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Ambient metrics with exceptional holonomy

THOMAS LEISTNER AND PAWE!L NUROWSKI

Abstract. We present conformal structures in signature (3, 2) for which the
holonomy of the Fefferman-Graham ambient metric is equal to the non-compact
exceptional Lie group G2(2). We write down the resulting 8-parameter family of
G2(2)-metrics in dimension seven explicitly in an appropriately chosen coordinate
system on the ambient space.
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(secondary).

1. Introduction and the main result

The holonomy group of a semi-Riemannian manifold (M, g) at a point p ∈ M is

defined as the group of parallel transports along loops based at p. It provides a pow-

erful tool to study the geometric structure of the manifold and, for example, enables

to answer questions about the existence of parallel sections of geometric vector

bundles. In his seminal paper [5], Berger gave a list of possible holonomy groups

of simply connected (semi-)Riemannian manifolds under the assumption that the

group acts irreducibly on the tangent space at p. The list comprised groups that

only occur as holonomies in certain dimensions, such as the exceptional compact

Lie group G2 as the holonomy group of a 7-dimensional Riemannian manifold, or

its non-compact real form G2(2) ⊂ SO(4, 3), as the holonomy group of a manifold
with metric of signature (4, 3).

Since Berger’s paper the question whether or not the exceptional groups on

the list can be realised as holonomy groups of semi-Riemannian manifolds was

studied with great interest. In Reference [6] Bryant proved that there exist semi-

Riemannian metrics with exceptional holonomy groups, in particular, with holon-

omy G2 and G2(2). After this, in the Riemannian case, research was focussed on the

construction of geodesically complete and compact metrics with exceptional holon-
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omy. After the first complete examples by Bryant and Salamon [8], the compact

case was finally settled by Joyce [21, 22]. For the indefinite case, after the exis-

tence of metrics with holonomy G2(2) was verified in Bryant’s paper [6], Salamon

observed [33, remark on page 168] that the construction method in [8] for Rieman-

nian metrics can be modified to the indefinite case. Apart from this observation, so

far only a few explicit examples of signature (4, 3)-metrics with holonomy group
G2(2) have been constructed explicitly, e.g. in [12].

In the present article we will use the Fefferman-Graham ambient metric con-

struction of conformal geometry and the conformal classes introduced in [31] in

order to construct explicitly an 8-parameter family of metrics with holonomy equal

to G2(2). These conformal classes were shown to have the normal conformal Cartan

connection reduced to a G2(2)-Cartan connection. Our aim here is to show that,

generically, the Fefferman-Graham ambient metrics for these conformal classes

constitute explicit examples of signature (4, 3)-metrics with full G2(2) holonomy.

Our main tool is the Fefferman-Graham ambient metric construction for a con-

formal manifold (M, [g]). This is a Ricci-flat metric on a neighbourhood M̃ in

C × R of the cone

C = {(gp, p)|p ∈ M, g ∈ [g]},
which encodes the conformal structure of (M, [g]). In odd dimensions, this metric
always exists, is unique, and provides a way of describing a conformal structure in-

variantly by means of semi-Riemannian geometry. Every metric g in the conformal

class [g] defines an embedding M $ p %→ (gp, p) ∈ C and thus an identification
of M̃ with R+ × M × R via (t, p, ρ) %→ (t2gp, ρ). Using this identification, the
Fefferman-Graham ambient metric is given as a formal power series

g̃ = 2 (tdρ + ρdt) dt + t2

(
g +

∞∑

k=1
ρkµk

)

with certain symmetric (2, 0) tensors µk on M that are determined by the condition

that g̃ is a Ricci-flat metric. For example, the first two terms are given by

(µ1)ab = 2Pab (1.1)

(µ2)ab = −Bab + PakP
k
b, (1.2)

where Pab denotes the Schouten tensor of g and Bab is the Bach tensor of g. When

formulating our main result in Theorem 1.1 we will change the coordinate ρ to
u := −ρt , i.e. du = −tdρ − ρdt (see [14,15] and our Section 2 for details).

The conformal class [gF ] of (3, 2)-signature metrics constructed by the sec-
ond author in Reference [31] is defined on every 5-manifold M equipped with a

nonintegrable rank 2 distribution S whose small growth vector is (2, 3, 5). Such
distributions in dimension five are called (2, 3, 5)-distributions. According to the
classical results of Elie Cartan [11] and David Hilbert [20], (2, 3, 5)-distributions
are in one to one correspondence with ODE’s of the form

z′ = F(x, y, y′, y′′, z), Fy′′y′′ *= 0,
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for two real functions y = y(x), z = z(x) of one real variable x . In particular,
given F , the distribution is defined by

S = Span(∂y′′, ∂x + y′∂y + y′′∂y′ + F∂z),

and the metrics [gF ] are defined in terms of the function F and its apropriate deriva-
tives as in [31]. A construction of these metrics can also be found in [10].

By the construction the metrics [gF ] have reduced conformal holonomy H .
The group H is contained in the noncompact exceptional Lie group G2(2)⊂SO(4, 3)
[31]. Moreover, it was recently shown in [19] that every conformal class [g] of
(3, 2) signature metrics, whose conformal holonomy H is contained in G2(2) must

be locally conformally equivalent to one of the structures [gF ].
Since metrics [gF ] include all the conformal metrics with the exceptional con-

formal holonomy G2(2), it is interesting to ask about the properties of their Feffer-

man-Graham ambient metrics g̃F . In Reference [32] properties of the ambient met-

ric were studied for the conformal class of metrics [gF ] with

F = (y′′)2 + a0 + a1y
′ + a2(y

′)2 + a3(y
′)3 + a4(y

′)4 + a5(y
′)5 + a6(y

′)6 + bz,

where aµ, µ = 0, . . . , 6, and b are real constants. The results about properties of
[gF ]with this F from [32] are strengthened in the present paper. By setting q := y′′
and p := y′ we have

F = q2 +
6∑

i=0
ai p

i + bz, (1.3)

and the conformal class [gF ] is explicitly given by the metric

gF = 2θ1θ5 − 2θ2θ4 + (θ3)2, (1.4)

where the co-frame θ i is given by

θ i = e−
2b
3 x θ̂ i

with

θ̂1 = dy − pdx

θ̂2 = dz − Fdx − 2q(dp − qdx)

θ̂3 = −2
4/3

√
3

(dp − qdx)

θ̂4 = 2−1/3dx

θ̂5 = 3A2(dy − pdx) + 22/3

3
b(dp − qdx) − 22/3dq + A1dx,
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where

A1 = 1

21/3

(
a1 + 2a2 p + 3a3 p

2 + 4a4 p
3 + 5a5 p

4 + 6a6 p
5 + 2bq

)
, (1.5)

A2 = 1

45 · 22/3
(
9a2 + 27a3 p + 54a4 p

2 + 90a5 p
3 + 135a6 p

4 + 2b2
)

. (1.6)

Our aim here is to prove the following result about the conformal classes defined

by these metrics.

Theorem 1.1. Let (M, [gF ]) be a conformal structure associated with a (2, 3, 5)-
distribution defined by a function

F = (y′′)2 + a0 + a1y
′ + a2(y

′)2 + a3(y
′)3 + a4(y

′)4 + a5(y
′)5 + a6(y

′)6 + bz,

with aµ, µ = 0, . . . , 6, and b being real constants, i.e. given by the metric in

equation (1.4). This 8-parameter family of conformal structures has the following

properties:
(1) For each value of the parameters aµ and b there exists a metric gF in the class

[gF ] and ambient coordinates (t, u), in which the Fefferman-Graham ambient

metric g̃F for gF is given explicitely by

g̃F = −2dtdu + t2gF − 2tuP− u2B.

Here P and B are the respective Schouten and Bach tensors for gF .

(2) If at least one of a3, a4, a5 or a6 is not zero, then the metric g̃F has the full

exceptional group G2(2) as its pseudo-Riemannian holonomy.

In the following proof of this theorem we will refer to statements that are proven in

the paper.

