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A drift homogenization problem revisited

MARC BRIANE AND PATRICK GERARD

Abstract. This paper revisits a homogenization problem studied by L. Tartar re-
lated to a tridimensional Stokes equation perturbed by a drift (related to the Cori-
olis force). Here, a scalar equation and a two-dimensional Stokes equation with

a L2-bounded oscillating drift are considered. Under higher integrability condi-
tions the Tartar approach based on the oscillations test functions method applies
and leads to a limit equation with an extra zero-order term. When the drift is only
assumed to be equi-integrable in L2, the same limit behaviour is obtained. How-
ever, the lack of integrability makes difficult the direct use of the Tartar method.
A new method in the context of homogenization theory is proposed. It is based
on a parametrix of the Laplace operator which permits to write the solution of
the equation as a solution of a fixed point problem, and to use truncated functions
even in the vector-valued case. On the other hand, two counter-examples which
induce different homogenized zero-order terms actually show the sharpness of the
equi-integrability assumption.

Mathematics Subject Classification (2010): 35B27 (primary); 76M50 (sec-
ondary).

1. Introduction

At the end of the Seventies L. Tartar developed his method based on oscillating test
functions to deal with the homogenization of PDE’s. In the particular framework of
hydrodynamics [14, 15] he studied the Stokes equation in a bounded domain €2 of
IR?, perturbed by an oscillating drift term, i.e.

— Aug +curl (vg) X ug +Vp. = f in Q
div(u,) =0 in (1.1)
u, =0 on 012,

where the oscillations are produced by the sequence of vector-valued functions v,
which weakly converges to some v in L3(£2)3. L. Tartar proved that the limit equa-
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tion of (1.1) is the Brinkman [5] type equation

—Au+curl(v) xu+Vp+Mu=f inQ
div(u) =0 in Q (1.2)
u=20 on 02,

where M is a positive definite symmetric matrix-valued function. More precisely,
M is defined by the convergences

(DwHT v, — M)A weakly in L3(Q)°, foranyx e R®,  (1.3)

where wﬁ e W13(2)3 solves the Stokes equation (1.1) in which the term curl (v, ) x
u, is replaced by curl (vg) x A. Then, the convergence (1.3) combined with the
compactness of u, in L3(Q)3, yields the zero-order term Mu in (1.2). In [16]
L. Tartar revisited this problem using the H-measures tool. On the other hand, the
appearance of such a strange zero-order term in homogenization was also obtained
from finely perforated domains by D. Cioranescu, F. Murat [6] for the Laplace
equation, and by G. Allaire [2] for the Stokes equation, with zero Dirichlet boundary
condition on the holes.

Since curl (v;) X u, is orthogonal to u,, the energy associated with (1.1) is
reduced to

/QlDuglzdx, (1.4)

and thus does not depend on the drift v.. Starting from this remark our aim is to
study two drift homogenization problems associated with the same energy (1.4),
and to specify the best integrability condition satisfied by the drift so that the Tar-
tar approach holds. The first problem is scalar and the second problem is a two-
dimensional equivalent of the Stokes problem (1.1). However, we have not suc-
ceeded in obtaining a similar result for the three-dimensional Stokes equation (1.1)
since the best integrability assumption for v, is not clear.

In Section 2, we consider the following scalar equation in a bounded open set

Qof RV,
{—Aug—i—bg-Vug—{—diV(bgug):f in 05

u, =0 on €2,

where b, € L®(Q)" is bounded in L*>(2)". We obtain three different homoge-
nization results:

In Section 2.1, assuming that the divergence of the drift b, is bounded in
w—L4(Q), with q > N, we prove (see Theorem 2.1) that the sequence u, weakly
converges in H(} (2) to the solution u of the equation

{—Au+b-Vu+div(bu)+;Lu:f in © 06

u=20 on d<2,
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where p is a nonnegative function. The proof follows the Tartar method using the
oscillating test function

we 1= AT (div (be)) € Hy (). (1.7)

Then, in Section 2.2, assuming only the equi-integrability of the sequence Vwy
in L2(Q)V (this is actually a weaker assumption than the equi-integrability of the
whole sequence b, ), we obtain (see Theorem 3.1) the limit problem (1.6) with

|IVw, — Vw|> — u weaklyin L'(Q) and wuu®>e L'(Q). (1.8

It seems intricate to apply directly the Tartar method with the test function w,, since
we cannot control the terms b, - Vu, w, and b, - Vw; u,. To this end, one should
consider truncations of both w, and Vw,. To overcome this difficulty we propose a
new method, up to our knowledge, in the context of homogenization theory, based
on a parametrix of the Laplace operator. It follows that u, reads as a solution of
a fixed point problem, which allows us to estimate the sequence Vw, - Vu, only
using a truncation of Vw,. The equi-integrability of Vw, then gives the thesis.
Also assuming that b € L9(Q)V, with ¢ > N, (which ensures the uniqueness in
(1.6)) we prove the following corrector result

ue— (1 +w, —w)u —> 0 strongly in WIL’Cq(Q), forany g € [1, N'). (1.9)

Finally, in Section 2.3, we show the sharpness of the equi-integrability condition
thanks to a counter-example in the periodic framework (see Theorem 2.6). Making
a change of functions with b, = Vw,, equation (1.5) is shown to be equivalent to
the following equation

— Ave + e ve = fo, With e i= [Vwe|?, (1.10)

the solution of which has the same limit as u.. G. Dal Maso, A. Garroni [7] proved
that the class of equations of type (1.10) is stable under homogenization. Here, we
do not use this general result, but we explicit an oscillating sequence w, so that the
limit equation of (1.5), or equivalently (1.10), is

—Au+yu=f, (1.11)

with an explicit constant y which turns out to be < w. Therefore, the loss of
equi-integrability for Vw, violates the result of Section 2.2. Note that the vecto-
rial character of the drift term in equation (1.5) makes difficult the derivation of a
closure result similar to the one of [7] which is strongly based on the maximum
principle.

In Section 3, we consider the following two-dimensional equivalent of the per-
turbed Stokes problem (1.1),

— Aug +curl (vg) Jug + Vp, = f inQ
div (ug) =0 in (1.12)
us =0 on 0€2,
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where J is the rotation matrix of angle 90°, and v, € L%°(Q)? is bounded in
L?(2)?. Note that the weak formulation (3.4) of curl (vy) Ju, contains the drift
term (Du,)T v, so that equation (1.12) can be also regarded as a drift problem. We
follow the same scheme as in the scalar case:

In Section 3.1, assuming that the sequence v, is bounded in L” (Q)? withr > 2,
we show (see Theorem 3.1) that the sequence u, weakly converges in HO1 (2) to the
solution u of the Brinkman equation

—Au+tcul(W)Ju+Vp+Mu=f inQ
div(u) =0 in Q (1.13)
u=20 on 92,

where M is a symmetric positive definite matrix-valued function defined by the
convergence (1.3) in Lr% (Q)2.

In Section 3.2, assuming only the equi-integrability of the sequence v, in
L?(Q)2, we prove (see Theorem 3.3) owing to the Tartar method that the sequence
u, weakly converges in HOl (R2) to the solution u of the Brinkman equation (1.13)
with similarly to (1.8),

(DwHT vy, — Mi weaklyin L'(Q2)? and Mu-ue LY(Q). (1.14)

The proof is based on a double parametrix method carrying on both the velocity
ug and the pressure p.,. However, the proof of the last estimate of (1.14) is more
delicate than the one of (1.8), since we cannot use a comparison principle as in the
scalar case. We need to introduce a test function similar to w? but associated with
a truncation of v,. Moreover, if 2 has a regular boundary, v € L" ()2 withr > 2,
and M € L™ (2)>*? with m > 1, we get the corrector result

us—u—Wy u— 0 strongly in W”(Q)Q, where W A .= wé, for » € R2. (1.15)

Finally, in Section 3.2, we construct an oscillating sequence v, which is not equi-
integrable in L2(£2)2, which leads to the limit problem (1.13) involving a matrix I
which is not symmetric and satisfies the strict inequality

Cr-A < MMr-x, foranyA #0,

which is inconsistent with the Tartar approach. This shows the sharpness of the
equi-integrability condition as in the scalar case. It would be very interesting to
find the closure of the family of problems (1.12) under the sole condition of L2-
boundedness of the sequences v.. This problem is far from being evident due to the
absence of comparison principle for such a vector-valued equation.

Notations

2N
o The space dimension is N > 2, and 2* := =3



A DRIFT HOMOGENIZATION PROBLEM REVISITED 5

The conjugate exponent of p > 1 is denoted by p’ := L.
p

-1

8 .
Foru:RN—>RN,Du:=<ut> .
0x; 1<i,j<N

SA)
For T : RV — RV*N Div (%) := Z— .
=1 Ot 1<i<N

Htil (Y), with Y := (0, 1), denotes the space of the Y -periodic functions on RN
which belong to H)! .(RM).

