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Uniqueness of a quasivariational sweeping

process on functions of bounded variation

THOMAS ROCHE

Abstract. We prove existence and uniqueness of a quasivariational sweeping
process on functions of bounded variation thereby generalizing previous results
for absolutely continuous functions. It turns out that the size of the discontinu-
ities plays a crucial role: In case they are small enough we prove existence and
uniqueness. For large jumps we present a counterexample to the uniqueness of
the solution. Finally we show that the condition on the jump size can be replaced
by suitable conditions on the shape of the convex set.

Mathematics Subject Classification (2010): 49J40 (primary); 47J20, 34G25,
34C55 (secondary).

1. Introduction

The aim of the present article is to establish existence and uniqueness of a quasi-

variational (or implicit) sweeping process on functions of bounded variation with

small jumps. Here we use the Kurzweil formulation to extend the sweeping pro-

cess to BV . For the proof the input functions are decomposed into parts where the

size of the jumps is tiny and a finite number of points where the jumps are allowed

to be reasonably large. Both problems are independently solved by a contraction

principle.

The sweeping process was introduced by J. J. Moreau [18,19] and has been in-

tensively studied ever since. The problem reads as follows: Given a time dependent

convex set K (t) and an initial value ξ0 ∈ K (0), the aim is to find a function ξ such
that

−ξ̇(t) ∈ ∂ IK (t)(ξ(t)) and ξ(0) = ξ0. (1.1)

Here IK (t) denotes the indicator function of convex analysis taking value 0 in K (t)
and +∞ otherwise. Its subdifferential ∂ IK (t)(x) coincides with the normal cone of
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K (t) at x . Therefore the above inclusion describes the evolution of a point ξ in the
following way: If ξ(t) is in the interior of K (t) then it does not move. If it is at the
boundary then it moves in the opposite direction of an outer normal vector at this

point. To visualize it think of the following: Lay a raisin on a table, place a cake

form turned upside down on top of it; how does the raisin move, when the cake form

is manoeuvred? The sweeping process is a generalization of this problem, where

the cake form can change its shape in time. In fact what we described coincides

with an important subclass of this problem where K (t) = u(t) − Z for some given

convex set Z and a driving term u. This is exactly the play operator from the theory

of hysteresis which has been developed from the late 1960s by the Russian school

around M. A. Krasnosel’skiı̆ (see e.g. [4, 5]), culminating in the seminal mono-

graph [6]. For an extensive study of the (multidimensional) play operator and its

properties we refer to [7] and references therein. Sweeping processes however have

been independently studied by a number of people especially M. Monteiro Marques

and M. Kunze, see e.g. [12,17]. In [13] they introduced the quasivariational sweep-

ing process, which is the subject of our studies here: The convex set K does now

no longer depend only on the time t but also on the current state ξ - one can think
for example of an elastic cake form (and a rather heavy raisin). The problem then

reads

−ξ̇(t) ∈ ∂ IK (t,ξ(t))(ξ(t)). (1.2)

The authors derived necessary conditions to prove existence of a solution. The first

uniqueness result we are aware of is due to M.Brokate, P. Krejčı́ and H. Schnabel

[2], where sufficient conditions where derived for smooth and bounded convex sets

in case the involved functions are absolutely continuous. The proof works by an

elaborate fixed point argument. This result was later on generalized by A. Mielke

and R. Rossi [15] to unbounded convex sets using the energetic formulation intro-

duced in [16]. Extensions to the space of functions of bounded variation are to be

found in [20,22] where by order methods solutions in the sense of differential mea-

sure were derived. This notion of solution goes back already to [19]. In particular in

these papers no smoothness assumptions on the convex sets was made but a certain

monotonicity of the map t $→ K (t, ·) was required.
For our analysis we adapt the notion of Kurzweil solutions introduced in [9]

and expanded later on in [10]. We aim to generalize the result of [2] to functions

of bounded variation. However a straightforward transfer of their arguments is not

possible: The existence of jumps gives rise to some trouble. In fact, when gener-

alizing the sweeping process from absolutely continuous functions to functions of

bounded variation we pay by imposing, additionally to the conditions of [2], a fur-

ther structural assumption. This is due to the fact that here, because of the existence

of jumps, we need to solve static quasivariational inequalities. In the main part of

this paper we therefore limit the jump size. However at the end we will also give

examples for conditions on the convex sets involved. The idea of the proof is the

following: The BV functions are decomposed into intervals where only very small

jumps can occur and a finite number of larger jumps. For the first part a method

similar to [2] is used to show the existence of a solution. For the larger jumps it
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suffices to analyse the static quasivariational inequality. Here existence and unique-

ness can only be guaranteed if the additional structural condition is satisfied, e.g.

when the size of the jumps is not too big. The solution to the static problem gives

the starting point for the evolution problem on the new time interval. Since we are

in BV only a finite number of restarts have to be considered. The framework of the

Kurzweil solution is suited to this procedure since at each point of discontinuity of

the solution a static quasivariatonal inequality has to be satisfied.

Let us give a short overview of what follows: In the subsequent section we

are going to formally introduce the problem and state our main result. Section 3

is devoted to a short repetition of some convex analysis tools needed in the sequel

and the analysis of the stationary problem. In Section 4 we introduce the space

of functions of bounded variation “with small jumps” and a weighted variation.

There we also prove several technical tools required for the main proof, which is

the subject of Section 5. It is divided into three parts: First we solve the problem

for very small jump sizes, second we construct a solution to our problem and finally

we prove its uniqueness. The last section is devoted to a discussion of the jump size

condition and structural assumptions on the convex sets. In the appendix we prove a

discrete version of Gronwall’s lemma and a helpful result on the Kurzweil integral.

ACKNOWLEDGEMENTS. I would like to thank Martin Brokate for insightful dis-

cussions and a critical reading of the manuscript.

2. Statement of the results

Throughout this work X is a real separable Hilbert space endowed with a scalar

product 〈·, ·〉, and norm |x | = 〈x, x〉1/2 for x ∈ X . The evolution process will take

place in the space of functions of bounded variation. We additionally impose that

some functions are allowed to have small jumps, i.e. discontinuities, only. To be

precise let us state the following definition.

Definition 2.1 (BV functions with small jumps). Let c ≥ 0, T > 0. Then we

denote by

BV c
L (0, T ;Y) := { f ∈ BVL(0, T ;Y) : ∀t ∈ [0, T ) : | f (t) − f (t+)| ≤ c} (2.1)

the space of all left continuous functions of bounded variation such that the size of

every discontinuity is less than c.

For a comprehensive introduction of all function spaces used and some tools

needed in the sequel we refer to Section 4. We are concerned with the following

problem.

Problem 2.2 (Quasivariational sweeping process). Consider a family Z(r) ⊂ X

of closed convex sets parameterized by elements r of a reflexive Banach space

R. Assume that u ∈ BVL(0, T ; X), g ∈ BVL(0, T ;C1(X × X;R)) and x0 ∈
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Z(g(0, u(0), x(0) − u(0))) are given. We look for a function ξ ∈ BVL(0, T ; X)
such that

x(t) := u(t) − ξ(t) ∈ Z(g(t, u(t), ξ(t))) ∀t ∈ [0, T ] , (2.2)

x(0) = x0 , (2.3)

∫ T

0

〈x(t+) − y(t), dξ(t)〉 ≥ 0 for every y ∈ T (ξ) , (2.4)

where

T (ξ) := {y ∈ G(0, T ; X) : y(t) ∈ Z(g(t+, u(t+), ξ(t+))) ∀t ∈ [0, T ]}

is the set of all admissible testfunctions.

Here G(0, T ; X) denotes the set of all regulated functions mapping [0, T ] into
X , that is all functions f : [0, T ] → X such that the right- and left hand side limits

exists for every t ∈ [0, T ]. The integral in (2.4) is supposed to be the Kurzweil
(Kurzweil-Henstock) integral introduced in [14], or the Young integral as its special

case. This is a generalization of the implicit sweeping process considered in [2] to

the space of functions of bounded variation. It also emerges naturally from the

sweeping process on BV , which reads (in the Kurzweil formulation) as follows:

Problem 2.3 (Sweeping process). For given input functions u ∈ BVL(0, T ; X),
r ∈ BVL(0, T ;R) and initial condition x0 ∈ Z(r(0)), we look for a function
ξ ∈ BVL(0, T ; X) such that

x(t) := u(t) − ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ] , (2.5)

x(0) = x0 , (2.6)

∫ T

0

〈x(t+) − y(t), dξ(t)〉 ≥ 0

for every y ∈ G(0, T ; X) such that y(t) ∈ Z(r(t+)) for every t ∈ [0, T ].
(2.7)

Existence and uniqueness of a solution for this problem have been shown in [10]

and local Lipschitz-continuity has been proven recently in [11]. This gives hope

that under suitable conditions an existence and uniqueness result for Problem 2.2

can be derived. We denote the norm on R by ‖ · ‖, its dual by R′ endowed with
the norm ‖ · ‖R′ and impose the following assumptions. Note that for any C ≥ 0

the set BC(x) is the closed ball with radius C centered at x , that is BC(x) = {y ∈
X : |y − x | ≤ C}. Furthermore for a convex set Z(r) with 0 ∈ Z(r) we denote by
M(r, x) its Minkowski functional evaluated at a point x .

