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Cauchy problem and quasi-stationary limit

for the Maxwell-Landau-Lifschitz

and Maxwell-Bloch equations

ERIC DUMAS AND FRANCK SUEUR

Abstract. In this paper we continue the investigation of the Maxwell-Landau-
Lifschitz and Maxwell-Bloch equations. In particular we extend some previous
results about the Cauchy problem and the quasi-stationary limit to the case where
the magnetic permeability and the electric permittivity are variable.
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1. Introduction

The models. This paper deals with two physical models which describe the prop-
agation of electromagnetic waves, that is of the magnetic field H and of the electric
field E , in some special medium which occupies an open subset! ofR3, with mag-
netic permeability µ and electric permittivity ε. In both cases we denote by f the
extension of a function f by 0 outside the set !. The time variable is t ! 0, and
the space variable is x ∈ R3.

The first model refers toMaxwell-Landau-Lifschitz equations (see [10] and
[28] for Physics references). The magnetic field H and the electric field E satisfy
the Maxwell equations in R3:






µ∂t H + curl E = −µ∂t M,

ε∂t E − curl H = 0,

divµ(H + M) = 0,

div εE = 0,

(1.1)

where M stands for the magnetic moment in the ferromagnet ! and takes values in
the unit sphere of R3. It is solution to the Landau-Lifschitz equation:

∂t M = γM ∧ HT − αM ∧ (M ∧ HT ) for x ∈ !, (1.2)
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where γ $= 0 is the gyromagnetic constant, and α > 0 is some damping coefficient.
Neglecting the exchange phenomenon, the total magnetic field HT is the sum

HT = H + Ha(M) + Hext, (1.3)

where the anisotropy field writes Ha(M) = ∇M&(M), for some convex function
&, and Hext is some applied (exterior) magnetic field.

The second model refers toMaxwell-Bloch equations (see for example [7, 8,
16,35,38,41]). In this setting! denotes some quantummedium with N ∈ N energy
levels described by a Hermitian, non-negative, N × N density matrix ρ. Assuming
the usual dipolar approximation, these quantum states change under the action of
an electric field E by the quantum Liouville-Von Neumann (or Bloch) equation:

i∂tρ = [( − E · ), ρ] + i Q(ρ). (1.4)

The N × N Hermitian symmetric matrix (, with entries in C, represents the (elec-
tromagnetic field-) free Hamiltonian of the medium. The dipole moment operator
) is a N × N Hermitian matrix, with entries in C3, and depends on the material
considered. The (linear) relaxation term Q(ρ) takes dissipative effects into account
(see [5, 6, 32]). The polarization P of the matter is given by the constitutive law
P = Tr()ρ) which influences back the electric field E . Again, the electromagnetic
field satisfies the Maxwell equations in R3:






µ∂t H + curl E = 0,

ε∂t E − curl H = −∂t P,

div(εE + P) = 0,

divµH = 0.

(1.5)

Cauchy problems. We first address the questions of global existence, unique-
ness and stability for the Cauchy problem associated with these equations. The
physically relevant solutions have finite energy: they satisfy the usual (L2) energy
estimates. Mathematically, this regularity leads to weak solutions and is usually
not enough to ensure the desired uniqueness and stability properties (requiring for
these hyperbolic semilinear systems in space dimension 3, in the general theory, Hs

Sobolev regularity with s > 3/2).
However, in the case of the Maxwell-Landau-Lifschitz system, Joly, Métivier

and Rauch [24] noticed that specific (algebraic) properties of the nonlinearities,
as well as (geometric) properties of the differential operator involved, allowed to
show the existence of global finite energy solutions (essentially, using compensated
compactness arguments) enjoying stability properties. Furthermore, only a small
amount of regularity (curl H and curl E in L2) ensures uniqueness. This is achieved
using dispersive properties of the system; namely, a limit Strichartz estimate con-
trolling the L2t L

∞
x norm of (a limited frequency part of) the fields H and E . These

results were obtained for equations posed in the whole space (! = R3) and for
constant coefficients ε and µ.
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In practice, the various coefficients of the system may not be constant. Typi-
cally, the magnetic permeability and electric permittivity may depend on the space
variable x and have jumps across the boundary of the domain !.

Adapting the above mentioned compensated compactness argument, Jochmann
established in [23] the existence and weak stability of global finite energy solutions
for the Maxwell-Landau-Lifschitz system, considering any domain ! ⊂ R3, and
variable, possibly discontinuous coefficients (ε, µ ∈ L∞(R3)). In the (space) 2-
dimensional case, we refer to the work of Haddar [21].