2. A scalar equation with a drift term

Along this section €2 is a bounded regular open set of RV, with N > 2, and f is a
distribution in H~1(Q).
2.1. The classical case

Let g € (N, o0). Consider a sequence b, in L>®(Q)V such that
b, — b weakly in L2(2)" and div (b,) is bounded in W~19(Q).  (2.1)
Let w, € WO1 “1(Q2) be the solution of the equation (see, e.g., [9, Theorem 2.1])
Aw, =div(b;) inD'(Q). (2.2)

Up to a subsequence w, weakly converges in Wol’q(Q) to the function w solution
of
Aw =div(b) inD(RQ). (2.3)

We have the following result:

Theorem 2.1. The solution u, € HO1 () of the equation
— Aug +be - Vug +div (b u.) = f  inD'(Q), 2.4)

weakly converges in Ho1 (R2), up to a subsequence, to a solution u € HO1 (2) of the
equation
—Au+b-Vu+divibu)+pu=f inD(RQ), (2.5)

where [ is the function defined by the convergence
IVwe — Vw|? — 1 weakly in L (). 2.6)

Remark 2.2. The uniqueness for equation (2.4) is not evident under the sole as-
sumption b € L?(2)2. Assuming a stronger integrability of b we will obtain in
Theorem 2.4 the uniqueness for the limit equation.
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Proof. The proof is based on the choice of appropriate oscillating test functions as
Tartar did (see [13, Appendix], and [17]). The function w, of (2.2) will play the
role of the oscillating test function. The variational formulation of (2.4) is

/Vug-V(pdx—l-/bg-Vuggodx—/bg~V<pu5dx
Q Q Q

=(f, q))H—l(Q)’HOl(Q) ., Vee I"Io1 (€2).

2.7)

Then, by the Lax-Milgram theorem there exists a unique solution u, of (2.7) in
HO1 (£2). In particular, for v € Whoo(Q), putting ¢ = v u, as test function in (2.7)
we obtain the identity

/|Vu8|2vdx+/ wg.vpugdx—/ bg.Vvugdx:(f,vug)H,l(Q)’HOl(Q), (2.8)
Q Q Q

which will be used several times. So, choosing v = 1 in (2.8) the term with b,
cancel so that we easily deduce that u, is bounded in HOl (2) and weakly converges,

up to a subsequence, to a function u in HO1 (€2). Therefore, it follows from (2.7) the
limit variational formulation

/Vu~Vg0dx+/ b~Vug0dx+/ godv—/ b-Voudx=/{f, <p)H,1(Q)H|(Q), (2.9)
Q Q Q Q o

which holds for any ¢ € W,?() (due to the embedding of W% () into C(£)
for ¢ > N), where the measure v is defined by the convergence

be -Vug — b-Vu+v weakly-* in M(). (2.10)
The limit equation associated with (2.9) is
—Au+b-Vu+v+div(bu) = f inD(Q). (2.11)

Now, let us determine the measure v of (2.10). Let ¢ € C2°(£2). Putting ¢ w, as test
function in (2.7) and ¢ u, in (2.2), and taking the difference of the two equalities
we get

/Vue-V(pwgdx—/Vwe-prugdx

Q Q

=(f,(pw8)HI(Q)’H&(Q)—/‘be-Vug(pwgdx+/bg-Vw£gau8dx (2.12)
Q Q

+/b5.V<pu8wsdx—/bg'Vu{g(pdx—/bg‘V(pugdx.
Q Q Q
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Passing to the limit in (2.12) by using the strong convergence of u, in L?(£2), for
p < 2%, and the uniform convergence of w, in C(2) (¢ > N), we obtain

/Vu~Vg0wdx—/Vw-V<pudx
Q Q

:(f,gaw)H_l(Q)’Hol(Q)—/;Zb-Vugowdx—/ngwdv—k/Qogoudx (2.13)

—1—/b-V(puwdx—/b-Vu(de—/rpdV—/b-VgﬁudL
Q Q Q Q

where the measure v is defined by (2.10) and the function o is defined, up to a
subsequence, by the convergence

2
be - Vwe — o weakly in Li?(Q). (2.14)

On the other hand, putting g w € Wol’q(Q) in (29 and pu € HO1 (2) in (2.3) we
have

/Vu-V(gow)dx=(f,(pw)H_1(Q)’H01(Q)—/b-VLupwdx—/wadv

Q2 2 (2.15)
+/b-Vw¢)udx+ b-Vouwdx,

Q Q

/Vw-V(qou)dx:/b-Vugodx—i—/b-Vgoudx. (2.16)
Q Q Q

Equating the difference between (2.15) and (2.16) to the right-hand side of (2.13),
it follows that

/afpudx—/b-Vw(pudx—/(pdvzo, forany ¢ € C°(2), (2.17)
Q Q Q

which implies that
v=ou—>b-Vwu inD(Q). (2.18)

It thus remains to determine the limit equation (2.5). To this end, we pass to the
limit by using ¢ w, as test function in (2.2) and the definition (2.6) of w, and we put
¢ w in (2.3), which yields

/<M+|Vw|2)(pdx+f Vw.wwdx:/wderfb-v(pwdx, (2.19)
Q Q Q Q
/Ilezgadx+f Vw-V(pwdxz/b-ngodx—i—/b-Vgowdx. (2.20)
Q Q Q Q

Equating (2.19) and (2.20), we deduce that

w=0oc—>b-Vw inD(Q), (2.21)
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which combined with (2.18) implies that
v=pu inD(Q). (2.22)

Finally, the limit equation (2.11) and the relation (2.22) give the desired homoge-
nized equation (2.5). O

Remark 2.3. It can be shown that
n(x) = / n(x,d§)§-§, (2.23)
SN—I

where u denotes the matrix-valued H-measure (or micro-local defect measure) of
the sequence b, (see [16] and [8]), and SN=1 the unit sphere of RV,

Assumption (2.1) is actually not sharp. In the next section we replace it by the
boundedness of b, and the equi-integrability of Vw, in L2(£2)2.

2.2. The case under an equi-integrability assumption

In this section € is a bounded open set of R, Consider a sequence b, in L> ()"
the Hodge decomposition of which is

be = Vwe + &, with w, € H}(Q), & € L*()" and div (&) =0, (2.24)

such that
b — b weakly in LZ(Q)N. (2.25)

Note that for a fixed ¢ > 0, w, € W'P(Q) and &, € LP ()N for any p € [2, 00).
But the essential point is the asymptotic behaviour of the sequences b,, Vw,, &..
Our main assumption is the equi-integrability of the sequence Vw, in L2(Q)V. By
virtue of the Vitali-Saks theorem this is equivalent to the following convergence, up
to an extraction of a subsequence,

IVwe — Vw|?> — o weakly in L'(), (2.26)

(Compare to (2.6) with g > N).
We have the following result:

Theorem 2.4.
1) Under the equi-integrability assumption (2.26) the solution u. of (2.4) weakly
converges in HOl (R2) to a solution u of the equation

—Au+b-Vu+divibu)+pu=f inD(RQ), (2.27)

with
fguuzdx < <f,u>HI(Q)YH(;(Q)—fQWuFdx. (2.28)
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ii) Also assume that b € L1(Q)N, where g > 2if N =2andq = N if N > 2.
Then, we have

/Q'v””z dx +,/S.2Mu2 dx = (f, u>H_1(Q),HOI(Q)’ (229)

and there exists a unique solution u € HO1 () of equation (2.27), with wu? e
LY(Q).

Moreover, for any p € [1,2) if N = 2and p = N' if N > 2, we have the
corrector result

Vug — Vu — (Vwe —Vw)u —> 0 strongly in L? QN (2.30)

loc

and for anyr € [1, p),
ug — (1 4+w, —w)u —> 0 strongly in Wlt’cr(Q). (2.31)

Remark 2.5. No equi-integrability is required for the divergence free sequence &;.
Actually, we can prove that the equi-integrability of the sequence b, in L*(2)" im-
plies the equi-integrability of its two components Vwg, & in L%OC(Q)N . Therefore,
condition (2.26) is really weaker than the equi-integrability of b,.

Moreover, the equi-integrability of Vw, in L*(2)" is essential for deriving
the limit equation with the zero-order term p . When this condition is not satisfied
we can obtain a similar limit equation but with a different zero-order term (see

Section 2.3).

Proof of Theorem 2.4. The limit u of u, in HO1 (£2) solves the equation (2.11) where
v is defined by

be - Vus —b-Vu — v weakly-* in M(). (2.32)
We thus have
be - Vue = (& + Vw) - Vuy + (Vwg — Vw) - Vu, — b-Vu+v in D'(Q).

Moreover, by the Murat, Tartar div-curl lemma [11] the sequence (&§; + Vw) - Vu,
converges to (£ + Vw) - Vu = b - Vu. This combined with the equi-integrability
of Vw, implies that v is also given by the convergence

(Vw, — Vw) - Vi, — v weakly in L (). (2.33)

The proof of Theorem 2.4. is based on a parametrix method which allows us to
express u, as a solution of a fixed point problem. As a consequence, we obtain a
strong estimate of Vi, in LlpOC(SZ) for some p > 1 close to 1. However, this estimate
cannot provide directly the desired limit v of (2.33) since p < 2. To overcome this
difficulty we consider a truncation n’e‘ of Vw, which is bounded by £ > 0. Then, we
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can pass to the limit as & tends to zero in the product n* - Vu, for a fixed k. Hence,
thanks to the equi-integrability of Vw, we deduce the limit v as k tends to infinity.

The proof is divided into four steps. In the first step we present the parametrix
method which leads to a L”-strong estimate of Vu,. In the second step we deter-
mine the limit of the sequence 1* - Vu, for a fixed k > 0. In the third step we
determine the limit v and the limit equation (2.27) together with (2.28). The fourth
step is devoted to the proof of equality (2.29) and the corrector results (2.30) and
(2.31).

