = {u € U(G) : u > 0 in G}. Notice that any solution is at least C> in G
and any positive solution is C*°. The next result is proved separately by Keller [16]
and Osserman [27].

Proposition 5.1. Let g > 1, @ C RY be any domain and u >e C(Q) be a weak
solution of

—Au+Au? < B inQ. (5.3)
for some A > 0 and B > 0. Then there exists C;i(N, q) > 0 (i = 1,2) such that
1 2/(g=1) B\ 4
ux) <Cy (m) +C2 (Z) Vx € Q. (5.4)

For a solution of (5.1) in € which vanishes on the boundary except at one point, we
have a more precise estimate.

Proposition 5.2. Lerqg > 1, Q2 C RY be a bounded Lipschitz domain, y € 92 and
u € Uy () is continuous in Q \ {y}) and vanishes on 0Q \ {y}. Then there exists
C3(N,q,2) > 0and a € (0, 1] such that

u(x) < Cs (dist (x, 3Q2)* [x — y| "D~ vy e Q. (5.5)
Furthermore o = 1 if Q is a domain of class W>* with s > N.

Note: A bounded domain € is of class W25 if, for every z € €2, there exists a
neighborhood Q, and a local set of coordinates ¢ centered at z, such that O, N 2
can be represented in the form ¢{y = F (¢, ..., ¢{n—1) and F belongs to WS ina
neighborhood of the origin in RN ~!,

Proof. By translation we can assume that y = 0. Let i be the extension of u by
zero outside Q \ {0}. Then it is a subsolution of (5.1) in RN \ {0} (see [11] e.g.).
Thus

i(x) < Cilx|7/@=D wx 0,

and, with the same estimate for u_, we derive

lu(x)| < Cilx|7?@=D vy e Q. (5.6)
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Next we set, for k > 0, Ti[u] defined by Ty [u](x) = k=2/@=Dy(k='x), valid for
any x € € = k€. Then uy := Ti[u] satisfies the same equation as u in €, is
continuous in 2 \ {0} and vanishes on 0<2; \ {0}. Then

ue(x) < Cilx| 7070 vx e @,
thus, by elliptic equation theory in uniformly Lipschitz domains, (which is the case
ifk>1)
i llca@unara\Bsjan = € lukllio@ine\s) = Co-
This implies
Juk™"x") —u(k™'2)| < Cok™H @D — 7@
V(x,2) € Qp x Q1 5/4 < x|, 2] <7/4.

Let (x, z) in 2 x  close enough to 0. First, if 5/7 < |x|/|z] < 7/5 there exists
k > 1 such that 5/4 < |kx]|, |kz| < 7/4. Then

lu(x) — u(z)| < Cslx|72 @Dy — 712,

If we take in particular x such that z = Proj,q (x) satisfies the above restriction, we
derive
u(x) < Cslx|~/@=D= (dist (x, 0Q))* .

Because 2 is Lipschitz, it is easy to see that there exists 8 € (0, 1/2) such that
whenever dist (x, 9Q) = |x — Projyq(x)| < Blx|, there holds

5/7 < Ix1/ |Projyq(x)| < 7/5.
Next we suppose |x — Proj 3Q(x)] > f|x|. Then, by the Keller-Osserman estimate,
u(x) < Clx|7247 D7 x|* < Cp~¥|x| 7247 D7 |x — Projo(x)| .

which is (5.5). If we assume that 92 is W25 with s > N, then we can perform a
change W2 of coordinates near 0 with transforms 92 N Bg(0) into Rﬁ N Br(0)
and the equation into

_Zax, (“ua )+|u|q =0, mRYNBRO\{0}, (57

where the q;; are the partial derivatives of the coordinates and thus belong to
WI’S(BR). By developping, i satisfies

9%
- bi— =15 = 0.
in: Uaxlax Z +|u|

Notice that, since s > N, the g;; are continuous while the b; are in L*. The same
regularity holds uniformly for the rescaled form of ity := Ti[u]. By the Agmon-
Douglis-Nirenberg estimates iix belongs to W29, Since s > N, ii satisfies an uni-
form C! estimates, which implies that we can take o = 1. O
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5.1. Analysis in a cone

The removability question for solutions of (5.1) near the vertex of a cone has been
studied in [9], and we recall this result below.

If we look for separable solutions of (5.1) under the form u(x) = u(r,o) =
rPw(o), where (r, o) € RT x S¥~1 are the spherical coordinates, one finds imme-
diately 8 = —2/(¢ — 1) and w is a solution of

—No—y,0+ 0l o=0 (5.8)

e =2 24y (5.9)
vi= 7 (o . .

Thus, a solution of (5.1) in the cone C; = {(r,0) : r > 0,0 € § C SN-1,
vanishing on 0Cy \ {0}, has the form u(r, o) = r=2/@=Dg (o) if and onlyifwisa
solution of (5.8) in § which vanishes on dS. The next result [9, Propopsition 2.1]
gives the the structure of the set of positive solutions of (5.8).

on S¥N1 with

Proposition 5.3. Let A be the first eigenvalue of the Laplace-Beltrami operator
— A in Wy (S). Then

() If Ay = Ay, there exists no solution to (5.8) vanishing on 9.
(1) If Ay < Ay, there exists a unique positive solution @ = wyg to (5.8) vanishing
on 3S. Furthermore S C §' = wg < w,,.

The following is a consequence of Proposition 5.3.

Proposition 5.4. [9] Assume Q2 a bounded domain with a purely conical part with
vertex 0, that is

QN B,y (0) = Cy N By, (0) = {x € NB,,(0) \ {0} : x/ |x| € S} U {0}

and that 92 \ {0} is smooth. Then, if A > Ay > any solution u € U(2) which is
continuous in Q \ {0} and vanishes on 92\ {0} is identically 0.

Remark 5.5. If S ¢ S¥~! is a domain and A ¢ the first eigenvalue of the Laplace-

Beltrami operator —A’ in W(} ’2(S ) we denote by &, and o, the positive root and the
absolute value of the negative root respectively, of the equation

2
X2+ (N —-2)X — A, =0.

&S:%<2—N+,/(N—2)2+4AS),
:%(N—2+,/(N—2)2+4AS).

Thus

(5.10)

o
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It is straightforward that

and, in case of equality, the exponent g = ¢, satisfies g, = 1 +2/a.

From the previous remarks it follows that, if Cyg is the cone with vertex at the
origin and “opening” S ¢ S¥~!, we have

KO (x,0) = [x| Sa5(0),  p(x) = [x[Pawg(0), (5.11)

where wg is as in Proposition 5.3.
Combining the removability result with the admissibility condition Theorem
3.10, we obtain the following.

Theorem 5.6. The problem

—Au+uf'u=0 inCs,

‘ (5.12)
ueCCs\{0), u=0 ondCs\ {0}

possesses a non-trivial solution if and only if
l<qg<qs=1+2/a;.

Under this condition the following statements hold.

(a) For every k # O there exists a unique solution vy of (5.1) with boundary trace
kég. In addition we have

vg/vi(x) = k uniformly as x — 0. (5.13)

(b) Equation (5.1) possesses a unique solution U in Cs such that S(U) = {0} and
its trace on 9Cg \ {0} is zero. This solution satisfies

2

[x[=TU (x) = U(x/|x]) = ws(x/]x]) (5.14)
and
U =vy:= lim . (5.15)
k— 00
Proof. (a) By (5.11),
1 ~
/ K%(x,0)p(x)dx < c/ rés 4% tN=lgpr < oo,
CsNBj 0

since
ag—qoag+N—-1=1—-(— Dag > —1.
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Thus ¢ is admissible for Cs N By at 0. By Theorem 3.10, for every k € R, there
exists a unique solution of (5.1) with boundary trace kd¢.