Hypothesis 2.4. There exists C > 0 such that 0 ∈ Z(r) ⊂ BC(0) for all r ∈ R.
Furthermore the partial Fréchet derivatives ∂r M(r, x) ∈ R′ and ∂x M(r, x) ∈ X
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exist for every r ∈ R and every x ∈ X \ {0}. We denote B(r, x) = 1
2
M2(r, x). The

maps

J (r, x) = ∂x B(r, x) = M(r, x)∂x M(r, x) : X ×R → X ,

K (r, x) = ∂r B(r, x) = M(r, x)∂r M(r, x) : X ×R → R′

allow continuous extensions to x = 0. Furthermore, there exist constants K0, CJ ,

CK such that for all x, y ∈ BC(0), r, s ∈ R it holds

‖K (r, x)‖R′ ≤ K0 ,

|J (r, x) − J (s, y)| ≤ CJ (|x − y| + ‖r − s‖R) ,

‖K (r, x) − K (s, y)‖R′ ≤ CK (|x − y| + ‖r − s‖R) .

In [2] it was additionally assumed that all sets Z(r) contain a ball centered at 0
with some radius c > 0. As has been shown in [11, Lemma 2.3] this is already a

consequence of the other assumptions:

Lemma 2.5. If Hypothesis 2.4 hold, then CJC
2 > 1 and for c := C

−1/2
J we have

Bc(0) ∈ Z(r) for all r ∈ R.
Finally let us denote by C1ω,γ (X × X;R) the space of functions f ∈ C1(X ×

X;R), (u, ξ) $→ f (u, ξ) such that

‖∂u f ‖∞ ≤ ω ∧ ‖∂ξ f ‖∞ ≤ γ . (2.8)

Now everything is in place to state our main result.

Theorem 2.6. Let u ∈ BV
cu
L (0, T ; X), g ∈ BV

cg
L (0, , T ;C1ω,γ (X × X;R)) and

x0 ∈ Z(g(0, u(0), u(0) − x0)). Assume that Hypothesis 2.4,

δ := CK0γ < 1 and (2.9)

CK0cg + (1+ CK0ω)cu <
(1− δ)2

CJC(1+ δ)
(2.10)

hold. Then there exists a unique solution to Problem 2.2.

Remark 2.7. The need to impose condition (2.10) is owed to the vectorial nature

of the problem. For X = R it suffices to ensure that (2.9) holds to obtain existence

and uniqueness of a solution, see Section 6.2.

To verify that a given problem does indeed satisfy the above assumptions

amounts in general to tedious calculations. It has been done for the Gurson model

with absolutely continuous functions in [21]. That model, introduced in [3], de-

scribes the nucleation of voids in elastic and ideally plastic materials. Here the

convex sets are ellipsoids in the space of stress tensors, that is symmetric tensors on

R3, namely

Z(r) =
{
σ ∈ R3×3symm : a‖d(σ )‖2 + r

(
2cosh

(
b · tr(σ )

)
− 1

)
≤ (1− r)2

}

where tr(σ ) denotes the trace of σ and d(σ ) the free deviator d(σ ) = σ − 1
3
tr(σ )Id.
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Indeed the probably most simple sets to which our theorem applies and that do

not reduce to the scalar case are ellipsoid in R2.
Example 2.8. Choose X = R2 andR = R. Furthermore let the set Z(r) be of the
form

Z(r) =
{
x ∈ R2 : x21 + 2x22 ≤ f (r)2

}
(2.11)

with f : R → (0,∞). First we need to ensure that the conditions of Hypothesis

2.4 are satisfied. First we compute M(x, r) =
(
x21 + 2x22

)−1/2
/ f (r). To give a

concrete example let us assume that

f (r) = 3

4
+ 1

4
sin(r). (2.12)

Then it is easy to see that Z(r) ⊂ B1(0). Furthermore

J (x, r) =
(
3

4
+ 1

4
sin(r)

)−1 (
x1
2x2

)
and (2.13)

K (x, r) = x21 + 2x22

4
(
3
4

+ 1
4
sin(r)

)3 cos(r). (2.14)

It is possible to choose K0 = 4, CJ = 4 and CK = 28. Here the choice of CK is

rough, however as it does not appear in (2.9) and (2.10) its mere existence suffices.

Due to the above estimates we need γ < 1
4
in order to be able to apply our theorem.

Assuming that g does only depend on ξ , e.g.

g(t, u, ξ) = γ ξ1(t) (2.15)

the jump size of u needs to be bounded by
(1−4γ )2

4(1+γ ) .

3. Preliminaries: convex analysis and quasivariational inequalities

In this section we are going to set the stage for our subsequent analysis. We are

going to shortly recall basic notions from the theory of convex sets and subsequently

study static quasivariational inequalities. These preparations will on the one hand

provide usefull tools for our examination, on the other hand motivate the conditions

employed in the above theorem.

Before we start just a short comment on notation: Throughout this article we

are going to employ a notation originating in discrete mathematics, namely denoting

for any n ∈ N the set {1, . . . , n} by [n].
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3.1. Convex analysis

We recall several results established in [2, 7, 11] on the theory of convex sets and

especially projections in Hilbert spaces. For a given convex closed set Z ⊂ X , we

define the projection QZ : X → Z onto Z and its complement PZ = I − QZ (I is

the identity) by the formula

QZx ∈ Z , |PZ x | = dist(x, Z) := inf
z∈Z

|x − z| for x ∈ X . (3.1)

The projection QZ has the following properties.

Proposition 3.1. For every x, y ∈ X we have

(i) 〈PZ x, QZx − z〉 ≥ 0 ∀z ∈ Z ,

(ii) 〈PZ x − PZ y, QZx − QZ y〉 ≥ 0,

(iii) QZ (QZx + λPZ x) = QZx ∀λ ≥ 0 and

(iv) (x ∈ Z , 〈y, x − z〉 ≥ 0 ∀z ∈ Z) ⇐⇒ (x = QZ (x + y) , y = PZ (x + y)).

Let Z(r) be a family of convex sets parameterized by r ∈ R. For simplicity let
us denote for any two r, s ∈ R by dH (r, s) the Hausdorff distance dH (Z(r), Z(s))
and by Qr , Pr the projection onto Z(r) and its complement respectively. By n(r, x)
for x ∈ ∂Z(r), we denote an element of the normal cone of Z(r) at the point x .
We are going to rely on [11, Proposition 3.6] which studies the difference between

projections onto two sets Z(r) and Z(s).

Proposition 3.2. Assume Z(r) ⊂ X is nonempty, closed and convex for all r ∈ R.
Furthermere let there exist functions j : R ×R → R and ψ : [0,∞) → [0,∞)
such that

|nr − ns | ≤ j (r, s) + ψ(|x − y|) (3.2)

for all x ∈ ∂Z(r), y ∈ ∂Z(s) and nr ∈ ∂ IZ(r)(x), ns ∈ ∂ IZ(s)(y). Then for all
u ∈ X it holds

|Qr (u)−Qs(u)| ≤ dH (r, s)+min{|Pr (u)|, |Ps(u)|}
(
j (r, s)+ψ(dH (r, s))

)
. (3.3)

The following results can be found in [2, Section 3].

Proposition 3.3. Let Hypothesis 2.4 hold. Then

dH (r, s) ≤ CK0‖r − s‖R ∀r, s ∈ R , (3.4)

|n(r, x) − n(s, y)| ≤ CJC(|x − y| + ‖r − s‖R)

∀r, s ∈ R ∀x ∈ ∂Z(r) ∀s ∈ ∂Z(s).
(3.5)

We relate the two above results in the following way.

Corollary 3.4. Let Hypothesis 2.4 hold. Then for u ∈ X it holds

|Qr (u) − Qs(u)| ≤ (CK0 + CJC(1+ CK0)|Pr (u)|) ‖r − s‖R. (3.6)
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Proof. Applying (3.5) to Proposition 3.2 we derive

|Qr (u) − Qs(u)| ≤ dH (r, s) + |Pr (u)|CJC (dH (r, s) + ‖r − s‖R) . (3.7)

The claim is now obtained by using (3.4).

3.2. Quasivariational inequalities - the static case

When trying to analyse a time-dependent problem, it is natural to consider the un-

derlying static problem first - in our case the quasivariational inequality. Apart

from that being folklore wisdom we have even more reason to do so: Let ξ be a
solution of Problem 2.2 that jumps at some time τ ∈ [0, T ). Choosing the test-
function z in (2.4) by z(t) = u(t+) − ξ(t+) for t 2= τ and z(τ ) = y for some

y ∈ Z(g(τ+, u(τ+), ξ(τ+))) leads to

〈u(τ+) − ξ(τ+) − y, ξ(τ+) − ξ(τ )〉 ≥ 0. (3.8)

Therefore at any time τ where ξ jumps it has to satisfy a quasivariational inequality.
A short study of it will be the subject of this section. Indeed this analysis is crucial

in understanding the jump size condition. It was not needed in [2] where the qua-

sivariational sweeping process on absolutely continuous functions was investigated

as no jumps could occur.

We shall need the following space of uniformly Lipschitz continuous functions.

