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Ordinary holomorphic webs of codimension one

VINCENT CAVALIER† AND DANIEL LEHMANN

Abstract. To any d-web of codimension one on a holomorphic n-dimensional
manifold M (d > n), we associate an analytic subset S of M . We call ordinary
the webs for which S has a dimension at most n − 1 or is empty. This condition
is generically satisfied, at least at the level of germs.

We prove that the rank of an ordinary d-web has an upper-bound π ′(n, d)
which, for n ≥ 3, is strictly smaller than the bound π(n, d) proved by Chern,
π(n, d) denoting the Castelnuovo’s number. This bound is optimal.

Setting c(n,h)=
(
n−1+h

h

)
, let k0 be the integer such that c(n,k0)≤d< c(n, k0+1).

The number π ′(n, d) is then equal

- to 0 for d < c(n, 2),

- and to
∑k0

h=1
(
d − c(n, h)

)
for d ≥ c(n, 2).

Moreover, if d is precisely equal to c(n, k0), we define off S a holomorphic con-
nection on a holomorphic bundle E of rank π ′(n, d) , such that the set of Abelian
relations off S is isomorphic to the set of holomorphic sections of E with vanish-
ing covariant derivative: the curvature of this connection, which generalizes the
Blaschke curvature, is then an obstruction for the rank of the web to reach the
value π ′(n, d).

When n=2, S is always empty so that any web is ordinary, π ′(2,d)=π(2,d),
and any d may be written c(2, k0): we recover the results given in [9].

Mathematics Subject Classification (2010): 53A60 (primary); 14C21, 32S65
(secondary).

1. Introduction

A holomorphic d-web W of codimension one on a n-dimensional holomorphic

manifold M being given (d > n), we denote by M0 the open set in M where

the web is locally defined by d holomorphic foliations Fi of codimension one, all
non-singular and with tangent spaces to the leaves distinct at any point.

We shall say that the web is in strong general position (SGP) if any subset of

n leaves among the d leaves through a point of M0 are in general position. For
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instance, any algebraic web (i.e. any web in Pn whose leaves are the tangent hy-
perplanes belonging to some irreducible non-degenerate algebraic curve in the dual

projective space P′
n) is SGP. If we assume only that there exists a subset of n leaves

among the d’s which are in general position (but not necessarily any n of them), we

shall say that the web is in weak general position (WGP). Most of our results below

will require only this weaker condition1. Notice that, for a WGP web which is not

SGP, the various local foliations defining the web will not all play the same role.

On an open set U in M0 sufficiently small for the web to be defined as above

by the data of d distinct local foliations Fi (such an open set is called “open set of
distinguishability”), an Abelian relation is the data of a family (ωi )i of holomorphic
1-forms ωi , (1 ≤ i ≤ d) such that

(i) each ωi is closed,
(ii) the vector fields tangent to the local foliation Fi belong to the kernel of ωi ,
(iii) the sum

∑d
i=1 ωi vanishes.

[If U is moreover simply connected, each ωi of such an Abelian relation has a
holomorphic primitive fi which is a first integral of the local foliation Fi . The def-
inition above of an Abelian relation is therefore equivalent -at the level of germs-

to the original one which was: “a family ( fi ) of first integrals for the local folia-
tions Fi defining the web, defined up to an additive constant, such that

∑
i fi be

constant”.]

The set of Abelian relations on U (respectively the set of germs of Abelian

relation at a point m of M0) has the structure of a finite dimensional complex vector

space, whose dimension is called the rank of the web onU (respectively atm). For a

SGP web, Hénaut proved that its rank at a point does not depend on this point [10]:

Abelian relations have then the structure of a local system of coefficients2. When

we require only the web to be WGP, we shall call “rank of the web” the maximum

of the rank at each point of M0. Notice that, in this case, the rank at a point is an

upper-semicontinuous function of the point.

The terminology “Abelian relation” arises from a theorem of Abel which as-

serts (in another language, and after duality) that the rank of the algebraic d-web in

Pn , whose leaves are the hyperplanes belonging to some irreducible non-degenerate
algebraic curve # of degree d in the dual projective space, is at least equal to the

arithmetical genus of #.
On the other hand, Chern proved that the rank of a SGP web is always upper-

bounded by the so-called Castelnuovo’s number

π(n, d) =
∑

h≥1

(
d − h(n − 1) − 1

)+
, where (a)+ = sup (a, 0),

1 More generally, if there exists $ and not more among the leaves through a point which are in
general position ($ ≤ n), there exists locally a holomorphic foliation G of codimension $, such
that the web is locally the pullback of a d-web of codimension 1 on a $-dimensional manifold
transverse to G. Then, many of the results below would remain valid, after replacing n by $.
2 In [11], he generalized this result in higher codimension.
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that Castelnuovo proved to be the maximum of the arithmetical genus of an irre-

ducible non-degenerate algebraic curve of degree d in the n-dimensional complex

projective space Pn (see [8]). Combining these theorems of Abel, Castelnuovo and
Chern, we deduce that the bound π(n, d) is optimal for SGP webs.

The non-algebraizable or non-linearizable webs which have maximal rank

π(n, d) are usually called exceptional. The first example of such a web has been
given by Bol seventy years ago, but many among the more or less recent works, in-

cluding those by Chern-Griffiths, Goldberg-Lychagin, Hénaut, Pereira, Pirio,

Robert, Trépreau,. . . discuss problems around this subject. See surveys with many

historical references in Hénaut [12], Pereira [14], and Pereira-Pirio [16].

