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Two-sided weighted Fourier inequalities

ELIJAH LIFLYAND AND SERGEY TIKHONOV

Abstract. Fourier transform estimates for ‖ f̂ ‖Lq,w̃
via ‖ f ‖L p,w from above and

from below are studied. For p = q, equivalence results, i.e.,

C1‖ f ‖L p,w ≤ ‖ f̂ ‖L p,w̃ ≤ C2‖ f ‖L p,w , w̃(x) = w(1/x)x p−2, 1 ≤ p < ∞,

are shown to be valid for functions from certain classes under the Muckenhoupt
conditions: w ∈ Ap or w ∈ A2p . Sharpness of these conditions is proved.

Mathematics Subject Classification (2010): 42A38 (primary); 26D15, 46E30
(secondary).

1. Introduction

The theory ofWeighted Fourier Inequalities studies the following (L p, Lq) inequal-
ities:

‖ f̂ ‖Lq,w̃(R) ! ‖ f ‖L p,w(R), 1 ≤ p ≤ q < ∞, (1.1)

where the Fourier transform

f̂ (x) =
∫

R
f (t)e−i xt dt

is defined in certain regular or distributional sense (see, e.g., [8]).

We use the notation “! ” and “" ” as abbreviations for “≤ C ” and “≥ C ”,

respectively, while “' ” means that “! ” and “" ” hold simultaneously. Here and
below C,C1,C2 denote positive constants.

The norms in weighted spaces are defined by

‖ f ‖L p,w(R) =
(∫

R
| f (x)|p w(x) dx

)1/p

The research was supported, in part, by grants 2009 SGR 1303, MTM2008-05561-C02-02/MTM,
RFFI 09-01-00175, and the ESF Network Program HCAA.

Received May 30, 2010; accepted in revised form December 17, 2010.



342 ELIJAH LIFLYAND AND SERGEY TIKHONOV

for L p,w, and similarly for Lq,w̃, where w and w̃ are weights, that is, non-negative,

locally integrable functions on R.
Such inequalities are not only of interest by themselves but also have important

applications (this is discussed in [8]), such as the uncertainty principle [3], and

restriction theory (see, e.g., [5, 9]). In a simple form, one faces such inequalities

while justifying the differentiation formula for Fourier transforms.

The celebrated Pitt’s theorem (see, e.g., [7]; in [27, 33] the case of Fourier

series is considered) states that for the power weights

w(x) = |x |γ and w̃ = |x |−γ q/p+q/p′−1,

(1.1) holds for all f ∈ L p,w if and only if

γ ∈
[
max{0, p − 2}, p − 1

)
.

(P)

In particular, f̂ is well-defined in this case (see [4, 6], [7, Example 5]).

In fact, Pitt’s theorem contains the Plancherel theorem and classical (non-

weighted) versions of both Hardy-Littlewood’s inequality (1 < p = q ≤ 2, γ = 0

or p = q ≥ 2, γ = p − 2; see [36, Theorem 79, 80]) and Hausdorff-Young’s

inequality (q = p′ ≥ 2, γ = 0; see [36, Theorem 74]).

A natural question arises of whether the results of type (P) can be obtained
with a larger selection of weights. Our first observation is concerned withmonotone

weights. In general, sufficient conditions in terms of weights were studied in [4–

7, 18, 21, 22, 26], etc. Typically, conditions for (1.1) to hold are given in terms of

decreasing rearrangements of weights. Moreover, when the weights are assumed

monotone, inequality (1.1) necessarily implies certain integral conditions in terms

of w and w̃. To formulate such results due to Benedetto et al. [6], we recall the
Muckenhoupt Ap condition (see, e.g., [34, Chapter V]).

For 1 < p < ∞, w ∈ Ap(R) if

(
1

|I |

∫

I

w(x) dx

) (
1

|I |

∫

I

w(x)−1/(p−1) dx
)p−1

! 1 (1.2)

for all intervals I ⊂ R. For p = 1, w ∈ A1(R) if

1

|I |

∫

I

w(t) dt ! w(x) (1.3)

for almost all x ∈ I and all intervals I ⊂ R.
The following generalization of (P) provides the necessary and sufficient con-

dition for (1.1) to hold for monotone increasing weights ([6]). It is an analogue of

the condition γ ≥ 0 in Pitt’s inequality.

Theorem A. Let 1 < p ≤ q ≤ p′ < ∞ and w be an even weight which is

non-decreasing on R+. Then for w̃(x) := w(1/x)q/p|x |q/p′−1,

(1.1) holds if and only if wq/p ∈ A1+(q/p′)(R),

or, equivalently, if and only if w ∈ Ap(R).
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We note that, in general, for any weight w and α ≥ 1,

wα ∈ A1+α(p−1)(R) =⇒ w ∈ Ap(R), (1.4)

which easily follows from the monotonicity in α of the integral means(
1
|I |

∫
I
w(x)α dx

)1/α
. On the other hand, using [14, Proposition 2.3(d)] (see also

[15, Corollary 6.3]), we get the reverse implication in (1.4) for any even non-

decreasing weight w. Taking α = q/p gives an equivalence of the two Muck-
enhoupt’s conditions in Theorem A.

We also remark that assuming w to be non-decreasing is essential, since, for

p = q say, (1.1) with any non-increasing weight w += 0 implies w ' const (see [6,

Section 4]).

Let us now refer to functions rather than to weights. Our second observation

is related to functions which are either monotone or general monotone; the latter

will be specified below (see (1.6)). It is convenient to study such functions on R+.
Further we use

‖ f ‖p,w =
(∫

R+
| f (x)|p w(x) dx

)1/p
, f̂+(x) =

∫

R+
f (t) e−i xt dt,

and

f̂cos(x) =
∫

R+
f (t) cos xt dt, f̂sin(x) =

∫

R+
f (t) sin xt dt,

with obvious relation f̂+ = f̂cos − i f̂sin.We will assume w to be even: in this case

w ∈ Ap(R) if and only if w ∈ Ap(R+), and ‖ f̂cos‖p,w ' ‖ f̂ ‖L p,w(R) when f is

even, while ‖ f̂sin‖p,w ' ‖ f̂ ‖L p,w(R) when f is odd.