Observe that, for every a, j > 0, v;(x) = az/(q’l)vj (ax) is a solution of
(5.1) in Cs. This solution has boundary trace k8y where k = a*/~1 j. Because of
uniqueness, v; = v. Thus

v (x) = a? @ Vyj(ax), k=a?@Vj (5.16)

This implies (5.13).
(b) Let w be a solution in Cg such that S(w) = {0} and its trace on 9Cy \ {0}
is zero. We claim that
W > Voo = limk — ocoug. 5.17)

Indeed, for every 8’ € S,k > 0,
/ wdw,; — 00, limsup/ vdw, < 00 asa — 0
aS’ as’

where dw, denotes the harmonic measure for a bounded Lipschitz domain €2, such
that a8’ C 992, and @, 1 Cgs. Therefore, using the classical Harnack inequality
up to the boundary, w/vxy — oo as |x| — 0 in Cg. In addition, either by Hopf’s
maximum principle (if S is smooth) or by the boundary Harnack principle (if S is
merely Lipschitz),

c_1v1 <w <cv] in CS\S’-

This inequality together with (5.16) yields,

c_lvk Sw = cy inCy\g

with ¢ independent of k. Therefore c"'vy < win Cs. If /¢ > k/cj > 1 then

%vj < v =< cw and consequently v; < w. Here we used the fact that %vj is a
subsolution with boundary trace kdp.

Let Up be the maximal solution with trace 0 on dCs\ {0} and singular boundary
point at 0. Then

Up(x) = a4 DUy(ax) Va >0, x € Cg,

because %/ 4~V Uy(ax) is again a solution which dominates every solution with
trace 0 on dCy \ {0} and singular boundary point at 0. Hence,

Up(x) = [x|74 " DUp(x/1x]) = 1x|7H 4 Dawg(x /|x)). (5.18)

The second equality follows from the uniqueness part in Proposition 5.3 since the
function x — Up(x/|x]) is continuous in S and vanishes on 9.

Inequality (5.17) implies that v, is the minimal positive solution such that
S(w) = {0} and its trace on dCg \ {0} is zero. Using this fact we prove in the same
way that v, satisfies

Voo (X) = x| Dy (x/1x]) = x| 7 Dawg (x /|x]).

This implies (5.15) and the uniqueness in statement (b). ]
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In the next theorem we describe the precise asymptotic behavior of solutions
in a conical domain with mass concentrated at the vertex.

Theorem 5.7. Let C be a cone with vertex 0 and opening S C S N=1and assume

that 1 < q < g3 = 1+ 2/ag. Denote by ¢s the first eigenfunction of —A in
WO1 ’2(S ) normalized by max ¢, = 1. Then the function

Qg =x""s¢s(x/ |x),

with as as in (5.10), is harmonic in Cs and vanishes on dCg \ {0}. Thus there exists
y > 0 such that the boundary trace of ®g is the measure ydg. Put &1 := %CDS.

Let ro > 0 and denote Qg = Cgs N By (0). For every k € R, let uy be the
unique solution of (5.1) in Qg with boundary trace kéy. Then

ur(x) =k®d1(x)(1 +o0(1)) asx — 0. (5.19)

If vi is the unique solution of (5.1) in Cg with boundary trace k&g then
ug /vy — 1 and v /(k®;) > 1 asx — 0. (5.20)
The function us, = limg_, o Uy is the unique positive solution of (5.1) in Qs which

vanishes on 0Q2g \ {0} and is strongly singular at O (i.e., 0 belongs to its singular
set). Its asymptotic behavior at 0 is given by,

2
Uoo(X) = |x| “Twg(x/|x])(14+0(1)) asx — 0. (5.21)
Proof. Step 1: Construction of a fundamental solution. Put
D(x) = [x[7% ¢y (x/ x]). D) = |x|% ¢ (x/ [x]) (5.22)

with g, @ as in (5.10). Then ® and ® are harmonic in Cy, ® vanishes on C \ {0}
and ® vanishes on 0C. Furthermore, since g < 1 + 2/ay,

/ ®?pdx < oo.
CsNB;(0)

Therefore the boundary trace of ® is a bounded measure concentrated at the vertex
of Cg, which means that the trace is yJp for some y > 0. (Here §p denotes the
Dirac measure on dCg concentrated at the origin.)

The function

1 Ao—0g ~
V(x) = ;(CP(X) —ry° P P(x))

is harmonic and positive in €2 and vanishes on 02, \ {0}. Its boundary trace is do.
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Step 2: Weakly singular behaviour. By Theorem 3.10, for any £ > 0, there exists a
unique function uy € L%(Q ¢) with trace kdp and by (3.8)

ug(x) = kW (x) — Gllugl?]. (5.23)
Since |x|%s uy is bounded, we set
v(t,0) =r%ui(r,o), t=—Inr.
Then v satisfies
Ui 4 Qag +2 = N)v + A0 4+ Alv — @@ D=2 =ty =0 (5.24)

in Dg 4 = [tg, 00) x S (with fy := —Inrg) and vanishes on [#y, 00) x 9S. Since
0 < ug(x) < kW(x), v is uniformly bounded, and, since arg(g — 1) —2 < 0, v(z,.)
is uniformly bounded in C%(S) for some « € (0, 1). Furthermore, V'v(¢,.) (by
definition V" is the covariant gradient on S¥ 1) is bounded in L2(S), independently
of t. Set

y(t)=/sv<r,o>¢sde>, F(t)zfsw1v><t,a>¢st(a>.

From (5.24), it follows

Z (e(QaS-',-Q—N)ty/) _ olG+Dag=Ni

where dV is the volume measure on SV 1. By (5.10), y := 20, +2— N > 0, then

!
V(1) = e_y(’_t“)y'(to) + e—ytf e((q+1)“S_N)SF(s)ds,

Ip

and
|y/(t)| < Clef)’(t*fo) + cze(“s(q_l)_z)t.

This implies that there exists k* € R such that
zlggo () =k*. (5.25)
Next we use the fact that the following Hilbertian decomposition holds
L2(S) = @2 ker (=A" — a1)

where ) is the k-th eigenvalue of —A’ in WOI’Z(S) (and A; = A1). Let v and F be
the projections of v and lv|9~" v onto ker (—A’ — )LSI)l. Since

i+ Qag +2 = N)b; + A0+ A5 — @@ D=2 F — g (5.26)
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we obtain, by multiplying by @ and integrating on S,
V' 4+ Qag+2—N)V' — (kg — 1)V + @@= D=2p > 0,

whete V(1) = [5(t, ) 2(5) and &) = | Fr, )

. The associated o.d.e.
L2(S)

'+ Qg +2—N)Z — (kg — Az + @@ DDrp =,
admits solutions under the form
2(t) = are™™" + aze!™ +d(1)els =D
where — 1 and p, are respectively the negative and the positive roots of
X2+ Qg +2—N)X — (A — A5) =0,

and |[d(t)| < c@ifag(g—1)—2 # —py,or|d(t)| < ct'@ifay(g—1)—2 = —pu;.
Applying the maximum principle, to (5.26), we derive

152, Il L2cs) < 100, I 25y e 1070 +d(0)e@s @ D™D vr >4y, (5.27)

By the standard elliptic regularity results in Lipschitz domains [10], we obtain from
(5.27), forany ¢t > 19 + 1,

3¢, llcecs) < 9l 2 e eles @D | , (528
o, Jllc (S) 1l ||L2((; 1,t+1)x85) T2 Loo((—1.041)xS) ( )

for some « € (0, 1] depending of the regularity of 9S. Thus

15, )llcas) < ce ™™ + cte®s @ D=2, (5.29)
Combining (5.25) and (5.29) we obtain that

lx|%s up(x) —k*¢py(x/1x]) >0 asx — 0 (5.30)

in C%(S). Furthermore 0 < k* < k.