We worked in another direction. In fact, given a d-web on a holomorphic sur-

face, Hénaut constructed in [9] a holomorphic bundle of rank π(2,d)=(d−1)(d−2)/2
above the surface, with a holomorphic connection ∇, such that Abelian relations
may be identified with holomorphic sections u of this bundle having a vanishing

covariant derivative (∇u = 0): the curvature of this connection is therefore an

obstruction for the web to have maximal rank π(2, d), generalizing the Blaschke-
Dubourdieu curvature of the case d = 3. The method (whose principle is already in

an old paper of Pantazi [13] but not using connections) consists in the construction

of some prolongation of the partial derivative equation, the solutions of which are

the Abelian relations.

The first aim of our work was to generalize this construction of Hénaut to any

n ≥ 2. But some difficulties appear which do not exist in dimension 2. Lemma 2.2

below implies in fact that two conditions must be satisfied:

– on one hand, the construction may work only off some analytical subset S of

M0, attached to the web, and has therefore little interest if S has the same

dimension n as M;

– on the other hand, d must be equal, for some h ≥ 2, to the dimension c(n, h)
of the vector space of all homogeneous polynomials of degree h in n variables

with scalar coefficients).

In the case n = 2, it happens that S is always empty, and that any d may be written

c(2, d − 1).
But, for n ≥ 3, S may be non-empty; by chance, if it is not empty, it has

generically (at least locally) a dimension at most n − 1: it is the reason why we

shall say below that such webs are ordinary. Rather than “extraordinary”, the other

ones will be said to be special. For example, a foliation defined by a pencil of

parallel planes in C3 is determined by the common line of these planes at infinity;
thus, given six such lines in the plane at infinity, they define a 6-web in C3. Such a
web is ordinary as far as the six lines are not tangent to a same conic: this condition

is obviously generically satisfied.

By the way, we proved that, whatever be d (d > n), not necessarily belonging

to the previous sequence
(
c(n, h)

)
h
, the rank of any ordinary d-web is at most

equal to some bound π ′(n, d) which, for n ≥ 3, is strictly smaller than the Chern’s

bound π(n, d) by the Castelnuovo’s number.
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More precisely, for any d, (d > n), denote by k0 the integer (≥ 1) such that

c(n, k0) ≤ d < c(n, k0 + 1),

and set:

π ′(n, d) = 0 when d < c(n, 2), (k0 = 1),

= ∑k0
h=1

(
d − c(n, h)

)
when d ≥ c(n, 2), (k0 ≥ 2).

The main results of this paper are then the two following:

Theorem 1.1. The rank of any ordinary d-web on some n-dimensional manifold

M0 is at most equal to π ′(n, d). This bound is optimal.

Theorem 1.2. If d = c(n, k0), and if the d-web is ordinary, there exists a holomor-
phic vector bundle E of rank π ′(n, d) over M0 \ S and a holomorphic connection ∇
on E , such that the vector space of germs of Abelian relations at a point of M0 \ S
is isomorphic to the vector space of germs of sections of E which have a vanishing
covariant derivative : the curvature of this connection is then an obstruction for the

rank of the web to reach the maximal value π ′(n, d).

Remark 1.3. Unfortunately, this curvature is often difficult to compute manually.

It would be very interesting to perform a good program providing easily this curva-

ture by computer.

In the last section, we give a second proof of theorem 1-1 in the particular case

of SGP webs. We prove also that all ordinary parallel d-webs in Cn (i.e. ordinary

d-webs which are defined by d pencils of parallel hyperplanes) have rank π ′(n, d),
hence the optimality of this bound. We give finally significative examples of the

various possible situations.

We have announced our results in a preprint (arXiv [4]), and a survey without

proof has been published in [5] (where we called “regular” the webs that we say

now to be “ordinary”). We tried also to give a global meaning to our constructions,

using our paper [6] (generalizing partially [7]).

The notion of “ordinary web” induces obviously problems in algebraic geom-

etry, that we hope to study in a near future:

– what are the “ordinary irreducible non-degenerate algebraic curves” in Pn (i.e.
curves whose associated web in the dual projective space is ordinary)?

– among the ordinary curves of degree d, which ones have maximal arithmetical

genus π ′(n, d)?
– what can be said about the algebraizability of ordinary webs having “sufficiently

many” Abelian relations? (see [16,19] for the non-necessarily ordinary case).

ACKNOWLEDGEMENTS. We thank A. Hénaut, J.V. Pereira and L. Pirio for very

helpful conversations.
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2. Notations and backgrounds

Most of the results in this section are well known or easy to prove, so that we shall

omit their proof.

2.1. Some algebraic notations

Let Rh[X1, · · · , Xn] denote the vector space of homogeneous polynomials of de-
gree h in n variables, with scalar coefficients (in fact, the field of scalars

does not matter). Denote by c(n, h) its dimension

(
h + n − 1

h

)
. The monomials

XL = (X1)
λ1 . · · · (Xn)λn make a basis, indexed by the set P(n, h) of the parti-

tions L = (λ1, λ2, · · · , λn) of h, with 0 ≤ λi ≤ h for any i = 1, · · · , n, and∑n
i=1 λi = h. The number h will be also denoted by |L|, and is called the height

of L .