First step. The parametrix method.
First, let us define a parametrix for the Laplace operator in €2. To this end consider
two sequences of functions ¢, ¥, in C, f’o (€2), such that

0<¢p, ¥n<1and ¢, =1 in supp (¥,), forany n>1,
{n=1":supp(¥) N K #@} is finite, for any compact subset K C Q,

Y Yu=1 inQ.

n>1

(2.34)

Let E be the fundamental solution of the Laplace operator in R". Then, the opera-
tor P defined in D'(2) by

P(¢) = lefn Ex(pu¢), for¢eD(RQ), (2.35)
n>1

is a parametrix of the Laplace operator (see [1, Chapter I], for further details) which
satisfies

P(AY)=¢— K@) and A(P@Q))=¢—K'(¢), forf eD'(Q). (236)
where K, K’ are two C*°-kernel operators properly supported in €. Thanks to the
Calderon-Zygmund regularity for the Laplace operator (see, e.g., [9, Theorem 2.1],
and the references therein) we also have for any p > 1, and s € [0, 2] such that
s+ % is not an integer,

P maps continuously D’(2) to D'(2), and W,_>"(Q) to W P(Q).  (2.37)
Then, applying (2.36) to the solution u, of (2.4) we have
ue = P(Aug) + K(ue)
= P (div[u (Vwe — Vw) |) + P (div[Vwe (ue — u)]) (2.38)
+ P(divuVw)) + P(& - Vug + be - Vug — f) + K (ue),
Fix p > 1 close enoughto 1 and s € (N/p’, 1). Since u, — u strongly converges to
0in L9(2) for any g € (2, 2*), the sequence div(sz (ue — u)) strongly converges
to 0 in W~ 1-7(), hence by (2.37) we have

P (div[Vw, (ug —u)]) — 0 strongly in WIL’CP(Q)'
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Moreover, the sequence &, - Vu, + b, - Vi, is bounded in L(€), thus in W—P(Q)
since s > N/p’. Therefore, again by (2.37) the sequence VP(&S - Vug + b, -

Vus — f ) is bounded in W!=57(Q)", and up to a subsequence strongly converges

. p N .
in L .(€2)". Hence, since

£ - Vug+by -Vuy, — £ -Vu+v+b-Vu inD(RQ),
we deduce from (2.38) the strong estimate

Vug — VP (div[u (Vws — Vw) )
= VP(div@Vw) +&-Vu+v+b-Vu—f)+VK@w) +orr qn(l)

. (2.39)
=VP(v+b-Vu+div(bu) — f) + VK@) + opr @ (1)
(§-Vu=divué)),
where o L2 @V (1) denotes a sequence which strongly converges to O in L{; . (N,

On the other hand, by (2.36) and (2.37) we have

VP (div[u (Vw, — Vw) ]) = VP EAP (we — w) B — VP (div[Vu (we — w)])
= VP (Alu(w, —w) |) + oLﬁ,c(Q)N(l)
= V(u(we —w)) + orr @ (1)
=uVw, — Vw) + OLIIZ)C(Q)N(I).

Therefore, this combined with (2.39) yields

Viug —u(Vwe —Vw) = VP(v+b - Vu +div(bu) — f) + VK (u)

(2.40)
+orr @un ).
Second step. Estimate of the sequence nlg -Vug.
Set 7k := Vw, 1{jvu, <k}, for a positive integer k. Let us determine the limit of

n’; - Vug in leoc(Q)N . Using a diagonal extraction, there exists a subsequence of
g, still denoted by &, such that n’g weakly converges to some 7¥ in L>®(Q)V for
any k. By the strong convergence (2.40) combined with the weak convergence of

u (Vwe — Vw) to 0in LP(Q)N (for p close to 1) we have

e Vue — (nf = n*) - (Vwe = Vw)u
— gk VP(v+b-Vu+div(bu) — f) +n* - VK(u) weaklyin L] (Q).

loc

Hence, we get that

of =pfu+nt VP +b-Vu+divibu) - f)+1" - VK@ inQ, (241)



12 MARC BRIANE AND PATRICK GERARD

where

o := lim [nls‘ . Vus] weakly in L?(Q),

e—0

(2.42)
uk = lim [(7718c — nk) - (Vw, — Vw)] weakly in L().
e—=0

Third step. Determination of v and the limit equation (2.27).

Starting from the limit equation (2.11) we have by (2.36)
u=PV+b-Vu+div(bu)— f)+ K@) inQ,
hence
nk -Vu = nk . VP(v—l—b.Vu + div (bu) — f) —l—nk -VK(u) inQ.
Equating this with (2.41) we obtain
o =pfu+nf-vu Q. (2.43)

Now, let us pass to the limit as £k — oo. By virtue of the equi-integrability of Vw,
in L2(©)" and by definition (2.42) the sequence ¥ strongly converges in L' () to
the function 1 of (2.26), n* strongly converges to Vw in L*>(2)", and o strongly
converges to v + Vw - Vi in L'(€2). Then, up to a subsequence u¥ converges to
a.e. in 2, and by the Fatou lemma combined with equality (2.43) we get

/ lpuldx < liminf/ |k ul dx
Q k— 00 Q

(2.44)
< liminf/ lo* — 0% - Vu|dx :/ [v| dx.
k—oo Jo Q
We deduce from (2.44) and (2.43) that pu € L' () and
v=pu in <, (2.45)

which yields the limit equation (2.27).
It remains to prove the inequality of (2.28). Let v € L*°(2) and r € R. By
(2.26), (2.33) and (2.45) we have

/ |Vue — Vu — (Vwe — V) v)[* dx
Q
=/ |Vu€—Vu|2dx+t2/ IVw, — Vw|? v? dx

Q Q

—ZI/ Vue - (Vwe — Vw) vdx + o(1) (2.46)

Q
= {f, “)HI(Q),H(}(Q)_[ |Vu|2dx+t2/ Mvzdx
Q Q

—Zt/ puvdx + o(1),
Q



A DRIFT HOMOGENIZATION PROBLEM REVISITED 13

hence
tZ/QMUde—ZZ/Q,uuvdx—i—(f,u)HI(Q)’HJ(Q)—/;WuFdsz, vVt eR.

This implies that

2
(/ ,uuvdx) < <(f, M)H_I(Q)HI(Q)—/ |Vu|2dx>/ ,uvzdx. (2.47)
Q o Q Q

Let Ty, k > 0, be a function in C'(R) such that

Ti(t) =t if |t] <k

/
0=<Ti=1 and {|Tk(t)|=k+1 if 1f] > k +2.

(2.48)

Putting v = T (u) as test function in (2.47) and using that T () < uTe(u), we
get

2
(/ uuTk(u)dx) < (<f,u>H.(Q),Hol(m—/ |w|2dx)f wuT(w) dx,
Q Q Q

hence
/ uuTe(u)ydx < (f, u)H,l(Q)’HOl(Q) —/ |Vu|2dx. (2.49)
Q Q
Since u T (u) is a nondecreasing nonnegative sequence which converges to u” a.e.
in €2, the Beppo-Levi theorem applied to (2.49) thus gives inequality (2.28).
Fourth step. Proof of equality (2.29) and of the corrector results (2.30), (2.31).

Assume that b € L9(Q)N, where ¢ > 2if N =2andg = N if N > 2. Let ¢,
be a sequence in Cé (R) which strongly converges to u in HOl (2) and a.e. in €2, and

such that |V¢,| is dominated by a fixed function in L3(Q). Putting the truncation
function Ty (¢,) (2.48) in the limit equation (2.27) we have

/Vu-VTk(wn)dx—l—f b-Vu Tk(wn)dx—fb-VTk(wn)udx
Q Q Q

+fMuTk(<pn)dx
Q
= (fa Tk(q)n))H—l(Q)’H(} Q)"

Since b - Vu, pu € L'(2) and bu € L>()V (as a consequence of b € LI(Q)N),
we can pass to the limit as n — oo in the previous equality owing to the Lebesgue
dominated convergence theorem, which yields

f Vu-VTi(u)dx + / b-VuTy(u)dx — / b-VTi(u)udx
Q Q Q
+ f jou Ti(u) dx (2.50)
Q

={f, Tk(”)>H4(Q),HOI (%
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Then, using that |7y (u)| < |u|, 0 < Tk’(u) < 1, Tx(u) strongly converges to u in
HJ(Q), and thatbu € L>(Q)N, pu? € L'(Q), and passing to the limit as k — oo
owing to the Lebesgue dominated convergence theorem we get

/Q|Vu|2dx+/9b-Vuudx—/;zb-Vuudx—F/Q/uﬂdx:(f,u)H1(9)’H01(Q),

which is (2.29). Moreover, the proof of equality (2.29) with f = 0 shows that there
exists a unique solution u € HOI(Q) of equation (2.27), with u? e LY(Q).

It remains to prove the corrector results. By the estimate (2.46) with v = Ty (u)
and r = 1, combined with equality (2.29) we have

lim lim (/ Ve — Vu — (Vw, — V) Tk(u)|2dx)
Q

k—00 £—0

= lim (/ M(u — Tk(u))zdx) =0.
Q

k—o00

(2.51)

On the other hand, let p € [1,2) if N =2 and p = N’ if N > 2, and consider an
open set w € 2. By the Holder inequality we have

/|w€—w—<Vwe—Vw)u1"dx

w

<2r”! (/ |Vue — Vu — (Vwe — V) Ti(u)|”
Q

+/ [Vwe — Vw|? |u—Tk(u)|pdx)
w

5\ 2
Vug — Vu — (Vwg — Vw) T;
§c</9| g — Vu — (Vwg — Vw) k(u)|> (2.52)

2 \I7%
+c (/ lu — T (u)| > dx>
w

<c (/ |Vue — Vu — (Vwe — V) Tk(u)f)
Q

1-2
2p 2
+c(/ |u| 2> dx) .
{lu|>k}Nw

2
Since u € Lﬁ(a)) by the Sobolev embedding, passing successively to the limits
e — 0 and k — o0 in (2.52) owing to convergence (2.51) we obtain the strong
convergence (2.30).