The well-known Hardy-Littlewood theorem [36, Chapter IV] states that

‖ f̂ ‖p,w̃ ' ‖ f ‖p,w, w̃(x) := w(1/x)x p−2, (1.5)

with f̂ = f̂cos, 1 < p < ∞, and w ≡ const, holds true for any monotone decreas-

ing function f integrable near zero.

The weighted – for power weights – version of (1.5) came as a conjecture

of Boas in [10]; the proof followed shortly after: Sagher [29]. We present that

statement as

Theorem B. Let 1 < p < ∞ and w(t) = tγ . Then for any monotone decreasing

function f , integrable on [0, 1],

(1.5) holds if − 1 < γ < p − 1. (B)
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Comparing now (B) and (P), we note that monotonicity of functions, on the one
hand, extends the range for γ in Pitt’s inequality and, on the other hand, allows one
to write a two-sided inequality. The study of both of these phenomena for more

general function classes and for weights subject to a Muckenhoupt condition is the

main goal of this paper. Our key result (see Theorem 3.1) states that for w ∈ Ap,

equivalence (1.5) holds for each general monotone function, that is (see [23]), for

f : R+ → R+ locally of bounded variation out of the origin and vanishing at

infinity (we will call such functions admissible), which satisfies for any x > 0

∫ 2x

x

| d f (t)| ≤ C

∫ cx

x/c

| f (t)|
t

dt, (1.6)

with some c > 1. If an admissible f satisfies (1.6), we will write f ∈ GM .

Assuming additionally the weight w be such that w(x) ' w(y) for any y ≤
x ≤ 2y (written w ∈ #2

2), we can obtain the following extension of Theorem B

(see Theorem 3.3): Equivalence (1.5) holds

(A) for any general monotone f and for ( f, f̂cos) if and only if w ∈ Ap(R+),
1 < p < ∞,

or

∫ ∞

δ

w(x)

x
dx ! w(δ), p = 1;

(B) for any general monotone f and for ( f, f̂sin) if and only if w ∈ A2p(R+),
1 ≤ p < ∞.

For the power weights w(x) = xγ it just means that (B) is refined as follows: (1.5)
holds true for ( f, f̂cos), with f ∈ GM, if and only if γ ∈ (−1, p − 1), while for
( f, f̂sin), with f ∈ GM, if and only if γ ∈ (−1, 2p − 1).

We remind the reader that the range max{0, p − 2} ≤ γ < p − 1 is, gener-

ally, sharp for Pitt’s inequality ‖ f̂ ‖p,w̃ ! ‖ f ‖p,w to hold without any regularity
assumption on f . Attempts to widen this range were taken by many authors (see,

e.g., [5,8,16,17,28,31]). A typical condition for this is vanishing of certain moments

of function f . In particular, Sadosky and Wheeden [28] proved that the (L p, L p)
Pitt’s inequality holds for p − 1 < γ < 2p − 1 for f having mean value zero.

Unlike the approach for general monotone functions, the limiting case γ = p − 1

is excluded even under this restriction on f .

The paper is organized as follows. We start with L1 estimates in Section 2.

In Section 3, we formulate our main results. In Section 4 we prove general upper

and lower estimates for the integrability with weights of the Fourier transforms. In

particular, we extend Theorem A by assuming either regularity of w or regularity

of f :

Theorem 1.1. Let 1 < p ≤ q < ∞ and an even weight wq/p ∈ A1+(q/p′)(R).

Then Pitt’s inequality ‖ f̂ ‖q,w̃ ! ‖ f ‖p,w holds provided either w is increasing

(q ≤ p′), or f is general monotone.
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In the last section we encompass multidimensional generalizations of Boas

type result (B) for radial functions.
We finally mention that the class of general monotone functions consists of

functions with much more complicated structure than monotone ones [25]. It is

clear that any monotone function is in GM . Further, a function f on R+ is quasi-
monotone if there exists τ > 0 such that f (x)/xτ is monotone decreasing. Such

functions are in GM as well. However, for any monotone f one can define

f1(x) := f (x)χ(0,1](x) +
∞∑

n=0
an f (x)χ(λn,λn+1](x), λ > 1,

an =
{
a2k = 1,
a2k+1 = 0,

k = 0, 1, 2, · · ·

so that f1 is general monotone but neither monotone nor quasi-monotone. Note that

if we consider a function with different oscillation properties, say

f2(x) := f2( f, x) :=
∞∑

n=0
an f (x)χ(n,n+1](x),

then f2 ∈ GM not for all f . For example, if f (x) = x−l , l ∈ R, then f2 /∈ GM ,

while if f (x) = e−x , then f2 ∈ GM .

One of the properties of the GM functions often used is (see [25])

| f (x)| !
∫ cx

x/c

| f (t)|
t

dt, c > 1. (1.7)

ACKNOWLEDGEMENTS. The authors are indebted to Fulvio Ricci for stimulat-

ing discussions. The authors gratefully acknowledge the support of the Centre de

Recerca Matemàtica in Barcelona and the Centro di Ricerca Matematica Ennio De

Giorgi in Pisa.

2. Starting points: L1 estimates

In this section, weighted Fourier inequalities are studied in L1. In particular, we

give pointwise estimates from above of the Fourier transforms (see Lemma 2.2)

and lower estimates for the integrated Fourier transforms (see Lemma 2.3). These

auxiliary results will be useful in our further study. Using Lemmas 2.2 and 2.3, we

estimate
∫

R+
| f̂cos(x)| x−1w(1/x) dx and

∫

R+
| f̂sin(x)| x−1w(1/x) dx
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from above and from below (see Propositions 2.1 and 2.4). Denoting

((t) = (( f ; t) =
∫ 2t

t

|d f (s)|, (2.1)

we first give upper estimates.