Concerning the Maxwell-Bloch system, the first author noticed that it shares
with the Maxwell-Landau-Lifschitz some of its structural properties. This author
thus showed in [18] results on existence and uniqueness of global finite energy
solutions, similar to the ones of Joly, Métivier and Rauch, but for some general class
of systems including the two models above. Again, these results where obtained for
equations posed in the whole space and for constant coefficients ε and µ.

Here, we continue this study, again for a general class of systems including
the Maxwell-Landau-Lifschitz equations and the Maxwell-Bloch equations, so as
to enlight the similarities and differences between these two models. Adapting
Jochmann’s method, we show the existence and stability of global finite energy
solutions, for a given domain ! ⊂ R3, and L∞ coefficients. Then, for smooth
coefficients, constant out of some compact set, we prove a limit Strichartz esti-
mate analogous to the one obtained by Joly, Métivier and Rauch in the constant
coefficient case. This allows us to show propagation of regularity and uniqueness
when initially, curl H and curl E belong to L2(R3). As a corollary of a result of
Saint-Raymond [40], we also infer generic uniqueness of the global finite energy
solutions.

Quasi-stationary limits. Next, we turn to the problem of the so-called quasi-
stationary limit. Physically, this regime appears when the domain ! is small com-
pared to the wavelength. Mathematically, it amounts to some long-time asymptotics
(replacing in the equations ∂t by η∂t , for some small parameter η) with weak non-
linearities (also scaled so as to have an amplitude of size η).

Jochmann showed in [23] the weak convergence of the corresponding solutions
to theMaxwell-Landau-Lifschitz system towards the solutions of some reduced sys-
tem driven by the magnetization, using the weak stability property. Starynkevitch
extended this result, proving strong and global-in-time convergence in the constant
coefficient case in [42], thanks to local energy estimates performed on the explicit
fundamental solution of the associated wave equation. He also obtained the same
result in the case of smooth coefficients, constant out of some compact set, in [43],
thanks to dispersive estimates obtained from resolvent estimates on elliptic opera-
tors.

Here, we apply the same methods to our general systems to get weak and
strong convergence in the quasi-stationary limit. For the latter however, some time
integrability assumption is needed to conclude, which is satisfied by the Maxwell-
Landau-Lifschitz system (since ∂t M ∈ L2((0,∞)×!)), but we do not know if the
Maxwell-Bloch system enjoys such a property.
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Remark 1.1. Taking exchange energy into account, one should add to the total
magnetic field in (1.3) a term −K+M with K > 0. The resulting system is then
parabolic. We refer to [1, 2, 12–14] and [45] for works on the corresponding (weak
or strong) Cauchy problem, long-time asymptotics and quasi-stationary limits.

2. Main results

Let us stress that we do not assume that ! is bounded, for the moment. To deal
with both the Maxwell-Landau-Lifschitz system (1.1)-(1.2) and the Maxwell-Bloch
system (1.4)-(1.5), we put these two models above into a single class of systems
consisting in the coupling of the Maxwell equations (with the fields H and E as
unknowns) with some ODE (corresponding to a third unknown variable). The re-
sulting sytem is symmetrizable hyperbolic, with semilinear nonlinearity, and some
structure assumptions are made, such as affine dependence of the nonlinearity with
respect to the electromagnetic field, and a priori pointwise estimates on the third
unknown variable. One of the key points in our study is that the electromagnetic
fields decompose into an “irrotational” part, which is directly related to this third
unknown, and a “divergence free” part, which solves some wave equation.

2.1. An abstract setting

On any finite-dimensional vector space RN , we denote by u · u′ the usual scalar
product between vectors u and u′, and by | · | the associated norm. For all r > 0,
Br denotes the (closed) ball centered at 0, with radius r .

We consider two scalar functions κ1(x) and κ2(x), which are uniformly posi-
tive:

for i = 1, 2, κi ∈ L∞(R3), and ∃ c > 0, κi ! c. (2.1)

We denote by Hcurl the space of functions f in L
2(R3,R3)with curl f in L2(R3,R3).

We consider the operator B defined by

B(u1, u2)=(κ−1
1 curl u2,−κ−1

2 curl u1) for u :=(u1,u2)∈D(B) :=Hcurl×Hcurl.