Lipω,γ (X × X;R) :=
{
f : X × X → R : ∀(u, ξ), (v, η) ∈ X × X :
| f (u, ξ) − f (v, η)| ≤ ω|u − v| + γ |ξ − η|

}
.

We equip Lipω,γ (X × X;R) with the sup-norm.
For simplicity we will denote by x the term ξ − u. Our problem reads:

Problem 3.5. Let gi ∈ Lipω,γ (X × X;R), i ∈ {0, 1} and x0 ∈ Z(g0(x0, u0)). Let
u1 ∈ X be given. We look for ξ1 such that

ξ1 − u1 = QZ(g(u1,ξ1))(x0 + +u) (3.9)

where + f = f1 − f0 for any f ∈ {u, g, ξ, x}.
We try to solve this Problem using the Banach contraction principle. For the

remainder of this section we set ξ0 := u0 − x0 and start with a simple proposition.

Proposition 3.6. Assume x0 ∈ Z(s) and ξ1 − u1 = QZ(r)(x0 + +)u, then

|+ξ | ≤ |+u| + dH (r, s). (3.10)

Proof. First note that +ξ = x0 + +u − x1. We therefore estimate

|+ξ | ≤ |PZ(r)(x0 + +u)| ≤ |PZ(r)(x0 + +u) − PZ(r)(x0)| + |PZ(r)(x0)|.
Due to Proposition 3.1 (ii) the first term is less than |+u| and the second is by
definition less than dH (r, s).
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Using the above calculation we can estimate the “jump size” |+ξ | of the solu-
tion.

Corollary 3.7. If Hypothesis 2.4 holds and ξ1 is a solution to Problem 3.5, then

|+ξ | ≤ |+u| + CK0(|+g| + γ |+ξ | + ω|+u|). (3.11)

Proof. Using 3.6 with s = g0(u0, ξ0) and r = g1(u1, ξ1) leads to

|+ξ | ≤ |+u| + CK0‖r − s‖R. (3.12)

It remains to estimate ‖r − s‖R, which is done in the usual way

‖g1(u1,ξ1)−g0(u0,ξ0)‖R≤‖g1(u1,ξ1)−g1(u0, ξ0)‖R+‖g1(u0, ξ0)−g0(u0,ξ0)‖R

and the proof is complete.

As in [2] we assume that CK0γ =: δ < 1. This is indeed necessary to obtain

uniqueness as the following example demonstrates.

Example 3.8. Let X = R = R and 0 < c < 1 < ∞. Choose

Z(r) = [−1,max{min{1, r}, c}]

and gi (u, ξ) = u − ξ for i ∈ [2]. Then C = K0 = γ = 1. For x0 = u0 = ξ0 = 0

and u1 > 1 any ξ1 ∈ [u1−1, u1− c] is a solution to the quasivariational inequality.

Proposition 3.9. Let Hypothesis 2.4 and CK0γ =: δ < 1 hold. If ξ1 is a solution
to Problem 3.5, then

|+ξ | ≤ 1

1− δ
(CK0|+g| + (1+ CK0ω)|+u|) =: S(|+g|, |+u|). (3.13)

Furthermore

∀η ∈ BS(|+g|,|+u|)(x0) : QZ(g(η,u1))(x0 + +u) ∈ BS(|+g|,|+u|)(x0).

Obtaining the assertion is just a simple calculation. Finally we are now able to

prove the following

Proposition 3.10. Assume Hypothesis 2.4 holds and CK0γ =: δ < 1. Further-

more let |+g| and |+u| be chosen small enough such that

CK0|+g| + (1+ CK0ω)|+u| ≤ (1− δ)2

CJC(1+ δ)
. (3.14)

Then there exists a unique solution ξ1 to (3.9) with x1 = u1 − ξ1 ∈ BS(|+g|,|+u|).
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Proof. By Proposition 3.2 we have for all η, ξ ∈ BS(|+g|,|+u|)(x0) that

|QZ(g(ξ,u1))(x0 + +u) − QZ(g(η,u1))(x0 + +u)|
≤ (CK0γ + S(|+g|, |+u|)CJC(1+ CK0γ )) |ξ − η|
≤ (δ + S(|+g|, |+u|)CJC(1+ δ)) |ξ − η|.

Then (3.14) implies that

δ + S(|+g|, |+u|)CJC(1+ δ) =: δ′ < 1

and we can apply the Banach contraction principle.

Note that the condition imposed in Proposition 3.10 are exactly the same as

those imposed in Theorem 2.6. If they hold, then we denote the solution operator

of the quasivariational inequality by

ξ1 =: E(ξ0, u0, g0, u1, g1). (3.15)

4. Functions of bounded variation

In this section we very briefly review functions of bounded variations and introduce

spaces with uniformly bounded jump size as well as a weighted norm. Throughout

this section letY be some Banach space endowed with a norm |·|. For a real interval
[0, T ] we define the set of all finite partitions by

D[0,T ] :=
{
(tk)

n
k=0 ⊂ [0, T ] : n ∈ N, tk−1 < tk ∀k ∈ [n]

}
. (4.1)

Then for some function f : [0, T ] → Y we define the total variation over a subin-
terval [s, t] ⊂ [0, T ] by

Var( f, [s, t]) := sup

{
n∑

k=1
| f (tk) − f (tk−1)| : (tk)

n
k=0 ∈ D[s,t]

}
. (4.2)

when [s, t] = [0, T ] we just write Var( f ). The space of functions of bounded
variation on [0, T ] is defined by

BV (0, T ;Y) := { f : [0, T ] → Y : Var( f ) < ∞} . (4.3)

Equipped with the norm ‖ f ‖BV := | f (0)| + Var( f ), (BV (0, T ;Y), ‖ · ‖BV ) is a
Banach space. Furthermore we denote by S(0, T ;Y) the set of all step functions,
that is functions f : [0, T ] → Y , for which there exists a partition (tn)

N
n=0 ∈ D[0,T ]

and elements fn, f̂n ∈ Y for all n ∈ [N ] ∪ {0} such that

f (t) =
N∑

n=1
fnχ(tn−1,tn)(t) +

N∑

n=0
f̂nχ{tn}(t) (4.4)
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and by G(0, T ;Y) the set of all regulated functions, i.e. functions which allow left-
and rightside limits at every point. It is well known that

S(0, T ;Y) ⊂ BV (0, T ;Y) ⊂ G(0, T ;Y) (4.5)

when all spaces are equipped with the ‖ · ‖∞-norm and each injection is dense. By
f (t±) we denote the right/left - side limit of a function f at a given point t, that is

f (t−) = lim
h↓0

f (t − h) and f (t+) = lim
h↓0

f (t + h). (4.6)

The subspace of all left continuous functions, i.e. f such that f (t) = f (t−), within
a given function space is marked by the index L .

4.1. Functions of bounded variation with small jumps

We give an approximation and a closedness result for functions of bounded variation

with small jumps. Just shortly recall that

BV c
L (0, T ;Y) = { f ∈ BVL(0, T ;Y) : ∀t ∈ [0, T ) : | f (t) − f (t+)| ≤ c} (4.7)

for some c ≥ 0. Obviously BV 0L (0, T ;Y) = CBV (0, T ;Y).

Proposition 4.1 (Closedness of BV c
L ). Let c ≥ 0 and (un)n∈N ⊂ BV c

L (0, T ;Y)
with either

un
‖·‖BV→ u or (4.8)

Var(un) ≤ C and un
‖·‖∞→ u (4.9)

then u ∈ BV c
L .

Proof. If un
‖·‖BV→ u then Var(un) is bounded and un

‖·‖∞→ u. Thus it suffices to

prove the second assertion. First of all u ∈ BV (0, T ; X) since

Var(u) ≤ lim inf
n→∞ Var(un) ≤ C. (4.10)

Now choose t ∈ (0, T ] arbitrary. For each ε > 0 there exists some δn > 0 such that

∀s ≤ t : |t − s| ≤ δn : |un(t) − un(s)| ≤ ε

3
. (4.11)

Furthermore choose N ∈ N large enough such that

‖un − u‖∞ ≤ ε

3
∀n ≥ N . (4.12)
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Thus for all s < t with |t − s| ≤ δN we have

|u(t) − u(s)| ≤ ε (4.13)

and we infer that u is left continuous. It remains to show that the jump size is

bounded by c. Since u, un ∈ BVL we know that un and u admit a right hand side

limits at every point. For t ∈ [0, T ) therefore there exist δ, δn > 0 such that

|un(t+) − un(s)| ≤ ε

3
∀s > t : |t − s| ≤ δn and

|u(t+) − u(s)| ≤ ε

3
∀s > t : |t − s| ≤ δ.

Choose N as above and set δ′
n := min{δn, δ}. Then for all n ≥ N and s > t with

|s − t | ≤ δ′
n we have

|u(t+)−un(t+)| ≤ |u(t+)−u(s)|+|un(t+)−un(s)|+|un(s)−u(s)| ≤ ε. (4.14)

Therefore un(t+) → u(t+) for all t ∈ [0, T ] and we obtain

|u(t) − u(t+)| ≤ lim inf
n→∞ |un(t) − un(t+)| ≤ c, (4.15)

to complete the way.