Proof. When proving the theorem we fix the metric gF ∈ [gF ] given as in for-
mula (1.4). In order to prove (1) of the theorem, recall that the first terms in

the Fefferman-Graham ambient metric expansion are given by equations (1.1) and

(1.2). Using the formulae for the Schouten tensor P and the Bach tensor B of gF
given in the appendix, it follows that PakP

k
b = 0. Again, using the formulae in the

appendix, one checks that the metric

−2dudt + t2gF − 2tuP− u2B

is Ricci flat. Since gF is real analytic, the uniqueness of the ambient metric in the

analytic category in odd dimensions [14, 15] implies that this is the ambient metric

g̃F for [gF ]. This proves (1) of the theorem.
Now we prove (2) of the theorem. Using the formulae for gF given in the

appendix, one verifies that g̃F admits a parallel spinor which is not null. In Propo-

sition 4.1 we will give this spinor explicitly. Hence, since G2(2) is the stabiliser of
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a non-null spinor, the holonomy H of g̃F is contained in G2(2). Now we have to

verify that H is equal to G2(2).

First note that the naive approach of calculating the curvature of g̃F and of

showing that it generates G2(2) does not work since the curvature of g̃F is highly

degenerated. In the best case, the Riemann tensor of g̃F mapping$2R7 to G2(2) has
rank four. On the other hand, obtaining the full set of the first (or higher) derivatives

of the curvature for the general F from the theorem is beyond our calculational

skills. Thus we have to use more subtle arguments. They are as follows:

In order to verify that H is equal to G2(2), first assume that H acts irreducibly

onR4,3. By Berger’s list of irreducible holonomy groups of non-symmetric pseudo-
Riemannian manifolds [5], which contains only G2(2) in dimension 7 (see also [4]

for the corresponding list of groups admitting invariant spinors), g̃F must be locally

symmetric if H *= G2(2). This can be excluded by a direct calculation of derivatives

of the curvature. For example, we verified by a direct calculation that ∇̃1 R̃1212 *= 0,

where the indices refer to the orthonormal coframe ξ0, . . . , ξ6 given on page 429.
Hence, if H is not equal to G2(2), it must admit an invariant subspace V ⊂

R4,3. The exclusion of this situation will be based on the following two pairs of
statements. The first describes the relation between the geometry of the ambient

metric and the existence of certain metrics in a conformal class. Let (M̃, g̃) be the
ambient metric for a conformal class [g]. Then the following holds:
(A) If (M̃, g̃) admits a parallel line bundle, then, on an open dense set of M , every

metric in [g] is locally conformal to an Einstein metric (see Theorem 2.2).
(B) If (M̃, g̃) admits a parallel bundle of totally null 2-planes, then, on an open

dense set of M , every metric in [g] is locally conformal to a metric g which ad-
mits a parallel null line bundle L such that L⊥ Ricg = 0 (see Theorem 2.6).

The second pair of statements excludes the existence of certain metrics in the con-

formal class [gF ] under assumptions on F . In Theorems 3.7 and 3.10 we prove: If
at least one of the constants a3, a4, a5 or a6 is not equal to zero, then

(C) the class [gF ] does not contain a local Einstein metric (see Theorem 3.7).
(D) the class [gF ] does not contain a local metric g that admits a ∇g-parallel null

line L and whose Ricci tensor is annihilated by L⊥ (see Theorem 3.10).

Now we assume that the subspace V , which is invariant under the holonomy H of

g̃F , is non-degenerate, i.e. V∩V⊥ = {0}. By the local version of the decomposition
theorem by de Rham andWu [34, Proposition 3] this implies that the ambient metric

splits locally as a pseudo-Riemannian product metric, g̃F = g1 + g2. Since g̃F is

Ricci-flat, both, g1 and g2 have to be Ricci-flat. Since one of them is a metric in

dimension ≤ 3, its Ricci-flatness implies that it is flat. In this case g̃F would admit

at least one parallel vector field. Now we use statement (A) that the existence of

a parallel vector field for the ambient metric implies that, on a dense open set, gF
is locally conformal to an Einstein metric. Under the assumptions on F , statement

(C) gives the contradiction. Hence, g̃F does not admit a non-degenerate invariant

subspace under the holonomy representation.
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Now assume that the H -invariant vector space V is degenerate, i.e. W :=
V ∩ V⊥ is a non-trivial totally null space. Then the dimension of W has to be ≤ 3.

The first case is that W is one dimensional, i.e. that the ambient metric admits a

parallel null line bundle. Again by (A), gF must be locally conformally Ricci flat

on a dense open set, which is again in contradiction to the statement (C).

Now, if W is a null 2-plane, statement (B) shows that locally there is a metric

g ∈ [gF ] with a ∇g-parallel null line L and with Ricg(Y, .) = 0 for all Y ∈ L⊥. By
the assumptions on F this contradicts the statement (D) that for the given F’s this

is not possible.

Finally, we assume that W is maximally null, i.e. three-dimensional. In this

case there exists a pure null spinor which scales under H [23, 25] and thus defines

a line of spinors that is parallel for g̃F . This means that we are in the situation

where we have the parallel non-null spinor defining G2(2) and a parallel null line of

spinors. Now we use the fact (which is proven in Lemma 4.2) that in this situation

there exists a parallel line of vectors for g̃F . Again, by (A) this is in contradiction

with (C) that gF is not conformally Einstein. This completes the proof.

We emphasize that as a byproduct of this theorem we get explicit formulae, in a

coordinate system (t, u, x, y, y′, y′′, z), for an 8-parameter family of strictly G2(2)-
metrics in dimension seven. These metrics have signature (4, 3) and are explicitely
given in formula (4.1). In Proposition 4.1 we also give the explicit expressions for a

parallel spinor ψ for these metrics and furthermore the explicit expressions for the

corresponding closed and coclosed threeform ω defining the G2(2)-structure on the

ambient space (M̃, g̃F ).

Note added in proof

Recently, C. R. Graham and T.Willse proved in [18] a generalisation of our main re-

sult in Theorem 1.1. First they showed that for any (2, 3, 5)-distribution and the as-

sociated conformal structure defined as above, the holonomy of the ambient metric

is contained in G2(2). Secondly, they presented an algebraic non-degeneracy con-

dition on the Weyl and the Cotton tensors of this conformal structure under which

the holonomy of the ambient metric is equal to G2(2). In order to prove the second

result, they used arguments developed in the present paper in order to rule out a fur-

ther reduction of the holonomy. Note that their algebraic nondegeneracy condition

is far from being necessary for the ambient holonomy to be equal to G2(2). In partic-

ular, the conformal classes in (2) of our Theorem 1.1 do not satisfy this condition.

Furthermore, while the present paper was in the submission and editing process,

in [27], amongst other results, we proved a tractorial version of statement (B) on

page 5 (see also Theorem 2.6). This tractorial version is stronger than statement

(B) in the sense that it provides an equivalent characterisation of conformal classes

containing a metric admitting a parallel null line bundle L with Ric(L⊥, .) = 0 in

terms of parallel 2-plane bundles of the tractor bundle. See Remark 2.5 for a related

statement.
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2. The ambient metric of an odd-dimensional conformal structure

An important tool in conformal geometry is the Fefferman-Graham ambient metric

(see [14] and [15] for the following). For a conformal class [g] in signature (p, q)
on an n = (p + q)-dimensional manifold M one considers the cone

C = {(gp, p) | p ∈ M, g ∈ [g]}.

We denote by π : C → M the canonical projection and by π∗ : TC → T M its

differential. C is equipped with an obvious R+-action ϕt (gp, p) = (t2gp, p) and
with the tautological tensor G defined by

G(gp,p)(U, V ) := gp (π∗(U),π∗(V )) .

The R+-action extends to C × R. Now, the the ambient space M̃ with ambient

metric g̃ is defined by the following properties:

(1) M̃ is an invariant neighbourhood of C in C × R under the R+ action.
(2) g̃ is a smooth metric of signature (p+ 1, q + 1) on M̃ that is homogeneous of

degree two with respect to the R+-action and such that its pullback by ι : C →
M̃ gives the tautological tensor G, i.e. ι∗g̃ = G.

(3) The Ricci tensor R̃ic of (M̃, g̃) is zero.

In the following we are only interested in the case where M is odd-dimensional. In

this case, Fefferman and Graham proved the following result.

Theorem 2.1 ([14,15] and [24]). Let (M, [g]) be a real analytic manifold M of

odd dimension n > 2 equipped with a conformal structure defined by a real analytic

semi-Riemannian metric g. Then there exists an ambient space (M̃, g̃) with real
analytic Ricci-flat metric g̃. The ambient space is unique modulo diffeomorphisms

that restrict to the identity along C ⊂ M̃ and commute with the R+-action.

By the uniqueness of the ambient metric, its pseudo-Riemannian holonomy

is an invariant object of the conformal class: Two different ambient metrics cor-

responding to two different metrics from the same conformal class are isometric.
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Since the holonomy group is a pseudo-Riemannian invariant, the holonomy group

of the ambient metric in odd dimensions is a conformal invariant.