Denoting by (a)+ the number sup (a, 0) for any real number a, remember ([8])
that the number

π(n, d) =
∑

h≥1

(
d − h(n − 1) − 1

)+
,

called the Castelnuovo’s number, is the maximum of the arithmetical genus of an

algebraic irreducible non-degenerate curve of degree d in the complex projective

space Pn .
Define

π ′(n, d) = 0 when d < c(n, 2),

= ∑
h≥1

(
d − c(n, h)

)+
when d ≥ c(n, 2).

Lemma 2.1.

(i) For n ≥ 3, the inequality π ′(n, d) < π(n, d) holds.
(ii) The equality π ′(2, d) = π(2, d) holds.

2.2. Connections adapted to a differential operator

Let E → V be a holomorphic vector bundle on a holomorphic manifold V . Re-

member the exact sequence of holomorphic vector bundles

0 → T ∗V ⊗ E → J 1E → E → 0,

where J 1E denotes the holomorphic bundle of 1-jets of holomorphic sections of E ,

and T ∗V the holomorphic bundle of 1-forms of type (1, 0) on V . A C∞-connection
∇ on E of type (1, 0) (respectively a holomorphic connection if any) is a C∞-
splitting (respectively a holomorphic splitting if any) of this exact sequence:

0 → T ∗V ⊗ E

β←−−→ J 1E
α←−−→ E → 0.
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If u is a C∞ or holomorphic section of E , its covariant derivative is given by

∇u = β( j1u).

A holomorphic linear differential operator of order p on the holomorphic manifold

V is a morphism of holomorphic vector bundles D : J pE → F , for some vector

bundles E and F on V , to which we associate the map D : u +→ D( j pu) from the
sections of E into the sections of F . The kernel R of D is a subset of J pE , which

is the set of the formal solutions at order p of the equation Du = 0. A section u of

E such that Du = 0 is called a “solution” of this equation

The morphism D induces a morphism j1D : J 1(J pE) → J 1F whose restric-

tion D̃ : J p+1E → J 1F to the sub-bundle J p+1E ⊂ J 1(J pE) is called the first
prolongation of D, and the sections u of E such that D̃( j p+1u) = 0 are also the

solutions of the equation Du = 0 .

Assume that R is a holomorphic vector bundle above V . Then J 1R is a sub-

vector bundle of J 1(J pE), as well as J p+1E . The kernel R′ of the morphism
D̃ : J p+1E → J 1F (the space of formal solutions at order p + 1 of the equation

Du = 0) is then equal to the intersection J 1R ∩ J p+1E in J 1(J pE).

J 1(J pE) = J 1(J pE)
j1D−→ J 1F

↑ ↑
inclusion inclusion =/

| |
J 1R ←↩ R′ ↪→ J p+1E

D̃−→ J 1F

↓ ↓ ↓ ↓
R = R ↪→ J pE

D−→ F

↓
V

From the Spencer-Goldschmidt theory [18], we deduce:

Lemma 2.2. The two following assertions are equivalent:

(i) The projection R′ → R is an isomorphism of holomorphic vector bundles.

(ii) There is a holomorphic connection ∇ on R → V such that the map u +→ j pu

is an isomorphism from the space of solutions u of the equation Du = 0 into

the space of sections of R with vanishing covariant derivative.

Moreover, such a connection∇ is unique and defined as being the map α : R→ J 1R

equal to the composition of the inclusion R′ ↪→ J 1R with the inverse isomorphism

R → R′.

[This lemma is used by Hénaut in [9] under an equivalent form.]
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2.3. The differential operator for Abelian relations

Recall (see [6]) that, globally, a WGP d-web on a n-dimensional holomorphic man-

ifold M (with d > n) is defined by a n-dimensional analytical subspace W of the

projectivized cotangent space P(T ∗M), on the smooth part of which the canonical

contact form becomes integrable and induces a foliation F̃ ]. Let W0 be the set of
points in W over M0 and πW : W0 → M0 be the d-fold corresponding covering.

For any complex holomorphic vector bundle E of rank r over W0, let π∗E be the
holomorphic bundle of rank d×r over M0, whose fiber at a pointm ∈ M0 is defined

by

(π∗E)m =
⊕

m̃∈(πW )−1(m)

Em̃ .

The sheaf of holomorphic sections of π∗E is then the direct image of the sheaf of
holomorphic sections of E by πW . For instance, a germ ω of π∗(T ∗F̃) at m is a

family (ωi ) of germs ωi at m of forms (1 ≤ i ≤ d), such that the kernel of ωi
contains the tangent space Ti to the local foliation Fi (and is therefore equal to it
when ωi is not zero).

Let Tr : π∗(T ∗F̃) → T ∗M0 be the morphism of holomorphic vector bundles
given by

Tr ω =
d∑

i=1
ωi .

Observe that this morphism doesn’t depend on the numbering of the ωi , since
∑

i

is symmetric with respect to the indices i , so that Tr has a global meaning. Since

the web is WGP, it is easy to check that Tr has constant rank n. Then, we define a

holomorphic vector bundle A of rank d−n over M0 as the kernel of this morphism.

Definition 2.3. The vector bundle A of rank d − n so defined will be called the

Blaschke bundle of the web.

Let us define similarly a holomorphic vector bundle B over M0, of rank

(d − 1)n(n− 1)/2, as the kernel of the morphism Tr : π∗(
∧2

T ∗W0) → ∧2
T ∗M0

given locally by Tr* = ∑d
i=1*i .