Lemma 4.2. For any u ∈ BV c(0, T ;Y) and any ε > 0 there exists a partition

(tn)
N
n=0 ∈ D[0,T ] and values (̂un)

N
n=0 ⊂ Y such that for

û(t) = û0χ{0}(t) +
N∑

n=1
ûnχ(tn−1,tn](t) (4.16)

the following conditions are satisfied:

‖û − u‖∞ ≤ ε , Var(̂u) ≤ Var(u) and (4.17)

∀t ∈ [0, T ] : Var(u, [0, t]) + ε ≥ Var(̂u, [0, t]) ≥ Var(u, [0, t]) − 2ε . (4.18)

Proof. The idea of the proof is based on a classical proof by Aumann [1, p. 257f].

It relies on two facts: There exists a sequence (sn)
N1
n=0 ∈ D[0,T ] such that

N1∑

n=1
|u(sn) − u(sn−1)| ≥ Var(u) − ε (4.19)

and for every u ∈ BVL(0, T ;Y) and for every ε > 0 there exists a partition

(rn)
N2
n=0 ∈ D[0,T ], with r0 = 0 and rN2 = T such that

∀n ∈ [N2] : ∀s, t ∈ (rn−1, rn] : |u(s) − u(t)| ≤ ε. (4.20)
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The choice of the half-open interval (rn−1, rn] is due to the left-continuity of u. Let
(tn)

N
n=1 ∈ D such that {tn : n ∈ [N ]} ⊃ {sn : n ∈ [N1]}∪ {rn : n ∈ [N2]} and define

û(t) := u(0)χ{0}(t) +
N∑

n=1

(
u(tn−1+)χ(

tn−1,
tn−1+tn

2

](t) + u(tn)χ
(
tn−1+tn

2 ,tn

](t)

)
.

It is easy to see that û ∈ BV
c/δ
L (0, T ; X) and ‖û − u‖∞ ≤ ε. For each n ∈ [N ]

choose a sequence τ kn ↓ tn−1 as k → ∞ with tn−1 < τ kn ≤ tn . Then

N∑

n=0

(
|u(tn−1) − u(τ kn )| + |u(τ kn ) − u(tn)|

)
≤ Var(u) (4.21)

and the lower semicontinuity of the norm gives (4.17). For t = 0 and t = T (4.18)

is straightforward; for the latter use the choice of sn . For t ∈ (0, T ) there exists
some n ∈ [N ] such that t ∈ (tn−1, tn] and we have

Var(̂u, [0, t])=
n∑

k=1
|u(tk−1+) − u(tk−1)| + |u(tk−1+) − u(tk)|≤Var(u, [0, s])+ε

for any s ∈ (tn−1, t]. Here we use |u(tk−1+) − u(tk)| ≤ ε and a limit argument
similar as for (4.21). It remains to proof the second inequality. Once again let

t ∈ (0, T ) and choose n ∈ [N ] such that t ∈ (tn−1, tn]. For t = tn we get

Var(̂u, [0, tn]) ≥ Var(u, [0, T ]) − ε − Var(̂u, [tn, T ]). (4.22)

Using Var(u, [0, T ]) = Var(u, [0, t])+Var(u, [t, T ]) and the definition of û we see
that Var(̂u, [tn, T ]) ≤ Var(u, [tn, T ]). Therefore

Var(̂u, [0, tn]) ≥ Var(u, [0, tn]) − ε. (4.23)

For t ∈ (tn−1, tn) use the above equation,

Var(̂u, [0, t]) ≥ Var(̂u, [0, tk]) − ε and Var(u, [0, t]) ≤ Var(u, [0, tk]) (4.24)

to obtain the desired inequality.

Remark 4.3. As a direct consequence of (4.18) we have that for any [r, s] ⊂ [0, T ]

Var(u, [r, s]) + 3ε ≥ Var(̂u, [r, s]) ≥ Var(u, [r, s]) − 3ε. (4.25)

Corollary 4.4 (Approximation with stepfunctions). For any c ≥ 0 and u ∈
BV c

L (0, T ;Y) there exists either a sequence

(un)n∈N ⊂ S(0, T ;Y) ∩ BV c
L (0, T ;Y) if c > 0 or (4.26)

(un)n∈N ⊂ S(0, T ;Y) ∩ BV δ
L (0, T ;Y) if c = 0 (4.27)
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with δ > 0 arbitrary such that

Var(un) ≤ Var(u) and un
‖·‖∞→ u. (4.28)

In both cases (un)n∈N can be chosen such that Var(un, [0, t])→Var(u, [0, t]) uni-
formly in [0, T ].
Proof. For u ∈ BV c

L (0, T ; X) and n ∈ N construct un as in Lemma 4.2 with

ε = min{1/n, c} if c > 0 and ε = min{1/n, δ} if c = 0.

4.2. A weighted norm on BV

We are going to introduce a norm on BV , which is defined in terms of a “weighted

total variation”.

Definition 4.5 (Weighted total variation). Let w : [0, T ] → R>0 be monotone

decreasing. We call

Varw(y) := sup

{
N∑

k=1

[
|y(tk−1) − y(tk)|w(tk)

]
: (tk)

N
k=0 ∈ D

}
(4.29)

a weighted variation on [0, T ] with weight w.
One can generalize this definition to positive functions w which are bounded

away from zero. However in our subsequent analysis we only employ this notion

with monotone decreasing functions. Hence we restrict ourselves to this case and

avoid some technical difficulties in the upcoming proofs.

Proposition 4.6. Let w : [0, T ] → R>0 be monotone decreasing. Then

|y|w := |y(0)| + Varw(y), (4.30)

is a norm on BV (0, T ; X) which is equivalent to | · |BV , i.e.

min{1, w(T )}|y|BV ≤ |y|w ≤ max{w(0), 1}|y|BV . (4.31)

We call | · |w a weighted norm with weight w.

We omit the proof; it is straightforward. Let us point out that any space closed

with respect to | · |BV is also closed with respect to | · |w. We need the following
(lower semi-) continuity results for the dependence of | · |w on its weight.
Proposition 4.7. Let (wn)n∈N, w be a (sequence of) monotone decreasing func-
tions

wn, w : [0, T ] → R>0. (4.32)

Assume wn → w with respect to ‖ · ‖∞. Then for all y ∈ BV (0, T ;Y)

Varwn (y) → Varw(y). (4.33)
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Furthermore assume (yn)n∈N ⊂ BV (0, T ;Y) with Var(yn) ≤ C for some C inde-

pendent of n and yn → y with respect to ‖ · ‖∞, then

Varw(y) ≤ lim inf
n→∞ Varwn (yn). (4.34)

Proof. Let y ∈ BV (0, T ;Y). Note that

Var(y)‖wn − w‖∞

≥
N∑

k=1

[
|y(tk−1) − y(tk)|wn(tk)

]
−

N∑

k=1

[
|y(tk−1) − y(tk)|w(tk)

]

for all (tk) ∈ D. Thus

Var(y)‖wn − w‖∞ ≥ Varwn (y) − Varw(y) (4.35)

and by the same method we derive

−Var(y)‖wn − w‖∞ ≤ Varwn (y) − Varw(y). (4.36)

Both together imply the first statement via

|Varwn (y) − Varw(y)| ≤ Var(y)‖wn − w‖∞. (4.37)

For the second claim notice that Varw is lower semicontinuous with respect to the

‖ · ‖∞. Therefore we have

lim inf
n→∞ Varwn (yn) ≥ lim inf

n→∞ (Varw(yn) − C‖wn − w‖∞) ≥ Varw(y). (4.38)

5. Proof of the main result

In this section we prove Theorem 2.6: Assume that Hypothesis 2.4 holds then there

exists a unique solution of the quasivariational sweeping process as long as (2.9)

and (2.10) are satisfied. For convenience we shall divide the proof into two parts -

first we establish the existence of a solution in Proposition 5.5 and then we show its

uniqueness in Proposition 5.7. First, however, we prove the existence of a unique

solution in case the involved functions have very small jumps only.

5.1. Existence and uniqueness for functions with (very) small jumps

The idea of the proof is essentially the same as in [2]. However since BV functions

are involved an approximation as in [11] is needed. Therefore the proof turns out to

be quite technical and quite lengthy. We start by considering the sweeping process
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(Problem 2.3). Our aim is to employ Banach’s contraction principle. As mentioned

in Section 2, in [10] it was proved that Problem 2.3 has a unique solution ξ ∈
BVL(0, T ; X) for every u ∈ BVL(0, T ; X) and every r ∈ BVL(0, T ;R). We start
by considering the case where ui , r i , i ∈ [2] are step functions on the same division
(tk)

n
k=0 ∈ D[0,T ]. More specifically, let elements uik ∈ X , r ik ∈ R for k ∈ [n] ∪ {0}

be given and

f (t) = f0χ{0}(t) +
n∑

k=1
fkχ(tk−1,tk ](t) , (5.1)

where f stands for ui , r i , i ∈ [2]. The solutions ξ i , xi corresponding to ui , r i and
initial condition xi0 are given by formula (5.1) as well, with f replaced successively

by ξ i , xi and y, where ξ i0 = u0 − xi0, and

xik = Qrik
(xik−1 + +ku

i ) , ξ ik = ξ ik−1 + Prik
(uik − ξ ik−1) , (5.2)

for i ∈ [2], k ∈ [n], where we denote +k f := fk − fk−1 for all k ∈ [n].
We start with the following result proven in [11, Corollary 5.3].