Every metric g in the conformal class [g] defines an embedding
ιg : M $ p %→ (gp, p) ∈ C (2.1)

and thus an identification of M̃ with R+ × M × R via

(t, p, ρ) %→ (t2gp, ρ).

Using this identification and starting with a formal power series

g̃ = 2 (tdρ + ρdt) dt + t2

(
g +

∞∑

k=1
ρkµk

)
(2.2)

with certain symmetric (2, 0) tensors µk on M , Fefferman and Graham showed that

if n is odd, the Ricci-flatness of the ambient metric gives equations for µ1, µ2, . . .
that can be solved. However, the µk have been determined for small k, or for

all k but very special conformal classes. For example, in general, one finds that

µ1 = 2Pg, where P denotes the Schouten tensor of g, and that

µ2 = −Bg + tr(Pg ⊗ P
g)

with Bg being the Bach tensor of g. Furthermore, for an Einstein metric with

Pg = $g we have that µ2 = $2g and all other µi = 0, i.e. the power series

in the ambient metric g̃E truncates at k = 2. Further calculations of the ambient

metric have been carried out for conformal classes that are related to Einstein spaces

[16]. However, if the metric g is not conformally Einstein, then, except for a few

examples [16,28,32], no explicit formulae for µk , k > 3 are known.

For further convenience we change the coordinate ρ on M̃ to u := −ρt , i.e.
du = −tdρ − ρdt . Then the ambient metric takes the form

g̃ = −2dudt + t2g − 2utPg + u2
(

µ2 − u

t
µ3 +

(u
t

)2
µ4 − . . .

)
.

In particular, for a Ricci-flat metric, the ambient metric is given as a special Brink-

mann wave,

g̃ = −2dudt + t2g, (2.3)

admitting a parallel null vector field, whereas for an Einstein metric with P = $g
the ambient metric becomes

g̃ = −2dudt +
(
t2 − 2$ut + $2u2

)
g.

This metric splits into a line and a cone. This becomes evident in new coordinates

r = t − $u and s = t + $u in which we have

g̃ = 1

2$
(dr2 − ds2) + r2g. (2.4)
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Now, let g̃ be the ambient metric for an arbitrary conformal class [g] on an odd-
dimensional manifold. We calculate the Levi-Civita connection ∇̃ of g̃ along C =
{u = 0} and obtain that the only non-vanishing terms are

∇̃X
∂

∂u
= −1

t
Pg(X)∗

∇̃XY = ∇XY + t

(
g(X,Y )

∂

∂u
− P

g(X,Y )
∂

∂t

)

∇̃X
∂

∂t
= 1

t
X






, (2.5)

for X,Y ∈ +(T M) and ∇ being the Levi-Civita connection of g.

In the following we need the transformation of the Schouten tensor under a

conformal rescaling. Recall that if ĝ = e2ϒg, with ϒ ∈ C∞(M), is a conformally

changed metric, then the Schouten tensor P̂ of ĝ satisfies

P̂ = P− Hessg(ϒ) + dϒ2 − 1

2
‖ gradg(ϒ)‖2gg, (2.6)

where Hess(ϒ) = g(∇ gradg(ϒ), .) denotes the Hessian of ϒ . For brevity we will
also write this relation as

P̂ab = Pab − ∇aϒb + ϒaϒb − 1

2
ϒcϒ

cgab.

Hence, ĝ is an Einstein metric if and only if this quantity is a multiple of the metric

g. More explicitly, it holds that P̂ab = $ĝab, where $ is a constant, if and only if

Pab − ∇aϒb + ϒaϒb =
(
1

2
ϒcϒ

c + $e2ϒ
)
gab.

By substituting ϒ = − log(σ ) for a non vanishing function σ , we obtain that the
metric ĝ = σ−2g = e2ϒg is Einstein if and only if there is an non vanishing func-

tion σ such that the symmetric tensor Hess(σ ) + σP is a multiple of g. Explicitly,
we have

∇aσb + σPab = σ−1
(

$ + 1

2
σcσ

c

)
gab. (2.7)

Now we give a characterization of locally conformally Einstein metrics in terms of

their ambient metric.

Theorem 2.2. Let M be an odd dimensional manifold equippped with a real ana-

lytic conformal class [g]. If the ambient space (M̃, g̃) admits a line bundle L that

is parallel with respect to the Levi-Civita connection of g̃, then on the connected

components of an open dense subset M0 in M , every metric in the conformal class

[g] is locally conformal to an Einstein metric gE .
Furthermore, if the ambient metric on L is positive/negative/zero, then the

constant $ in P = $gE is negative/positive/zero.
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Proof. We start the proof with a lemma.

Lemma 2.3. There is no open set U in C such that L|U ⊂ TC|U .
Proof. Assume that we have an open set U ⊂ C such that L|U ⊂ TC|U . Since L
is parallel, by making U smaller, such that it becomes simply connected, we can

assume that there is a section L ∈ +(L|U ). We fix a metric g ∈ [g] to obtain
(t, x)-coordinates on U and write

L = α∂t + K ,

with K tangential to M . Since L is parallel, formula (2.5) implies

0 ≡ g̃(∇̃X L , ∂t ) = −g̃(L , ∇̃X∂t ) = 1

t
g̃(X, K ) = tg(X, K ),

for all X ∈ T M . This implies K ≡ 0 on U . Hence L = α∂t , but this contradicts
∇̃X∂t = 1

t
X for all X ∈ T M .

This lemma implies that there is an open dense set C0 in C such that L|C0 *⊂
TC|C0 . For every point in M0 := π(C0) we have to verify the existence of a neigh-
bourhood on which a metric in [g] can be rescaled to an Einstein metric. The
following lemma will be useful.

Lemma 2.4. On every simply connected open subset U of the open and dense sub-

set C0 in C there is a section L ∈ +(L|U ) such that ∇̃Y L|U = 0 for all Y ∈ TC.

Proof. For every simply connected open set U in C0 we find a section of L which,
by fixing g ∈ [g] and by the previous lemma, is of the form

L = a∂t + K + ∂u

with K tangential to M . Since L is parallel, there is a 1-form / over U such that

∇̃L = / ⊗ L . We will show that / is closed, which implies that L can be rescaled

to a parallel vector field. The following calculations are over U . We get

/(∂t ) = −g̃(∇̃∂t L , ∂t ) ≡ 0,

which implies that

K = 1

t
K0

for a K0 ∈ +(T M). Indeed, for every X ∈ T M it is

g̃(∇̃∂t L , X) = g̃(∇̃∂t K , X) = g̃([∂t , K ], X) + 1

t
g̃(K , X).

Now, as g̃(∇̃∂t L , X) = /(∂t )g̃(K , X) = 0, this implies that K satsifies the equa-

tion

[∂t , K ] = −1
t
K ,
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which yields K = 1
t
K0 with K0 ∈ +(T M). Furthermore it is

/(X) = −g̃(∇̃X L , ∂t ) = g̃(L , ∇̃X∂t ) = 1

t
g̃(K , X) = g(K0, X)

for X ∈ T M . Hence, in order to show that / is closed we only have to check

d/(X,Y ) = 0 for X,Y ∈ T M . On the one hand we get that

g̃(∇̃X L ,Y ) = t
(
ag(X,Y ) + tg(∇X K0,Y ) − Pg(X,Y )

)
,

and on the other that

g̃(∇̃X L ,Y ) = t/(X)g(L ,Y ) = t/2(X,Y ),

which shows that g(∇X K0,Y ) is symmetric in X,Y ∈ T M . But this implies that

/ = g(K0, .) is closed. Hence, on simply connected open sets U ⊂ C0 we get that
/ = d f which implies that e− f · L is a parallel vector field on U .

Now we conclude the proof of the theorem by fixing a metric g in [g] and
showing that it can be rescaled to an Einstein metric gE on simply connected open

sets in M . By the lemmas, on simply connected open sets in C0 we get a parallel
vector field

L = α∂t + K + σ∂u ∈ +(L|U ),

with σ *= 0 and K tangential to M . Again, ∇̃∂t L = 0 implies that K = 1
t
K0 with

K0 ∈ +(T M), but also that dσ (∂t ) = dα(∂t ) ≡ 0. For X ∈ T M , the equation

∇̃X L = 0 implies

dσ (X) + g(X, K0) = 0 (2.8)

dα(X) − P(X, K0) = 0 (2.9)

g(∇X K0,Y ) − σ Pg(X,Y ) + αg(X,Y ) = 0. (2.10)

The first equation shows that K0 = − gradg(σ ). Then the last equation shows

Hess(σ ) + σ Pg = αg.