Definition 2.4. We call Abelian relation of the web any holomorphic section u of

the Blaschke bundle A, which is solution of the equation Du = 0, the map D
denoting the linear first order differential operator from A to B locally defined by

(ωi ) +→ (dωi ) .

The differential operatorDmay still be seen as a linear morphism D : J 1A→B,

and the kernel R0 of this morphism is the space of “formal Abelian relations at order

one”. Hence, a necessary condition for an Abelian relation to exist above an open

subset U of M0 is that U belongs to the image of R0 by the projection J
1A → A.

We shall see that it generically not the case for d < c(n, 2).
More generally, denote by Dk : J k+1A → J k B the kth prolongation of D.

The kernel Rk of the morphism Dk is the space of formal Abelian relations at order
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k + 1. Abelian relations may still be seen as the holomorphic sections u of A such

that j k+1u be in Rk . Let πk+1 denote the natural projection Rk+1 → Rk . Let

σk+1 : Sk+2(T ∗M0) ⊗ A → Sk+1(T ∗M0) ⊗ B be the symbol of Dk+1, gk+1 be
the kernel of this symbol, and Kk its cokernel. After the snake’s lemma, there is a

natural map ∂k : Rk → Kk in such a way that we get a commutative diagram with

all lines and columns exact.

[Notice that, in this diagram, the Rk’s, gk’s and Kk’s are not necessarily vector

bundles: exactness has then to be understood as the exactness on the fibers at any

point of M0. Moreover, we allow k to take the value −1, with the convention
R−1 = A, J−1B = 0.]

0 0 0 Rk

↓ ↓ ↓ ↓ ∂k

0→ gk+1 →Sk+2(T ∗M0)⊗A
σk+1−→ Sk+1(T ∗M0)⊗B → Kk → 0

↓ ↓ ↓ ↓

0 → Rk+1 → J k+2A
Dk+1−→ J k+1B →coker Dk+1→ 0

↓ πk+1 ↓ ↓ ↓

0 → Rk → J k+1A
Dk−→ J k B → coker Dk → 0

↓ ∂k ↓ ↓ ↓

Kk 0 0 0

In the sequel,

the index i will run from 1 to d,

the indices α,β, · · · will run from 1 to n − 1,

and the indices λ, µ, · · · will run from 1 to n.
For any holomorphic function a and local coordinates x , a′

λ will denote the

partial derivative a′
λ = ∂a

∂xλ
. More generally, for any partition L = (λ1, λ2, · · · , λn)

of |L| = ∑
µ λµ, (L ∈ P(n, |L|) ), we denote by (a)′

L
the corresponding higher

order derivative (a)′
L

= ∂ |L|a
(∂x1)

λ1 ···(∂xn)λn .

3. Definition of the analytical set S

This definition is different according to the inequalities d < c(n, 2) or d ≥ c(n, 2).
However, in both cases, this set will satisfy to the
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Lemma 3.1. The set S is an analytical set which, at the level of germs, has generi-

cally a dimension ≤ n − 1 or is empty.

3.1. Definition of S in the case n < d < c(n, 2)

For n < d < c(n, 2), S will denote the subset of elements m ∈ M0 such that the

vector space (R0)m = (π0)
−1(Am) has dimension at least 1. The proof of Lemma

3.1 for d < c(n, 2) will be given in the next section, after the description of the
map π0.

Proof of Theorem 1.1 in the case d < c(n, 2). For d < c(n, 2), all ordinary d-webs
of codimension one have rank 0.

The fact that all ordinary d-webs have rank 0 for d < c(n, 2) on M0 \ S is a
tautology, because of the definition of S. Therefore, they still have rank 0 on all of

M0, because of the semi-continuity of the rank at a point.

3.2. Definition of S in the case d ≥ c(n, 2)

Let ηi be an integrable 1-form defining the local foliation Fi of a d-web of codi-
mension 1. For any integer h ≥ 1, let (ηi )

h be the hth symetric power of ηi in the
space Sh(T ∗M0) of homogeneous polynomials of degree h on the complex tangent
tangent bundle T M0. For any m ∈ M0, let rh(m) be the dimension of the subspace
Lh(m) generated in Sh(T ∗

mM0) by the (ηi )
h(m)’s with 1 ≤ i ≤ d (not depending

on the choice of the ηi ’s). We have obviously the

Lemma 3.2. The following inequality holds:

rh(m) ≤ min
(
d, c(n, h)

)
.

In particular, r1≡ n, since we assume d > n and the web to be WGP. And rh ≡ d

for h > k0, where k0 denotes the integer such that

c(n, k0) ≤ d < c(n, k0 + 1).

Definition 3.3 (of S for d≥c(n,2) (i.e. k0≥2)). Let Sh be the set of pointsm∈M0
such that rh(m) < min

(
d, c(n, h)

)
, and set: S = ⋃k0

h=2 Sh .