Lemma 5.1. Assume that Hypothesis 2.4 holds, let c be as derived in Proposi-
tion 2.5 and denote

Vk :=
∥∥∥+kr

1
∥∥∥
R

+
∥∥∥+kr

2
∥∥∥
R

+
∣∣∣+ku

1
∣∣∣ +

∣∣∣+ku
2
∣∣∣ . (5.3)

Then there exist constants α1,α2 depending only on C,CK ,CJ , K0 such that for
every k ∈ [n]

∣∣∣+k(ξ
1 − ξ2)

∣∣∣ + C+k |B(r1, x1) − B(r2, x2)|

≤ CK0

∥∥∥+k(r
1 − r2)

∥∥∥
R

+ C

c

∣∣∣+k(u
1 − u2)

∣∣∣ + α1Vk

∣∣∣x1k−1 − x2k−1
∣∣∣

+α2Vk

(
max

i∈{k,k−1}
|u1i − u2i | + (1+ Vk) max

i∈{k,k−1}
‖r1i − r2i ‖R

)
.

Now assume that there exist stepfunctions ηi ∈ S(0, T ; X), i ∈ [2] and g ∈
S(0, T ;C1ω,γ (X × X;R)) such that they can be written in the form of (5.1). Let

u1 = u2 =: u and x10 = x20 =: x0 and set

r i : [0, T ] → R , t $→ g(t, u(t), ηi (t)). (5.4)

Then both r i ’s are still step functions which can be denoted in the fashion of (5.1).

Our intention is to use the estimate of Lemma 5.1 to employ a Gronwall-like esti-

mate (Lemma A.1). However still some preparations are needed.
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Corollary 5.2. Assume that Hypothesis 2.4 holds, let c be as derived in Proposi-
tion 2.5 and denote

Vk := ‖+kg‖R +
∣∣∣+kη

1
∣∣∣ +

∣∣∣+kη
2
∣∣∣ + |+ku| . (5.5)

Then there exist constants β1,β2 depending only on C , CK , CJ , K0, and γ such

that for every k ∈ [n]
∣∣∣+k(ξ

1 − ξ2)
∣∣∣ + C+k |B(r1, x1) − B(r2, x2)|

≤ CK0γ
∣∣∣+k(η

1 − η2)
∣∣∣ + β1Vk

∣∣∣ξ1k−1 − ξ2k−1
∣∣∣

+β2Vk (1+ Vk)
(∣∣∣η1i−1 − η2i−1

∣∣∣ +
∣∣∣+k(η

1 − η2)
∣∣∣
)

.

Proof. We start from Lemma 5.1. Since u1 = u2 all terms concerning u cancel and

x1k − x2k = ξ2k − ξ1k . Note furthermore that

max
i∈{k,k−1}

‖r1i − r2i ‖R ≤
∥∥∥r1i−1 − r2i−1

∥∥∥
R

+
∥∥∥+i (r

1 − r2)
∥∥∥
R

. (5.6)

Putting in the definition of r i we can simply estimate the first term of the right hand

side by

∥∥∥r1i−1−r2i−1
∥∥∥
R

≤
∥∥∥gi−1(ui−1, η1i−1)−gi−1(ui−1, η2i−1)

∥∥∥
R

≤γ
∣∣∣η1i−1−η2i−1

∣∣∣ . (5.7)

It remains to derive an estimate for
∥∥+i (r

1 − r2)
∥∥
R. This is easily done by

∥∥∥+i (r
1 − r2)

∥∥∥
R

=
∥∥∥gi (ui , η1i ) − gi (ui , η

2
i ) − gi−1(ui−1, η1i−1) + gi−1(ui−1, η2i−1)

∥∥∥
R

≤ γ
(∣∣∣η1i − η2i

∣∣∣ +
∣∣∣η1i−1 − η2i−1

∣∣∣
)

≤ γ
∣∣∣+i (η

1 − η2)
∣∣∣ + 2γ

∣∣∣η1i−1 − η2i−1
∣∣∣ .

(5.8)

Now plugging all of this into Lemma 5.1 we obtain the estimate.

Theorem 5.3 (Existence anduniqueness for very small jumps). Assume that Hy-

pothesis 2.4 holds. Furthermore let

δ := CK0γ < 1 (5.9)

and u ∈ BV
cu
L (0, T ; X), g ∈ BV

cg
L (0, T ;C1ω,γ (X × X;R)) and x0 ∈ Z(g(0, u(0),

x0 − u(0))). Then there exists some ν > 0 such that there exits a unique solution to

Problem 2.2 if cg, cu ≤ ν .
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Proof. If ξ ∈ BVL(0, T ; X) is a solution of the quasivariational sweeping process
then

∀[r, s] ⊂ [0, T ] : Var(ξ, [r, s]) ≤ S
(
Var(g, [r, s]),Var(u, [r, s])

)
. (5.10)

Here S is the function defined in (3.13). Therefore let us define

1 :=
{
ξ ∈ BV c

L (0, T ; X) : ξ(0) = u(0) − x0 and (5.10) holds
}
. (5.11)

It is yet another straightforward proof to show that 1 is closed with respect to the

BV -norm. Furthermore for any η ∈ 1 and t ∈ [0, T ] it holds that

|η(t+)−η(t)| ≤ 1

1− δ
(CK0‖g(t+)−g(t)‖+(1+CK0ω)|u(t+)−u(t)|). (5.12)

We define the operator A : 1 → BVL , A : η $→ ξ , which maps any η to the
solution of the sweeping process with input u, g(·, u(·), η(·)) and x0. Our aim is

to prove that A is a contraction on 1 with respect to a weighted BV -norm. First

note that A(1) ⊂ 1. Now choose η1, η2 ∈ 1 and ε > 0. Let (t
f
n )

N f

n=0 be the
corresponding approximating partition as constructed in Lemma 4.2 of f ∈ {u, g}.
Furthermore choose a partition of (t i )

Ni
n=1 be a partition of [0, T ] such that t0 = 0,

tn = N and

∀n ∈ [Ni ] : ∀s, t ∈ (t in−1, t
i
n] : |ηi (s) − ηi (t)| ≤ ε. (5.13)

Let (̂tn)
N̂
n=0 ∈ D[0,T ] contain all above partitions, that is

{̂tn : n ∈ [N̂ ] ∪ {0}} ⊃
{
trn : r ∈ { f, g, 1, 2} ∧ n ∈ [Nr ] ∪ {0}

}
. (5.14)

We now construct the approximating step functions f̂ for f ∈ {u, g, η1, η2}. To
not overload the notation we drop the dependence on ε. We choose the sequence
(tn)

N
n=1 such that N := 2N̂ and

tn = t̂n/2 for n even and tn = 1

2

(
t̂(n−1)/2 + t̂(n+1)/2

)
for n odd. (5.15)

Now define f̂ by

f̂k =
{
f (̂tk/2) for k even

f (̂t(k−1)/2+) for k odd.
(5.16)

Let ξ̂ i be the corresponding solutions of the sweeping process with input functions
ĝ, û, η̂i . Due to Corollary 5.2 we have

∣∣∣+k (̂ξ
1 − ξ̂2)

∣∣∣ + C+k |B(̂r1, x̂1) − B(̂r2, x̂2)|

≤ (CK0γ + β2Vk (1+ Vk))
∣∣∣+k (̂η

1 + η̂2)
∣∣∣

+β1Vk

∣∣∣̂ξ1k−1 − ξ̂2k−1
∣∣∣ + β2Vk (1+ Vk)

∣∣∣̂η1i−1 − η̂2i−1
∣∣∣ ,
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where Vk = |+k û| + |+k ĝ| + |+k η̂
1| + |+k η̂

2|. For k ≥ 1 odd we get

|+k η̂
i | = |ηi (̂t(k−1)/2) − ηi (̂t(k−1)/2+)|

≤ S
(∣∣g(̂t(k−1)/2+) − g(̂t(k−1)/2)

∣∣ ,
∣∣u(̂t(k−1)/2+) − u(̂t(k−1)/2)

∣∣)

≤ S(cg, cu).

If k is even we have

|+k η̂
i | = |ηi (̂tk/2) − ηi (̂t(k−1)/2+)|

≤ S
(
Var(g, (t(k−1)/2, tk/2]),Var(u, (t(k−1)/2, tk/2]))

)
.

Thus we estimate Vk ≤ Ṽk with

Ṽk = |∇k ĝ| + |∇k û| +






S
(
|g(̂t(k−1)/2+) − g(̂t(k−1)/2)|,

|u(̂t(k−1)/2+) − u(̂t(k−1)/2)|
) for k odd

S
(
Var(g, (t(k−1)/2, tk/2]),
Var(u, (t(k−1)/2, tk/2]))

) for k even.