This is a skew self-adjoint operator on the Hilbert space L2(R3, R6) endowed with
the scalar product

〈(u1, u2), (u′
1, u

′
2)〉κ1,κ2 :=

∫

R3
(κ1u1 · u′

1 + κ2u2 · u′
2)dx .

We denote by P(u1, u2) :=
(
P1u1, P2u2

)
the orthogonal projector on (ker B)⊥

with respect to the weighted scalar product above, so that for i = 1, 2,

ran Pi = {ui ∈ L2(R3, R3) | div(κi ui ) = 0},
ran (I d − Pi ) = {ui ∈ L2(R3, R3) | curl(ui ) = 0}.

(2.2)
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We consider a function F : R3 × Rd × R6 → Rd , where d ∈ N, affine in its third
variable, and written

F(x, v, u) = F0(x, v) + F1(x, v)u. (2.3)

For each j = 0, 1, Fj is measurable with respect to x and continuously differen-
tiable with respect to v. Furthermore,

for j = 0, 1, for almost all x ∈ R3, Fj (x, 0) = 0,

and ∀R > 0, for almost all x ∈ R3, ∀v ∈ BR,

|Fj (x, v)| + |∂vFj (x, v)| " CF (R).

(2.4)

Finally, we assume that there exists K ! 0 such that:

for almost all x ∈ R3,∀(v, u) ∈ Rd × R6, F(x, v, u) · v " K |v|2. (2.5)

Remark 2.1. The constant K above may sometimes be taken equal to zero. In
this case, Estimate (i) in Theorem 2.6 is improved, since v does not undergo any
growth. This is the case for the Maxwell-Landau-Lifschitz model, as well as for
the Maxwell-Bloch model, when only transverse relaxation is taken into account
(Q(ρ) = −γρod , for some γ ! 0, and with ρod the off-diagonal part of ρ).

We also consider a function l = (l1, l2) ∈ (L∞(R3, L(Rd , R3)))2, where
L(Rd , R3) denotes the space of linear functions from Rd to R3. We introduce the
following shorthand notation: for any x ∈ R3, (κ−1 · l)(x) is the mapping from Rd

to R6, such that
for almost all x ∈R3, ∀v∈Rd , (κ−1 · l)(x)v :=(κ1(x)

−1l1(x)v, κ2(x)
−1l2(x)v).

Then, for any U := (u, v) in

L2 := L2(R3, R6) × L2(!, Rd),

the conditions

div(κ1u1 − l1v) = 0, div(κ2u2 − l2v) = 0,

may be equivalently written

(I d − P)(u − (κ−1 · l)v) = 0. (2.6)

We look for U ∈ C([0,∞),L2), solution to

(∂t + B)u = (κ−1 · l)F(x, v, u) for x ∈ R3, (2.7)

∂tv = F(x, v, u) for x ∈ !, (2.8)

and (2.6). We recall that for any function f defined on !, we denote by f the
extension of f (to R3) by 0 outside !. We also impose the condition

v ∈ L∞
loc((0,∞), L∞(!, Rd)). (2.9)

Equations (2.6)-(2.8) are understood in the distributional sense, noticing that (2.9)
gives sense to the nonlinear term, since the function F(x, v, u) is affine in u.
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Remark 2.2. Equations (2.6)-(2.8) reduce to the Maxwell-Landau-Lifschitz sys-
tem (1.1)-(1.2) when u1 = H , u2 = E , v = M (with d = 3), κ1 = µ, κ2 = ε, l1 =
−µ, l2 = 0, F(x, v, u) = γ v∧(u1+Ha(v)+Hext)−αv∧(v∧(u1+Ha(v)+Hext))
and to the Maxwell Bloch system (1.4)-(1.5) when u1 = H , u2 = E , v = ρ (with
d = N2), κ1 = µ, κ2 = ε, l1 = 0, l2 = Tr()·), F(x, v, u) = −i[( − u2 ·
), v] + Q(v). The exterior magnetic field above is usually depending on time. We
did not consider such time-dependent coefficients in our study, since it would have
made notations more intricate; up to some integrability assumptions, this extension
is straightforward.

Definition 2.3. We callU = (u, v) ∈ C([0,∞),L2) a global finite energy solution
to (2.6)-(2.8) if (2.9) holds true andU is a solution to (2.6)-(2.8) in the distributional
sense.