Proof of Lemma 3.1 for d ≥ c(n, 2). Let (xλ)1≤λ≤n be a system of holomorphic lo-
cal coordinates near a point m0 of M0, and assume that the local foliation Fi is
defined by

∑
λ piλdxλ = 0. Then rh(m) is the rank of the matrix

Ph = ((C
(h)
i L))i,L

of size d × c(n, h) at point m, where 1 ≤ i ≤ d, and L runs through the set

P(n, h) of the partitions L = (λ1, λ2, · · · , λn) of h (i.e.
∑n

s=1 λs = h), and where

C
(h)
i L = ∏n

s=1 pi λs
. Thus, for 2 ≤ h ≤ k0, Sh is locally defined by the vanishing of

all determinants of size c(n, h) in Ph . Exceptionnaly, it may happen that all of these
determinants are identically 0, so that Sh will have dimension n. But generically,

these determinants will vanish on hypersurfaces or nowhere.
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4. Computation of R0

Locally, the d-web is defined over M0 by a family of 1-forms

ηi = dxn −
∑

α

p
iα (x) dxα,

which we still may write ηi = −∑
λ piλ(x) dxλ with the convention pin ≡ −1.

Lemma 4.1. The integrability conditions may be written locally:

(piλ)
′
µ − (piµ)′λ + piµ(piλ)

′
n − piλ(piµ)′n ≡ 0 for all triples (i, λ, µ).

Proof. Let η = −∑
λ pλ(x) dxλ be a holomorphic 1-form. Then

η ∧ dη =
∑

λ<µ<ν

[
pλ

(
(pν)

′
µ − (pµ)′ν

)
+ pµ

(
(pλ)

′
ν − (pν)

′
λ

)

+ pν

(
(pµ)′λ − (pλ)

′
µ

)]
dxλ ∧ dxµ ∧ dxν .

Then, when pn ≡ −1, we observe that the vanishing of all terms in dxλ∧dxµ∧dxn
implies the vanishing of all other terms, hence the lemma.

A section (ωi )i of A is locally given by the d functions fi such that

ωi = fi
(∑

λ piλ(x) dxλ

)
satisfying to the identities

(Eλ)
∑

i

p
iλ fi ≡ 0 for any λ,

hence, by derivation,

(Eλ,µ)
∑

i

(p
iλ fi )

′
µ ≡ 0 for any λ, µ.

Lemma 4.2. For the family ( fi )i to define an Abelian relation, it is necessary and
sufficient that the identities be satisfied

(Fiα) ( fi )
′
α ≡ −

(
fi piα

)′
n
for all pairs (i,α).

Proof. In fact, a holomorphic 1-form f
(∑

λ pλ(x) dxλ

)
is closed iff

( f pλ)
′
µ = ( f pµ)′λ for all pairs (λ, µ) such that λ < µ. But, because of the in-

tegrability conditions, it is sufficient that this relation be satisfied when µ = n, for

it to be satisfied with all other µ’s.

Lemma 4.3. When the family ( fi )i defines an Abelian relation, the identities (Eλ,µ)
and (Eµ,λ) are the same.
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Proof. In fact, under the assumption, ( fi piλ)
′
µ ≡ ( fi piµ)′λ for all pairs (λ, µ),

hence the lemma by summation with respect to i .

The identity ( fi )
′
α ≡ −

(
fi piα

)′
n
means that it is sufficient to know the ( fi )

′
n

to know the other partial derivatives ( fi )
′
α of a family ( fi )i defining an Abelian

relation.

Writing wi = ( fi )
′
n , and combining (Eλ,µ) and (Fiα), we deduce:

Corollary 4.4. The elements of R0 above a given element ( fi )i in A map bijectively
onto the solutions of the linear system /0.

(Ẽλ,µ)
∑

i

p
iλ piµwi ≡

∑

i

fi
[
(p

iλ)
′
µ − p

iλ(piλ)
′
n

]

of c(n, 2) equations (Ẽλ,µ) with d unknown wi .

Notice that the matrix of the system /0 is the matrix P2 = ((C
(2)
i L))i,L seen in

the previous section.

Proof of the Lemma 3.1 in the case d < (c(n, 2). Generically, the system /0 has
rank d. Hence S is defined locally by the vanishing of all characteristic deter-

minants which are generically not all identically zero. If /0 has a rank r smaller
than d, the vanishing of all determinants of size r + 1, · · · , d in the matrix P2 have
to be added to the vanishing of all charateristic determinants.

5. Computation of Rk (k ≥ 1)

For any pair of multi-indices of derivation L = (λ1, · · · , λs, · · ·, λn), and
H=(h1,h2, · · ·,hn), L+H will denote the multi-index (λ1+h1, λ2+h2, · · ·, λn+hn).
We define similarly L − H if λµ ≥ hµ for all µ’s. For any λ, 1λ will denote the

muti-index with all λµ’s equal to zero for µ 5= λ and λλ = 1. By definition the

height |L| of L is the sum∑
s λs .

By derivation of the identities (Eλ), the elements of J
k A are characterized by

the identities

(Eλ,L)
∑

i

(p
iλ fi )

′
L ≡ 0 for any λ and for any multi-index L of height |L| ≤ k.

Lemma 5.1. If ( fi )i is an Abelian relation, the relation (Eλ,L) remains unchanged
by permutation of all the indices of L ∪ {λ}.
Proof. The left hand term of this identity is obviously symetric with respect to the

indices of L . Thus, it is sufficient to prove that the identities (Eλ,µ) and (Eµ,λ) are
the same, which we know already.

The identity (Eλ,L) above will now be denoted by (EH ), where H = L + 1λ.
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Lemma 5.2.