(5.17)

Assume that cg, cu ≤ ν and choose ε ≤ 1
4
ν. Then by means of (4.25) we have

Var(g, (t(k−1)/2, tk/2]) ≤ ν and Var(u, (t(k−1)/2, tk/2])) ≤ ν. (5.18)

Now we choose ν such that

δ + β22 (ν + S(ν, ν)) (1+ 2 (ν + S(ν, ν))) =: δ′ < 1. (5.19)

Then
(
CK0γ + β2Ṽk

(
1+ Ṽk

))
≤ δ′ and applying Lemma A.1 we get

N∑

k=1
|+k (̂ξ

1 − ξ̂2)|wk ≤ ρ
N∑

k=1
|+k (̂η

1 − η̂2)|wk, (5.20)

for some ρ < 1 and

wk = exp

{
− 1

ϑ

k∑

i=1
Ṽi

}
, (5.21)

with ϑ small enough. For the given ε and (tk)
N
k=1 define V

ε
f : [0, T ] → R by

V ε
f : t $→

{
Var

(
f,
[
0,tk−1

])
+| f (tk−1)− f (tk−1+)| for t ∈(tk−1, tk], k odd

Var ( f,[0,tk]) for t ∈(tk−1, tk], k even.
(5.22)

Then (5.20) can be rewritten into

Varŵ(̂ξ1 − ξ̂2) ≤ ρVarŵ(̂η1 − η̂2) (5.23)
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where ŵ := exp(−(1/δ)Ṽ (t)) and Ṽ : [0, T ] → R+
>0 is defined by

Ṽ (t) = Var(ĝ, [0, t]) + Var(̂u, [0, t]) + S
(
V ε
g (t), V ε

u (t)
)

. (5.24)

Letting ε → 0 we have

η̂i
‖·‖∞→ ηi , ĝ

‖·‖∞→ g and û
‖·‖∞→ u (5.25)

and consequently also ξ̂ i
‖·‖∞→ ξ . We now prove that

Ṽ
‖·‖∞→ V (5.26)

where V is defined by

V (t) = Var(g, [0, t]) + Var(u, [0, t]) + S
(
Var(g, [0, t]),Var(u, [0, t])

)
. (5.27)

First remember that Var( f̂ , [0, ·]) ‖·‖∞→ Var( f, [0, ·]) for f ∈ {g, u} by the choice
of the approximating sequence. Due to the construction of f̂ we have for t ∈
(tk−1, tk) that Var( f̂ , [0, t]) = Var( f̂ , [0, tk]) if k is odd and Var( f̂ , [0, t]) =
Var( f̂ , [0, tk−1]) + | f (tk−1+) − f (tk−1)| for k even. Hence we can estimate

‖Var( f̂ , [0, t]) − V ε
f (t)‖∞ ≤ 2ε (5.28)

and deduce V ε
f

‖·‖∞→ Var( f, [0, ·)). Since S(·, ·) is nothing but a sum of two linear
terms this implies (5.26). Therefore we have

ŵ
‖·‖∞→ w = exp {−(1/δ)V (t)} (5.29)

and due to Proposition 4.7 we obtain

Varw(ξ1 − ξ2) ≤ lim inf
ε

Varŵ(̂ξ1 − ξ̂2). (5.30)

To estimate the right hand side we use

lim sup
ε

(Varŵ(̂η1 − η̂2) − Varw(η1 − η2))

≤ lim sup
ε

(Varw(̂η1 − η̂2) − Varw(η1 − η2))

+ lim sup
ε

(Varŵ(̂η1 − η̂2) − Varw(̂η1 − η̂2)).

(5.31)

The second term tends to zero as a consequence of (4.37). Due to the choice of η̂i

we can calculate

Varw(̂η1− η̂2)=
N∑

k=1
w(tk−1+)

∣∣∣̂η1(tk) − η̂2(tk) −
(
η̂1(tk−1) − η̂2(tk−1)

)∣∣∣. (5.32)
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For the sake of readability let us denote η1 − η2 by δη. If k is odd we have

∣∣∣̂η1(tk) − η̂2(tk) −
(
η̂1(tk−1) − η̂2(tk−1)

)∣∣∣ =
∣∣∣δη(tk−1+) − δη2(tk−1)

∣∣∣ (5.33)

and if k is even we can evaluate that term to

∣∣∣̂η1(tk) − η̂2(tk) −
(
η̂1(tk−1) − η̂2(tk−1)

)∣∣∣ = |δη(tk) − δη(tk−2+)| . (5.34)

Furthermore we can bound the weighted total variation of ξ1 − ξ2 from below by

Varw(ξ1 − ξ2)

≥
∑

{k∈[N ]:k=2r−1,r∈N}
w(tk−1+) |δη(tk−1+) − δη(tk−1)|

+
∑

{k∈[N ]:k=2r,r∈N}
w(tk−1+) |δη(tk−2+) − δη(tk−1+)|

+
∑

{k∈[N ]:k=2r,r∈N}
w(tk) |δη(tk−1+) − δη(tk)|.

Therefore we can estimate

Varw(̂η1 − η̂2) − Varw(η1 − η2)

≤
∑

{k∈[N ]:k=2r,r∈N}
(w(tk−1+) − w(tk)) |δη(tk−1+) − δη(tk)|

≤ ε (w(T ) − w(0)) ,

(5.35)

and finally obtain

Varw(ξ1 − ξ2) ≤ ρVarw(η1 − η2). (5.36)

This indeed is the contraction property and the Banach fixed point theorem grants

the existence of a unique solution to Problem 2.2 within the set 1.

By simple translation one can proof Theorem 5.3 on any time interval [r, s]
with −∞ < r < s < ∞. Under the above conditions we denote the corresponding

solution operator S , that is

S(x0 − u(r), u, g, [r, s]) = ξ (5.37)

where ξ is the unique solution of the quasivariational sweeping process with initial
value x0 and input u, g on the time interval [r, s].
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5.2. Construction of a solution

In this part we are going to construct a solution ξ to the quasivariational sweeping
process. We first need the following result.

Proposition 5.4. Let u ∈ BVL(0, T ; X) then for each ε > 0 there exists an N =
N (ε,Var(u)) ∈ N such that

#{t ∈ [0, T ) : |u(t) − u(t+)| ≥ ε} ≤ N . (5.38)

Now we can prove

Proposition 5.5. Assume that Hypothesis 2.4, (2.9) and (2.10) are satisfied. Then
there exists a solution to the quasivariational sweeping process.

Proof. Choose ν such that (5.19) is satisfied. By Proposition 5.4 we can choose
(tn)

N
n=0 ∈ D[0,T ] such that t0 = 0, tN = T and

∀n ∈ [N ] : ∀t ∈ (tn−1, tn) : |u(t) − u(t+)| ≤ ν ∧ |g(t) − g(t+)| ≤ ν. (5.39)

For any f ∈ G(0, T ;Y) and each n ∈ [N ] we denote by

f̂ n :






[tn−1, tn] → Y

t $→
{
f (t) for t ∈ (tn−1, tn]
f (tn−1+) for t = tn−1

(5.40)

a restriction of f to [tn−1, tn] with no jump at its initial time. We set ξ0 = u(0)− x0
and k = 1. While k ≤ N do

(1) ξ k−1 := E(ξk−1, u(tk−1), g(tk−1), u(tk−1+), g(tk−1+))

(2) ξ̂ k := S(ξ k−1, ûk, ĝk, [tk−1, tk])
(3) ξk := ξ̂ k(tk), k := k + 1.

We define ξ : [0, T ] → X by

ξ(t) :=
{

ξ0 if t = 0

ξ̂n(t) if t ∈ (tn−1, tn] . (5.41)

It remains to prove that ξ is a solution to Problem 2.2. First we note that ξ ∈
BVL(0, T ; X). This is due to

Var(ξ) ≤
N∑

k=1

(
Var

(
ξ̂ k, [tk−1, tk]

)
+ |ξk−1 − ξ k−1|

)
(5.42)

and the left-continuity of ξ̂ k . Due to (3.11) we have for all n ∈ [N ]

ξ(tn−1+) = ξ̂n(tn−1+) = ξ̂n(tn−1) = ξn−1. (5.43)
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For z ∈ T (ξ) we compute
∫ T

0

〈u(t) − ξ(t) − z(t), dξ(t)〉

=
N∑

n=1

(∫ T

0

〈
(u(t+) − ξ(t+) − z(t))χ{tn−1}(t), dξ(t)

〉

+
∫ T

0

〈
(u(t+) − ξ(t+) − z(t))χ(tn−1,tn)(t), dξ(t)

〉)
.

(5.44)

The first term within can be evaluated by

∫ T

0

〈
(u(t+) − ξ(t+) − z(t))χ{tn−1}(t), dξ(t)

〉

= 〈u(tn−1+) − ξ(tn−1+) − z(tn−1), ξ(tn−1+) − ξ(tn−1)〉 ≥ 0.

(5.45)

Remember that z(tn−1) ∈ Z(g(tn−1+, u(tn−1+), ξ(tn−1+))). The inequality is due
to (5.43) and the definition of ξn−1. For the second termwemake use of Lemma B.1
to see that

∫ T

0

〈
(u(t+) − ξ(t+) − z(t))χ(tn−1,tn)(t), dξ(t)

〉

=
∫ tn

tn−1

〈(
ûn(t+) − ξ̂n(t+) − z(t)

)
χ(tn−1,tn)(t), d ξ̂n(t)

〉
≥ 0.