Step 3: Identification of k*. Let {2,} be a Lipschitz exhaustion of Qg and de-
note by w;, (respectively w) the harmonic measure on 92, (respectively d<2g5). By
Proposition 3.8

lim uydow, =k.
n—o0 Ja0

On the other hand, by (5.30),

up/(k*|x| " *S¢ps) — 1 asx — 0.
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Hence
lim updw, = k* lim |x|"*S¢s dw,
n—o00 Ay, n—0o0 A,
=k*y lim ®1dw, =k*y.
n—oo 3Qn
Thus

k=k*y. (5.31)

This and (5.30) imply (5.19).
Further,
up < vx < kdy

since @ is harmonic in Cg. Therefore (5.19) implies (5.20).

Step 4: Study when k — oo. By Theorem 5.6, equation (5.1) possesses a unique
solution U in Cg such that U = 0 on dCs \ {0} and U has strong singularity at the
vertex, i.e.,0 € S(U). By (5.14) and (5.15) this solution satisfies

U= veo = lim v = x| 7T ws. (5.32)
k— 00
Let V be the maximal solution in g vanishing on d<2g \ {0}. Its extension by zero
to Cy is a subsolution and consequently, V < U.

Let w be the unique solution of (5.1) in g such that w = U on Qs N By, (0)
and w = 0 on the remaining part of the boundary. Then w < U so that U — w is
a subsolution of (5.1) in 25 which vanishes on 0Q2g \ {0}. Therefore U — w < V.
Thus

U—-—w<V<UadU/V - 1 asx — 0. (5.33)

Let u be an arbitrary positive solution in g vanishing on dQg \ {0}. Denote by u*
its extension by zero to Cs. Then u* is a subsolution and, by Theorem 4.3, there
exists a solution u of (5.1) in Cg which is the smallest solution dominating u«*. The
solution i can be obtained from u* as follows. Let {r,} be a sequence decreasing to
zero, r; < rg, and denote

Dy =Cs\ B, (0), hy=u"sp,.

Let w, be the solution of (5.1) in D,, such that w, = h, on the boundary. Then
{w,} increases and
u = limw,. (5.34)

If u has strong singularity at the origin then, of course, the same is true with respect
to u and consequently, by Theorem 5.6,

N

=U. (5.35)

In the remaining part of the proof we assume only (5.35) and show that this implies
u=1yV.
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Let z be the solution of (5.1) in Qg such that z = U on 925 N 9B, and 0 on
dQ2s N dCs. Then u + z is a supersolution in Q5. Let

Qn = QS \ Brn (0) = Dn n Bro(o)-

The trace of u + z on 92, is given by

£ = U on 982, N 9By,
")y +z ondQ,\ 3B,

Since U = u > u* we have f;, > h,. Therefore, if W, is the solution of (5.1) in €2,
such that w, = f, on the boundary then

Wy, < Wy < u+z in .

Hence, by (5.34),
U<u+z

Since z — 0 as x — 0, it follows that

limsupU/u <1 asx — 0.
Since u < V, (5.33) implies that

liminfU/u > 1 asx — 0.

Therefore U/u — 1 as x — 0 and consequently , by (5.33) and the maximum
principle, u = V. This proves the uniqueness stated in the last part of the theorem
and (5.33) implies (5.21). ]

Corollary 5.8. Suppose that u is a positive solution of (5.1) in Qg which vanishes
on 0225 \ {0} and
sup |x|%Su = oo. (5.36)
Qg

Then u = Ugo.
Proof. Let u be as in (5.34). Since u > u it follows that

sup |x|*u = oo.
Qg

By Theorem 5.6 u = U. The last part of the proof shows that u = u«. U

As a consequence of Theorem 5.7 we obtain the classification of positive solu-
tions of (5.1) in conical domains with isolated singularity located at the vertex. In
the case of a half space such a classification was obtained in [11].
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Theorem 5.9. Let C; be as in Theorem 5._7, Q; = C; N B, (0) for somerg > 0
and 1 < q < qy =1+ 2/ag. Ifu € C(82 \ {0}) is a positive solution of (5.1)
vanishing on 0C N By, (0) \ {0}, the following alternative holds:

Either

(1) limsup,_,, |x|_&S u(x) < oo and thus u € C ().
or

(i1) there exist k > 0 such that (5.19) holds
or

(ii1) (5.21) holds.

Proof. Let u, be the solution of (5.1) in Qg = Qg \ B¢(0) with boundary data u
on 2 N dBe(0) and zero on 3€2; , \ 3 Be(0). Then

0<ue<u<uc+Zx) VxeQ,,

where Z is harmonic in €2, vanishes on 0$2; \ dB,,(0) and coincides with u on
C, N 3By, (0). Furthermore 0 < € < €' = ue < ue in Q. Thus u. converges,
as € — 0, to a solution # of (5.1) which vanishes on 92 \ {0} and satisfies

0<u(x) <u(x)<ulx)+Z(kx) VxeQ. (5.37)
If
lim sup |x|*s #(x) < oo, (5.38)
x—0

it follows from Theorem 5.7-Step 2, that there exists k* > 0 such that
u(x) =k*|x|™% o (x/|x)(A +0(1)) asx — 0. (5.39)

If k* > 0 then u satisfies (ii). If k* = 0, it is straightforward to see that, for any
€ >0,u(x) <elx|™%. Thus

ulx) <Zx)=c |x|6‘S o (x/IxD(1 +o0(1)) asx — 0, (5.40)

by standard expansion of harmonic functions at 0.
Finally, if
limsup |x|%s @i (x) = oo, (5.41)

x—0

then, by Corollary 5.8, it = uo, and consequently, by Theorem 5.7, & — and there-
fore u — satisfies (5.21). O
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5.2. Analysis in a Lipschitz domain

In a general Lipschitz bounded domain tangent planes have to be replaced by
asymptotic cones, and these asymptotic cones can be inner or outer.

Definition 5.10. Let 2 be a bounded Lipschitz domain and y € 9Q2. Forr > 0,
we denote by Cyl,’ , (respectively Cyo’ ) the set of all open cones Cy,, with vertex
at y and smooth opening S C 9B1(y) such that Cs , N B, (y) C 2 (respectively
QN B, (y) C Cy,y). Further we denote

cl, =Ulcssicsuech ) e i=Nfcs,icsyect) a2

and
I ._ 1 o ._ o
Cli= L%cw, cf = ﬂocy’,. (5.43)
r> r>

The cone C; (respectively CyO ) is called the limiting inner cone (respectively outer

cone) at y. Finally we denote
S, =C},NoB(y), S2,:=CP NIBi(). 5.44)
SE=C{NaBi(y), S2:=C?NIBi().

Remark 5.11. In this definition, we identify 8 B1(y) with the manifold S¥~!. No-
tice that the following monotonicity holds

Cl,cChy
co ccl,.
Definition 5.12. If Cg is a cone with vertex y and opening S and if Ag is the first
eigenvalue of —A’ in WOI’Z(S ), we denote

1
aS=§<N—2+,/(N—2)2+4AS>, and g, = 14 2/a. (5.46)

Thus g is the critical value for the cone Cy at its vertex.