But this is equivalent to σ−2g being a local Einstein metric. Note that (2.7) implies
that

σα =
(

$̂ + 1

2
g(K0, K0)

)

with the Einstein constant $̂ of σ−2g. But this implies that

g̃(L , L) = −2ασ + g(K0, K0) = −2$̂,

which shows the relation between the Einstein constant and the line bundle being

zero, positive, or negative.
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Remark 2.5. Using the formulae in (2.5), one can show that the connected compo-

nent of the normal conformal Cartan connection for the conformal structure [g] is
contained in the holonomy of the ambient metric g̃. Furthermore, when the confor-

mal class contains an Einstein metric, the truncation of the ambient metric in this

case yields the equality of both holonomy groups (see [26] and [30]). This can be

used to prove an analogue of Theorem 2.2 in terms of the normal conformal Cartan

connection. This analogue holds in any dimension and gives an equivalence be-

tween the existence of a parallel line L in (M̃, g̃) and an Einstein metric gE in [g].
As we will use here only one direction and only in odd dimensions, for the purpose

of being self contained, we did prove Theorem 2.2 without referring to the normal

conformal Cartan connection and without using tractor calculus. For further results

relating the ambient metric and tractor calculus, see [3, 9, 26].

Nowwe will describe the case where the Levi-Civita connection of the ambient

metric admits an invariant null 2-plane1. We will deal with a bit more general

situation than needed for our pourposes, i.e. with the case when the 2-plane is

totally null in arbitrary signature. The following theorem is a generalisation to

arbitrary signature of the corresponding result from the Lorentzian domain, which

was proved in [26].

Theorem 2.6. Let (M, [g]) be a pseudo-Riemannian real analytic conformal man-
ifold of odd dimension n > 2. If the holonomy group of the ambient metric admits

an invariant totally null 2-plane, then every metric in the conformal class [g] is
locally conformally equivalent to a metric g with the following two properties:

There is a null line L ⊂ T M that is parallel for ∇g, and (2.11)

Ricg(Y ) = 0 for all Y ∈ L⊥. (2.12)

Remark 2.7. Note that property (2.12) is equivalent to the property that the image

of Ricg : T M → T M is contained in L . In Lorentzian signature, this is equivalent

to the image of Ricg being totally null. In higher signature, it is stronger.

Note also that such metrics have vanishing scalar curvature, and thus Ric is a

constant multiple of the Schouten tensor. It also holds that Ric satsifies property

(2.12) if and only if the Schouten satisfies property (2.12).

Proof. The proof is based on the following Lemma.

Lemma 2.8. Let (M̃ = C × R, g̃) be the ambient space and let H be a bundle of

parallel null 2-planes on (M̃, g̃). Assume that there is a bundle of null lines L over
M and a metric g ∈ [g] defining the embedding ιg : M → C such that

H|ιg(M) = (ιg)∗(L) ⊕ R∂u .

Then L is parallel with respect to ∇g and Y Ricg = 0 for all Y ∈ L⊥.

1 The case where the 2-plane is non-degenerate implies that the conformal class contains a product
of Einstein metrics with related Einstein constants (see [2] for Riemannian conformal classes and
the unpublished parts in [29] for arbitrary signature).
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Proof. Let g ∈ [g] be the metric given in the assumptions and let M̃ = R+ ×
ιg(M)×R $ (t, p, u). Furthermore, let V = a∂u+K ∈ +(H|ιg(M))with K ∈ +(L)
a null vector. Then, along ιg(M) ⊂ C, by formulae (2.5), we get

0 = g̃(∇̃XV, ∂u) = −g̃(∇̃X∂u, K ) = t Pg(X, K ),

for all X ∈ T M . This shows that L Pg = 0. In particular, the image of Ricg and

hence the image of Pg lies in L . Furthermore,

∇̃XV = X (a)∂u + a

t
P
g(X) + ∇g

X K + tg(X, K )∂u,

for all X ∈ T M . Since H|ιg(M) = L ⊕ R∂u is parallel, and since P
g(X) ∈ L , this

implies that L is parallel with respect to ∇g.

We will now show that the existence of a parallel totally null 2-plane distribu-

tion on (M̃, g̃) implies the existence of a metric in the conformal class and a null
line bundle on M satisfying the assumptions of Lemma 2.8.

Let H be a totally null 2-plane bundle that is parallel for the ambient metric.

WithH alsoH⊥ is parallel, but of rank n. This implies

H|C *⊂ TC and H⊥|C *⊂ TC. (2.13)

In order to prove this, fix a metric g ∈ [g]. Since H has rank 2, H|C ⊂ TC would
imply that there is a section K ∈ +(H|C) that is tangential to ιg(M). H being

parallel then gives

0 = g̃(∇̃X K , ∂t ) = −g̃(∇̃X∂t , K ) = −tg(X, K ),

for all X in T M , which contradicts the non-degeneracy of the metric. Then, since

H is totally null, and thusH ⊂ H⊥, property (2.13) follows. For reasons of dimen-
sions, this implies that

L := H|C ∩ TC is a bundle of null lines over C. (2.14)

We will now prove some properties of L that will lead to the proof of the theorem.
Lemma 2.9. Let X := L⊥ ∩ TC and L ∈ +(L). Then

g̃(∇̃U L , V ) = 0 for all U, V ∈ X . (2.15)

Proof. We show that for U ∈ X the vector field ∇̃U L is not only contained in H,
by H being parallel, but also in the space tangential to the cone, and hence in L.
To this end we fix a metric g ∈ [g] yielding C = R+ × M and TC = ∂⊥

t . Hence,

for L = a∂t + K ∈ L and U = b∂t + X ∈ X , with K and X tangential to M and

orthogonal to each other,

g̃(∇̃U L , ∂t ) = −g̃(L , ∇̃U∂t ) = −g̃(L , ∇̃X∂t ) = −1
t
g̃(L , X) = −1

t
g̃(X, K ) = 0,

since g(K , X) = 0 and ∂⊥
t = TC. This shows that ∇̃U L ∈ H ∩ TC implying the

relation (2.15).
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Lemma 2.10. X = L⊥ ∩ TC is an integrable distribution on C.

Proof. We fix a metric g ∈ [g] and obtain M ↪→ C. First note that H⊥ ⊂ L⊥ and
that ∂t ∈ L⊥. Furthermore H⊥ ∩ ∂t = {0}. Indeed, since H *⊂ TC, there is an
element inH of the form ∂u+X+a∂t , which implies that ∂t is not orthogonal toH.
Furthermore, since H⊥ ⊂ L⊥, by relation (2.13), the dimension of L⊥ ∩ T C is n.
Now, let ∂t ,Y1, . . . ,Yn−1 with Yi ∈ +(H⊥ ∩TC) be basis for L⊥ ∩TC of mutually
orthogonal vector fields. Then, since H⊥ is parallel we have ∇̃∂t Yi ∈ +(H⊥).
Hence,

[∂t ,Yi ] = ∇̃∂t Yi − ∇̃Yi ∂t = ∇̃∂t Yi − 1

t
Yi ∈ H⊥ ∩ TC.

On the other hand, again since H⊥ is parallel, we get ∇̃Yi Y j ∈ +(H⊥) and thus[
Yi ,Y j

]
∈ +(H⊥). Furthermore,

g̃
([
Yi ,Y j

]
, ∂t

)
= g̃

(
∇̃Yi Y j − ∇̃Y j Yi , ∂t

)
= −g̃

(
Y j , ∇̃Yi ∂t

)
+ g̃

(
Yi , ∇̃Y j ∂t

)
= 0,

because of (2.5). This shows that also
[
Yi ,Y j

]
∈ +(H∩ TC). Hence,H⊥ ∩ TC but

also L⊥ ∩ TC are integrable.

Lemma 2.11. Let π : C → M and π∗ : TC → T M be the canonical projection

and its differential. Then

L := π∗(L)

is a distribution of null lines on M and L⊥ = π∗(X ). Both distributions are inte-
grable on M .

Proof. We fix g ∈ [g] to verify that π∗(L) *= 0. Assume that L = R∂t . H being

parallel then implies that

∇̃X∂t = 1

t
X ∈ H for all X ∈ T M .

Since n > 2, this contradicts to H being a 2-plane bundle. Hence, π∗(L) is a null
line bundle on M . Since TC = ∂⊥

t this implies that L
⊥ = L⊥ ∩ TC = X . Since L

and X are integrable on C, L and L⊥ are integrable on M .