P
2

Letr € [1, p). Since w, —w strongly converges to O in L = (w), by the Holder
inequality the sequence (w, — w) Vu strongly converges to 0 in L” (w)". Finally,
this combined with (2.30) implies the corrector result (2.31). O
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2.3. A counter-example

In this section €2 is a regular bounded open set of R2 and Y := (—%, %)2. For fixed
R € (0, %) and u > 0, letr; € (0, R) be defined by the equality

21

- = 2.53
&2 |Inrg| (2.53)

Let W, be the Y-periodic function and w, be the Y -periodic function defined by

Inr—Inrg £ yl€ (re. R)
— ifr:= e,
InR—Inr, Y ¢ .
We(y):=30 Sir <re veY, we(x) =W, (;), xeR2,
1 sir > R,
(2.54)
Note that by (2.53) we have
2
— | IVW.|?d . 2.55
f| Py = e — (2.55)
We then consider the drift b, defined by
1 X 2
be(x) 1= Ve (x) = —~ VW, (—) , forx e R2. (2.56)
I3 3
Taking into account (2.53) it is easy to check that
we — 1 weakly in H'(Q) and weakly-* in L>°(Q). (2.57)

Let f be a non-zero function in L2(£2). We study the asymptotic behavior of the
equation (2.4) with the drift b, of (2.56), i.e.

— Aug + Vwg - Vug +div(Vwe ug) = f  in D'(Q). (2.58)
We have the following result:

Theorem 2.6. The solution u. of (2.58) weakly converges in HO1 (R2) to the solution
u of the equation

3(e*—1)

—Au + = in D' (Q), h ==
u+yu=yf inD(Q), where y 4(€2+1)

w < (. (2.59)

Remark 2.7. Using the periodicity we can check that the sequence |bg|*> = |Vw,|?
converges in the weak-* sense of measures on  — but not weakly in L'(2) — to
the constant x defined by (2.53). Theorem 2.6 can thus be regarded as a counter-
example to the statement of Theorem 2.4 without the equi-integrability assumption
on the drift b, in L*(2)?. Indeed, the conclusion of Theorem 2.4 would give a limit
equation (2.59), with y =
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Proof of Theorem 2.6. The proof is divided into two steps. In the first step we con-
struct an oscillating test function z, which solves equation (2.64) below. In the
second step we determine the limit equation (2.59).

First step. Construction of an oscillating test function.

Denote by Q, the disk of radius r centered at the origin. Consider the unique
solution Z, in H'(Qg) of the equation

1 1 2 log .
_?Azs+8—2|vws| Ze = 1Okl in Qg
97, (2.60)
=0 on dQ0Rr.
on

The function Z, is radial and can be computed explicitly. Using the Laplace opera-

tor in polar coordinates and |V W,|? = af r 21 0x\G,,» Ve get
LA T if r e (0, 7]
Z.(r)= 47 R? 2
agr® +ber=% + WVZ ifr €(re, R, (2.61)
1
where o, := m

The constants ag, b,, c, are determined owing to the boundary condition on 0 Qg
and to the transmission conditions on 0 Q;., i.e.

ZU(R)=0 and Z.(r])=Z.(r)), Z.r])=Z.0r)). (2.62)

We extend Z, by the constant value Z.(R) in Y \ Qg, and by Y-periodicity in
the whole space R?. The Y-periodic extension is still denoted by Z.. An explicit
computation combined with (2.53) yields

_ 4(e*+1) 1 S
Z, — 7Z := ——— = — strongly in H; (Y). (2.63)
3 (62 — 1) w
As a consequence of (2.60), (2.61) the rescaled function z.(x) := Z( %) is solution
of the equation

X .
— Aze + [Vwelze = xp, (g) in D'(R), (2.64)

where XjQR is the Y-periodic function agreeing with |QQ—1§| in the period cell Y. More-
over, the following convergences hold

ze— Z weakly in H' () and xJ, (f) — 1 weakly-% in L®(RQ), (2.65)
&

where the constant Z is defined by (2.63).
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Second step. Determination of the limit equation (2.59).

Define the function v, := e!~"¢ u,. Then, equation (2.58) is equivalent to
— Ave + |Vwg > ve = '™ £ inD'(Q). (2.66)

G. Dal Maso, A. Garroni [7] proved that this class of equations is stable under
homogenization. In the present case, the use of the oscillating test function z, will
allow us to obtain the limit equation (2.59).

On the one hand, choosing v = w, in (2.8) we get

/|Vw8|2u§dx—/ VwVug ue dx :fqug|2 wgdx—/f weledx <c, (2.67)
Q Q Q Q

since u, is bounded in HO1 () and 0 < w, < 1. Then, by the Cauchy-Schwarz
inequality we have

1 1
2 2
/|Vw£|2u§dx §c+c</ |Vu8|2dx) (/ |Vwe|2u§dx)
Q Q 2 (2.68)
/ 2 2 :
<c+c [Vwg|“ugdx |
Q

hence u, Vw, is bounded in L2(€2)2. This combined with convergence (2.57) im-
plies that v, weakly converges to u in HOl (2).

On the other hand, for ¢ € CZ°(2), putting the functions ¢ z, in (2.66) and
¢ Ve in (2.64), taking the difference of the two equalities, and passing to the limit
owing to convergences (2.65) we obtain the equality

/Vu-thde—{—/(pudx:/ feZdx, foranygp e CX(Q). (2.69)
Q Q Q

which is the variational formulation of equation (2.59), with y = Z~1. O

3. A Stokes equation with a drift term

3.1. The classical case

In [14, 15] L. Tartar noted that the nonlinear term of the three-dimensional Navier-
Stokes equation for the divergence free velocity u reads as

(- V)u=Div (@ u) = curl ) x u+V (§u?). (3.1)

This led him to study the perturbed Stokes equation

—Au—+curl(v) xu+Vp = f, (3.2)
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where a given vector-valued function v replaced the velocity u of the Navier-Stokes
equation. The equivalent of transformation (3.1) in two-dimension is

Div (u @ u) = curl (u) Ju + ¥ (4 |ul?),

0 _1) (3.3)

where curl (1) := 0jup, — dbu; and J := (1 0

More generally equality (3.3) extends for any divergence free functions u, v to the
following one

curl (W) Ju =Div(v @ u) + (D) v =V (v-u). (3.4)
Similarly to (3.2) this leads us to the two-dimensional perturbed Stokes equation
— Au+curl(v) Ju+Vp = f. 3.5

Let Q be a bounded domain of R2. Let v, be a sequence in L%°(2)? and let fbea
distribution in H~'(£2)2. Consider the perturbed Stokes equation

— Aug +curl (vg) Jug + Vp, = f inQ
div(u,) =0 in (3.6)
u, =0 on 9€2.

In the three-dimensional case where curl (v;) X u, replaces curl (vg) Jug, L. Tartar
[15] derived a Stokes equation with a Brinkman law under the assumption that v, is
bounded in L?(£2)* (see Introduction). Mimicking the Tartar approach in dimension
two we can derive a similar homogenized equation using the test function wé, for
A € R?, solution of the Stokes equation

— Aw} +Div((v; —v) ®1) + Vgl =0 inQ
div (w}) =0 in Q (3.7)
wr =0 on IQ2.

Then, we have the following result:

Theorem 3.1. Assume that v, is bounded in L' ()2, withr > 2. Then, the solution
ug of (3.6) weakly converges in HOl (R2) to the solution u of the Brinkman equation

—Au+cull(W)Ju+Vp+Mu=f inQ
div(u) =0 in (3.8)
u=~0 on 092,

where M is the positive definite symmetric matrix-valued function defined by

{(Dwé)Tvg — Mx weakly in L% () and in Ly, ()* for ., peR.

loc
Dwé - Dw! —~ M) - . weakly-* in M(Q)? and in L2 _(Q)?,

loc

(3.9)
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Moreover, the zero-order term of (3.8) is given by the convergences

(Dug)” (ve — v) — Mu  weakly in L7 (Q)2

o (3.10)
Du, : Dw} — Mu -1  weakly-x in M(RQ) and in leotr (Q)2.
Proof. By the representation formula (3.4) we have
curl (v,) Ju, = (Dug)T Ve + Div(ve Q ug) — V (vg - ug) . 3.11)

Hence, the variational formulation of (3.6) reads as

/Dua:Dfpder (Dus)Tvs-wdx—/(ve@) ue): Do dx={f.ue) y-1qp ul (@)
Q Q Q

for any ¢ € HOl ()2, div () =0.
(3.12)
By the Lax-Milgram theorem there exists a unique divergence free function u, €
HO1 (£2)? solution of (3.12). Then, putting the velocity u. as test function in (3.12)
it follows that

/S; |Du€|2 d.x = <f, u5>H—1(Q)2’H01 (Q)2 5 (313)

which implies that u, is bounded in HO1 (2)%. Let w be a regular domain of .
Applying (3.12) to divergence free functions in HOl (w)?, there exists a unique p
in L2(w)/R such that equation (3.6) holds in D’ (w)?. Moreover, by (3.11) and the
boundedness of v, in L" (2)? the sequence V p, is bounded in H ~!(w)2. Hence,
due to the regularity of w the sequence p, is bounded in L?(w). Then, consider-
ing an exhaustive sequence of regular domains the union of which is €2, we can
construct in €2 a pressure p, which is bounded in leoc(Q)- Therefore, up to a sub-
sequence the following convergences hold

us — u weakly %n Hg1 (Q)2 (3.14)
pe — p weaklyin Li (2)/R,
Now, in view of (3.11) it is enough to determine the limit of the term (Du)T v,.