(5.46)

Here the inequality is a consequence of the fact that ξ̂n is by definition a solution of
the quasivariational sweeping process on the interval [tn−1, tn]. Thus we have for
any z ∈ T (ξ) that ∫ T

0

〈u(t) − ξ(t) − z(t), dξ(t)〉 ≥ 0 (5.47)

and the proof is complete.

5.3. Uniqueness of the solution

We show that the solution constructed above is indeed a unique solution. Before let

us state the following.

Lemma 5.6. Let ξ ∈ BVL(0, T ; X) be a solution of the quasivariational sweeping
process on [0, T ]. Choose any [r, s] ⊂ [0, T ] and define for f ∈ {g, u, ξ} f̂ :
[r, s] → Y (where Y is the appropriate space) by

f̂ : t $→
{
f (r+) if t = r

f (t) else.
(5.48)

Then ξ̂ solves the quasivariational sweeping process on [r, s] with input functions
ĝ, û and initial value ξ(r+).
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Proof. Obviously ξ̂(t) has the desired initial value. Choose any ẑ ∈ G(r, s; X) such
that ẑ(t) ∈ Z(g(t+, u(t+), ξ(t+))). Define

z(t) := (u(t+) − ξ(t+))χ[0,T ]\(r,s)(t) + ẑ(t)χ(r,s)(t).

Then due to Lemma B.1 - note that ξ is left continuous - we have

0 ≤
∫ T

0

〈u(t+) − ξ(t+) − z(t), dξ(t)〉 =
∫ s

r

〈
u(t+) − ξ̂(t+) − ẑ(t), dẑ(t)

〉
.

Thus ξ̂ satisfies the quasi-variational inequality and the proof is complete.

Proposition 5.7. Assume that Hypothesis 2.4 holds. Furthermore let (2.9) and

(2.10) be fullfilled. Then the solution to Problem 2.2 is unique.

Proof. Let (tn)
N
n=0 be the partition of [0, T ] corresponding to (5.39). Assume that

ξ, η ∈ BVL(0, T ; X) solve Problem 2.2 with η 2= ξ , that is there exists some
t ∈ [0, T ] such that ξ(t) 2= η(t). Let

τ := inf{t ∈ [0, T ] : ξ(t) 2= η(t)}. (5.49)

We make the convention that τ = T if ξ ≡ η. This is motivated by the fact that
ξ(τ ) = η(τ ). If τ = 0 it is immediate, otherwise it is a consequence of the left

continuity. We first show that if τ ∈ (tn−1, tn], then τ = tn . First notice ξ(t) = η(t)
for all t ∈ (tn−1, τ ] and especially ξ(tn−1+) = η(tn−1+). Due to Lemma 5.6 both
ξ̂n and η̂n solve the quasivariational evolution equation with initial value ξ(tn−1+).
By Theorem 5.3 we know the solution to be unique, in other words

ξ̂n = S(ξ(tn−1+), ûn, ĝn, [tn−1, tn]) = η̂n. (5.50)

Therefore ξ(t) = η(t) for all t ∈ (tn−1, tn] and we can safely assume that τ = tn
for some n ∈ [N ] ∪ 0. If n = N we already have ξ ≡ η. Otherwise by testing
inequality (2.4) with

z(t) = (u(t+) − ξ(t+))χ[0,T ]\{tn}(t) + yχ{tn}(t) (5.51)

for any y ∈ Z(g(tn+, u(tn+), g(tn+)) and the respective function for η we derive
that

ξ(tn+) = E(ξ(tn), u(tn), g(tn), u(tn+), g(tn+)) = η(tn+). (5.52)

Due to Lemma 5.6 we know that ξ̂n+1 and η̂n+1 solve the quasivariational evolution
equation on [tn, tn+1] with initial value ξ(tn+). Since its solution is unique we
know that ξ(t) = η(t) for all t ≤ tn+1, hence τ ≥ tn+1 - a contradiction. Therefore
τ = tN = T and ξ ≡ η.

Theorem 2.6 is now the immediate consequence of Propositions 5.5 and 5.7.
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6. On the jump size condition

In this section we discuss condition (2.10) restricting the jump size in Theorem 2.6

and whether it is necessary. We start by showing that (2.9) alone is not sufficient to

guarantee uniqueness. However in some cases (2.10) is not necessary for which we

will give two examples. It suffices to consider Problem 3.5 which is the critical part.

If we can guarantee a unique solution for it, we can guarantee a unique solution for

Problem 2.2 as well.

6.1. Necessity of a jump size condition for general convex sets

We give an example of nonuniqueness of the quasivariational inequality for CK0γ
arbitrarily small. Thus the condition (2.9) is not sufficient and an additional one has

to be chosen.

Example 6.1. Choose f ∈ C∞(R) such f (x) = x in [−1/2, 1/2], ‖ f ‖∞ ≤ 1 and

‖ f ′‖∞ ≤ 1. We furthermore choose the spaces X = R2 with R = R. Consider
polyhedra of the following type

Z(r) =
{
x ∈ R2 : A(r)x ≤ w(r)

}
(6.1)

with

A(r) =





1 0

−1 0

0 −1
f (r) l



 , w(r) =





1

1

1

1− f (r)2



 . (6.2)

The real number l > 1 remains to be chosen. Note that for l > 1 we have 0 ∈ Z(r)
and we can calculate the Minkowski functional of Z(r) by

M(r, x) = max

{
ai · x
wi

, i ∈ [4]
}

. (6.3)

Here ai denotes the i-th row of A. Therefore it is easy to compute that

∂r M(r, x) =

〈(
f ′(r)
0

)
, x

〉

(l − f (r)2)
− 2

〈(
f (r)
l

)
, x

〉
f (r) f ′(r)

(l − f (r)2)2
(6.4)

if 4 ∈ argmax
{
ai ·x
wi

, i ∈ [4]
}
and 0 otherwise. Note that for l ≥ 2 we have

1/4|a4(r)|2 = 1/4 f (r)2 + 1/4l2 ≤ 1/2l2 ≤
(
l − f (r)2

)2
(6.5)

and B1/2(0) ⊂ K (r). Furthermore we see that B2(0) ⊃ K (r). Thus we can set

C = 2. Using [2, Lemma 3.1] we have M(r, x) ≤ 2|x | for any x ∈ R2 and
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therefore M(r, x) ≤ 4 for all x ∈ BC(0). Therefore and by our above calculations
we can estimate

|K (r, x)| ≤ c
1

l − 1
(6.6)

where c is a suitable constant. Setting g : R2 × R2 → R, (u, ξ) $→ u − ξ we have
γ = 1. Thus we finally obtain

δ = CK0γ ≤ c
1

l − 1
. (6.7)

Choosing l arbitrary large we can make δ arbitrary small. However setting x0 =
(0, 1), u0 = (0, 0), u1 = (0, l) we have that any x1 = (z, 1) with z ∈ [−1/2, 1/2]
is a solution to

x1 = QZ(g(u1,u1−x1))(x
0 + +u). (6.8)

Note that the set Z(r) a polyhedron and thus does not satisfy Hypothesis 2.4. How-
ever by smoothing the edges (let’s say for |x1| > 3/4) there is no essential change
in the behavior and the aforementioned conditions are satisfied.

We see that the situation is rather unpleasant as a condition on the sizes of

jumps is in general needed. However we will give some examples where it can be

omitted through using additional information on the convex sets.

6.2. Balls with variable radius

This is perhaps the simplest example. LetR = R and assume that

Z(r) = Br (0), (6.9)

where Br (0) = {x ∈ X : |x | ≤ r} is the closed ball with radius r . Furthermore we
set

g : X → R+ : |g(x) − g(y)| < |x − y| ∀x, y ∈ X, x 2= y. (6.10)

Proposition 6.2. For any y ∈ X there exists a unique solution to the problem: Find

ξ such that
ξ = QZ(g(ξ))(y). (6.11)

Proof. For uniqueness assume that both ξ ,η solve the above problem. Without loss
of generality let |ξ | ≤ |η|. It is straightforward to see that

ξ = y

|y| |ξ | and η = y

|y| |η| (6.12)

with |ξ |, |η| ≤ |y|. Therefore if ξ 2= η, then |ξ | < |η| ≤ |y|. In this case
QK (g(ξ))(y) 2= y and we immediately derive |ξ | = g(ξ). Furthermore by defi-
nition |η| ≤ g(η). We then derive

|ξ − η| ≤ |η| − |ξ | ≤ g(η) − g(ξ) < |η − ξ | (6.13)
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a contradiction. To prove existence denote by Y = {λy : 1 ≥ λ ≥ 0} the line
between 0 and y. Let A : X → Y be the continuous operator which maps z $→
QZ(g(z))(y). Since Y is compact by the Schauder fixed point theoremA has a fixed
point ξ ∈ Y , which solves (6.11).

Things work out so smoothly since the problem reduces to a problem on the

real line. In fact by a similar method one can show that the implicit sweeping pro-

cess on the real line always has a unique solution for BV input functions provided

that CK0γ < 1.

6.3. Uniformly curved boundaries

Assume that for all r ∈ R there exists some ϑ > 0 such that

|n(r, x) − n(r, y)| ≥ ϑ |x − y| ∀x, y ∈ ∂Z(r). (6.14)

In other words what we are asking for is that the curvature of the boundary is uni-

formly bounded from below for all r . With this we can sharpen the condition (2.9)

such that a restriction on the jump size is no longer necessary.