Proposition 2.1. Let f be admissible. If f is integrable near the origin,
∫ ∞

0

x−1w(x−1)| f̂cos(x)|dx!
∫ ∞

0

|((t)|
[
t−1

∫ t

0

w(x)dx+
∫ ∞

t

x−1w(x) dx

]
dt. (2.2)

If t f (t) is integrable near the origin,
∫ ∞

0

x−1w(x−1)| f̂sin(x)|dx!
∫ ∞

0

|((t)|
[
t−1

∫ t

0

w(x)dx+t
∫ ∞

t

x−2w(x)dx

]
dt. (2.3)

Proof. The following auxiliary result was proved in [23] (see Lemma 2.2 and cor-

responding remark on page 1141).

Lemma 2.2. Let f be admissible. Then

| f̂cos(x)| !
∫ 1/x

0

((t) dt + x−1
∫ ∞

1/x
t−1((t) dt (2.4)

and

| f̂sin(x)| ! x

∫ 1/x

0

t((t) dt + x−1
∫ ∞

1/x
t−1((t) dt. (2.5)

The proof of Proposition 2.1 immediately follows from Lemma 2.2 and Fubini’s

theorem.

To obtain general lower estimates for p = 1, we need a preliminary result that
will be used for lower estimates when p > 1 as well.

Lemma 2.3. Let f̂cos and f̂sin exist as improper integrals, converge uniformly on

every compact set away from zero, and be locally Lebesgue integrable overR+. Let
f ≥ 0 such that

∫ ∞

1

f (t)

t
dt < ∞, (2.6)

and c > 1. If f (t) is integrable near zero, we have
∫ cz

z/c
t−1 f (t) dt !

∫ 1/z

0

∣∣ f̂cos(x)
∣∣ dx,

and if t f (t) is integrable near zero, we have
∫ cz

z/c
t−1 f (t) dt !

∫ 1/z

0

∣∣ f̂sin(x)
∣∣ dx .
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Proof of Lemma 2.3. Let, for example, f̂sin be subject to the same assumptions as
in the lemma. Since we understand the Fourier transform in the improper sense, we

have for x ≥ ε, ε > 0 fixed, and A large enough
∫ A

0 f (t) sin xt dt = f̂sin(x)+o(1).

By this, on each finite interval [ε, u] the family
∫ A

0 f (t) sin xt dt is controlled by

the integrable function | f̂sin(x)| + 1. For f ≥ 0, applying the Lebesgue dominated
convergence theorem, we have

∫ u

ε
f̂sin(x) dx = lim

A→∞

∫ u

ε

∫ A

0

f (t) sin xt dt dx =
∫ ∞

0

f (t)
cos εt − cos ut

t
dt.

Using assumptions on f and dominated convergence, we obtain, letting now ε tend
to zero,

∫ u

0

f̂sin(x) dx = 2

∫ ∞

0

f (t)t−1 sin2(ut/2) dt ≥ 0.

Further,

∫ 1/z

0

| f̂sin(x)| dx ≥
∫ 1/cz

0

| f̂sin(x)| dx ≥
∣∣∣∣∣

∫ 1/cz

0

f̂sin(x) dx

∣∣∣∣∣

= 2

∫ ∞

0

f (t)t−1 sin2(t/(2cz)) dt

≥ 2 sin2(1/2c2)

∫ cz

z/c
t−1 f (t) dt ≥ 0,

the desired estimate. For f̂cos, the proof is similar for
∫ u

0

f̂cos(x)(1− x) dx .

A slightly different argument for integrable f can be found in [21]. The proof is

complete.

Let, for some c > 1,

*(x) = *( f ; x) =
∫ cx

x/c
t−1 f (t) dt. (2.7)

Proposition 2.4. Let f ≥ 0 satisfy (2.6). If f ∈ L1(0, 1), then

∫ ∞

0

*(x)w(x) dx !
∫ ∞

0

| f̂cos(t)|
(∫ 1/t

0

w(x) dx

)
dt; (2.8)

and if t f (t) ∈ L1(0, 1), then

∫ ∞

0

*(x)w(x) dx !
∫ ∞

0

| f̂sin(t)|
(∫ 1/t

0

w(x) dx

)
dt. (2.9)
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Proof. To apply Lemma 2.3, we must check the convergence conditions on the

Fourier transforms assumed there. Denoting both Fourier transforms by F , we

have for each of the right-hand sides of (2.8) and (2.9)

∫ ∞

0

|F(t)|
(∫ 1/t

0

w(x) dx

)
dt < ∞. (2.10)

Further,

∫ u

0

|F(t)|
(∫ 1/t

0

w(x) dx

)
dt −

∫ u

0

|F(t)|
(∫ 1/t

1/u
w(x) dx

)
dt

=
∫ 1/u

0

w(x) dx

∫ u

0

|F(t)| dt
(2.11)

is equivalent to
∫ u
0 |F(t)| dt for any fixed u. Both integrals on the left-hand side of

(2.11) are bounded for any u because of (2.10). Now, Lemma 2.3 yields

∫ ∞

0

*(x)w(x) dx !
∫ ∞

0

w(x)

∫ 1/x

0

∣∣∣∣∣
f̂cos

f̂sin
(t)

∣∣∣∣∣ dt dx .

Then (2.8) and (2.9) follow by Fubini’s theorem.

3. Main results

In the sequel, we will assume that condition (2.6) is fulfilled, i.e.
∫ ∞
1

f (t)
t
dt < ∞.

Define

GM1 = { f : f ≥ 0, f ∈ L(0, 1), f ∈ GM}

and

GM2 = { f : f ≥ 0, t f (t) ∈ L(0, 1), f ∈ GM}.

3.1. Two-sided (L p, L p) inequalities

The following criteria are the central results of our paper. We denote wp(x) :=
x−pw(x).

Theorem 3.1. Let 1 < p < ∞.