0<s<r:>{ (5.45)

Remark 5.13. Asr — S;,r is nondecreasing, it follows that r - Ag is nonin-
creasing and consequently r — ¢ ST is nondecreasing. It is classical that

lima, =x,. (5.47)
!

r—0 Sy,r

A similar observation holds with respect to Syo , if we interchange the terms “non-
decreasing” and “nonincreasing”. In particular

lima, =2, (5.48)

r—0 Syr

In view of (5.46) we conclude that,

lim q5§, = qs§ s rh_r)r(l) qS)Q, = qS)Q . (549)

r—0

We also need the following notation:
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Definition 5.14. Let 2 be a bounded Lipschitz domain. For every compact set
E C 92 denote,

g% = lim inf{qsgr L2 €09, dist(z, E) < r} : (5.50)

r—0

If E is a singleton, say {y}, we replace g1, by ¢;.

Remark 5.15. For a cone Cg with vertex y, q;‘ < gs. However if Cg is contained
in a half space then q; = ¢s. On the other hand, if Cg strictly contains a half space
then g5 < gs.

If © is the complement of a bounded convex domain then, for every y € 9€2,

q;'f =(N+1/N-1). (5.51)

Indeed g,y = (N + 1)/(N — 1). But for Hy_j-a.e. point y € 0% there exists
a tangent plane and consequently g.y = (N + 1)/(N — 1). This readily implies
(5.51).

Since €2 is Lipschitz, there exists rg > 0 such that, for every r € (0, r) and
every z € 0%, there exists a cone C with vertex at z such that C N B.(z) C .
Denote

a(r, y) == inf{q&,r L7 €dQn B,(y)} Vr € (0,rq), y € 99.

Then,
qy =lim infla(r, y) : y € E}
r=0 (5.52)

finf{lin(l)a(r, y):y € E}=inf{gy :y € E}.
r—

Indeed, the monotonicity of the function r 9y (for each fixed y € 9Q2) implies

q;‘ = lir%a(r, y)= sup a(,y). (5.53)

O<r<rq

gy = liminf{a(r, y) : y € E}
r—0

inequality (5.52) follows immediately from (5.53).
Finally we observe that, if E is a compact subset of 92 then

(E), :={z€0Q:dist(z, E) <r} = quE)r 1 qy asr | 0. (5.54)
In order to deal with boundary value problems in a general Lipschitz domain €2 we

must study the question of g-admissibility of §,, y € 9. This question is addressed
in the following:
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Theorem 5.16. If y € 0Qand 1 < g < 9y = 1+ 2/0451 then
y y

/Kq(x, y)px)dx < oo. (5.55)
Q

Furthermore, if E is a compact subset of 02 and 1 < q < q}, then, there exists
M > 0 such that,

/Kq(x, ox)dx <M VyeekE. (5.56)
Q

Proof. We recall some sharp estimates of the Poisson kernel due to Bogdan [3]. Set
k = 1/2(+/1 + K?2), where K is the Lipschitz constant of the domain, seen locally
as the graph of a function from RY ! into R. Let xo € € and set ¢ (x) := G(x, xp).
Then there exists ¢; > 0 such that forany y € 92 and x € Q satisfying |x —y| < ro,
there holds

—1 9(x) - ¢ (x) -
¢ lmu — PV <K@,y < rrate —y N, (5.57)
for any & such that B |x—y|(§) C €2 N Bjyx—y|(y). This implies
¢t ) - ¢t (x) _
C21 e |x _y|(2 Ma < Ki(x,y)px) <c 57 |x _y|(2 N)gq (5.58)

for some ¢, since ¢ and p are comparable in B, (y), uniformly with respect to y
(provided we have chosen ro < dist (xp, 0€2)/2. Let Cy,, be a smooth cone with
vertex at y and opening S := Cy , N dB1(y), such that ag,y N 0B, (y) C 2. We
can impose to the point £ in inequality (5.57) to be such that £/|&| := Eg € S, or,
equivalently, such that |§ — y| < ydist (£, d2) for some y > 1 independent of &,
|x — y| and y. Then, by Carleson estimate [2, Lemma 2.4] and Harnack inequality,
there exists cs independent of y such that there holds

@ > c3 (5.59)
¢ (x)
for all x € 2N By, (y) and all § as above. Consequently, (5.58) yields to
K9, )p () < cap! 9 (E)|x — y| @9 (5.60)

There exists a separable harmonic function v in Cy,y, under the form

v(2) =z = yI% T2 Vo (2 — y) /12 — yI)

where ¢, is the first eigenfunction of —A’ in WOI’Z(S) normalized by max ¢ =
1, A, the corresponding eigenvalue and « is given by (5.10). By the maximum
principle,

v(z) < c5¢(z) Vz e Cg, N By(y). (5.61)
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Therefore there exists cg > 0 such that

$(&) = col& — y|s TN, (5.62)
Because [x — y| > |€ — y| > « |x — y| /2, from the choice of &, it follows

7

q
K (-xs y)p(x) S |x o y|(q71)aS+N72

Vx € QN By (y). (5.63)

Clearly, if we choose ¢ such that 1 < g < 9y = 1+ 2/0{S, ,theng < 1+ 2/ocsl
y y Yy

for some r small enough and we can take Cg , = C;}r. Thus (5.55) follows.

We turn to the proof of (5.56). To simplify the notation we assume that ¢ <
g The argument is the same in the case ¢ < gJ,.

If we assume ¢ < lim, ¢ inf{qS!r : z € 02}, then for € > 0 small enough,

there exists ¢ > 0 such that

O<r=sre=1l<qg<inflg, :2€0Q}—€ YO <r<re.

Notice that the shape of the cone may vary, but, since 9€2 is Lipschitz there exists a
fixed relatively open subdomain S* C dBj such that for any y € 9<2, there exists
an isometry R of RV with the property that R S c S§’r forall0 < r < re.
Here we use the fact that r > § I,’ . is increasing when r decreases. If we take &
such that /]| = Eg € R, (S), then the constants in Bogdan estimate (5.57) and
Carleson inequality (5.59) are independent of y € 9€2 if we replace rg by inf{r¢, ro}.
Hereafter we shall assume that r. < rg. Set

vs(t) = |t — y|% TN ((t — y) /It — yI)

with § = S;’re. Then vg is well defined in the cone Cy, , with vertex y and opening
S. Let
Yer, = {t € Q : dist (¢, 02) = cre}.

Because 0€2 is Lipschitz, we can choose 0 < ¢ < 1 such that Cs y N X, C By (2).
Then we can compare vgs and ¢ on the set 2., . It follows by maximum principle
that estimate (5.61) is still valid with a constant may depend on r¢, but not on y.
Because
min >c
Ry (5%) ¢S§,re =8
where cg is independent of y, (5.62) holds under the form

a, +2-N
D) = colE —y| e ) (5.64)

where, we recall it, £ satisfies £ /|| € R, (5*), and is associated to any x € B, (y)N
Q2 by the property that By|x—y|(§) C Bjx—y|(y) N €2, and thus |[x — y| > |[§ — y| >
k |x — y| /2. Then (5.63) holds uniformly with respect to y, with r( replaced by r..
This implies (5.56). ]
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The next proposition partially complements Theorem 5.16.

Proposition 5.17. Lety € 0Q2 and g > ds0- Then any solution of (5.1) in Q which
vanishes on 02 \ {0} is identically 0. )

Remark 5.18. This proposition implies that, if g > d50>
y

/ K%(x, y)p(x)dx = oc. (5.65)
Q

Otherwise §,, would be admissible.