Lemma 2.12. For any null vector K ∈ +(L) we define the second fundamental
form of L⊥ by

1K (X,Y ) = g(∇̃X K ,Y ) for X,Y ∈ L⊥.

Then 1K is symmetric and tensorial in K . Furthermore, locally there is a metric

in the conformal class such that 1K (X,Y ) has no trace.
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Proof. First we notice that L ⊂ L⊥ implies that1K is tensorial in K : For f K with

a smooth function f we get

1 f k(X,Y ) = X ( f )g̃(K , X) + f g̃(∇̃X K ,Y ) = f1K (X,Y ).

The integrability of L⊥ implies that 1K is symmetric. Now we define the trace of

1K as

HK :=
n−2∑

i=1
εi1

K (Ei , Ei ) ∈ C∞(M)

where E1, . . . , En−2 linearly independent in L⊥ with g(Ei , E j ) = εiδi j . Since

K 1K = 0, this is independent of the chosen Ei ’s. Now we claim that there is a

metric ĝ = e2ϒg ∈ [g] in the conformal class such that the corresponding function
Ĥ K is zero. To this end we notice that the transformation formula for 1̂K is given

by

1̂K (Y, V ) = ĝ(∇̂Y K , V ) = e2ϒ (1(Y, V ) + dϒ(K )g(V,Y )) ,

for Y, V ∈ L⊥. Hence,

Ĥ K = e2ϒ
(
HK + (n − 2)dϒ(K )

)
.

Now the differential equation

dϒ(K ) = HK

n − 2

is an ODE along the flows of K and as such locally always has a solution. This

ensures that we can chose ĝ such that Ĥ K ≡ 0.

Finally, to conclude the proof, we fix this metric g ∈ [g] for which HK ≡ 0.

Now let L = a∂t + K ∈ +(L) be arbitrary. Then equation (2.15) reads as

0 = g̃(∇̃X L ,Y ) = atg(X,Y ) + t21K (X,Y ),

for all X,Y ∈ L⊥. Taking the trace shows that a ≡ 0 on M . Hence, L = ιg(L),
and thus H = ιg(L) ⊕ R∂u . This means that the metric g ∈ [g] and the null line
bundle L on M satisfy the assumptions of Lemma 2.8. This concludes the proof of

the theorem.

3. G2(2)-conformal structures with truncated ambient metric

As it was mentioned in the Introduction, in [31] a conformal structure [gF ] in signa-
ture (3, 2) was introduced that originated from a first order ODE for two functions
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y, z of one variable x . We will now describe this construction briefly. Every solu-
tion to the first order ODE

z′ = F(x, y, y′, y′′, z) with Fy′′y′′ *= 0,

is a curve in the five-dimensional manifold M parametrised by (x, y, z, p = y′, q =
y′′), on which the one-forms

ω1 = dz − F(x, y, p, q, z)dx, ω2 = dy − pdx, ω3 = dp − qdx (3.1)

vanish. Two triples of such 1-forms on R5, (ω1,ω2,ω3) and (ω̂1, ω̂2, ω̂3), are con-
sidered to be equivalent, if there is a local diffeomorphism4 ofR5 and a GL(3, R)-
valued function A = (aij ) on the domain of 4 such that 4∗ω̂i = ∑n

j=1 a
i
jω

j .

Cartan showed that an equivalence class of a triple of one-forms given by (3.1)

with Fqq *= 0 corresponds to a Cartan connection ω on a 14-dimensional prin-

ciple fibre bundle P over the five-manifold parametrised by (x, y, z, p, q). This
Cartan connection has values in the non-compact exceptional Lie algebra g2(2),
and P is the bundle with structure group given by the 9-dimensional parabolic

P := G2(2) ∩ B, where B is the isotropy group in SO(4, 3) of a null line. The
conformal structure on the 5-manifold is now constructed as follows: Write the

Cartan connection ω as ω = (θ,5), where 5 has values in the Lie algebra p of
P and θ in the five-dimensional complement of p in g2(2). Write θ = (θ1, . . . , θ5)
and 5 = (51, . . . ,59) and let X1, . . . , X5 and Y1, . . . ,Y9 be the vector fields on
P dual to θi and 5µ, respectively. The Yµ are tangential to the fibres of P → M .

Defining the bilinear form

G = 2θ1θ5 − 2θ2θ4 + (θ3)2

on P we note that along the fibres G is degenerate and merely scales, i.e.
LYµG = λµG

for some functions λµ. Hence, G projects to a conformal class of metrics [gF ]
of signature (+ + + − −) on M . This means that the normal conformal Cartan
connection for [gF ] reduces (in the Cartan sense) to G2(2). Hence, the conformal
holonomy of [gF ] is contained in this group. Of course, this inclusion might be
proper.

Remark 3.1. The conformal structure given by F is an example of a conformal

Cartan reduction (see for example [1]). The normal conformal Cartan connection of

[gF ] reduces to a Cartan connection with values in the Lie algebra g2(2) ⊂ so(4, 3).
In this way it defines a parabolic geometry of type (P, g2(2)), where P is the

parabolic subgroup given by the stabiliser in G2(2) of a null line. This situation

is exceptional in the sense that a reduction of a Cartan connection to a semisimple

subalgebra g ! so(p+1, q+1) whose intersection with the stabiliser of a null line
is parabolic imposes very strong algebraic restrictions on g and the parabolic sub-
algebra, as recently shown in [13]. For conformal geometry, only two cases arise:

the one of g2(2), which, by the result in [19], is given by the above construction, and
the one of so(4, 3) ⊂ so(4, 4) described in [7].
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Then, in [32], the following remarkable feature of [gF ] was noticed.
Proposition 3.2. There exist functions F such that the ambient metric of a gF ∈
[gF ] truncates after terms of second order, i.e.

g̃F = −2dtdu + t2gF − 2utP+ u2β, (3.2)

with P the Schouten tensor of gF and β = µ2 defined as in equation (1.2).

Examples of such F’s given in [32] include F = F(q) and F = q2 +∑6
i=0 ai p

i + bz. The proof is based on the form and the uniqueness of the ambient

metric in odd dimensions proved in [14, 15] and the observation, that the metric

(3.2) is Ricci-flat.

This concise form of the ambient metric makes it possible to study the relation

between the conformal holonomy and the holonomy of the ambient metric. This is

done by distinguishing two situations: the first, when the conformal class contains

an Einstein metric, and the second, when it does not contain an Einstein metric.

Also in [32] several examples of such conformal structures depending on the func-

tion F in (3.1) with Fqq *= 0 were considered. On the one hand it was shown that

for F = F(q) the conformal class given by F contains a Ricci flat metric. We have
seen that for a conformal class that contains a Ricci flat metric, the ambient metric

is a special Brinkmann metric, g̃ = −2dudt + t2g, and that the holonomy of the

ambient metric is the same as the holonomy of the conformal Cartan connection.

Based on the result in [32] we obtain:

Proposition 3.3. Let [gF ] be a conformal class where F = F(q) with Fqq *= 0.

Then [gF ] contains a Ricci flat metric g0, the ambient metric for [gF ] is

g̃F = −2dudt + t2g0

as in equation (2.3), the holonomy of the ambient metric is equal to the conformal
holonomy and contained in the eight-dimensional stabiliser inG2(2) of a null vector.

This shows that the ambient metric of conformal classes gF(q) areG2(2)-metrics

that admit a parallel null vector field, and thus can be considered as G2(2)-Brink-

mann waves.

Furthermore, in [32] a conformal structure [gF ] in signature (3, 2) was in-
troduced that still has an ambient metric in the truncated form (3.2) but does not

contain an Einstein metric. This is defined by

F = q2 +
6∑

i=0
ai p

i + bz,

where the conformal class is given by the metric

gF = 2θ1θ5 − 2θ2θ4 + (θ3)2,
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where the co-frames θ i are given by

θ i = e−
2b
3 x θ̂ i

with the θ̂’s defined in on page 3. For further convenience we define

A3 = 9

20 · 22/3
(
a3 + 4a4 p + 10a5 p

2 + 20a6 p
3
)

(3.3)

A4 = 9

10

(
a4 + 5a5 p + 15a6 p

2
)

, (3.4)

A5 = 27

4 · 21/3 (a5 + 6a6 p) , (3.5)

A6 = 243

2 · 22/3 a6. (3.6)

Note that we use here a different metric in the conformal class [gF ] than in [32].
We have rescaled the metric in [32] by e−

4b
3 x which will give Cotton flat metrics

for some F’s. When we write in the following “not conformal” we mean “nowhere

locally conformal”. Correspondingly, “conformal” for us always means “locally

conformal”.