(A) If w ∈ Ap and f ∈ GM1, then

∫ ∞

0

| f̂cos(x)|px p−2w(1/x) dx '
∫ ∞

0

w(x) f (x)p dx . (3.1)
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(B) If either w or wp belongs to Ap and f ∈ GM2, then

∫ ∞

0

| f̂sin(x)|px p−2w(1/x) dx '
∫ ∞

0

w(x) f (x)p dx . (3.2)

Remark 3.2. Let us note that assuming condition (2.6) is essential only in lower

estimates (where Lemma 2.3 is used), while for the upper estimates it follows from

the corresponding conditions on weights. It is proved in [19, Lemma 2] thatw ∈ Ap

along with f ∈ L p,w imply
∫ 1
0 | f (t)| dt +

∫ ∞
1 t−1| f (t)| dt < ∞. For wp ∈ Ap

along with f ∈ L p,w this yields
∫ 1
0 t | f (t)| dt +

∫ ∞
1 t−1| f (t)| dt < ∞. Further, it

is known (see [24]) that for f ∈ GM condition (2.6) implies f to be of bounded

variation away from zero. Along with integrability conditions near the origin, this

ensures both existence of the Fourier transforms in the improper sense and their

uniform convergence on every compact set away from zero (see [12, Chapter 1]).

In the next theorem, we require additional regularity of the weight w to estab-

lish the complete characterization of equivalence ‖ f̂ ‖p,w̃ ' ‖ f ‖p,w in terms of w.
Recall that if a weight w satisfies w(x) ' w(y) for any y ≤ x ≤ 2y, we write

w ∈ #2
2.

Theorem 3.3. Let 1 ≤ p < ∞ and w ∈ #2
2.

(A) Let 1 < p < ∞ and w satisfy

1

δ

∫ δ

0

w(x)dx ! w(δ). (3.3)

Then (3.1) holds for each f ∈ GM1 if and only if w ∈ Ap.

(A′) Let p = 1 and w satisfy (3.3). Then (3.1) holds for each f ∈ GM1 if and

only if
∫ ∞

δ

w(x)

x
dx ! w(δ). (3.4)

(B) If w ∈ A2p, then (3.2) holds for each f ∈ GM2. If w satisfies (3.3), then
(3.2) implies w ∈ A2p.

Remark 3.4. Note that in the proof of (A′) we do not use the condition w ∈ #2
2.

Also, any increasing weight (see Theorem A) clearly satisfies condition (3.3). In

addition, we note that the assertion of Theorem 3.3 is false without the general

monotonicity condition (see [6, Section 4], [20, Theorem 8], [28, Section 5]).

When w is a power weight, Theorem 3.3 furnishes necessary and sufficient

conditions for Boas’ criterion to hold. Thus, Theorem B is extended as follows.
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Corollary 3.5. Suppose 1 ≤ p < ∞ and w(x) = xγ ; then

(A) relation (3.1) holds for f ∈ GM if and only if γ ∈ (−1, p − 1).
(B) relation (3.2) holds for f ∈ GM if and only if γ ∈ (−1, 2p − 1).

Results for trigonometric series with quasi-monotone and general monotone coeffi-

cients similar to (A) were obtained in [2] and [35] respectively. When p = 1, part

“if” is known for monotone functions, see [32] and [11]. For the weightw(x) = xγ ,
γ > −1, we illustrate our results (A) and (B) by the next
Example 3.6. Take f (t) = e−t , then f̂cos(x) = 1/(1+ x2) and f̂sin(x) = x/(1+
x2). We therefore get that ‖ f ‖p,w < ∞ provided γ > −1. On the other hand,
‖ f̂cos(x)‖p,w̃ < ∞ provided−1<γ < p−1 (we remind that w̃(x) :=w(1/x)x p−2),
while ‖ f̂sin(x)‖p,w̃ < ∞ provided −1 < γ < 2p − 1.

3.2. Two-sided (L p, Lq , Ls) inequalities

Theorem 3.1 is a partial case of the next two (L p, Lq) and (Lq , Ls) Fourier in-
equalities. Further, we always suppose that 1 < p ≤ q ≤ s < ∞. Allied to w is

the weight w̃(x) = w(1/x)q/pxq/p′−1. If we use a weight denoted by w (in lower

estimates, in fact), this is any weight w that relates to w, p, q, and s by means of
the condition

sup
r>0

(∫ r

0

w(x) dx

)1/s (∫ ∞

r

w̃(1/x)−1/(q−1)x−2dx
)1/q ′

< ∞. (3.5)

Recall that ((t) and *(x) are given by (2.1) and (2.7), respectively.

Theorem 3.7. Let f be a non-negative admissible function, integrable near the

origin, and let wq/p ∈ A1+(q/p′) and (3.5) be satisfied. Then

‖*‖s,w ! ‖ f̂cos‖q,w̃ ! ‖(‖p,w. (3.6)

Theorem 3.8. Let f be a non-negative admissible function, with t f (t) integrable

near the origin, and let either wq/p or w
q/p
p belong to A1+(q/p′), and (3.5) be

satisfied. Then

‖*‖s,w ! ‖ f̂sin‖q,w̃ ! ‖(‖p,w. (3.7)

Comparing the right-hand sides of (3.6) and (3.7) with Theorem A, we arrive at

Theorem 1.1 (using Lemma 4.4 below).

For the power weights, Theorems 3.7 and 3.8 can be written as follows.
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Corollary 3.9. Suppose 1 < p ≤ q ≤ s < ∞ and w(x) = xγ , w̃(x) =
x−γ q/p+q−q/p−1, w̄(x) = x (γ+1)s/p−1; then

(A) inequality (3.6) holds if γ ∈ (−1, p − 1).
(B) inequality (3.7) holds if γ ∈ (−1, 2p − 1).

If additionally, f ∈ GM , then

‖ f ‖s,w ! ‖ f̂cos‖q,w̃ ! ‖ f ‖p,w holds if γ ∈ (−1, p − 1); (3.8)

‖ f ‖s,w ! ‖ f̂sin‖q,w̃ ! ‖ f ‖p,w holds if γ ∈ (−1, 2p − 1). (3.9)

In the context of weighted classes, estimates (3.6)-(3.9) refine the previous results

of Benedetto et al. [5–7], Heinig [18], Jurkat-Sampson [21, 22], Knopf-Rudnick

(see [22, pages 258-259]), Sadosky-Wheeden [28], Sagher [29].