(i) If ( fi )i is an Abelian relation, all partial derivatives ( fi )
′
L may be written as a

linear combination

(F̃i L) (̃ fi )
′
L ≡

|L|∑

k=0
D

(k)
i L . ( fi )

′
nk

of fi and of its partial derivatives ( fi )
′
nk

= ∂(k) fi
(∂xn)k

with respect to the only

variable xn , with coefficients D
(k)
i L not depending on the fi ’s.

(ii) If L = (λ1, · · · , λs, · · · , λn), the coefficient D
(|L|)
i L of highest order is equal to

(−1)|L| ∏n
s=1 p

λs
i
, i.e. is equal to (−1)|L|C(|L|)

i L .

Proof. We get the lemma by derivation of the identities (Fiα) and an obvious in-
duction on the height |L| of L .

The lemma above means that it is sufficient to know the ( fi )
′
nk+1 to know the

other partial derivatives ( fi )
′
L in the (k+1)-jet of a family ( fi )i defining an Abelian

relation.

Hence, writing wi = ( fi )
′
nk+1

, and combining (EL and (F̃i L), we get:

Corollary 5.3. The elements of Rk above a given element a
(k−1)
0 in Rk−1 map bi-

jectively onto the solutions of a linear system/k of c(n, k+2) equations (ẼL) with
d unknown wi

(ẼL)
∑

i

C
(k+2)
i L wi ≡ 0L

(
a

(k−1)
0

)
,

where L runs through the setP(n, k+2) of partitions of k+2, and where the second
member 0L

(
a

(k−1)
0

)
depends only on a

(k−1)
0 ∈ Rk−1. In particular, the symbol σk

of Dk is defined by the matrix

Pk+2 = ((C
|L|
i L))i,L ,

1 ≤ i ≤ d, |L| = k + 2, of size d × c(n, k + 2).

Theorem 5.4. Assume the d-web to be ordinary. The map πk : Rk → Rk−1 is
surjective for k ≤ k0−2 and injective for k > k0−2 above the open setU = M0\S
of M0. For k ≤ k0 − 2, Rk is a holomorphic bundle of rank

∑k+2
h=1

(
d − c(n, h)

)

over M0 \ S.

Proof. In fact, Pk+2 is precisely the matrix of the system/k . Thus, for k≤k0−2 and
off Sk , the space of solutions of/k is an affine space of dimension d−c(n,k+2).
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Proof of Theorem 1.1 in the case d > c(n, 2). The rank of a ordinary d-web is at
most equal to the number

π ′(n, d) =
k0∑

h=1

(
d − c(n, h)

)
.

For k > k0 − 2, the symbol σk is necessarily injective off S. In fact, the matrix
defining this symbol in the corollary above contains the matrix defining σk−1 when
we choose the coordinates and the forms ηi ’s so that pin ≡ −1. Hence, since
gk0−2 = 0 off S, gk = 0 off S for all k ≥ k0 − 2. Consequently, above a given

element in Rk0−2, there exists at most one infinite jet of Abelian relation, hence
one germ of Abelian relation since the framework is analytic. We deduce that the

rank of the web is at most π ′(n, d) off S, hence everywhere (semi-continuity of the
rank). We shall see in the next section that any ordinary SGP parallel web has rank

π ′(n, d), hence the optimality.

Proof of Theorem 1.2. When d = c(n, k0), E = Rk0−3|M0\S is a vector bundle
of rank π ′(n, d), and πk0−2 : Rk0−2 → Rk0−3 is an isomorphism of vector bun-

dles over M0 \ S. Therefore, we just have to use lemma 2-2. In particular, for
d = c(n, k0), the rank of a ordinary d-web is π ′(n, d) if and only if the curvature
of the previous connexion vanishes.

6. Examples

6.1. Case n = 2

We recover the results of [9]. In fact, in this case:

– the set S is always empty (all determinants occuring in the computation of the

symbols σk are determinants of Vandermonde for k ≤ k0−2, vanishing nowhere
on M0); thus, all webs are ordinary.

– any d is equal to c(2, d − 1),

– the rank
∑d−2

h=1
(
c(2, d − 1) − c(2, h)

)
of Rd−4 is equal to (d − 1)(d − 2)/2.

6.2. Case n = 3, d = 6

Use coordinates x, y, z on C3, with n = 3, and d = 6 (= c(n, 2)). Let a, b, c, e, h
be five distinct complex numbers, all different of 0, and let ψ be some holomorphic

function of y. Let W be the 6-web of codimension 1 on C3 defined by the 1-forms
ηi = dz − pidx − qidy, 1 ≤ i ≤ 6, where: (p1, q1) = (0, 0), (p2, q2) = (a, a2),
(p3, q3) = (b, b2), (p4, q4) = (c, c2), (p5, q5) = (e, e2) and (p6, q6) = (h,ψ).
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The system /0 is then equivalent to




a b c e

a2 b2 c2 e2

a3 b3 c3 e3

a4 b4 c4 e4









w2
w3
w4
w5



 =





0

0

0

f6.ψ
′



 ,

to which we add the equations (h2 − ψ)w6 = 0, and w1 + w2 + · · · + w6 = 0. The

system is a system of Cramer off the locus S which is

– the surface of equation ψ(y) = h2 in general,

– the empty set when ψ is any constant different of h2,

– all of C3 (the special case) for ψ ≡ h2.

Let’s precise the connection and its curvature for ψ 5= h2 in the two first cases (the

ordinary cases).