Proposition 3.4. If at least one of a4, a5, or a6 is not zero, then the conformal class

[gF ] corresponding to F = q2 + ∑6
i=0 ai p

i + bz is not conformally Cotton and

thus, not conformally Einstein.

Proof. Recall that a metric which is conformally Einstein is conformally Cotton.

This means that there exists a gradient field T such that

C(T ) := C + W (T, ., ., .) ≡ 0, (3.7)

where W is the Weyl tensor and C is the Cotton tensor (see e.g. [17]). Writing

T = (ϒ1, . . . ,ϒ5) with ϒ i = θ i (T ) and using the formulae in the appendix we

get 0 ≡ C(T )112 = A4e
4b
3 xϒ4. Our assumption about a4, a5, and a6 means that

A4 *≡ 0. Thus, ϒ4 must be zero. Furthermore, 0 ≡ C(T )214 = −A4e
4b
3 xϒ1, which

implies ϒ1 = 0. Finally, we get 0 ≡ C(T )314 = C314 = −
√
3
3
A4e

2bx *= 0. This

means that with our assumptions about F , the metric gF cannot be conformally

Cotton, and hence, not conformally Einstein.

Remark 3.5. We observe the remarkable fact that for any F as in (1.3) the Riemann

tensor of g̃F considered as an endomorphism of $2T ∗M̃ has rank ≤ 4. Hence, in

order to obtain the 14-dimensional group G2(2) as holonomy group also derivatives

of the curvature have to contribute to the holonomy algebra.

Proposition 3.6. For F = q2+a3 p
3+a2 p

2+a1 p+a0+bz with a3 *= 0 the metric

gF is the unique Cotton flat metric in [gF ], but gF is not conformally Einstein.
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Proof. The assumptions on F imply that A4 ≡ 0 and A5 ≡ 0. By the formulae in

the appendix this implies that the Cotton tensor of gF is zero. Now we find the most

general vector T such that C(T ) jkl = Wi jklϒ
i = 0. The formulae for the Weyl

tensor give that

Wi514ϒ
i = W1514ϒ

1 = e
4b
3 x A3ϒ

1

Wi115ϒ
i = W4115ϒ

4 = −e 4b3 x A3ϒ4,

which imply that ϒ1 = ϒ4 = 0. Using ϒ1 = 0, we get

0 = Wi414ϒ
i = W2414ϒ

2 = e
4b
3 x A3ϒ

2,

and thus ϒ2 = 0. Now the condition

0 = Wi114ϒ
i = W3114ϒ

3 + W5114ϒ
5

gives ϒ5 = 24/3√
3
bϒ3. This turns out to solve all the remaining equations (3.7).

Hence, the most general T solving (3.7) is given by ϒ i = f (0, 0, 1, 0, 2
4/3√
3
b) with

a smooth function f . To define a scale ϒ such that e2ϒgF is Einstein, this T must

be a gradient, which means that dϒ = g(T, .) = f
(
24/3√
3
bθ1 + θ3

)
. Thus in such a

case d( f τ ) = 0, where τ =
(
24/3√
3
bθ1 + θ3

)
. Calculating dτ we get

0 = d( f τ ) ∧ θ1 ∧ θ3 = f dτ ∧ θ1 ∧ θ3 = f
2√
3
e
2b
3 xθ1 ∧ θ3 ∧ θ4 ∧ θ5.

But this implies that f ≡ 0. Hence, gF is the unique (up to a constant) Cotton flat

metric in [gF ]. The formulae for P show that it is not Einstein. Thus, there is no
Einstein metric in [gF ].
We can summarise the results about whether [gF ] contains an Einstein metric in

Theorem 3.7. Let F be given by F = q2 + ∑6
i=0 ai p

i + bz with at least one of

a3, a4, a5, a6 not equal to zero. Then the conformal class [gF ] does not contain an
Einstein metric. If furthermore a4 = a5 = a6 = 0, then gF is Cotton flat.

Now we study the property of [gF ] whether it contains a metric g with the
properties (2.11) and (2.12), which were subject to Theorem 2.6.

Lemma 3.8. Let (M, g) be pseudo-Riemannian manifold that admits a null line L .
Then Ric(X, .) = 0 for all X ∈ L⊥ if and only if locally there is a vector field

K tangent to L and smooth function φ such that Ric = φg(K , .) ⊗ g(K , .). Each
of these properties implies that (M, g) has vanishing scalar curvature and thus
P = 1

n−2Ric.

Proof. This is easily verified in a basis.
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Lemma 3.9. Let (M, g) be pseudo-Riemannian manifold that admits a∇g-parallel

null line L and satisfies the condition that Ric(X, .) = 0 for all X ∈ L⊥. Then the
Weyl tensor W of g and hence of every metric in the conformal class of g satisfies

W (., K , K , X) = 0, for all K ∈ L and X ∈ L⊥. (3.8)

Proof. Since L is parallel, the curvature R of g satisfies R(U, V, K , X) = 0 for all

U, V ∈ T M , K ∈ L and X ∈ L⊥. Then the property Ric(X, .) = 0 and hence

P(X, .) = 0 yields (3.8).

Theorem 3.10. Let F be given by F = q2 + ∑6
i=0 ai p

i + bz with at least one of

a3, a4, a5, a6 not equal to zero. Then the conformal class [gF ] does not contain a
metric g with the properties (2.11) and (2.12).

Proof. We consider the most general null line L for [gF ]. We will show that there
is no metric g in the conformal class [gF ] such that conditions (2.11) and (2.12)
hold for L . Let Ki be tangent to L . We have to exclude the following four cases:

a) Ki = (1,α,β, γ ,αγ − 1
2
β2),

b) Ki = (0, 1,β, 1
2
β2, γ ),

c) Ki = (0, 0, 0, 1, γ ),

d) Ki = (0, 0, 0, 0, 1),

where α, β, and γ are arbitrary functions. This is achieved by analysing the con-
formally invariant condition (3.8) and, in cases b) and d), the properties (2.11) and

(2.12), i.e. ∇̂aKb = faKb and P̂ab = 4KaKb for all metrics ĝ ∈ [gF ]. The calcu-
lations, in which we will refer to the polynomials as defined in (3.3) and (3.4), are

based on the formulae provided in the appendix. Recall that A3 ≡ 0 means that gF
is conformally Einstein, and A4 ≡ 0 means that gF is conformally Cotton and not

conformally Einstein if a3 *= 0.

c) Case c) is excluded because it is in contradiction with gF not being conformal

to Einstein: One of the vectors from K⊥ is Xi = (1, γ , 0, 0, 0). For this we

get that W2bcd K
bKd Xc = A3e

4b
3 x . Hence, condition (3.8) implies that gF is

conformal to an Einstein metric.

a) First we exclude case a) in the not conformally Cotton case, i.e. when at least

one of ai *= 0 for i = 4, 5, 6, i.e. A4 *≡ 0. In this case equation (3.8) for

Xi = (1, 0, 0, 0, 1
2
β2 − αγ ) ∈ K⊥ gives

0 = W5bcd K
bKd Xc = −A3γ e

4b
3 x ,
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and thus γ = 0. This yields

0 = W1bcd K
bKd Xc = −2A4β2e

4b
3 x ,

and therefore β = 0. Hence Xi = (1, 0, 0, 0, 0). This gives

0 = W4bcd K
bKd Xc = A4αe

4b
3 x ,

and thus α = 0, i.e. Ki = (1, 0, 0, 0, 0). Furthermore, for Y i = (0, 1, 0, 0, 0) ∈
K⊥ we get

0 = W4bcd K
bKdY c = −A4e

4b
3 x *= 0,

which gives the contradiction.

Now we exclude case a) when gF is Cotton flat, i.e. a4 = a5 = a6 = 0, which

means A4 ≡ 0 and a3 *= 0. Equation (3.8) gives

0 = W5bcd K
bKd Xc = −A3γ e

4b
3 x

which implies γ = 0. Furthermore, for Zi = (0, 0, 1, 0,−β) ∈ K⊥ we obtain
from Equation (3.8) that

W4bcd K
bKd Zc = − A3√

3 · 22/3
e
4b
3 x

(
4b +

√
3 · 22/3β

)
.