4. Proofs

Wewill first prove upper estimates for the cosine and sine Fourier transforms, under

more general conditions on w than those in Theorems 3.7 and 3.8.

Theorem 3.7′. Let f be a non-negative admissible function, integrable near the
origin. Let the weights w, w̃, and w satisfy (3.5) along with

sup
r

(∫ ∞

r

w(x)q/pxq/p−q−1 dx
)1/q (∫ r

0

w(x)1/(1−p) dx

)(p−1)/p
< ∞ (4.1)

and

sup
r

(∫ r

0

w(x)q/pxq/p−1 dx
)1/q (∫ ∞

r

[x pw(x)]1/(1−p) dx

)(p−1)/p
< ∞. (4.2)

Then inequality (3.6) holds.

Theorem 3.8′. Let f be a non-negative admissible function, with t f (t) integrable
near the origin. Let the weights w, w̃, and w satisfy (3.5) and (4.2) along with

sup
r

(∫ ∞

r

w(x)q/pxq/p−2q−1dx
)1/q(∫ r

0

[x−pw(x)]1/(1−p)dx

)(p−1)/p
<∞. (4.1′)

Then inequality (3.7) holds.

Let us explain the logic of our proofs: Theorems 3.7′ and 3.8′ ⇒ Theorems 3.7

and 3.8 ⇒ Theorem 3.1 and the “if” part of Theorem 3.3 (p > 1). Theorems 3.7,

3.8 and Theorem A ⇒ Theorem 1. Further, Propositions 2.1 and 2.4 ⇒ Theorem

3.3 in case of p = 1. Corollary 3.9 follows from Theorems 3.7 and 3.8, except the

case ω(x) = x p−1 which follows from Theorem 3.8′.
Before proceeding to the proofs we need certain preliminaries.



352 ELIJAH LIFLYAND AND SERGEY TIKHONOV

4.1. Weighted Hardy inequalities.

We will frequently use the following two weighted Hardy’s inequalities (see [13]).

Lemma 4.1. Let 1 < α ≤ β < ∞. Suppose u, v ≥ 0 on (0,∞). Then

(∫ ∞

0

[
u(x)

∫ x

0

ψ(t) dt

]β

dx

)1/β
!

(∫ ∞

0

[ψ(x)v(x)]αdx
)1/α

(4.3)

holds for each ψ ≥ 0 if and only if

sup
r>0

(∫ ∞

r

u(x)βdx

)1/β (∫ r

0

v(x)−α/(α−1)dx
)(α−1)/α

< ∞. (4.4)

The counterpart

(∫ ∞

0

[
u(x)

∫ ∞

x

ψ(t) dt

]β

dx

)1/β
!

(∫ ∞

0

[ψ(x)v(x)]αdx
)1/α

(4.5)

holds for each ψ ≥ 0 if and only if

sup
r>0

(∫ r

0

u(x)βdx

)1/β (∫ ∞

r

v(x)−α/(α−1)dx
)(α−1)/α

< ∞. (4.6)

In parallel, we will use Hardy’s inequalities for w satisfying Muckenhoupt’s con-

dition. Here we continue investigations by Sadosky and Wheeden and will use the

following two lemmas from [28] (see Lemmas 1a and 2a). Let a function ψ be

non-negative.

Lemma 4.2. Let 1 < p ≤ q < ∞ and wq/p ∈ A1+q/p′ . There holds

(∫ ∞

0

[
x1/p

′−1/qw(1/x)1/p
∫ ∞

x

ψ(t) dt

]q
dx

)1/q

!
(∫ ∞

0

ψ(x)px2p−2w(1/x) dx

)1/p
.

(4.7)

Lemma 4.3. Let 1 < p ≤ q < ∞ and wq/p ∈ A1+q/p′ . There holds

(∫ ∞

0

[
x−1/p−1/qw(1/x)1/p

∫ x

0

ψ(t) dt

]q
dx

)1/q

!
(∫ ∞

0

ψ(x)px p−2w(1/x) dx

)1/p
.

(4.8)

We will also need the following norm estimate for the average operator (.
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Lemma 4.4. Let w ∈ Ap or wp ∈ Ap for 1 < p < ∞. Then ‖(‖p,w ! ‖ f ‖p,w
for each f ∈ GM.

Proof of Lemma 4.4. Using f ∈ GM, we estimate

‖(‖p,w ! ‖*‖p,w ≡
(∫ ∞

0

w(x)

(∫ cx

x/c

f (t)

t
dt

)p

dx

)1/p
! ‖ f ‖p,w.

The last inequality will be true for w ∈ Ap if we have at once

(∫ ∞

0

w(x)

(
1

x

∫ x

0

f (t) dt

)p

dx

)1/p
! ‖ f ‖p,w (4.9)

and

(∫ ∞

0

w(x)

(∫ ∞

x

f (t)

t
dt

)p

dx

)1/p
! ‖ f ‖p,w. (4.10)

Using Lemmas 4.2 and 4.3 with p = q (changing variables in (4.7) and (4.8)), we

arrive at (4.9) and (4.10).

Similarly, if wp ∈ Ap, then

(∫ ∞

0

wp(x)

(
1

x

∫ x

0

t f (t) dt

)p

dx

)1/p
! ‖ f ‖p,w

and

(∫ ∞

0

wp(x)

(∫ ∞

x

f (t) dt

)p

dx

)1/p
! ‖ f ‖p,w,

which gives ‖*‖p,w ! ‖ f ‖p,w.

4.2. Proof of Theorem 3.1

When 1 < p < ∞, it follows from Lemmas 4.3 and 4.1 that w ∈ Ap implies (3.5)

with p = q = s and w = w. Then, by Theorem 3.7 with p = q = s, we have

‖*‖p,w ! ‖ f̂cos‖p,w̃ ! ‖(‖p,w.