Proof. We consider a local outer smooth cone with vertex at y, C», such that N
B,,()\ {0} C C2N By (y) := Ca,r,. We denote by S* = C, N 9B (y) its opening.
For € > 0 small enough, we consider the doubly truncated cone C;ro =NCar \
B<(y)} and the solution v := v, to

—Av+v?i=0 inCEr0

V=00 on dB.(y) N Cy
V= 00 ondB,(y)NCy (5.66)
U:O On8C2ﬂBr0()’)\Be(.V)a

where g > g, = 1+2/ag,, and o, is expressed by (5.10) with S replaced by S*.
Then v dominates in C5 "o N 2 any positive solution u of (5.1) in €2 which vanishes
on 02 \ {0}. Letting ¢ — 0, v, converges to vy which satisfies

—Av+v7 =0 inCyy,
V=00 on dB,, N C» (5.67)
v=20 on 0C, N By, (y).

Furthermore u < wvp in By, N . Because ¢, is the critical exponent in C3, the
singularity at O is removable, which implies that v(x) — 0 when x — 0 in C».
Thus uy(x) — 0 when x — 0 in 2. Thus u4 = 0. But we can take any cone
with vertex y containing €2 locally in B.(y) for r > 0. This implies that for any
q > q,any solution of (5.1) which vanishes on 92 \ {0} is non-positive. In the

same way it is non-negative. O
Definition 5.19. If y € 92 we say that an exponent g > 1 is:

(i) Admissible at y if
1K, y)”L%(Q) < 00,

and we set
q1,y = sup{g > 1 : g admissible at y}.
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(ii) Acceptable at y if there exists a solution of (5.1) with boundary trace §y, and
we set
g2,y = sup{qg > 1 : q acceptable at y}.

(iii) Super-critical at y if any solution of (5.1) which is continuous in €2 \ {0} and
vanishes on d€2 \ {0} is identically zero, and we set

g3,y = inf{g > 1 : g super-critical at y}.
Proposition 5.20. Assume Q2 is a bounded Lipschitz domain and y € 02. Then

9 =91,y =492,y = g3,y quo- (5.68)
y

5y
If 1 < q < qo,y then, for any real a there exists exactly one solution of (5.1) with
boundary trace y§y.

Proof. 1t follows from Theorem 5.16 that 4y =q1y and from Proposition 5.17 that
!
g3,y < ds0- It is clear from the definition and Theorem 3.10 that g1y < g2,y < g3,y.

Thus (5.68) holds.

Now assume that g < g3,y so that there exists a solution u with boundary trace
dy. By the maximum principle # > 0 in Q. If a € (0, 1) then au is a subsolution
of (5.1) with boundary trace ady and au < u. Therefore by Corollary 4.4 II, the
smallest solution dominating au has boundary trace ady. If a > 1 then au is a
supersolution and the same conclusion follows from Corollary 4.4 1. If v, is the
(unique) solution of (5.1) with boundary trace ady then —uv is the (unique) solution
with boundary trace —ad,. O

Theorem 5.21. Assume y € 0S2 is such that Syo = S; = S, let Ag be the first
eigenvalue of —A\' in WOI’Z(S) and denote

q., =142/ (5.69)
with ag as in (5.10). Then q1,y = g2,y = q3,y = q,, and

() if1 <gq < q,, then §y is admissible;
(i) if g > q,, then the only solution of (5.1) in Q vanishing on 92 \ {y} is the
trivial solution;
(iii) if g = q.., and u is a solution of (5.1) in 2 vanishing on 92\ {y} then

2

u=o(l)|lx —y| 1 asx — yin Q. (5.70)

Remark 5.22. We know that, in the conical case, the conclusion of statement (ii)
holds for ¢ = ¢,y as well. Consequently, in a polyhedral domain €2, an isolated
singularity at a point y € 92 is removable if ¢ > g.(y). We do not know if this
holds in general Lipschitz domains.
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Proof. The above assertion, except for statement (iii), is an immediate consequence
of Proposition 5.20, Definition 5.12 and the remark following that definition.

It remains to prove (iii). We may assume that u > 0. Otherwise we observe
that |u| is a subsolution of (5.1) and by Theorem 4.3(ii) there exists a solution v
dominating it. It is easy to verify that the smallest solution dominating |u«| vanishes
on a2\ {y}.

For any » > O let u, be the extension of u by zero to D, := CS,O N B, (y). Thus

u, is a subsolution in D, u, € C(D,\{y}) and u, = 0 on (3CS,0 NB-(¥y)\{y}. The

smallest solution above it, say i, is in C (D, \{y}) and iz, =0 on (3CS,0 N B-(y))\
{y}. By a standard argument this implies that there exists a positive solution v, in
D, such that v, vanishes on 9D, \ {y} and

u, <20, in D,.

We extend this solution by zero to the entire cone C 505 obtaining a subsolution
w, and finally (again by Theorem 4.3(ii)) a solution w, in C 50 which vanishes on
aC S0 \ {y} and satisfies

u, <2w, in D,.
Observe that ¢ 50 dgeyasr | 0.Ifgey=¢q 50 for some r > 0 then the existence
of a solution wr as above is impossible. Therefore we conclude that g. y < g 50 and

therefore, by Theorem 5.6, there exists a solution v in C 50 such that

__2
Voo,r (X) =[x =y 7w, ((x —y)/Ix = yl) Vx e Cso.
r
This solution is the maximal solution in Cgo so that
Wy < Voo in D;.

But, since g = 950> it follows that W 0 as r — 0. This implies (5.70). O

The next result provides an important ingredient in the study of general bound-
ary value problems in Lipschitz domains.

Theorem 5.23. Assume that g > 1, Q is a bounded Lipschitz domain and u €
UL (). If y € S(u) and g < qy then, for every k > 0, the measure kdy is
admissible and

u>ugs, Vk=>0. (5.71)

Remark 5.24. Here g7 = gy, is defined as in part E of the introduction. If ¢ > 47,
(5.71) need not hold. For instance, consider the cone Cg with vertex at the origin,
such that § ¢ SV~ is a smooth domain and S¥~! \ S is contained in an open half
space. Theng.o > (N +1)/(N —1) while g x = (N +1)/(N — 1) forany x # 0
on the boundary of the cone. Thus ¢*(0) < g.,0. Suppose that g € (g5, gc,0). Let
F be a closed subset of dCs such that 0 € F but 0 is a C3/4 4-thin point of F. Let
u be the maximal solution in Cg vanishing on dCg \ F. Then 0 € S(u) but (5.71)
does not hold for any k > 0.
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Proof. Up to an isometry of RV, we can assume that y = 0 and represent <2 near
0 as the graph of a Lipschitz function. This can be done in the following way: we
define the cylinder C := {x = (x’, xy) : x" € By} where B} is the (N — 1)-ball
with radius R. We denote, forsome R > 0and0 <o < R,

IQNC ={x = (', nx")) : x" € By},
and
Y50 =1{x= @& n(xY+8) :x' e BZT},

and assume that, if 0 < § < R,
QF = (x = (v, xn) : X’ € By, n(x') <xy <n(x")+ R} C Q.

We can also assume that (0) = 0. Although the two harmonic measures in €2 and
QN CY differ, it follow by Dahlberg’s result that there exists a constant ¢ > 0 such
that, if § < 8o < R/2,

X0

1 X
¢ Wy (E) <o)

X
Qf(E +eey) < cwg (E),

for any Borel set E C 92 N Cj. Therefore, if we set
Meo = / u(x)dw™, (x),
Yeo

it follows that lim¢_,o0 M , = oo since 0 € S(u). We can suppose that o is small
enough so that there exists § € (q, q;‘) and M > 0 such that, for any p € [1, 4]

/Kp(x, 2px)dx <M Vze€dQNB,. (5.72)
Q

For fixed k there exists € = €(8) > O such that M, , = k. There exists a uniform
Lipschitz exhaustion {2} of € with the following properties:

() QeNCrN{x =" xy) 1 a < xy < b} = X R, for some fixed a and b.
(i) The 2¢ and €2 have the same Lipschitz character L.