This means that β = −24/3√
3
b. Using this, equation (3.8) forUi =(0, 0, 0, 1,α)∈

K⊥ gives
0 = W5bcd K

bKdUc = A3e
4b
3 x ,

which is in contradiction with A3 *= 0.

b) For case b) equation (3.8) with vector Xi = (1, 0, 0, γ , 0) ∈ K⊥ gives

W4bcd K
bKd Xc = − A3

2
β2e

4b
3 x = 0,

and thus β = 0. Hence, in this case we have Ki = (0, 1, 0, 0, γ ). Now

we calculate ∇̂K for the metric ĝ = e2ϒg with an arbitrary function ϒ =
ϒ(x, y, z, p, q). The condition that K is tangent to a parallel null line for

some ϒ implies that the first component of ∇̂K must be zero. This implies that

ϒ = ϒ(x, y, p). Using this we find that the third component of ∇̂K vanishes if
and only if

0 =
√
3

24/3
γ ∂pϒθ1 −

√
3

3
(γ + 3 · 2−4/3∂pϒ)θ4.
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This yields ϒ = ϒ(x, y) and γ = 0. With γ = 0, the fifth component of

∇̂K must vanish, which implies ϒ = ϒ(x). Calculating the Schouten tensor

P for such ϒ we find that P̂14 vanishes if and only if A3 vanishes. Since in

the conformally non-Einstein case the quantity A3 is non-vanishing, we get a

contradiction with the condition P̂14 = 0 which is implied by P̂ab = φKaKb
and the K with β = γ = 0. This excludes the case b).

d) A similar argument can be used in the case d). Here K = (0, 0, 0, 0, 1) and the
most general choice of the metric ĝ = e2ϒg leads to the following formula for

the second component of the covariant derivative of K : (∇̂K )2 ∧ θ1 ∧ θ2 =
− 1

2
√
3
θ̂3 ∧ θ̂1 ∧ θ̂2. The condition that K is parallel in ∇̂ requires that this must

be zero, which excludes the case d) as well.

Hence, for an arbitrary null vector and any metric in the conformal class [gF ] we
have shown that conditions (2.11) and (2.12) cannot be satisfied together.

4. Ambient metrics with holonomy G2(2)

For those conformal classes introduced in the previous section that are not confor-

mally Einstein the relation between the holonomy of the ambient metric and the

conformal holonomy is more involved than in the conformally Einstein case. We

will now show that for some [gF ] the ambient metric has holonomy exactly G2(2).
The strategy is to show that the ambient manifold admits exactly one parallel spinor

which is not null and exclude the existence of holonomy invariant null spaces by

using Theorem 3.10.

In Theorem 1.1 in the introduction we have proven that the ambient metric for

gF as defined in (1.4) is given as

−2dudt + t2gF − 2tuP− u2B.

Calculating P and B explicitly in the appendix this reads as

g̃F = − 2dtdu + t2gF + 2tu e
4b
3 x

(
A4(θ

1)2 + 2A3θ
1θ4 + A2θ

4
)

+ 1

6
u2 e

8b
3 x

(
A6θ

1θ2 + 2A5θ
1θ4 + A4(θ

4)2
)

,
(4.1)

where Ai ’s are defined in (1.5), (1.6), (3.3)-(3.6). Note that the choice of a different

gF in the conformal class than in [32] results in a different coordinate system in

which the ambient metric is expressed. Note also that in this form the ambient

metric for [gF ] has no u2 terms if gF is Cotton flat, i.e. if a4 = a5 = a6 = 0.

This means that for such F it truncates at the same order as the ambient metric of

a conformal class with an Einstein metric, although it does not contain an Einstein

metric if a3 *= 0.
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In order to absorb the terms in the ambient metric coming from the terms of

first and second order in u, we introduce the following co-frame on M:

η1 = tθ1

η2 = tθ2 − 1

12
e
4b
3 x
u

t

(
12A2t + A4e

4b
3 x

)
θ4

+ 1

12
e
4b
3 x
u

t

(
−24A3t + 12 · 21/3A4 pt − 2A5e

4b
3 xu + 21/3A6e

4b
3 x pu

)
θ1

η3 = tθ3

η4 = tθ4

η5 = tθ5 + 1

12
e
4b
3 x
u

t

(
12A4 + A6e

4b
3 xu

) (
θ1 + 21/3 pθ4

)
.

Then we write the ambient metric as

g̃F = −2dtdu + 2η1η5 − 2η2η4 + (η3)2.

For the calculation of the parallel spinor we use the orthonormal basis

ξ0 = 1√
2
(dt − du), ξ1 = 1√

2
(η1 + η5), ξ2 = 1√

2
(η2 − η4), ξ3 = η3

ξ4 = 1√
2
(η2 + η4), ξ5 = 1√

2
(η1 − η5), ξ6 = 1√

2
(dt + du),

in which g̃F reads as

g̃F = g̃i jξ
iξ j = (ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2 − (ξ4)2 − (ξ5)2 − (ξ6)2.

We represent the Clifford algebra Cl(4, 3) by means of σ -matrices satisfying the
relation

σiσ j + σ jσi = 2g̃i jI8. (4.2)

They are given as:

σ0 =
(
0 γ0
γ0 0

)
, σ1 =

(
0 γ2
γ2 0

)
, σ2 =

(
0 γ4
γ4 0

)
σ3 =

(
I4 0

0 −I4

)

σ4 =
(
0 γ1
γ1 0

)
, σ5 =

(
0 γ3
γ3 0

)
, σ6 =

(
0 −I4
I4 0

)
,
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where

γ0 =





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



 , γ2 =





0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0



 , γ4 =





1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



 ,

γ1 =





0 0 0 −1
0 0 1 0

0 −1 0 0

1 0 0 0



 , γ3 =





0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0



 .

Note that

γ 2i = (−1)iI4
which implies relation (4.2). The invariant scalar product 〈., .〉 is given by

〈ϕ,ψ〉 := − (σ4 · σ5 · σ6 · ϕ,ψ) ,

where (., .) is the Euclidean standard scalar product on R8. In the standard basis of
R8 the split signature scalar product 〈., .〉 is given by the matrix





0 0 J2 0

0 0 0 −J2
−J2 0 0 0

0 J2 0 0



 ,

where J2 =
(
0 −1
1 0

)
. It satisfies the relation

〈σi · ϕ,ψ〉 = −〈σi · ψ,ϕ〉, (4.3)

which implies its invariance. Hence, the scalar product gives a metric on the spin

bundle, which we denote by the same symbol, and which is parallel with respect to

the lift of the Levi-Civita connection ∇̃.
Then we have to solve the parallel spinor equations

0 = ∇̃ψ = dψ + 1

4

6∑

k,l=0
+̃klσkσlψ. (4.4)

Here +̃kl are the Levi-Civita connection 1-forms for the ambient metric g̃F in the

orthonormal co-frame ξ i . I.e., +̃i j are determined by +̃i j = −+̃ j i , dξ i + +̃i
j ∧ξ j =

0, and +̃i j = +̃i
k g̃

k j .

Proposition 4.1. Let F = q2 + ∑6
i=0 ai p

i + bz. Then the non-null spinor

ψ =
(
0,−e b3 x , e b3 x , 0,

√
2

3
e
b
3 x

(
2
1
3 be

2b
3 x − 3

)
, 0, 0,

√
2

3
e
b
3 x

(
2
1
3 be

2b
3 x + 3

))
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is a solution of the parallel spinor equation (4.4). In particular, the holonomy of the

ambient metric of [gF ] is contained in G2(2).
Proof. One checks by direct calculations thatψ is parallel and not null with〈ψ,ψ〉=
4
√
6.

For completeness we will give below a formula for the parallel three-form

ω that defines the G2(2) structure. The form ω is related to the spinor ψ by the

following relation (see for example [23]): First one defines a skew (2, 1)-tensor Aψ

depending on ψ via

X · Y · ψ − g̃(X,Y )ψ = Aψ (X,Y ) · ψ

and obtains ω by dualising it

ω(X,Y, Z) := g̃(X, Aψ (Y, Z)).