Now, statement (A) of Theorem 3.1 follows from property (1.7) of general mono-

tone functions on the one hand, and from Lemma 4.4 on the other hand. The state-

ment (B) is proved in the same way. #
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4.3. Proof of Theorem 3.3.

First, we will conduct the proof of part (B). Let w ∈ A2p, 1 ≤ p < ∞. This and

w ∈ #2
2 yield

1 " δ−2p
(∫ δ

0

w(x)dx

)(∫ δ

0

w(x)
1

1−2p dx

)2p−1

" δ−2p
(∫ δ

0

w(x)dx

)(
δ2p−1w(δ)−1

)
,

which gives (3.3).

Further, by [19, pages 232–233], w ∈ A2p implies the well-known Ariño-

Muckenhoupt condition [1]

∫ ∞

x

w(t)

t2p
dt ≤ C

x2p

∫ x

0

w(t) dt; (B2p)

the same relation with r in place of 2p will be recorded as w ∈ Br . Denoting∫ t
0 w(s) ds =: W (t), we derive from this

∫ ∞

x

W (t)

t2p+1
dt ! W (x)

x2p
. (4.11)

The latter inequality and the monotonicity of W immediately give

W (t)

t2p
!

∫ ∞

t

W (s)

s2p+1
ds ! W (x)

x2p
, x < t. (4.12)

Hence for any c > 1,

W (cx)

(cx)2p
ln c = W (cx)

(cx)2p

∫ cx

x

dt

t
≤ C1

∫ cx

x

W (t)

t2p+1
dt ≤ C2

W (x)

x2p
.

Taking c > 1 such that ln c > C2 > 1,we choose 0 < ε < 1 satisfying ln c = cεC2.

This implies W (cx)
W (x) ≤ c2p−ε. The latter gives

W (t)

W (x)
!

( t
x

)2p−ε
, x < t. (4.13)

Indeed, let t ∈ (ckx, ck+1x), where k is non-negative integer. For k = 0, that is, if
t ∈ (x, cx), (4.13) follows from (4.12). For k ≥ 1, we have

W (t)

W (x)
≤ W (ck+1x)

W (x)
! ck(2p−ε) !

( t
x

)2p−ε
.
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In particular, this implies W ∈ #2
2. Then for any x < t , using w,W ∈ #2

2 and

conditions (3.3) and (4.13), we get

w(t)

t2p−1−ε
!

∫ 2t
t

w(z)dz

t2p−ε
! W (2t)

t2p−ε
! W (t)

t2p−ε
! W (x)

x2p−ε
! w(x)

x2p−1−ε
. (4.14)

Similar argument, applied to condition (3.3) instead of (4.11) along with w ∈ #2
2,

gives

w(t)

t−1+ε
" w(x)

x−1+ε
, x < t. (4.15)

With (4.14) and (4.15) in hand, we are going to prove equivalence (3.2). Suppose

that 1 < p < ∞. By straightforward calculations, all the inequalities (3.5), (4.2),

and (4.1′), with p = q = s, w = w and w̃(x) = w(1/x)x p−2, follow from (4.14)
and (4.15). For instance, let us show (4.2). By (4.15),

I1 =
(∫ r

0

w(x) dx

)1/p
!

(
r1−εw(r)

∫ r

0

xε−1 dx
)1/p

! [rw(r)]1/p

and

I2 =
(∫ ∞

r

[x pw(x)]1/(1−p) dx

)(p−1)/p

!
(

[r1−εw(r)]1/(1−p)

∫ ∞

r

[xε+p−1]1/(1−p) dx

)(p−1)/p
! [rw(r)]−1/p.

Thus, supr I1 I2 ! C , that is, (4.2) holds.

We are now in a position to use Theorem 3.8′, which gives (3.7). Further, using
the general monotonicity of f (see (1.7) and Lemma 4.4), we arrive at

‖ f ‖p,w ! ‖*‖p,w ! ‖ f̂sin‖p,w ! ‖(‖p,w ! ‖ f ‖p,w.

Thus, (3.2) is verified for 1 < p < ∞.

When p = 1, conditions w ∈ B2 and (3.3) give

t

∫ ∞

t

w(x)

x2
dx + 1

t

∫ t

0

w(x) dx ! w(t).

Therefore, by Propositions 2.1 and 2.4, we get

‖ f ‖1,w ! ‖*‖1,w ! ‖ f̂sin‖1,w̃ !
∫ ∞

0

(∫ cx

x/c

f (t)

t
dt

)
w(x) dx

'
∫ ∞

0

1

x

(∫ cx

x/c
f (t)w(t) dt

)
dx ' ‖ f ‖1,w,

where we have used w ∈ #2
2. Thus (3.2) holds.
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Let us now prove the second part in (B). Assume that (3.2) holds for any GM

function. Taking f (z) = χ(0,t)(z), we estimate

t2p
∫ ∞

t

w(x)

x2p
dx !

∫ 1/t

0

∣∣∣∣

∫ t

0

zx dz

∣∣∣∣
p

x p−2w(1/x) dx

!
∫ ∞

0

∣∣∣∣

∫ ∞

0

f (z) sin zx dz

∣∣∣∣
p

x p−2w(1/x) dx !
∫ t

0

w(x) dx,

in other words, w ∈ B2p. Using the same argument as before (note that (3.3) is

assumed), we obtain (4.14) and (4.15). These, in turn, imply w ∈ A2p for 1 ≤ p <
∞.

To prove the necessity part in (A) and (A′), we use similar argument as above.
In this case, for f (z) = χ(0,t)(z),

t p
∫ ∞

t

w(x)

x p
dx !

∫ ∞

0

∣∣∣∣

∫ ∞

0

f (z) cos zxdz

∣∣∣∣
p

x p−2w(1/x) dx !
∫ t

0

w(x) dx,

i.e., w ∈ Bp, 1 ≤ p < ∞. Then for p = 1, the latter and condition (3.3) give (3.4).