By the regularity results for the Stokes equation (see, e.g., [10] Theorem 2, p. 67)
the sequences w? and ¢ satisfy

wh — 0 weakly in H'(2)% and in W,.7 (2)?
; — 0 weakly in L%(Q)/Randin L’_(Q)/R.

loc

0>

(3.15)

which imply convergence (3.9). Let ¢ € C2°(2). Following the Tartar method we
put ¢ wé‘ in equation (3.6) and ¢ u, in equation (3.7). Then, from the representation
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(3.11), the convergences (3.14), (3.15) and the boundedness of v, in L"(2) we
deduce that

/Dus : Dw) ¢ dx —f(vg ® ue) : Dwl g dx=o(1)
Q Q

for any ¢ e C°(Q),
/Dwi‘: Du, pdx —/((vg—v) ®A) :Du, pdx=0(1),
Q Q
hence
Dug : Dw} — (Dw}) ve - uy —
e : Dwg = (Dwe) ve -t — 0 in D'(Q). (3.16)
(Dug)* (ve —v) - A — (Dws) v -ug — 0

By virtue of the strong convergence of u, in any L*(2)? space for s € (1, o0), con-
vergences (3.16) and (3.9) imply (3.10). This combined with (3.11) yields finally
the limit problem (3.8). O

Remark 3.2. It can be shown that
M()C)=/S1 [tr(p (x,d€) —p(x,dE)E - E]EQE (3.17)

where u is the matrix-valued H-measure of the sequence v, (see [16,17]).

The case where v, is only bounded in L?(€2)? is much more delicate. On
the one hand, under additional assumptions we will extend the Tartar result when
v is bounded and equi-integrable in L?(£2)2. On the other hand, we will give an
example of a sequence v, for which the homogenized Brinkman equation is not the
one obtained by the Tartar procedure.

3.2. The case under an equi-integrability condition
In this section we make the following weaker assumption on the drift,

ve — v weakly in L2(S2)2 and v, is equi-integrable in L2(S2)2. (3.18)
Then, we have the following extension of Theorem 3.1:

Theorem 3.3.
1) Under the equi-integrability assumption (3.18) the solution u. of (2.4) weakly
converges in HO1 (2) to the solution u of equation (3.8) with

/ Mu -udx < <f’u>H—1(Q)2,H(}(Q)2 —/ |Du|2dx, (3.19)
Q Q

where M is the positive definite symmetric matrix-valued function defined by

fora, n e R%. (3.20)

(Dwé)Tvg — M weakly in LI(Q)2
Dw! : Dw" — Mx-u  weakly-* in M(R)?,
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ii) Also assume that Q has a Lipschitz boundary, v € L™ ()%, with r > 2, and
M € L™(2)%*2, withm > 1. Then, we have the equality

/ |Du|2dx+/ Mu - udx = (fou) 1@ iy - (3.21)
Q Q

and there exists a unique solution u € HOl (Q)2 of equation (3.8), with Mu - u €
LY(Q).
Moreover, we have the corrector result

ue —u— Weu — 0 strongly in Wl’l(Q)z, 3.22)
where W, is the matrix-valued function defined by

We . i=w?, forre R (3.23)
Remark 3.4. Contrary to Theorem 2.4, in the part ii) of Theorem 3.3 we need to
assume a higher integrability for the matrix-valued M. Indeed, we cannot apply a
truncation principle on Mu - u. Moreover, the regularity of 2 is necessary to obtain
the density of the smooth divergence free functions in the space of the divergence
free functions of HO1 ()2

Proof of Theorem 3.3. As in the proof of Theorem 3.3 the sequence u, is bounded
in H} ()2, and thus in any L*(2)? space. Then, in view of (3.11) and (3.6) together
with the boundedness of u, and v, the sequence Vp, is bounded in L'()?> +
WL (Q)? for any r € (1,2). Hence, thanks to the embedding of LIIOC(Q) into

(€)/R

W, .o () forany r > 1 and o > 2/r/, the sequence p; is bounded in L]
for any r € (1, 2). Therefore, up to a subsequence we have the convergences

ue — u weakly in H} ()2 (3.24)
pe — p weakly in L] (Q)/R, foranyr € (1, 2). ’
The problem is to determine the vector-valued distribution v defined by
curl (ve) Jue — curl (v) Ju — v in D'(Q)% (3.25)

Taking into account the representation formula (3.11) and the equi-integrability of
ve in L2(2)2, v is actually in L' ()2, and is given by

(Dug)T (v, —v) — v weakly in L1(Q), (3.26)
so that u is solution of the equation
—Au+v+curl(w)Ju+Vp=f inD(Q). (3.27)

From now on the proof follows the same scheme as the one of Theorem 2.4 using a
representation of the velocity and the pressure owing to the parametrix P of (2.35).
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The proof is divided into five steps. The first step deals with a double parametrix
method for both u, and p., which allows us to derive a strong approximation of
Du,. In the second step we compute the limit ok of the sequence (Du E)Tvé‘, where
vk is a truncation of v, for a fixed k > 0. In the third step we obtain the limit
equation (3.8). In the fourth step we prove inequality (3.19). The fifth step is
devoted to the proof of equality (3.21) and the corrector result (3.22).

First step. The double parametrix method.

Consider the parametrix P (2.35) for the Laplace operator. Abusively we denote by
A the vector-valued Laplace operator as well as by P the associated vector-valued
parametrix each component of which is defined by (2.35). Taking the divergence of
equation (3.6) we have

Ap, =div (f) — diV(curl (ve) Jug) in 2,
hence by (2.36)
ps =P (diV f) — div[curl (ve) Jus]) + K(p:) in Q. (3.28)
Substituting p, by the right-hand side of (3.28) in (3.6) it follows that
Aug=curl (ve) Jug—V P(div[curl (ve) Ju, |)+VP(div (f))—f+VK(pe) inQQ,
hence again by (2.36) we have in 2

Uy, = P (curl (ve) Jug — VP(diV[curl (ve) Jue]))

3.29
-I-P(VP(diV(f))—f)—}—L(ug,ps), ( )

where L is a C*°-kernel operator acting on the pair (u,, p¢). Using the representa-
tion (3.11) of curl (vg) Ju,, and setting

ge :=Div((vs — v) @ ug) — V((ve — ) - ug), (3.30)

we get

Uy = P ((Dug)Tvg g —VP (div[(Dug)Tve + gg])) ¥ Fue, pe),  (331)
where

F(£,0):=P(Div(v®{)—V(v-{)— f— VP (div[Div (v®¢)—V(v - {)— f]))

+ L(,0).
(3.32)
Note that by (2.37) we have

F(ug, pc) — F(u, p) strongly in W]L’J(Q), for any r € (1, 2).
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Moreover, by (3.26) the sequence (Dug)T v, weakly converges to v + (Du)Tv in
L'(2)? which is compactly embedded in ngcl "(Q)? for any r € (1,2). Hence,
as in the first step of the proof of Theorem 2.4, from (3.31) and the two previous
convergences we deduce, for any » € (1, 2), the strong convergence

ue — P (g — VP(div (g))) — P (\) + (D) v — VP (div[v + (Du)Tv]))

+ F(u, p) strongly in WL7 (@)%
(3.33)
Second step. Determination of the limit ok of (Dug)Tv(’;.
Fix r € (1, 2) such that (3.33) holds. Set
Ze := P (ge — VP(div(ge))) and g, := P(div(ge)). (3.34)

In view of (3.30) the sequence g, weakly converges to 0 in W~ ()2, hence by
(2.37) we have

ze — 0 weakly in Wll)‘cr(Q)2 and ¢, — 0 weakly in L} .()/R. (3.35)
Moreover, by (2.36) we have
Aze = ge —Vge — K'(ge) and  Age =div(ge) — K'(ge) inQ, (3.36)
hence
A(div (z)) = K'(ge) — div (K'(g¢)) —> 0 strongly in LerC(Q)2, say.