A section ( fi ) of A is defined by ( f4, f5, f6), since ( f1, f2, f3) can be deduced
using the equations

∑
i fi = 0,

∑
i pi fi = 0 and

∑
i qi fi = 0.

Set2 = abce(b− a)(c− a)(e− a)(c− b)(e− b)(e− c)(h2 − ψ), K = ψ ′
2(h2−ψ)

,

24 = abe((b−a)(e−a)(e−b), and25 = abc((b−a)(c−a)(c−b). We then get:
w4 = −K24, w5 = K25, w6 = 0, hence u4 = cK24, u5 = −eK25, u6 = 0 and

v4 = c2K24, u5 = −e2K25, u6 = 0. With respect to the trivialization (σ4,σ5,σ6)
of A given by σ4 = ( f4 ≡ 1, f5 ≡ 0, f6 ≡ 0), σ5 = ( f4 ≡ 0, f5 ≡ 1, f6 ≡ 0) and
σ6 = ( f4 ≡ 0, f5 ≡ 0, f6 ≡ 1), the matrix of the connection is:

ω = ψ ′

2(h2 − ψ)




0 0 24 η4
0 0 −25 η5
0 0 0



 ,

hence the curvature

3 = 1

2

( ψ ′

h2 − ψ

)′



0 0 24(dy ∧ dz + c dx ∧ dy)
0 0 −25(dy ∧ dz + e dx ∧ dy)
0 0 0



 .

We observe that σ4 and σ5 are linearly independant Abelian relations. We knew
it already since the first integrals (z − cx − c2y) and (z − ex − e2y) of F4 and
F5 respectively are linear combinations of the first integrals z, (z − ax − a2y) and
(z − bx − b2y) of F1, F2 and F3. Thus, when h2 − ψ does not vanish, the rank

of the 6-web is at least 2, and has the maximum possible value π ′(3, 6) = 3 in

the ordinary case if and only if
ψ ′

h2−ψ
is constant, that is if there exists two scalar

constant C and D (C 5= 0), such that

ψ(y) = h2 + CeDy,

in particular for ψ = constant (case D = 0). For given C and D as above,

K = −D/2, and σ6 − K24σ4 + K25σ5 is an Abelian relation (the function
ψ occurs in the computation of f1, f2 and f3 from f4 = −K24, f5 = K25 and

f6 = 1).

The special case ψ ≡ h2 will be seen in the next subsection.
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6.3. Ordinary parallel webs and optimality of the bound π ′(n, d)

For any pair (n, d) with d > n, give d linear forms (l1, l2, · · · , ld). Let Fi
be the foliation defined in Cn by the parallel hyperplanes li = constant, and

W be the d-web defined by these d foliations. Let k0 be the integer such that

c(n, k0) ≤ d < c(n, k0 + 1). Let Pn−1 denote the hyperplane at infinity of the
n-dimensional projective space Pn = Cn

∐
Pn−1: the parallel hyperplanes of the

pencil li = constant meet at infinity along a hyperplane of Pn−1, i.e. define an
element [li ] of the dual projective space P′

n−1 .

Remark 6.1. The web W on Cn extends to a web on Pn (with singularities) which
is algebraic. It is in fact dual to the union of d straight lines in the dual projective

space P′
n .

Definition 6.2. Such a web on Cn will be said a parallel d-web.

Lemma 6.3. The two following properties are equivalent:

(i) The parallel d-web above is ordinary.

(ii) For any h, (1 ≤ h ≤ k0), there exists c(n, h) points among the d points [li ],
which do not belong to a same algebraic (reducible or not) hypersurface of
degree h in P′

n−1.

Proof. For d ≥ c(n, h), (h ≥ 1), assume that the matrix ((C
(h)
i L))i,L , 1 ≤ i ≤ d,

|L| = h, of size d × c(n, h) has rank < c(n, h). This means that the determinant
of any square sub-matrix of size c(n, h) vanishes. Saying that the determinant of
the sub-matrix given for instance by the c(n, h) first li ’s vanishes means precisely
that [l1], [l2], · · · , [lc(n,h)] belong to some hypersurface of degree h in P′

n−1 (may
be reducible), and same thing for any other subset of c(n, h) indices i . Hence the
lemma is proved.

Corollary 6.4. The bound π ′(n, d) for the rank of an ordinary web is optimal.

Proof. Remember that an algebraic hypersurface of degree h in P′
n−1 is defined in

general by the data of c(n, h) − 1 of its points: thus, the property (ii) of Lemma 6.3
above is generically satisfied, so that there exists (many) ordinary parallel d-webs

in dimension n for any (n, d).

By contraposition of the previous lemma, we get also that special parallel d-

webs are defined by d points [li ] in P′
n−1 belonging to a same algebraic hypersurface

of degree h in P′
n−1, for some h, (1 ≤ h ≤ k0).

Theorem 6.5.

(i) If the d points [li ] are in general position in P′
n−1 (i.e. if any n of the d

linear forms li are linearly independant), the above parallel d-web has rank
≥ π ′(n, d).

(ii) It has exactly rank π ′(n, d) if and only if it is ordinary.
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Proof. For any h, consider the vector space Lh generated by the h
th symetric prod-

ucts (li )
h of the li ’s, and denote by rh the dimension of this vector space. After [19],

the rank of a parallel SGP web is
∑k0

h=1(d − rh). Hence we have only to prove that
rh ≤ c(n, h) in general, and rh = c(n, h) in the ordinary case. But this is obvious
after the previous lemma, since the dimension of Lh is exactly the rank of the matrix

Ph = ((C
(h)
i L ))

i,L with i ≤ d, |L| = h in the linear system/h−2 of Corollary 5.3.