If 1 < p < ∞, then w ∈ Bp,
∫ δ
0 w(t) ! δw(δ), and w ∈ #2

2 imply (4.15) and

the condition

w(t)

t p−1−ε
! w(x)

x p−1−ε
, x < t

in place of (4.14). Then both conditions yield w ∈ Ap.

We finally show the sufficiency part in (A′), since the sufficiency part in (A) is
given in Theorem 3.1. Let p = 1. Under our assumptions,

∫ ∞

t

w(x)

x
dx + 1

t

∫ t

0

w(x) dx ! w(t).

Therefore, using Propositions 2.1 and 2.4, namely, (2.2) and (2.8), we have

‖*‖1,w !
∫ ∞

0

w(1/x)

x
| f̂cos(x)| dx ≡ ‖ f̂cos‖1,w̃

!
∫ ∞

0

|((t)|
[
t−1

∫ t

0

w(x) dx +
∫ ∞

t

x−1w(x) dx

]
dt ! ‖(‖1,w.

Since f is general monotone (see (1.6)), we estimate

‖(‖1,w ! ‖*‖1,w =
∫ ∞

0

(∫ cx

x/c

f (t)

t
dt

)
w(x) dx!

∫ ∞

0

f (t)

t

(∫ ct

t/c
w(x) dx

)
dt

!
∫ ∞

0

f (t)

[
t−1

∫ t

0

w(x) dx +
∫ ∞

t

x−1w(x) dx

]
dt ! ‖ f ‖1,w.

Finally, using (1.7), we arrive at ‖ f ‖1,w ! ‖*‖1,w ! ‖ f̂cos‖1,w̃ ! ‖ f ‖1,w, that is,
(3.1) with p = 1. #
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4.4. Upper estimates in Theorems 3.7′, 3.8′, 3.7, 3.8 and Theorem 1.1.

To prove upper estimates of ‖ f̂ ‖q,w̃, we are going to systematically use Lemma 2.2.

In order the right-hand sides of (2.4) and (2.5) to be finite, the boundedness of

variation on [1,∞) is needed, since
∫ ∞
2 |d f (t)| !

∫ ∞
1

((t)
t
dt !

∫ ∞
1 |d f (t)|. As

a matter of fact, this follows from the assumptions of the theorems. Indeed, by

Hölder’s inequality,

∫ ∞

1

|d f (t)| !
∫ ∞

1/2

((t)

t
dt ! ‖(‖p,w

(∫ ∞

1/2
[t pw(t)]1/(1−p)dt

)1/p′

.

The right-hand side is finite, for functions f so that ‖(‖p,w < ∞, because of (4.2).

So we will use Lemma 2.2 below without indicating the details.

Proof of Theorem 3.7′. Using inequality (2.4) of Lemma 2.2, we have
∫ ∞

0

| f̂cos(x)|q [x−1w(x−1)]q/pxq−1 dx

!
∫ ∞

0

(∫ 1/x

0

((t) dt

)q

[x−1w(x−1)]q/pxq−1 dx

+
∫ ∞

0

(∫ ∞

1/x
t−1((t) dt

)q

[x−1w(x−1)]q/px−1 dx = J1 + J2.

Equivalently,

J1 =
∫ ∞

0

{
[x−1w(x−1)]1/px1−1/q

∫ ∞

x

t−2((1/t) dt

}q
dx . (4.16)

To prove

J1 !
(∫ ∞

0

{
x−2((1/x)w(1/x)1/px2−2/p

}p
dx

)q/p

=
(∫ ∞

0

((x)pw(x) dx

)q/p

,

(4.17)

we just apply (4.5) and (4.6) with appropriate weights u and v, where (4.6) is (4.1)
after routine calculations.

Further,

J2 =
∫ ∞

0

{
[x−1w(x−1)]1/px−1/q

∫ x

0

t−1((1/t) dt

}q
dx . (4.18)
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Similarly, applying (4.3) with u(x) = [x−1w(x−1)]1/px−1/q and v(x) =
[x−1w(x−1)]1/px1−1/p under condition (4.4), which is (4.2) for the indicated
weights, we obtain

J2 !
(∫ ∞

0

{
x−1w(1/x)1/px1−2/p((1/x)

}p
dx

)q/p

=
(∫ ∞

0

((x)pw(x) dx

)q/p

.

(4.19)

The proof of the right-hand side inequality in (3.6), i.e., ‖ f̂cos‖q,w̃ ! ‖ f ‖p,w, is
complete.

Proof of Theorem 3.8′. Changing variables, we rewrite the obtained bound (2.5) for
the sine transform as

| f̂sin(x)| ! x

∫ ∞

x

t−3((1/t) dt + x−1
∫ x

0

t−1((1/t) dt.

With this estimate in hand, we estimate

∫ ∞

0

| f̂sin(x)|q [x−1w(x−1)]q/pxq−1 dx

!
∫ ∞

0

(∫ ∞

x

t−3((1/t) dt

)q

[x−1w(x−1)]q/px2q−1 dx

+
∫ ∞

0

(∫ x

0

t−1((1/t) dt

)q

[x−1w(x−1)]q/px−1 dx = I1 + I2.

We wish to bound I1 by

(∫ ∞

0

{
x−3((1/x)w(1/x)1/px3−2/p

}p
dx

)q/p

=
(∫ ∞

0

((x)pw(x)dx

)q/p

(4.20)

as the case of (4.5) with u(x) = [x−1w (x−1) ]1/px2−1/q and v (x) =
x3−1/p[x−1w(x−1)]1/p. Applying (4.6) with these weights, we arrive at (4.1′) after
routine calculations.

The proof of the estimate I2 ! ‖(‖p,w is similar to (4.18) and (4.19) for the
cosine transform, and it follows from (4.2).