Proposition 6.3. Let Hypothesis 2.4 and (6.14) hold. If
(
CK0 + ϑ−1CCJ (CK0 + 2)

)
γ < 1 (6.15)

then there exists a unique solution to Problem 3.5.

Proof. The proof relies on a careful examination of the proof of Proposition 3.2

which was given in [11]. For r, s ∈ R let Qr/s denote the orthogonal projection

onto Z(r) and Z(s) respectively. Our aim is to prove that

|Qr (x) − Qs(x)| ≤
(
CK0 + ϑ−1CCJ (CK0 + 2)

)
‖r − s‖R. (6.16)

If x ∈ Z(s) the left hand side can be estimated from above by the Hausdorff distance
dH (r, s). Lemma 3.3 then grants the claim. The same holds for x ∈ Z(r). If
x /∈ Z(s) ∪ Z(s) we use equation (3.26) of the aforementioned paper where it was
shown that

|n (r, Qr (x)) − n (s, Qs (x))| ≤ |n (r, Qr (x)) − n (s, Qs (Qr (x)))| . (6.17)

Due to Proposition 3.3 we can estimate the right hand side from above by

|n (r, Qr (x)) − n (s, Qs (Qr (x)))| ≤ CCJ (dH (r, s) + ‖r − s‖R). (6.18)

On the other hand the left hand side can be estimated from below by

|n (r, Qr (x)) − n (s, Qs (x))|

≥
∣∣∣∣n(r, Qr (x)) − J (r, Qs (x))

|J (r, Qs (x))|

∣∣∣∣ −
∣∣∣∣
J (r, Qs (x))

|J (r, Qs (x))| − J (s, Qs (x))

|J (s, Qs (x))|

∣∣∣∣ .
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Note that the outer normal is only defined at the boundary but the term J (r,·)
|J (r,·)| is

defined everywhere in X , coincides with the outer normal on the boundary and is

0-homogeneous. For ν = 1/M(r, Qs(x)) we have νQs(x) ∈ ∂Z(r). Therefore we
can estimate

∣∣∣∣n(r, Qr (x)) − J (r, Qs (x))

|J (r, Qs (x))|

∣∣∣∣
= |n(r, Qr (x)) − n(r, νQs (x))|
≥ ϑ |Qr (x) − Qs(x)| − ϑ

|Qs(x)|
M(r, Qs(x))

|M(r, Qs(x)) − 1|.

Since x /∈ Z(s)we have Qs(x)∈∂Z(s).Using [2, Lemma 3.1] we get M(r, Qs(x)
|Qs(x)| )≥

C−1. If M(r, Qs(x)) ≥ 1 then

M2(r, Qs(x)) − M(s, Qs(x))
2 ≥ M(r, Qs(x)) − 1 ≥ 0 , (6.19)

if M(r, Qs(x)) < 1 then

M2(r, Qs(x)) − M2(s, Qs(x)) ≤ M(r, Qs(x)) − 1 ≤ 0. (6.20)

Thus we have

|M(r, Qs(x)) − 1| ≤ |M2(r, Qs(x)) − M(s, Qs(x))
2| ≤ K0‖r − s‖R (6.21)

and we finally obtain

|n (r, Qr (x)) − n (s, Qs (x))|
≥ ϑ |Qr (x) − Qs(x)| − ϑCK0‖r − s‖R − CJC‖r − s‖R.

(6.22)

Putting all together we derive (6.16). An application of Banach’s fixed point theo-

rem now grants a unique solution to Problem 3.5.

Going through the computations we see that under the conditions of Proposi-

tion 6.3 there exists a unique solution to Problem 2.2 for all u ∈ BVL(0, T ; X),
g ∈ BVL(0, , T ;C1ω,γ (X × X;R)) and x0 ∈ Z(g(0, u(0), u(0) − x0)). However
we refrain from doing so here and leave it to the reader.

Concluding this section we see that, if we allow for functions of bounded vari-

ation instead of only absolutely continuous functions, we pay by imposing a struc-

tural assumption in addition to the conditions of [2]. These additional assumptions

can be either on the involved functions, as in the main part of the present paper, or

on the convex sets, as we showed here.
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Appendix

A. A discrete Gronwall-like lemma

We prove a discrete Gronwall-like lemma adapted especially for our purposes.

Lemma A.1. Let (ξk)
N
k=0, (ηk)

N
k=0 ⊂ X , (bk)

N
k=0, (ak)

N
k=0 ⊂ R≥0 with

|+kξ | + +kb ≤ ak (|ξk−1| + |ηk−1|) + δ|+kη| ∀k ∈ [N ] (A.1)

for some 0 ≤ δ < 1. Assume furthermore that b0 = 0 and ξ0 = η0 = 0. Then there

exists ε ≥ 0 and 0 ≤ ρ < 1 such that for

wk = exp

{
−1

ε

k∑

i=1
ak

}
∀k ∈ [N ] (A.2)

it holds
N∑

k=1
|+kξ |wk ≤ ρ

N∑

k=1
|+kη|wk . (A.3)

Proof. Choose ε < (1− δ)/2, set

ρ := δ + ε

1− ε
< 1, (A.4)

and multiply both sides of (A.1) by wk . Since wk is a decreasing sequence and

b0 = 0 we have

N∑

k=1
(+kb)wk = bNwN +

N−1∑

k=1
bk(wk − wk−1) − b0w1 ≥ 0 (A.5)

and therefore obtain

N∑

k=1
|+kξ |wk ≤

N∑

k=1
akwk (|ξk−1| + |ηk−1|) + δ

N∑

k=1
|+kη|wk . (A.6)

For the first term on the right hand side we have

N∑

k=1
akwk |ξk−1|

ξ0=0≤ ε
N∑

k=2

1

ε
akwk

(
k−1∑

j=1
|+ jξ |

)

= ε
N−1∑

j=1
|+ jξ |

(
N∑

k= j+1

1

ε
akwk

)
.
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We can estimate

N∑

k= j+1

1

ε
akwk ≤

∫ 1
ε

∑N
k=1 ak

1
ε

∑ j
k=1 ak

exp(−x) ≤ exp

{
−1

ε

j∑

k=1
ak

}
= w j (A.7)

by interpreting the first term as a Riemann sum. Proceeding in the same way for∑
akwk |ηk−1| we obtain

N∑

k=1
|+kξ |wk ≤ ε

N∑

k=1
(|+kξ | + |+kη|)wk + δ

N∑

k=1
|+kη|wk . (A.8)

This completes the proof.

B. A lemma for the Kurzweil integral

For a comprehensive introduction to the Kurzweil integral we point out [8, 10, 14]

and references therein. Here we prove the following technical result.

Lemma B.1. Let u ∈ G(0, T ; X), ξ ∈ BV (0, T ; X) and [r, s] ⊂ [0, T ] with
r < s. Define

ξ̂ : [r, s] → X, t $→






ξ(r+) if t = r

ξ(t) if t ∈ (r, s)

ξ(s−) if t = s.

(B.1)

Then ∫ T

0

〈
u(t)χ(r,s)(t), dξ(t)

〉
=

∫ s

r

〈
u(t), d ξ̂(t)

〉
. (B.2)

Proof. It suffices to prove the above for step functions u ∈ S(0, T ; X). In that case
there exists a partition (tn)

N
n=0 ∈ D[0,T ], t0 = r , tN = s such that

u(t)χ(r,s)(t) =
∑

n∈[N ]
unχ(tn−1,tn)(t) +

∑

n∈[N−1]
unχ{tn}(t) (B.3)

for some (un)Nn=1, (u
n)N−1
n=1 ⊂ X . Then we have for the left hand side integral

∫ T

0

〈
u(t)χ(r,s)(t), dξ(t)

〉

=
∑

n∈[N ]

〈
un, ξ(tn−) − ξ(tn−1+)

〉
+

∑

n∈[N−1]

〈
un, ξ(tn+) − ξ(tn−)

〉
.

(B.4)
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For the right hand side we get

∫ s

r

〈
u(t), d ξ̂(t)

〉

=
∑

n∈[N ]

〈
un, ξ̂(tn−) − ξ̂(tn−1+)

〉
+

∑

n∈[N−1]

〈
un, ξ̂(tn+) − ξ̂(tn−)

〉

+
〈
u(r), ξ̂(r+) − ξ̂(r)

〉
+

〈
u(s), ξ̂(s) − ξ̂(s−)

〉
.

(B.5)

Due to the definition of ξ̂ the last two terms are zero and the former sums agree
with the ones above. Thus for all u ∈ S(0, T ; X) (B.2) holds. Now let ξ be in
G(0, T ; X). Then there exists a sequence of step functions (ξn)n∈N such that ξn →
u with respect to ‖ · ‖∞. Note that then also ξ̂n → ξ̂ as well and the continuity of
the Kurzweil integral grants the statement.

References

[1] G. AUMANN, “Reelle Funktionen”, Springer-Verlag, New York, 1954.
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LIFSHĬTS and A. V. POKROVSKIĬ, Hysterant operator, Soviet Math. Dokl. 11 (1970), 29–
33.
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