This combined with the first convergence of (3.35) and (2.37) yields

div (ze) —> 0 strongly in W2 (). (3.37)
On the other hand, set v¥ := v, 1y}, <k}, for a positive integer k. Up to a subse-
k

quence of ¢ still denoted by &, v* weakly converges to some function v in L?(£2)?
for any k. Consider for » € R?, the solutions wé’k and qg"k of the Stokes problem

— Aw** 4+ Div ((véC - ® 1)+ Vgt =0 inQ
div (w}*) =0 in @ (3.38)
whk =0 on 9L

which consists in an approximation of equation (3.7). By the regularity results for
the Stokes equation (see, e.g., [10]) we have

loc

gtk — 0 weakly in L (Q)/R,

loc

Ak in WS ()2
{ w? 0 weakly in W, ' (Q2) forany s € (1, 00). (3.39)
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Take s := r’ and choose good oscillating test functions as Tartar did (see [13,
Appendix]). Let ¢ € CZ°(S2). Putting ¢ wé"k in the first equation of (3.36) and
¢ Z¢ 1n equation (3.38), and using the definition (3.30) of g, and the convergences
(3.35), (3.37), (3.39) we have

(Dze)T 0k — %) - & — (Dw2*) (v —v) - ue — 0 weakly in D'(Q)2.
Hence, since Dz, weakly converges to 0 in L” (€)%*2, we deduce that
(Dze)T vk — M*u  weakly in D'(Q), (3.40)
where the matrix-valued function M* is defined by
(Dw*) v — M weakly in L], ()%, foranys €[1,2).  (3.41)

Now, we are able to determine the limit o* of the sequence (Dug)Tvif in L2(Q)2.
With the definition (3.34) of z, the strong convergence (3.33) implies that

(Dud) vk = (Dz) of — [DP (v+(Dwv =V P (div]v + (Du)Tv]))]T vk
+ (DF(u, p))"v*  weakly in L], ().

loc

This combined with (3.40) thus yields

ok = Mu+ [DP (v +Duwv-VP (div[v + (Du)TvD)]T ok (3.42)

+ (DF(u, p)) o~

Third step. Determination of the limit equation (3.8).

The function u solves the equation (3.27) which, by (3.4) and similarly to (3.31),
can read as

u=~r (v + (Du)Tv —-VP (div[v + (Du)TvD) + F(u, p).

This implies that

T
(Du)T vk = [DP (v + (D) v —VP (div[v n (Du)TvD)] weH(DF (u, p)) "o,
Therefore, equating the previous equation with (3.42) yields
o = (Duw)"v* + M*u in Q. (3.43)

It remains to pass to the limit as k tends to infinity. Due to the equi-integrability
of v, in L2(2)% and by convergence (3.26) the sequence o* strongly converges to
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v + (Du)Tv in L'(Q). On the other hand, putting the function ng,k - wﬁ both in
equations (3.7) and (3.38) we get the equality

/ | Dw} — Dwﬁ}zdx = / (Dw>* — Dw?)" (vf — ve — vF +v) - Adx,
Q Q
which, again by the equi-integrability of v, yields

lim sup ( / |Dwl* — Dw§|2dx> =0. (3.44)
Q

k—00 o050

Estimate (3.44) implies that the sequence M* defined by (3.41) strongly converges
in L'(£2)2*? to the matrix-valued function M defined by (3.20). In particular, up to
a subsequence M¥ converges to M a.e. in Q. Then, by the Fatou lemma combined
with (3.43) and the strong convergences of ok in LY(Q)? and vg in L2(Q)2, we get
that the function Mu belongs to L' (2)%. Finally, passing to the limit in (3.43) we
obtain the equality

v=Mu in <,
which gives the limit equation (3.8).
Fourth step. Proof of inequality (3.19).

Similarly to (3.23) let Wsk , k > 0, be the matrix-valued function defined by Wek A=
wlk, where w’ ¥ solves (3.38). We simply denote w':* when A = ¢; :== 2 —i,i —
1),fori =1,2. Letg € CC1 ()%, and let € R. Using (3.13) we have

2
/ ‘Dus — Du —1t D(Wak(p)‘ dx = (f, u)H_l(Q)z’HOl(Q)z — / |Du|2dx
Q Q

- 2;/ Du, : D(Wrp) dx (3.45)

Q
2 k 2

1 ‘D(nga)‘ dx + o(1).

Q

Moreover, similarly to the second convergences of (3.9) and (3.10), we have for
ia J = 17 2’

Du, : Dwik — MFu - ¢;
te - HWe noe weakly in L (), forany s € [1,2), (3.46)

Dwik . pwl*t — Mke; -ej, loc

where (compare to the definition (3.41) of M k) the matrix-valued MF¥ is defined by

(Dwé’k)Tvk — M e; weakly in LZ(Q)z. (3.47)

&
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Then, from convergences (3.39) and (3.46) we deduce that

/Dua D(Wk )dx—Z/ Du, : Dwé’k oidx + o(l) gj) Mku-(pdx,
Q

/’D(Wk(p)) dx—Z /Dwé’k:Dwg’kwiwjdx—l-o(l) —6 /A;Ikgo-godx.
72 Q £—> Q

This combined with (3.45) implies that
PNE 2
/ |Duc = Du— 1t DOWEQ)| " dx = (£, 102, 1 e —/ |\ Dul? dx
Q Q
— 2;/ MF*u - g dx (3.48)
Q
+12 | M*¢-pd
¢-pdx+o(1).
Q
Therefore, we have for any ¢ € R,
t2/ Mo - pdx — 2t/ Mru - pdx + (f, M)Hfl(Q)Z’HOI(Q)Z —/ |Du|?dx >0,
Q Q Q

hence

2
( f M"u~<pdx) s(<f,u>H1<Q)z,H(;<sz>z - / |Du|2dx) / M p-gdx. (3.49)
Q Q Q

Let§ > 0, and let @ be an open set such that w € Q. Since by (3.41) and (3.47) Mk
and M k belong to L* (w)>*? for s € [1, 2), putting in (3.49) strong approximations
@ of 1n L ()2, we get

1+8

( Mk”'”d)2<<<f ) /|D |2d> Muu_,
—dx U gy - ul-dx ——dx
o 148 ul = HoW@% Hy (@7 [0 w (14 8 [u])?
Mku-u
< ((fiu),- [ —/ |Du|2dx)/ L
< H @ Hy@? o o (148 [u))?2

which by the arbitrariness of w yields the inequality

Mku.ud 2< o /|D 2y / My - u 4

X U - ul“dx ——dx

o148l ) = Ho@2 Hy (@7 | o (146 ul)?
(3.50)

Recall that, by virtue of the equi-integrability of v, in L>(£2)?, the sequences M*
and M* strongly converge to M in L'(£2)?*2, thus converge, up to a subsequence
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of k, a.e. in @ and in a dominated way. Therefore, passing to the limit as k — oo
owing to the Fatou lemma for the left-hand side of (3.50) and owing to the Lebesgue
dominated convergence theorem for the right-hand side of (3.50), it follows that

MM'M 2 Mu.u
dx) <((f u), - — | |Dul*d 4 ,
(91+6|u| x)—<<f e @ /g' ! x>/9<1+5|u|)2 T

which implies the inequality

Mu - u

Tropu @ =ua — [ 1Dudx. 351
o1+ ul x = (fuly ()2, Hy () /QI ul”dx (3.51)

Finally, applying the Fatou lemma in (3.51) as § — 0 we obtain the desired in-
equality (3.19).
Fifth step. Proof of equality (3.21) and of the corrector result (3.22).

Assume that Q has a Lipschitz boundary, v € L"(Q)", with r > 2, and M €
L"™(92)**2, withm > 1. Let ¢ be a divergence free function in CSO(Q)Z. Putting
¢ as test function in the limit Stokes equation (3.8) and using the representation
formula (3.4) we have

/Du:D<pdx+/(Du)Tv-¢dx—/(v®u):Dgadx +/ Mu - ¢ dx
@ @ Q@ Q2 (3.52)

= (/- )y @2, ml@p-
Due to the regularity of €2 the set of divergence free functions is known to be dense

in the space of divergence free functions in HO1 (2)2 (see, e.g., [18]). Moreover, by
the higher integrability of v and M the mapping

gor—)/(Du)Tv-godx—/(v@)u):Dgodx—i—/ Mu - pdx
Q Q Q

is continuous in Ho1 (Q)2. Therefore, considering in (3.52) a divergence free strong
approximation ¢ of u in HO1 ()% we get

/|Du|2dx+/(Du)Tv-udx—/(v(X)u):Dudx-l—/ Mu -udx
Q Q Q Q

= <f7 u>H_1(Q)2,H01(Q)2 s

which is (3.21). This equality clearly implies the uniqueness of a solution u €
Hy (R)? of (3.8), with Mu - u € L'(Q).
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It remains to prove the corrector result (3.22). Let ¢ € CZ°(S2). Applying
successively the triangle inequality and the Cauchy-Schwarz inequality we have

/Q|Du£—Du—D(Wgu)|dx
§/Q|Du€—Du—D(Wg(p)|dx+/S2|D(W8(u—(p))|dx
5/Q|Du£—Du—D(W€¢)|dx+/Q|DW€||u—<p|dx+/g|wg||Du—D¢|dx
5/Q|Du€—Du—D(W8¢)|dx+c||W€||H1(Q)2x2 It — ol i1 g2 -

hence by the boundedness of W, in HO1 (Q)2%2,

/|Du8—Du—D(W8u)|dx§/ |Du€—Du—D(W8<p)|dx+c||u—<p||H01(Q)2.
Q Q

(3.53)
On the other hand, proceeding as in fourth step owing to the second convergences
of (3.20) and (3.10) (which hold in the weak-* sense of measures on £2) we get
similarly to (3.48) the equality

2
/|Du€—Du—D(W8<p){ dx:(f,u)H_l(Q)Q,Hé(mz—/ |Dul* dx
Q Q
— 2/ Mu-godx+/ Mo -pdx +o(1).
Q Q

Hence, taking into account equality (3.21) and using the Holder inequality com-
bined with the embedding of HO1 (2) in any L5 (£2) space, it follows that

/|DuS—Du—D(W8g0)|2dx=/M(u—go)-(u—gp)dx-l—o(l)
Q Q (3.54)

< clMl gy 1t = @l g0 + 0D

Therefore, by (3.53) and (3.54) we obtain the inequality

limsupf \DuS—Du—D(WS u)| dx <c ||u—(p||H01(Q)2, for any ¢ € CCOO(Q)Z’
Q

e—0

(3.55)
which implies the desired convergence (3.22) and concludes the proof of Theo-
rem 3.3. O

As in the scalar case we show in the next section that the equi-integrability
condition is crucial to derive the limit Brinkman equation (3.8) with the matrix-
valued function M introduced by L. Tartar [15,17].
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3.3. A counter-example

Let 2 be a regular bounded domain of R2. For ¢ > 0, let w, be the intersection of
Q with the periodic lattice of disks of center 2e k, k € 72, and of radius ¢ r, such
that

4

T € (0, 00). 3.56
2nr] o V€0 (3.56)

This geometry was used by Cioranescu, Murat [6] for the Laplace equation and by
Allaire [2] for the Stokes equation, in order to derive a “strange term” of zero-order
from the homogenization of the Dirichlet boundary conditions on the small disks.