Remark 2.4. Equation (2.6) has to be seen as a (linear) constraint, which propa-
gates from t = 0 for solutions to (2.7)-(2.8):

∂t (I d − P)(u − (κ−1 · l)v) = 0. (2.10)

Indeed, by definition of the projector P , we have (I d − P)B = 0, so that we get
(2.10) when applying (I d − P) to (2.7), using (2.8) (which extends to all x ∈ R3
since F(x, 0, u) ≡ 0) and commuting the derivative ∂t with (I d − P) and κ−1 · l.

We therefore have to consider initial data Uinit satisfying (2.6), and for such
constrained initial data, the solutions to (2.7)-(2.8) also satisfy (2.6) as long as they
exist. We shall write Uinit := (uinit, vinit) with uinit := (uinit,1, uinit,2).

Definition 2.5. Let Ldiv be the set of functions U := (u, v) ∈ L2(R3, R6) ×
(L2(!, Rd) ∩ L∞(!, Rd)) satisfying (2.6).

2.2. Cauchy problems

Our first result states the existence of global finite energy solutions to (2.6)-(2.8).

Theorem 2.6. Assume (2.1) and (2.3)-(2.5). For anyUinit in Ldiv, there existsU :=
(u, v) ∈ C([0,∞),L2), global finite energy solution to (2.6)-(2.8) with Uinit as
initial data. Moreover, for all T > 0, there is C = C(T, F, l, ‖vinit‖L∞) such that

(i) for almost all x ∈ R3, for all t ! 0, |v(t, x)| " |vinit(x)|eKt (with K from

(2.5));
(ii) for all t ∈ [0, T ], ‖(u, v)(t)‖L2 " C‖Uinit‖L2;
(iii) v∈W 1,∞

loc ((0,∞),L2(!, Rd)), and for almost every t ∈ [0, T ], ‖∂tv(t)‖L2(!)"
C‖Uinit‖L2 .

Finally, if Uinit is a bounded set of Ldiv which is compact in L2, then for all T > 0,
the setU of the above solutions with Cauchy data inUinit is compact inC([0,T ],L2).
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To establish this first result, we follow the strategy of Jochmann in [23], which
is itself an improvement of the method by Joly, Métivier and Rauch in [24]. This
is the classical regularization method, in which (global-in-time) approximate solu-
tions Un = (un, vn) are built first (Section 3.2); the delicate step consists of course
in passing to the limit n → ∞ in the regularization (Section 3.3). Pointwise bounds
are available for vn , which imply L p bounds for (I d−P)un = (I d−P)(κ−1 ·l)vn ,
for finite p. The main argument relies on compensated compactness, applied to Pun

(Lemma 3.4).

As a byproduct of the proof of Theorem 2.6, we also have the following version
of stability, where we assume strong convergence only for the v part of the initial
data. It will be useful below (cf. proof of Theorem 2.10) when considering the weak
quasi-stationary limit.

Proposition 2.7. Let (Un)n∈N be a sequence in L∞
loc((0,∞), Ldiv), bounded in

L∞
loc((0,∞),L2), with (vn)n∈N bounded in W

1,∞
loc ((0,∞), L2(!)) ∩ L∞

loc((0,∞),

L∞(!)) satisfying (2.8), vn|t=0 → vinit in L
2(!) and Bun = ∂t D

n with (Dn)n
bounded in L∞

loc((0,∞), L2(R3)). Then, up to a subsequence, vn converges to v in
L∞
loc((0,∞), L p(!)) for any p ! 2 and in L∞

loc((0,∞), L∞(!)) weak ∗, un con-
verges to u in L∞

loc((0,∞), L2(R3)) weak ∗, and U := (u, v) satisfies (2.6), (2.8),
as well as v|t=0 = vinit.

Let us now turn our atttention to smoother solutions. We need to assume more
smoothness on the coefficients ε and µ. Of course, when considering in some
physical situation a domain! with boundaries, the coefficients ε and µ experiment
discontinuity jumps. Since we do not know how to tackle this physical case, we
assume from now on that

! is bounded, and with K = !, κi − 1 ∈ C∞
K (R3), i = 1, 2, (2.11)

where C∞
K (R3) is the space of C∞ functions on R3, with support contained in K.