It follows that the Poisson kernel K ** in Q. respectively endows the same proper-
ties (5.72) as K except 2 has to be replaced by 2, p by pe := dist (., 92 and z
has to belong to 02 N B,. Next, we consider the solution v = ve(s)) of

{—Av—l—vq:O in Q. (5.73)

V=uxy, in 0€2.

By the maximum principle, # > v in Q.. Furthermore v < K2 [u Xs., 1o Let
g = (¢ +do)/2 and w C 2 be a Borel subset. By convexity

/ (KQG [uxzw])é px)dx <M M.
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Thus, by Holder’s inequality

g 1-4/4 .
/ (KQG [u)(zg.g]) p(x)dx < (/P(x)dx) (M Me,c)q/q-

By standard a priori estimates, v¢(¢) — vo (up to a subsequence) a.e. in 2, thus
vZ(U) — vg. By Vitali’s theorem and the uniform integrability of the {ve(s)},

Ve(s) = Vo in L (K2). Because
Veo) + G )1 = K™ [uyy, , ]
where G is the Green operator in €2, and
K®uxy, 1 McoK(.y) =kK(.,y)
as o — 0, it follows that u > vg, and vg satisfies
v + G w1 = kK (., y).
Then vg = u k8> which ends the proof. L]

Corollary 5.25. Let {y j}?:l C 90S2 be a set of points such that
g < inf{q;j cj=1,...,n} (5.74)

Then, for any set of positive numbers ki, - - - , ky, there exists a unique solution u,,
of (5.1) in Q2 with boundary trace u = 2;21 kjéy;.
Ifu e Uy () and {yj};;1 C S(u) thenu > uy,.

Proof. From Theorem 5.23, u > Uk;sy, forany j = 1,...,n. Thusu > iy =
max (ug 8y ), which is a subsolution with boundary trace 3 jkjdy;. But vy, the so-

lution with boundary trace ) ; k;3y; is the smallest solution above ii(x}. Therefore
the conclusion of the corollary holds. O

As a consequence one obtains:

Theorem 5.26. Let E C 02 be a closed set and assume that g < qy,. Then, for
every i € M(2) such that supp u C E there exists a (unique) solution u,, of (5.1)
in Q with boundary trace .

If {un} is a sequence in ON(Q) such that supp u, C E and u, — n weak*
then uy,, — uy locally uniformly in Q.

Ifu e U () and q < q;(u) then, for every u € IM(Q) such that supp u C
S(u),

Uy < u. (5.75)
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Proof. Without loss of generality we assume that u >). Let {i,} be a sequence of
measures on 9£2 of the form

kn
Mn = Zajsn(syj,n
=

where y;, € E, aj, > 0 and Zl;"zl ajn, = llull, such that p,, — p weakly*.
Passing to a subsequence if necessary, u,, — v locally uniformly in Q. In order to
prove the first assertion it remains to show that v = u,,.

If 0 < r is sufficiently small, there exists ¢, € (g, qg) and M, > 0O such that,
for any p € [1,g,] and every z € 92 such that dist (z, E) < r, estimate (5.72)
holds. It follows that the family of functions

(K(-,2):z€dQ, dist(z, E) <r}
is uniformly integrable in Lf, (€2) and consequently the family
{K[v]; v € M@KQ), lIvllgn < 1, suppv C {z € I : dist(z, E) < r}}

is uniformly integrable in L%(Q). By a standard argument (using Vitali’s conver-
gence theorem) this implies that v = u,,. This proves the first two assertions of the
theorem.

The last assertion is an immediate consequence of the above together with
Corollary 5.25. Indeed, if E = S(u) then, by Corollary 5.25, u > u,, . Therefore
u>uy. O

Proposition 5.27. Lety € 0Q and 1 < g < qg- Then there exists a maximal
solution u := Uy, of (5.1) such that tr (Uy) = ({y},}O). It satisfies

o 2/(g—1
lim inf |x — y| /a=Dy(x) > ©y, (@), (5.76)

x=y
=yl

—0

uniformly on any compact subset of S, where W is the unique positive solution of
y

—Now—Xry, o+ o 'o=0 inS!
{ N Y (5.77)

w=0 onaSj,

normalized by w(op) = 1 for some fixed oy € S; .
For r > 0 small enough, we denote by @0 the unique positive solution of
y,r

Ao =2y o+ w? lo=0 in Syor
' ’ (5.78)

w=0 on 8S£r,
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normalized in the same way. Then

hfcnj;lp |x _ y|2/(q_1)Uy(_X) =< a)SyOy (0) . (579)

Finally, if S? = S| = S, then

. 2/(qg—
Jim - px =y /@Dy, (x) = wy (0) . (5.80)

X—y
——>
EE= e

Proof. We recall that C ; » (respectively C g ) 1s an r-inner cone (respectively r-

outer cone) at y with opening S}, C 8B (y) (respectively SO, C dBi(y)). This is
well defined for an » > 0 small enough so that g < qg - We denote by W the
y.r y.r

unique positive solution of

—ANo—L, o+ |0 'lo=0 inS!
e nr (5.81)
w=0 onds; .

We construct Uy, € U4 (£2), vanishing on d€2 \ {y} in the following way. For 0 <
€ < r, we denote by v := Uy ¢ the solution of

—Av+ v Hv=0 inQ\ Bc(y)

v=0 indQ\ Be(y)

V=00 in 2N 3B(y).

Let v := V! (respectively v := V.9) be the solution of

—Av+ v Hv=0 in CS, _ \ Be(y) (respectively CSO \ Be(»))
v=0 in acfs, \ Be(y) (respectively aCSO \ Be(y))
V. y.r
v =00 in CS, N dB:(y) (respectively CSO N dB(y)).
y.r y,r

Then there exist m > 0 depending on r, but not on €, such that
VIx)—m <Uye(x) < VO(x)+m (5.82)

for all x € C)I,’r \ {B¢(y)} for the left-hand side inequality, and x € 92 N B, (y) \

{Bc(y)} for the right-hand side one. When ¢ — 0, V. converges to the explicit
separable solution x > |x — y|~%/ (q_l)ws , inC o (the positive cone with vertex
y.r y,r

generated by § ; ). Similarly V€0 converges to the explicit separable solution x +—
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lx — y|™ 2/(q- 1)a) in C . Furthermore € < ¢’ = Uy, < Uye. If Uy =

r ,r

lime 0{Uy,e}, there holds

=2/(g—=1) X—y
X w m<U,(x
| )’| S§_, <| y|> = y( )

(5.83)
x —_—
<lx -y Vo, ) +m.
st \x =]

These inequalities imply

imi _ y[2/@=1)

11;11)1;1f lx — vyl Uy(x) > ws§,r (o). (5.84)

[0
Inequality (5.79) is obtained in a similar way. Since lim, 9 ® o, =, uniformly

in compact subsets of SI we also obtain (5.76). If S 0 — S " =S, then 0, =
g0 = Os. thus (5.80) holds. 0O

Remark 5.28. Because U, is the maximal solution which vanishes on €2\ {y}, the
function Uoos, = limg s o0 Uurs, also satisfies inequality (5.79). We conjecture that
Uoos, always satisfies estimate (5.76). This is true if the outer and inner cone at y
are the same. In fact in that case we obtain a much stronger result:

Theorem 5.29. Assume y € 02 is such that S;) = S; = Sand q < qc,y. Then
Uy == uoo(sy.