Calculating this with Mathematica we get that ω is equal to

ω = 1

6 · 25/6
√
3

(
18 f (−x) − 3 · 21/3 f (x) + 4b2 f (x)

) (
ξ012 − ξ146

)

+ 1

6 · 25/6
√
3

(
18 f (−x) + 3 · 21/3 f (x) − 4b2 f (x)

) (
ξ014 + ξ126

)

− 1

6 · 25/6
√
3

(
18 f (−x) + 3 · 21/3 f (x) + 4b2 f (x)

) (
ξ025 − ξ456

)

+ 1

6 · 25/6
√
3

(
−18 f (−x) + 3 · 21/3 f (x) + 4b2 f (x)

) (
ξ045 + ξ256

)

− 2
1/6b

(
3·22/3−bf (x)

)
√
3
(
−3+ 21/3bf (x)

)
(
ξ016+ξ124

)
+ 2

1/3b

3
f (x)

(
− ξ023−ξ034+ξ236+ξ346

)

+ ξ036 + ξ135 + ξ234 + 25/6b√
3

(
ξ056 − ξ245

)

with

f (x) := e
2b
3 x

and ξ i jk := ξ i ∧ ξ j ∧ ξ k , where ξ i is the orthonormal coframe given on page 4. A
direct calculation verifies that ω and its Hodge dual are closed.

In order to conclude the proof of Theorem 1.1 it only remains to prove the

following lemma.
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Lemma 4.2. If a 7-dimensional spin manifold M̃ with metric g̃ of signature (4, 3)
admits a parallel non-null spinor ψ and a parallel line of null spinors, then there is

a parallel line bundle of tangent vectors on M̃ .

Proof. We fix a spinor ϕ that spans the parallel line of spinors. There is a 1-form f

such that ∇̃ϕ = f ⊗ ϕ. We associate to ψ and ϕ a vector field V via transposing
the Clifford multiplication, i.e.

g̃(V, X) = 〈X · ψ,ϕ〉 = −〈X · ϕ,ψ〉

for all X ∈ T M̃ . The well known formula

Y (〈X · ϕ,ψ〉) = 〈∇̃Y X · ψ,ϕ〉 + 〈X · ∇̃Yψ,ϕ〉 + 〈X · ψ, ∇̃Yϕ〉

for two spinor fields ϕ and ψ , and two vector fields X and Y , shows that V spans a
parallel line. Indeed, it implies that

g̃(∇̃XV,Y ) = X (g̃(V,Y )) − g̃(V, ∇̃XY )

= X (〈Y · ψ,ϕ〉) − 〈∇̃XY · ψ,ϕ〉

= f (X)〈Y · ψ,ϕ〉

= f (X)g̃(V,Y ),

for all X,Y ∈ T M̃ . For the proof, we have to exclude that V ≡ 0, i.e. that

g(V, X) = 〈X · ψ,ϕ〉 = 0 (4.5)

for all X ∈ T M̃ . We will show that this contradicts ψ being not null and ϕ being
null. To this end, at each tangent space Tp M̃ = R4,3, consider the map

R4,3 $ X %→ X · ψ ∈ <4,3.

Using the transitive action of Spin(4, 3) on spheres in R4,4, one shows [23] that ψ
is not null if and only if this map has a trivial kernel. Hence, with ψ being not null,

the vector space

W := {X · ψ | X ∈ R4,3}
has dimension seven. Furthermore, property (4.3) implies

2〈X · ψ,Y · ψ〉 = −g(X,Y )〈ψ,ψ〉, (4.6)

for all X,Y ∈ R4,3. Since ψ is not null, this shows that W ⊂ R4,4 is non-
degenerate. Equation (4.5) then implies that Rϕ = W⊥ which contradicts ϕ being
null.
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This lemma shows that the existence of a parallel maximal totally null subspace

yields the existence of a parallel line bundle in the tangent bundle for the ambient

metric, which by Theorem 2.2 contradicts gF not being conformally Einstein.

Remark 4.3. Note also that the existence of two non-null spinor yields the exis-

tence of a parallel vector field. This is true by the result in [23] that the isotropy

group of two spinors that are not null is given by SU(1, 2) or SL(3, R). Both cases
imply that there is a parallel vector field on M that is not null.

Appendix

Here we will give formulae for the Levi-Civita connection of gF , its Schouten,

Weyl, Cotton and Bach tensor. gF is given as in (1.4), with θ i ’s as on page 409. In
this coframe the Levi-Civita connection 1-forms, i.e. matrix-valued 1-forms satis-

fying dθµ + +
µ
ν ∧ θν = 0, +µν + +νµ = 0, +µν = gµσ+σ

ν , are:

+12 = +23 = +25 = 0

+34 = −2
1/3

3
bθ̂3 + 1√

3
θ̂5

+35 = − 1√
3
θ̂4

+45 = 21/3

3
bθ̂1 + 1

2
√
3
θ̂3

+15 = −2
1/3

3
bθ̂4

+24 = −2
1/3

3
bθ̂4

+13 = −2
√
3
(
A3θ̂

1 + A2θ̂
4
)

+14 = 24/3
(
24/3A3q − A2b

)
θ̂1 + 3

√
3

2
A2θ̂

3 − 21/3

3
bθ̂5 ,

where A1 and A2 are defined in (1.5), (1.6) and (3.3). Then the Schouten tensor is

given as

P = −A4(θ̂
1)2 − 2A3θ̂

1θ̂4 − A2(θ̂
4)2
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with A4 defined in (3.4). Let Wi jkl be the Weyl tensor and Wi j be the 2-forms

defined by Wi j = 1
2
Wi jklθ

k ∧ θ l . They are given by

W12 = −A4θ̂
1 ∧ θ̂4

W13 = −2A4θ̂1 ∧ θ̂3 + 24/3√
3

(
3 · 21/3A4q − A3b

)
θ̂1 ∧ θ̂4

W14 = −A4θ̂
1 ∧ θ̂2 + 24/3√

3

(
3 · 21/3A4q − A3b

)
θ̂1 ∧ θ̂3

+ 1
3

(
27A22−12·21/3A1A3−6·22/3A2b2+40A3bq−24 · 21/3A4q2

)
θ̂1 ∧ θ̂4

+ A3

(
θ̂1 ∧ θ̂5 + θ̂2 ∧ θ̂4

)

W15 = W24 = A3θ̂
1 ∧ θ̂4

W23 = W25 = W34 = W35 = W45 = 0.

If Ci jk is the Cotton tensor, the 2-forms Ci = 1
2
Ci jkθ

j ∧ θk are given by

C2 = C5 = 0

C3 = −
√
3

3
A4e

2bxθ1 ∧ θ4

C4 = A4e
2bx

(
−

√
3

3
θ1 ∧ θ3 + 22/3

3
qθ1 ∧ θ4

)

C1 = −
√
3

3
A5e

2bxθ1 ∧ θ3 + 21/3

3

(
A4b + 24/3A5q

)
e2bxθ1 ∧ θ4,

where A5 is defined in (3.5). Finally, the Bach tensor is given by

B = −1
6
e
8b
3 x

(
A6θ

1θ2 + 2A5θ
1θ4 + A4(θ

4)2
)

.

These formulae enable the reader to calculate the connection coefficients of the

truncated ambient metric

g̃F = −2dudt + t2gF − 2tuP− u2B.
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[25] W. KOPCZYŃSKI, Pure spinors in odd dimensions, Classical Quantum Gravity 14 (1997),

A227–A236.
[26] T. LEISTNER, Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds, Dif-

ferential Geom. Appl. 24 (2006), 458–478.
[27] T. LEISTNER and P. NUROWSKI, Conformal pure radiation with parallel rays, Classical

Quantum Gravity 29 (2012), 055007.



436 THOMAS LEISTNER AND PAWE!L NUROWSKI

[28] T. LEISTNER and P. NUROWSKI, Ambient metrics for n-dimensional pp-waves, Comm.
Math. Phys. 296 (2010), 881–898.

[29] F. LEITNER, Normal conformal Killing forms, 2004. arXiv.org:math/0406316.
[30] F. LEITNER, Conformal Killing forms with normalisation condition, Rend. Circ. Mat.

Palermo (2) Suppl., 75 (2005), 279–292.
[31] P. NUROWSKI, Differential equations and conformal structures, J. Geom. Phys. 43 (2005),

327–340.
[32] P. NUROWSKI, Conformal structures with explicit ambient metrics and conformal G2

holonomy, In: “Symmetries and Overdetermined Systems of Partial Differential Equations”,
Vol. 144 of IMA Vol. Math. Appl., Springer, New York, 2008, 515–526.

[33] S. M. SALAMON, “Riemannian Geometry and Holonomy Groups”, Vol. 201 of Pitmann
Research Lecture Notes, 1989.

[34] H. WU, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311.

School of Mathematical Sciences
University of Adelaide
SA 5005, Australia
thomas.leistner@adelaide.edu.au

Instytut Fizyki Teoretycznej
Uniwersytet Warszawski
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