For instance, a parallel SGP 6-web on P3 will be special of rank 4
(
=π(3, 6)

)
or

ordinary of rank 3
(
= π ′(3, 6)

)
, according to the fact that the six points [li ] belong

or not to a same conic of P′
2: when ψ is constant in the example (p1, q1) = (0, 0),

(p2, q2) = (a, a2), (p3, q3) = (b, b2), (p4, q4) = (c, c2), (p5, q5) = (e, e2) and
(p6, q6) = (h,ψ) of the previous subsection, the five first points belong to the conic
of equation q = p2, hence the dichotomy according to the fact that ψ is equal or

different of h2. [In the special case, it is amazing to deduce the fourth Abelian

relation from the Pascal’s theorem of the hexagon.]

New proof of the Theorem 1.1 for d ≥ c(n, 2) in the case of SGP ordinary webs.
The rank of a SGP web is upper-bounded by the rank of the “tangent parallel web”

at a point. Since the fact that a web be ordinary near a point is equivalent to the fact

that the tangent parallel web at that point is ordinary, theorem 1-1 is also a corollary

of the previous Theorem 6.5, when the ordinary web is SGP.

6.4. An example of ordinary web of maximal rank 26 for n = 3, d = 15

The following example has been given to us by L. Pirio ([17]).

In C3 with coordinates x, y, z, consider the 15-web defined by ten pencils of
planes, four pencils of quadratic cones or cylinders, and a last pencil of quadrics,

respectively defined by the following first integrals ui (1 ≤ i ≤ 15):

u1 = x , u2 = y , u3 = z,

u4 = z
z−y , u5 = z

z−x , u6 = y
y−x ,

u7 = 1−z
y−z , u8 = 1−z

z−x , u9 = 1−y
y−x ,

u10 = x−y
z−y , u11 = z(1−y)

z−y , u12 = z(1−x)
z−x ,

u13 = y(1−x)
y−x , u14 = z(x−y)

x(z−y) , u15 = (1−z)(y−x)
(1−x)(y−z) .

Denote by mX = [1; 0; 0; 0], mY = [0; 1; 0; 0], mZ = [0; 0; 1; 0] and
mT = [0; 0; 0; 1] the vertices of the standard projective frame in P3: the folia-
tions 1 to 6 are the pencils of planes through the six lines of the tetrahedron. Denote

by 3X = [0; 1; 1; 1], 3Y = [1; 0; 1; 1], 3Z = [1; 1; 0; 1] and 3T = [1; 1; 1; 0]
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the barycenters of the faces of the previous tetrahedron: the foliations 7, 8, 9 and 10

are respectively the foliations given by the pencil of planes through the line mX3X

(respectively mY3Y , mZ3Z and mT3T ).

The foliation 11 is the pencil of the quadratic cylinders of vertex mX having

for base the conics through 3X ,mY ,mZ ,mT in the plane X = 0. We get similarly

the foliations 12, 13, and 14 by permutation of the letters X,Y, Z , T .

The 5-subweb (1, 2, 3, 10, 14) is then the 5-web of cones of vertex mT above

the Bol’s 5-web defined by the four points mX ,mY ,mZ ,3T in the plane at infinity

T = 0. We can do the same with the other 5-subwebs (2, 3, 4, 7, 11), (1, 3, 5, 8, 12)
and (1, 2, 6, 9, 13).

L. Pirio proved by computer that this 15-web is ordinary (see [17]). Pereira and

Pirio exhibited directly 26 independant Abelian relations: since π ′(3, 15) = 26, the

rank of the web is the biggest possible for ordinary webs (while π(3, 15) = 42).

Observe that 15 = c(3, 4); thus, it would be obviously very interesting to prove
directly (may be by computer) the vanishing of the curvature. For the moment, we

did not do it, our ability on computer being poor, and the people to whom we asked

to do the job saying that it was too complicated.

The previous web corresponds in fact to the particular case n = 3 of the follow-

ing example: the group PGL(1) of the automorphisms of the complex projective

line P1 acts naturally on the open subset (P1)n+30 of (P1)n+3 of the ordered families
of n + 3 distinct points in P1. Let M0,n+3 be the n-dimensional quotient mani-
fold (P1)n+30 /PGL(1). Any choice of four distinct ordered points in P1, among the
n+ 3, defines a forgetful map M0,n+3 → M0,4

(
this is the “bi-ratio” of four points,

which is preserved by PGL(1)
)
, hence the codimension one foliation on M0,n+3

by the level hypersurfaces of this map, and a

(
n + 3

4

)
-web on M0,n+3 denoted by

W(A0,n+3) when taking all possible choices of four points among n + 3.

J. V. Pereira proved more generally in [15] that, for any n ≥ 2, W(A0,n+3)

is ordinary, and has maximal rank π ′
(
n,

(
n + 3

4

))
. Since

(
n + 3

4

)
= c(n, 4),

W(A0,n+3) has a curvature, whose vanishing might of course be proved directly.
But, even in the well known case n = 2 of the Bol’s web, this is not so easy, hence

again the necessity to perform some program for doing it by computer.
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