Proof. Without loss of generality we can assume that y = 0 and will denote B, =
B (0) for r > 0. Let C,’ (respectively CrO) be a cone with vertex 0, such that

CI'Nn B, \ {0} C Q (respectively @ N B, C C,O ). We recall that the characteristic

exponents o, and « , are defined according to Definition 5.10 and Definition 5.12.
0 0
Since

a, =lima, =Ilma, —a0<2/(q—1)
0 r—0 %, r—>0 So,

we can choose r such that

qa, —a, <2—(q l)(a — 50) (5.85)
()r 0,r ()r 0,r
and for simplicity, we seta, =, « o = = o, and
Or
__a-l
= 2+, —qa,

Step 1. We claim that there exists ¢ > 0 and ¢* > 0 such that, for any m > 0

Ums,(X) = c*m|x|"%0  Vx € Bey-n NCL. (5.86)
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Since mK (., 0) is a super-solution for (5.1),

Ums(x) > mK (x,0) — mq/ G(z,x)K9(z,0)dz.
Q

975

If we assume that x € CrI N B,, then dist (x, d2) > f|x| for some 6 > 0 since
C!' N B, \ {0} C Q. Using Bogdan’s estimate and Harnack inequality we derive

|X|2_N

K(x,0) >c—,
0z a0

for some fixed point xq in €2. But the Green function in 2N B, is dominated by the
Green function in C,O N By, thus G(x, x9) < cz2|x|% where @, =2 — N + «,.

This implies
K(x,0) > c3|x| ™% V¥x e C!/NB,.

Similarly (and it is a very rough estimate)
K(x,0) <c4l|x|™ VxeQ.

Because G(x, z) < ¢slx — z|*>~N, we obtain

/G(Z, x)K9(z,0)dz < 06/ |x — Z|2_N|z|_°‘1dz.
Q Br

We write
Ix — 2> N|z| 7% dz = / Ix — z|>N|z| 791 dz
Br By
+ f Ix — z|>"N|z| 7% dz.
Br\Byjx|
But

/ = 22Nz = [ / & — 1PN
By B (0)

where & = x/|x]| is fixed. In the same way

/ Ix — 2|7 Nz 9% dz < / 122N =9% |x|>79% dz
BR\By|x| Br\By|x|

< x P / PN dr
Br/ix|\ B2

) R/|x| |
< c7|x| —an/ s 9%ds.
2

(5.87)
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Thus
cs ifl —qa, > —1
f =z Nz 9dz < L eglnlx]] if1—go, =—1 (588
BR\Byy| cglx |79 if 1 — qo, < —1.

Combining (5.87) and (5.88) yields to (5.86).
Step 2. There holds
oosy(0) = (IxI7/470 =24V o (/) VxeCINB.,  (5.89)

where o , is the unique positive solution of (5.81). For £ > 0, let ”éa be the
S 0

solution of

—Au+ud =0 inC!
{ u = €8 on dC/. (5.90)
By comparing u é 5 with the Martin kernel in C rI ,
1 —a 1
ueso(x) <ciollx|™ Vx eC,. 5.91)
Because
e (al _ao)il
ciol]x|™% < c*mlx|™% Vx st |x| = cpy (—) , (5.92)
m
it follows
(a[ _ao)_l
Umsy (X) > uls(x) Vx stoep <—> <|x| <c*m7. (5.93)
m

Notice that (5.85) implies
2\ @)
(—) =om™ ") as m — oo.
m

Since ué 5% (x) < |x|7% (q_l)a)s y (x/]x]), it follows, by the maximum principle, that

sy () = ugs (1) = r =4 Do (x/x])

-1

4)(0‘1 o) Letting successively

m

for every x € C/ N B, such that x| > ¢y (
m — oo and £ — oo and using

lim ufs (x) = |x|7“4 Do, (x/1x]) VxeC/,
{—00 3

we obtain (5.89).
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Step 3. Let u € U4 (2), u vanishing on €2 \ {0}. Because
u(x) < Cy glx| 72/~

and C/ N B, \ {0} C ©, it is a classical consequence of Harnack inequality that, for
any x and x’ € C} N B,z such that 27 x| < |x'| < 2|x|, u satisfies

cpu(x) <u(x) < epu(x),

where c1» > 0 depends on N, ¢ and min {dist (z,0Q)/|z| 1z e Cl N Br}.

Step 4. There exists c13 = c13(q, 2) > 0 such that
Up(x) < ci3uscs(x) Vx € Q. (5.94)

Because of (5.79) and the fact that for » > 0 and any compact subset K C Sé -

® o (0)
1< <M Vo €Kk,
O (0)

where M depends on K, there exists ¢4 > O such that

<ci4 Vx e B, st x/|x| eK.

Using Step 3, there also holds
U / /
o) < min{ o(x )’ Uoosy (X )}
Uo(x)  toos, ()

Uo(x") toosy (x)
Uo(x) " toosy (x)

(5.95)

< maxi } <cis Vx,x' € By,

provided x/|x| and x"/|x'| € K and 27 !|x| < |x/| < 2|x|. For0 < s < r/2, set
[y = QN dBy. There exists ng € N, and « € (0, 1/4), independent of s, such that
for any x € I' such that x/|x| € K, there exists at most ng pointsa; (j =1, ... jx)
such that a; € Ty, a1 € 9Q, ks < dist(a;,0R2) < s, |a; —aj1| < s/2 for
Jj=1,...jxand a; = x. Using Proposition 6.1 and the remark hereafter,

_1 U@ - Uoosy (2) ¢ Uo(z)
Uo(a1) — uccsy(ar) — Up(ar)

Combining with (5.95) we derive

Vz € I's N By,.

Up(x) < cciuocs,(x) Vx € Ty.
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Because cc’fguoo,so is a super-solution of (5.1) (clearly cc’fg > 1),
Up < cchuoogo inQ\ B, Vse(,r]

Thus (5.94) follows with ¢3 = cc/.

Step 5. End of the proof. It is based upon an idea introduced in [20]. If we assume
Up > ucos,, the convexity of x — x7 implies that the function

V= Ucosy — %(UO - uooso)

is a super solution such that
au0080 S V< u0080
where a = % < 1. Since auces, is a subsolution, it follows that there exists a

solution w such that
Alloosy < W <V < Uoosy-

But this is impossible because, for any a € (0, 1), the smallest solution dominating
Al oosy 1S Uoosy - O

The next result extends a theorem of Marcus and Véron [20].

Theorem 5.30. Assume that Q2 is a bounded Lipschitz domain such that S yo = S; =

Sy for every y € dS2. Further, assume that

1 <q <qjq.

Then for any outer regular Borel measure v on 0S2 there exists a unique solution u
of (5.1) such that tr,, (u) = v.

Proof. We assume v ~ (v, F) in the sense of Definition 4.9 where F is a closed
subset of 92 and v a Radon measure on R = 9Q \ F. We denote by Ur the
maximal solution of (5.1) defined in Lemma 4.13. Because ¢ < ¢}, forany y € F
there exists Uoos, (and actually Uoscs, = Uy by Theorem 5.29). Then Ur > U,
by Lemma 4.15, thus S(Ur) = F' = F with the notation of Definition 4.14. By
Theorem 5.26, any Radon measure is g-admissible thus for any compact subset £ C
R there exist a unique solution u,,, of (5.1) with boundary trace v xg. Therefore
there exists a solution with boundary trace v and, by Theorem 4.16, its uniqueness
is reduced to showing that U is the unique solution with boundary trace (0, F).
Assume u g is any solution with trace (0, ). By Theorem 5.23 and Theorem 5.29,
there holds

Up(x) > toos, (x) = Uy (x) VyeF, Vx € Q. (5.96)

Next we prove:
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Assertion. There exists C > 0 depending on F, 2 and g such that
Urp(x) < Cup(x) Vx € Q. (5.97)

There exists ro > 0 and a circular cone Cy with vertex 0 and opening Sy C d By such
that for any y € 9<2 there exists an isometry 7 of R such that Ty, (Co)N B, (y) C
Q U {y}. We shall denote by C; a fixed sub-cone of Cy with vertex 0 and opening
S1 € So. In order to simplify the geometry, we shall assume that both Cp and Co
are radially symmetric cones. If x € € is such that dist (x, 02) < ro/2, either

(i) there exists some y € S and an isometry 7), such that 7, (a))ﬂB,O (y) C QU{y}
and (x — y)/|x — y| € S,
(ii) or sucha y and R, does not exist.