In the square ¥ := (—1, 1)2, let O be the disk centered at the origin and of
radius 1, and let Q,, be the disk of same center and of radius r, with measure
|Qr, | =7 rgz. Then, for f € H —1(Q)2, we consider the Stokes equation

1
—Aug+ —= Ju, +Vpe=f inQ

| O, (3.57)
div(ug) =0 in ’
us =0 on 0%2.

Note that, in view of the definition of w,, we have |wg| ~ |2| |Q,,|. Moreover, if
Ze € HO1 (2) is the solution of the Laplace equation

1
Az, = —2= inD(Q), (3.58)
| O, |
we have
lws . / .
= curl (vy) inD' (), where v :=JVz,. (3.59)

1O, |

Hence, the Stokes problem (3.57) is of the same type as (3.6). On the other hand,
using successively the Cauchy-Schwarz inequality and the estimate (3.67) below
combined with (3.56) we have

1
| | | | 2 2
|Vze|*dx = — Zedx < zzdx ) =<clVzelli2eq)p2,
/Q ‘ 101 0, ™* 10,1 \Jo, ¢ e

which implies that z, is bounded in HOl (€2). Therefore, the sequence v, is bounded

in L%(2)%. Moreover, since by periodicity the sequence |]Q%| converges weakly-x
to % in M(2), we get
20002 . 1.
ve — v weakly in L=(2)°, with curl(v) = 1 in D' (). (3.60)

On the other hand, it is not difficult to check that v, is not equi-integrable in L>(£2)?.
In fact, the following result shows that Theorem 3.3 does not hold for this particular
sequence vg:
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Theorem 3.5. The sequence u, weakly converges in HO1 (Q)? to the solution u of
the Brinkman equation
1 .
—Au+ZJu+Vp+Fu=f in Q

div(u) =0 inQ (3.61)
u=0 on BQ,

where the extra zero-order term Tu is given by

1 1
(|ng| — Z) Juy, — Tu  weakly-+ in M(2), (3.62)

and T is the constant matrix defined by

1
rN=——wIl-1J). 3.63
e e (3.63)

Moreover, the matrix obtained from convergence (3.20) according to the Tartar

approach is given by
1
M=—1 (3.64)
4y
Remark 3.6. The matrix I" of the Brinkman equation (3.61) is not symmetric con-
trary to the matrix M arising in the Tartar approach. Moreover, we have

lu-u<Mu-u ifuz#0.

The gap between the two previous energies (which are the energies dissipated by
viscosity according to [14]) is due to the loss of equi-integrability of the sequence
ve defined by (3.59). Therefore, the equi-integrability of v, can be regarded as the
best condition to ensure the result of Theorem 3.3.

Remark 3.7. It is worth to mention that the pathology displayed in Theorem 3.5 is
not due to the absence of correctors. Indeed, with the oscillating sequences v/, v?

defined by (3.68), (3.69) below, the following corrector result holds:

Proposition 3.8. Assume that u € W' (Q)? for some r > 2. Then, we have

1

Ug — U — V]V, — 12 vs2 — 0 strongly in HY(Q),

3.65
where v = (v1, v12) 1= ——— (—u1 + yuz, —uz —yui). (3.65)
ye+1

Remark 3.9. If the right-hand side f belongs to W~ ()? for some r > 2, then
using the regularity results for the Stokes equation (see, e.g., [10]) the solution u
of the Stokes equation (3.61) belongs to W' (2)2. This provides a quite general
condition under which the strong convergence (3.65) holds.
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The proof of Theorem 3.5 is partially based on the properties of the test func-
tions vsl, vg defined by (3.68), (3.69) below, and introduced by Allaire [2]. They
were also used in [5] to derive a homogenized Brinkman type equation but, contrary
to (3.6), from a Stokes equation without zero-order term. More precisely, in [2] the
velocity is assumed to be zero in the set w.. In [5] the viscosity is assumed to be
very high in cylinders of section w,, which leads to a three-dimensional nonlocal
Brinkman equation. In the perturbed Stokes equation (3.57) a highly oscillating
zero-order term is concentrated on wy.

On the one hand, the sets Q,, and w; satisfy the following estimates:

Lemma 3.10. There exists a constant C > 0 such that

< CVIIre IV 2y, (3.66)

vV e H\(Y), ‘][ de—][ Vdy
O, Y

pPdx < C (142 nr]) V02,

We

@2 (3.67)

Vv e H} (), ][

Proof. Estimate (3.66) can be easily proved using the polar coordinates. Estimate
(3.67) is an immediate consequence of the Lemma 3 of [12], and can also be de-
duced from (3.66). O

On the other hand, consider the €Y -periodic functions vé and pé, fori =1,2,
defined by

vé(x) = V; (;i), pi(x) = é Psi (g) , forx e R?, (3.68)

where Vsi € H# (Y) are Pei e L*(Y)are the Y -periodic functions defined by

i._)e inQy, i i
VS'_{OinY\Q, P.=0inQ,U{Y\Q), /;Pgdy_o, (3.69)
which solve the Stokes equation
—AVI4+VPI=0 inQ,\ 0. (3.70)

Moreover, the sequences Vgi and Pgi satisfy the following estimates:

Lemma 3.11. There exists a constant C > 0 such that

i i 12 i 12
Vel 2vy2 + 1DV I720ry2x2 + Il P I720ry = Tnre] 3.1

”V;”LOO(Y)? <C,
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and for any function V. H'(Y),

/DV;:Dde—fP;div(V)dy—ygei- ][ V—][ 1%
Y Y Ore Y\Q

(3.72)
=< m ||DV||L2(y)2x2,
where + denotes the average value and
: 4
LR . 3.73
Ye 2o Tinre| (3.73)

Proof. Estimate (3.71) can be proved using the polar coordinates (see also [2]).
Estimate (3.72) is a straightforward consequence of the Lemma 3.3 of [4] (with a
refinement for the right-hand side of the inequality). O

Proof of Theorem 3.5. The proof is divided into two steps. In the first step we de-
termine the homogenized Brinkman equation (3.61). The second step is devoted to
the computation of the matrix M defined in the Tartar approach.

First step. Determination of the homogenized equation.

Using u, as test function we have

/Q |Du8|2 ={(f, uS)H—l(Q)ZyHOl(Q)Z <c ||f||1—1*1(g2)2 ||Due||L2(Q)2x2 s

which implies that u, is bounded in H} (). On the other hand, let ¢ € C2°()
with zero Q-average. There exists (see, e.g., [3]) a vector-valued function ® €
CSQ(SZ)2 such that

div(®) =¢ inQ and ||<I>||HO1(Q)2 <cllellr2 g,
where the constant ¢ is independent of ¢, ®. Using ® as test function in equation

(3.57) and applying successively the Cauchy-Schwarz inequality, estimates (3.67)
and (3.56) we get

‘/Ps(/)dx
Q

S ‘

(s Pyl @2

1
+‘/Du€:D<I>‘+‘/ De Jug-fb'
Q sllergl

2 % 2 2
<c ”DCDHLZ(Q)ZXZ +c (f |Mg| ) (f: |<D| )
wg We

< c|D®| 22 + & | Inre| | Dugll 22 DDl 1222
= cllelizzq)-
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This combined with the regularity of € implies that p, is bounded in L?($2)/R.
Therefore, up to a subsequence the following convergences hold

N 1 1 2
{ Ug u weakly in H, (2) (3.74)

pe — p weakly in L~(Q2)/R.

Now, we have to determine the limit of the sequence % Jug. On the one hand,
re

re-scaling inequality (3.72) we obtain that the functions vé and pé, i = 1,2, of
(3.68) and any function v € HOl ()? satisfy the inequality

; - A Lo, Iy (x
Dvé:Dv—/ ’Edlv(v)——gei-</ v—/i —)v
/g ) ol &2 210" Jalr\ 0l <s)

|| Dv ||L2(Q)2><2.

“ ¢e|lnrg|
(3.75)
Moreover, by (3.71) and (3.56) the following convergences hold
[N 1oy
v}? 0 weakly in H2 () (3.76)
p. — 0 weakly in L~(2)/R.