In order to get a uniqueness result, we only need to ensure that the “divergence
free” part Pu of the fields has the H1 regularity. To this end, once a finite energy
solution is given, we make use of the linear system solved by Pu, with coeffi-
cients depending on the rest of the solution. As in [24], we proceed in two steps:
we begin with the propagation of Hµ regularity, for µ ∈ (0, 1), using Strichartz
estimates (Proposition 4.6). Applying this result with µ = 1/2 provides enough
integrability for the coefficients of the above mentioned linear equation to ensure
propagation of H1 regularity. This implies that u is “almost” L∞, a natural con-
dition to prove uniqueness of the solution. Technically, a L∞ approximation of u
is built thanks to a limit Strichartz estimate for low frequencies (Proposition 4.7).
We also need a decoupling assumption, which was introduced in [18], and is sat-
isfied by the Maxwell-Landau-Lifschitz system as well as by the Maxwell-Bloch
system.
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Theorem 2.8. In addition to the assumptions of Theorem 2.6, assume (2.11). Let
µ ∈]0, 1], and Uinit ∈ Ldiv with curl uinit,i ∈ Hµ−1(R3), for i = 1, 2. Then, the
following holds true:
(a) Any solution U to (2.6)-(2.8) with Uinit as initial data given by Theorem 2.6

satisfies curl ui ∈ C([0,∞], Hµ−1(R3)), for i = 1, 2.
(b) If µ = 1, assuming moreover that

there exists j ∈ {1, 2} such that l3− j F = 0

and such that F depends only on (x, v, u j ),
(2.12)

there exists only one solution to (2.6)-(2.8) with Uinit as initial data as in The-
orem 2.6.

Theorem 2.8 asserts that the uniqueness property holds for initial data Uinit in Ldiv
with curl uinit,i ∈ L2(R3), i = 1, 2, which are dense in Ldiv for the topology of L

2.
The following theorem says that the uniqueness property even holds generically for
the following topologies. Let τs and τw denote respectively the strong and weak
topologies of L2(R3, R6) and let τ̃s denote the strong topology of L2(!, Rd). We
consider the product topology τss (respectively τws) on L

2 obtained from τs (re-
spectively τw) and τ̃s .

Theorem 2.9. Under the assumptions of Theorem 2.8 (b), for any Cinit > 0, there
exists a Gδ dense set L̃div in the set {Uinit ∈ Ldiv | ‖vinit‖L∞(!) " Cinit} for the
topology τss and τws , such that for any Uinit ∈ L̃div, there exists only one solution

to (2.6)-(2.8) with Uinit as initial data, with the same properties as in Theorem 2.6.

Let us stress that we cannot expect that the problem (2.6)-(2.8) admits smoother
solutions than the ones given by Theorem 2.8 since, by definition, v is discontinuous
across the boundary ∂!. However it follows from the general theory of discontinu-
ous solutions of hyperbolic semilinear systems [34,39] that the problem (2.6)-(2.8)
admits piecewise regular solutions discontinuous accross ∂! (let us also refer to the
appendix of [44]). Yet the general theory only guaranties local-in-time solutions.
We do not know if in the particular case of the problem (2.6)-(2.8) global-in-time
solutions can be obtained.

2.3. Quasi-stationary limits

As described in the Introduction, the quasi-stationary regime consists in the limit
η → 0+ for (2.6)-(2.8), where ∂t is replaced with η∂t , and F is replaced with ηF .
Equations (2.6) and (2.8) are invariant under this rescaling, whereas (2.7) becomes

(η∂t + B)u = η(κ−1 · l)F(x, v, u), for x ∈ R3. (2.13)

For this semi-classical version of (2.8), it is still true that the constraint (2.6) is
propagated from the initial data. Formally, in the limit η → 0+, v still satisfies
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(2.8), whereas u satifies (2.6) and Bu = 0. But for U = (u, v) ∈ C([0,∞),L2),
these last two conditions are equivalent to the fact that for all t ! 0, u(t) is directly
determined by v(t), and more precisely:

u = (I d − P)u = (I d − P)(κ−1 · l)v, (2.14)

with P from (2.2). Then, (2.8) becomes

∂tv = F(x, v, ((I d − P)(κ−1 · l)v)|!). (2.15)

Using the stability result given by Proposition 2.7, we have a first result of conver-
gence towards the quasi-stationary limit, weakly for u and locally in time for v:

Theorem 2.10. Assume (2.1) and (2.3)-(2.5). For any Uinit in Ldiv, for any

η ∈ (0, 1), let Uη := (uη, vη) be a global finite energy solution to (2.6), (2.8)
and (2.13) with Uinit as initial data. Then, up to a subsequence, vη converges

in L∞
loc((0,∞), L p(!)) for all p ! 2 and in L∞

loc((0,∞), L∞(!)) weak ∗ to-

wards a solution v to (2.15), with vinit as initial data; Puη converges to 0 in
L∞
loc((0,∞), L2(!)) weak ∗, and (I d − P)uη = (I d − P)(κ−1 · l)vη converges in

L∞
loc((0,∞), L p(R3)) for all p ! 2 towards u, given by (2.14).