In the first case, it follows from Proposition 5.27 and Theorem 5.29 that
up(x) = erle —y|72@h, (5.98)
Furthermore, the constant ¢; depends on r, S g and €2, but not on u . By (5.5)
Ur(x) < ¢ (dist (x, 3§2)) ">/~ (5.99)

Since in case (i), there holds dist (x, 3€2) > c3|x — y| for some ¢3 > 1 depending
on Sp and Sy, it follows that (5.97) holds with ¢ = ¢1¢3’“ ™" /3.
In case (ii), x does not belong to any cone radially symmetric cones with open-
ing S7 and vertex at some y € S. Therefore, there exists ¢4 < 1 depending on C
such that
dist (x, 9Q2) < cadist (x, S). (5.100)

We denote r, = dist (x, S). If
dist (x, ) < min{ca, 107 }ry, (5.101)

there exists &, € 92 such that |x — &|dist (x, 32). Then By, /10(5x) C By, (x).
We can apply Proposition 6.1 in N Bg, /10(§x). Since x € B, /5(§x), there holds

C_1UF(Z) _ U . ur(z)
S Ur@@) ~ Ur(x) ~ " Ur(z)

Vz € By 5(E) N Q. (5.102)

We can take in particular z such that |z — &| = r,/5 and dist(z,9Q) =
max{dist (#,0) : t € B, /5(§x) N ). Since the distance from z to S is com-
parable to dist (z, 3S2), there exist ng € N, depending on the geometry of 2 and
ng points {a;} with the properties that dist (a;, 32) > dist(z, d2), By ./10(a;) N
B, j10ajr1) #@for j =1,...,n0—1,a; = z and a,, have the property (i) above,
that is there exists some y € S and an isometry R such that R, (Co) N B, (y) C
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QU {y} and (ay, — y)/lan, — y| € S1. By classical Harnack inequality (see Theo-
rem 5.29 Step 3), there holds

up(aj) = cour(ajr1) and Up(a;) > cg'Up(ajt1)
for some cg > 1 depending on N, g and 2 via the cone Cy. Therefore

2n0 MF(an())

Ur(x) < eseg g
no

up(x) < cjup(x), (5.103)
which implies (5.97) from case (i) applied to ay,.
Finally, if (5.100) holds, but also

dist (x, 9K2) > minfcy, 107 !}r,, (5.104)

this means that dist (x, 9€2) is comparable to . Then we can perform the same con-
struction as in the case (5.101) holds, except that we consider balls B g;s¢ (x.09)/4 (aj)
in order to connect x to a point ay, satisfying (i). The number ng is always inde-
pendent of u . Thus we derive again estimate (5.97) provided dist (x, d€2) < ro/2.
In order to prove that this holds in whole €2, we consider some 0 < r; < rg/2 such
that Q;l = {x € Q : dist(x, 2) > r1} is connected. The function v solution of

_ q — in €
{ Av+v?=0 inQ (5.105)

V=ClUufr in BQ;I

is larger that Ur in Q;l. Since cjup is a super solution, v < cjup in Q;l. This
implies that (5.97) holds in 2.

Inequality (5.97) implies uniqueness by the same argument as in the proof of
Theorem 5.29, Step 5. U

6. Boundary Harnack inequality

In this section we prove the following:

Proposition 6.1. Assume 2 is a bounded Lipschitz domain, A C 92 is relatively
open and q > 1. Let (ro, Mg) be the Lipschitz characteristic of Q2 (see Subsection
2.1).

Letu; € C(QU A), i = 1,2, be positive solutions of

—Au+u? =0 in Q,

such thatuy < ujandu; =0on A. Put S = 0Q\ Aand d(x, S) = dist (x, S). Let
y € A and let

1
7 := min (ro/& Zd(y, S)
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so that .
0(Bar (y) N Q2) = (B4r(y) N 32) U (3 Bgr(y) N L2).

Assume also that there exists a constant ¢y independent of y such that

u1(z) < crua(z) (6.1)
for any 7 € B3, (y) N Q such that dist (z, 02) > Bz — y|, then
@@ nm@) V2.7 € By (y)NQ

< <c
ui(z') = ua(z) u1(z') (6.2)
such that |7'| =2r, dist (z/, 9Q) > B|z'— y|

where the constant ¢ >0 depends only on N, q, B, c1 and the Lipschitz characteristic
of Q. In particular

u1(z) <cuzx(z) Vze By(y)NQ. (6.3)

Proof. Without loss of generality we assume that y = 0. We can also assume that
the truncated cone with vertex 0

M:={ceR:0<|¢| <4rdist(z, Q) > Bl¢]}

is such that T is a compact subset of Q U {0}
Letb = d(0, S) and put

2
wi(x)=>b aTuy(x/b), i=1,2.

Then i; has the same properties as u; when Q is replaced by Q° = %Q, S by
St = 1§ TbyI'® =1 and r by 8§ = r/b. Of course d(0, S?) = 1 so that

8 = min(ro/(8b), 1/4).
The functions #; satisfy the equation
—Adi; + i =0 in Bys(0) N QP
and ii; = 0 on Bus(0) N 3P, Therefore, by the Keller—-Osserman estimate,
ii < c¢(N,q)8 24~V in Bss(0) N QL.

Ifax) = L?Tl then 7 satisfies

1
—Auy+ax)u; =0 in (ZQ) N B1(0),

and a(-) is bounded in Bs;(0).
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Let w be the solution of

—Aw+ax)w =0 in Bzs(0) N QP
w=0 on B35(0) N £99
w = ﬁgxrb on dB35(0)N Qb.

By applying the boundary Harnack principle in B3s(0)NQ? (using the slightly more
general form derived in [2, Theorem 2.1]) we obtain

@) w@) i)

Ve, ¢ e Bys(0) N QP, 6.4
o S wo =g et e (©4)

where the constant ¢ depends only on the Lipschitz characteristic of Q” (which is
(ro/b, Mob) and therefore “better” then that of &2 when b < 1). Notice that

Q) < ciii(¢) Ve, ¢ eT? st 28 < ¢, 1¢ <38

by Harnack inequality. Since a(x) is bounded, it follows by standard representation
formula and Harnack inequality applied to i, that

min{w(x) : [x| =8, x € '’} > ¢ min{w(x) : |x| =38, x € T?}
(6.5)

> c3max{w(x) : |x| =38, x € I'?},

where the constants ¢; (i = 1, 2) depend on the opening of the cone and thus on the
Lipschitz characteristic of Q”. Since w < ii» the above inequalities imply

u1(¢" - iﬁz(;)ﬁl(g/)

Ve € Bas(0)NQP, V¢’ € 3Bys(0)NIP.
w @) = o @) ¢ € Bys(0) {" € 9B2s(0)

11(¢) < cua(Z)

In particular, it implies
ii1(¢) < ciiz(¢) V¢ € Bys(0) N QP

This completes the proof. U
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