Then, applying inequality (3.75) with v = @ue, ¢ € C°(R2), we deduce from
(3.73) and (3.56) that

/DvézDusgo—(Ho(l))ei-(/ Lo, M_/ lw):o(l). 3.77)
Q Q10| o4

On the other hand, putting ¢ vé as test function in (3.57), using that vé = ¢; in w;
and the convergences (3.76), (3.74), we have

. 1
/DuE;Du;goJr/ L Jug - ej ¢ = o(1). (3.78)
Q o 1Ol

Denote |
v o= lim —2- Ju, weakly-% in M(2)?,

e—0 | e

where the limit holds up to a subsequence by virtue of the estimate (3.67) combined
with the Cauchy-Schwarz inequality. Then, equating (3.77) and (3.78) and passing
to the limit we get fori =1, 2,

/(pé,w\):)//goei-Jv—i—Z/(pe,--u, for any ¢ € C°(Q),
Q Q 4 Ja

which implies the equality v =y Jv + % u. Hence, we deduce the convergence

Ju, — v=§ (I—y Hlu= _r (I+y J)u weakly-* in M(Q)z.

T 4(y2+1) 379

1o,

1O
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Therefore, passing to the limit in (3.57) with (3.79) we obtain the homogenized
equation

1
—Aut g JutVp+ (yI-Du=f inD(Q. (380

1
42+ 1)
which yields the desired Brinkman equation (3.61) with the matrix I" of (3.63).
Second step. Derivation of the matrix M.

Let A € R2. Consider the solutions Wée € Hul(Y ) (the set of the Y-periodic
functions in HILC (R2)) and QQ’ e € L%(Y) /R of the perturbed Stokes problem

lo, 1

1Or.| 4
div (W2, ) =0 in R2

A
Wi
A
\/; Wﬁ,&‘ = 0.

Note that the first equation of (3.81) is equivalent to the variational formulation in
the torus,

—AWﬁs+8< )JA+VQ§,8:0 in R2

. - (3.81)
is Y-periodic

VVeH, (Y), / DW}, : DV dy+e ( 14 —][ V)-u—/ Q% div (V) dy=0.
Y Oy, Y Y
(3.82)
Hence, the re-scaled functions wé" . and qé\’ . defined by

wh,(x) == W), (g) and g}, (x) = O}, (;) . forxeQ, (3.83)

are €Y -periodic solutions of the problem

lo,. /x 1 .
—Awk, + <|QQS| (5)- Z) Jh+Vgl, =0 inR2
e

(3.84)
div (w?,) =0 in R2,

First of all, let us determine a priori estimates satisfied by the sequences Wé\g, wé e

Qé" ¢»and qt’t .- Putting Wé\’ . as test function in equation (3.82) we have

/|DW£8|2dy+8][ I W dy =0, (3.85)
Y r

&
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hence by the estimates (3.66) of Lemma 3.10 and (3.56)

][ Wi, dy
0r

E CSV |1nr8| ||DW]£:5||L2(Y)2><2

<c|pw;,

2
”DWﬁA,a “L2(Y)2x2 =

“L2(Y)2X2'

Therefore, Wé‘ ¢ 1s bounded in Hﬁl (Y)2, and there exists a constant vector W* € R?
such that up to a subsequence we have

lim <e ][ Wﬁsdy> =W (3.86)
e—0 O,

On the other hand, let ¢ € C ;’O(Y ) with zero Y-average. There exists ® € C 1?0 (V)2
with zero Y-average such that

div(®) =¢ inR* and [Pl 2y < cll@ll 2y

where c is a constant independent of ¢, ®. Putting ® as test function in (3.82) we
have by (3.66) and (3.56)
][ ddy
Org

“/}]Qé’s(pdy‘ < /YDWu)‘,S:DCDdy
< || D@l 2yy2x2 + cey/ | Inre| [ DO 12252

<c ||DCD||L2(Y)2><2 <c ||‘/’||L2(Y)’

+¢

hence QA’ . is bounded in L§(Y )/R. From the boundedness and the Y -periodicity

of Wé . and QQ, . We thus deduce that the sequences wg, . and qé" ¢ Of (3.83) satisfy
the convergences

{wé,g — 0 weakly in H'(Q)? (3.87)

ql, — 0 weakly in L*(Q)/R.

Now, let us check that the periodic function wé’ . of (3.84) gives the same matrix

M (3.20) as the function wf; of (3.7) which satisfies a Dirichlet boundary condition.
Since M is symmetric, this is equivalent to prove that for any A € R?,

(Dwg ) ve -4 = (Dw) ve -4 — 0 inD'(Q), (3.88)

where v, is defined by (3.59). Let ¢ € C2°(2). Putting ¢ wé" . in the equation
(3.7) satisfied by wg‘ and ¢ wé in the equation (3.84) satisfied by wé" ¢» and using
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the convergences (3.87) satisfied by wé o q? . as well as the similar ones satisfied
by wy, g7, we get

/Dwé:Dwé’s(p—/curl(vg)Jwé’s-)»w — 0
Q Q

e—0

(3.89)
/ Dwévg:Dwé‘w—/curl(vg)]wﬁ-)up — 0.
Q Q e—0
Moreover, by the representation formula (3.11) we have
curl (v,) Jwga - (DwQE)T ve —0 . ., 5
; ' D(Q)~. 3.90
{curl(ua) Jwh— (D) v, — o MPE (3:50)

Therefore, combining (3.89) and (3.90) we obtain the desired convergence (3.88).
It remains to determine the matrix M. On the one side putting wé’ . as test func-
tion in (3.84) and using the convergences (3.88), (3.20), and on the other side using
the eY -periodicity of wé’ . (3.83), we get similarly to (3.9) and up to a subsequence
2 2 . 2 .
|Dw§"$] —~ Mx-A and |Dw9’8‘ Ag% (][Y|DW5:8| dy) weakly-* in M(R).

3.91)
This combined with (3.85) and (3.86) gives

1 -
Mx- )= ZJW*-A. (3.92)
Let us compute the constant vector W*. To this end, putting the divergence free
function Wé: . in the inequality (3.72) satisfied by V;, i = 1,2, and taking into

account the estimates (3.71), (3.56) and the boundedness of Wé . In H L(1)2, we
have

/ DV, :DW/}, dy=y/e - <][ Wﬁﬁgdy) +o(e). (3.93)
Y 0

Moreover, putting the divergence free function V! in (3.82) with V! = ¢; in Q,,,
we get

/IVDWQE:DV;dy=—s<][Q Vj—nyj)-JA:eJei.x+o(s), (3.94)

since by (3.71) V/ strongly converges to zero in L>(Y)?. The estimates (3.93) and
(3.94) divided by ¢ together with (3.86), (3.73) and (3.56) imply that

_ - 1
ye;- W»=Jei -1 or equivalently Wh = — —Ja. (3.95)
v

This combined with (3.92) yields the value (3.20) of the symmetric matrix M. [
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Proof of Proposition 3.8. Letv = (v1, v2) € WL (Q)2. Considering the functions
v, i = 1,2, which are defined by (3.68) and satisty the convergences (3.76), we
have

1 22
E, :=/ ‘DuS—Du—leve—szvg
Q
:/Q|Dug|2dx—/Q|Du|2dx+/g(u%|Dv;|2+u§|Du§|2)dx (3.96)

_ 2/ (m Du, : Dv! + vy Du, : Dvg) dx + o(1).
Q

Putting u, in equation (3.57) and u in equation (3.61) we get
/ |Dug|* dx —/ |Du|? dx = (f, U) -1(Q)2. 11 ()2 —f |Du|? dx+ o(1)
Q Q o Q
= / I'u-udx +o0(1) (3.97)
Q

Moreover, putting Vei in estimate (3.72) together with VS’ =e;in Q,,(3.71), (3.73),
(3.56), and using the ¢Y -periodicity of Dv,, we get

: 1 . _
|DUf;|2 — lim (—2][ |DV8’|2dy> _r weakly-* in M(Q2),
e—=>0\ & Y 4
hence since v; € C(),
/ (v} 1DulP + 03 1DV22) dx = Zf wldx+o(l).  (3.98)
Q 4 Ja
Estimates (3.96), (3.97) and (3.98) thus imply that

14 2 14 2
E, = — u dx-l——/v dx
‘ 4<y2+1>/g" 7 Jo !

(3.99)
- 2/ <v1 Du, : Dvg1 + vy Dug : Dvg) dx +o0(1).
Q

On the other hand, applying the estimate (3.75) with the function v = vj u,, i =
1, 2, and using the convergences (3.76), (3.73), (3.56) and (3.79), we obtain

/Dvé : Dug v dx:/ Dvé :D(vjug)dx + o(1)
Q

A 1y Ing (x
T "(/Q|Qrg|“8”’dx e G >“8”‘dx>+"(l)

Y
1—J - = v d ).
4(]/ +1)/ (y Yuv;dx 4/9141111 x +o(1)
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This combined with (3.99) yields

14 2 14 2
Ezi u dx+_/v dx
‘ 4<y2+1>/g" i )"

) (3.100)
14 14
+— u-vdx+7/ Ju-vdx 4+ o(1).
2(J/2+1)/g 2(2+ 1D Jo M
Putting the function
1
= — 1 J
vi= = Uty D
in (3.100) we get
1 2|?
E5:/ ‘Dug—Du—vl v} — vy DY dx — 0. (3.101)
Q £—>

; 2r
Finally, since the sequences v strongly converge to zero in L2 (2)2 by (3.76) and

u € WH(Q)2, the strong convergence (3.65) is a straightforward consequence of
(3.101). O
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