Proofs of Theorems 3.7 and 3.8. To prove the inequality ‖ f̂cos‖q,w̃ ! ‖ f ‖p,w in

Theorem 3.7, we apply the corresponding Hardy inequalities from Lemmas 4.2 and

4.3 under assumption wq/p ∈ A1+q/p′ . They, in fact, are (4.5) and (4.3), respec-
tively, with appropriate u and v, which leads to (4.1) and (4.2). Finally, Theorem
3.7′ implies the claimed estimate.
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To prove Theorem 3.8 when wq/p ∈ A1+(q/p′), we first observe that (2.5) in
Lemma 2.2 gives

| f̂sin(x)| !
∫ 1/x

0

((t) dt + x−1
∫ ∞

1/x
t−1((t) dt

Since (4.1) always implies (4.1′), we can repeat the proof for the cosine case.
Let now [x−pw(x)]q/p ∈ A1+(q/p′). By Theorem 3.8′, it suffices to prove

(4.1′) and (4.2) for the weight x−pw(x). Using Lemmas 4.1 and 4.2 with this
weight, we get (4.1′). Further, Lemma 4.3 and (4.4) yield

sup
r

(∫ r

0

[x−pw(x)]q/pxq/p−1 dx
)1/q (∫ ∞

r

w(x)1/(1−p) dx

)(p−1)/p
< ∞.

This gives (4.2), which completes the proof.

Proof of Theorem 1.1. The first part follows from Theorem A. Applying Theorems
3.7 and 3.8, we obtain ‖ f̂ ‖q,w̃ ! ‖(‖p,w. Further, since wq/p ∈ A1+(q/p′) yields

w ∈ Ap (see (1.4)), we use Lemma 4.4 to finish the proof: ‖ f̂ ‖q,w̃ ! ‖(‖p,w !
‖ f ‖p,w.

4.5. General lower estimate.

Below we prove the lower estimates in Theorems 3.7 and 3.8 (and 3.7′, 3.8′), that
is, ‖*‖s,w ! ‖ f̂cos‖q,w̃ and ‖*‖s,w ! ‖ f̂sin‖q,w̃ under condition (3.5).

Proof. We can apply Lemma 2.3 to functions with locally integrable Fourier trans-

form. The initial assumption in lower estimates is the boundedness of the ‖F‖q,w̃,

where by F we denote either f̂cos or f̂sin. Applying Hölder’s inequality

∫ u

0

|F(x)| dx ≤
(∫ u

0

w̃(x)−1/(q−1) dx
)(q−1)/q

‖F‖q,w̃,

we derive that the right-hand side is bounded by observing that the integral on the

right is exactly the last integral in (3.5) (after substituting x → 1/x and denoting
1/u = r for complete similarity).

Using now Lemma 2.3 and obvious substitution, we arrive, with F the same as

above, at

(∫ ∞

0

*(x)sw̄(x) dx

)1/s
!

(∫ ∞

0

w̄(x)

∣∣∣∣∣

∫ π/(2cx)

0

F(t) dt

∣∣∣∣∣

s

dx

)1/s

=
(

π

2c

∫ ∞

0

w̄(π/(2cx))x−2
∣∣∣∣

∫ x

0

F(t) dt

∣∣∣∣
s

dx

)1/s

!
(∫ ∞

0

[x−1w(1/x)]q/pxq(1−1/q)|F(x)|qdx
)1/q

≡‖F‖q,w̃
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provided, by (4.3) with α = q, β = s, u(x)s = w̄(π/(2cx))x−2, and v(x)q =
[x−1w(1/x)]q/pxq−1,

sup
r>0

(∫ ∞

r

w̄(π/(2cx)) x−2 dx
)1/s(∫ r

0

[x−1w(1/x)]−
q

p(q−1) x−1 dx
)(q−1)/q

< ∞.

For c large enough, the latter can be converted, by routine substitutions, to (3.5).

5. Remarks on multidimensional generalizations

The obtained results allow us to derive immediately their versions for the multidi-

mensional (n > 1) Fourier transform of a radial function f (x) = f0(|x |), x ∈ Rn.
Let f̂ denote its usual Fourier transform on Rn. The following result due to Leray
(see, e.g., [30, Lemma 25.1′]) asserts that when

∫ ∞

0

tn−1(1+ t)(1−n)/2| f0(t)| dt < ∞, (5.1)

the following relation holds

f̂ (x) = 2π (n−1)/2
∫ ∞

0

I (t) cos |x |t dt, (5.2)

where the fractional integral I is given by

I (t) = 2

/

(
n − 1

2

)
∫ ∞

t

s f0(s)(s
2 − t2)(n−3)/2ds.

Supposing the weight w to be radial, w(x) = w0(|x |), we present one analogue of
Theorem 3.1 (A).

Theorem 5.1. Let a non-negative radial f ∈ L1(Rn). If w0 ∈ Ap(R+), 1 < p <
∞, then

∫

Rn

| f̂ (x)|pw0
(
1/|x |

)
|x |p−n−1dx '

∫ ∞

0

|I (t)|pw0(t)dt.

This result is proved by passing to the polar coordinates and applying Theorem 3.1.

It is worth mentioning that the condition f ∈ L1(Rn) implies (5.1), I (t) ∈ L1(0, 1),
and I (t)/t ∈ L1(1,∞).

Remark 5.2. We observe that for n = 1 understanding I formally as f0 reduces

Theorem 5.1 to Theorem 3.1 (A). In case n = 3 one can write the Boas-type crite-

rion in terms of f0. Indeed, the Fourier transform (if exists) of a radial function in

R3 is of the form

f̂ (x) = 4π |x |−1
∫ ∞

0

t f0(t) sin |x |t dt.
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Applying the result for the sine transform (B) to the non-negative function t f0(t),
with corresponding assumptions on it, we derive that if either t−pw0(t)or t

−2pw0(t)
belongs to Ap(R+), then

∫

R3
| f̂ (x)|pw0

(
1/|x |

)
|x |3p−4dx '

∫ ∞

0

f0(t)
pw0(t)dt.

Here we use the fact that t f0(t) ∈ GM if f0 ∈ GM .
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