Convergence of the whole sequenceUη is ensured as soon as the Cauchy prob-
lem associated with the limiting equation (2.15) has a unique solution. This is given
by the following proposition, which extends [43, Theorem 3.1] by Starynkevitch.

Proposition 2.11. Assume (2.11), and let vinit ∈ L∞(!). Then, there is a unique
v ∈ C([0,∞), L2(!))∩L∞

loc((0,∞), L∞(!)) solution to (2.15), with vinit as initial
data.

We also prove strong and global-in-time convergence for u, assuming (2.11)
again, as well as integrability in time for ‖∂tv‖2

L2(!)
and non-trapping for some

wave operator:

Theorem 2.12. Under the assumptions of Theorem 2.10, assume moreover (2.11),
the non-trapping hypothesis (6.6) and that ∂tv

η is bounded (with respect to η) in
L2((0,∞) × !). Then, Puη goes to zero in L2((0,∞), L2loc(R3)).

Remark 2.13. In the case of theMaxwell-Landau-Lifschitz system(1.1)-(1.2),∂t M
actually belongs to L2((0,∞) × !). Define the energy E(t) as

E(t) = 1

2

∫

R3
(ε|E |2 + µ|H |2) dx +

∫

!
µ

(
&(M) + 1

2
|Hext − M|2

)
dx .

Differentiating formally this expression with respect to time, we see that the integral
of H · curl E − E · curl H = div(E ∧ H) vanishes, as well as M · ∂t M (since |M|
is constant). Using the orthogonality relations of the nonlinearity, we get

∂t M · HT = α|M ∧ HT |2 and |∂t M|2 = (α2 + γ 2)|M ∧ HT |2,
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so that estimate (ii) in Theorem 2.6 is improved to

E(t) + α

α2 + γ 2

∫ t

0

‖√µ∂t M(t ′)‖2
L2(!)

dt ′ − 1

2
‖√µHext(t)‖2L2(!)

+
∫ t

0

(∫

!
µM · ∂t Hextdx

)
dt ′ = cst,

and the same is true with the quasi-stationary scaling. Assuming for example that
Hext ∈ L∞

t L
2
x and ∂t Hext ∈ L1t,x , we deduce that E is bounded, and ∂t M belongs to

L2((0,∞) × !).

In the case of the Maxwell-Bloch system, we do not know if such an estimate
is available for ∂tρ.

3. Existence of global finite energy solutions: proof of Theorem 2.6

3.1. Technical interlude 1

3.1.1. Intersections and sums of Banach spaces

We recall some useful properties of the intersection and the sum of Banach spaces.
Consider two Banach spaces X1 and X2 that are subsets of a Hausdorff topological
vector space X . Then

X1 ∩ X2 := { f ∈ X | f ∈ X1, f ∈ X2}
(respectively X1 + X2 := { f ∈ X | E( f ) $= ∅},
where E( f ) := {( f1, f2) ∈ X1 × X2 | f1 + f2 = f })

is a Banach space endowed with the norm

‖ f ‖X1∩X2 := ‖ f ‖X1 + ‖ f ‖X2
(respectively ‖ f ‖X1+X2 := inf{‖ f1‖X1 + ‖ f2‖X2 | ( f1, f2) ∈ E( f )}).

If furthermore X1 ∩ X2 is a dense subset of both X1 and X2, then (X1 ∩ X2)
′ =

X ′
1 + X ′

2 and (X1 + X2)
′ = X ′

1 ∩ X ′
2 (cf. Bergh and Löfström [4, Lemma 2.3.1 and

Theorem 2.7.1]).

3.1.2. Mollifiers

We shall use the following symmetric operators Rn : L2(R3) → L2(R3), defined
by

(Rn f )(x) :=
∫

R3
f (y)wn(x − y)dy for x ∈ R3, (3.1)
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where wn ∈ C∞
0 (R3) is a mollifier with supp wn ⊂ B(0, 1/(1+ n)) and

∫
R3 wn =

1. These operators have the following well-known properties: there exists C > 0
such that for all f ∈ L2(R3), r > 1 and n ∈ N,

‖ f − Rn f ‖L2(R3) → 0, ‖Rn f ‖L2(R3) " C‖ f ‖L2(R3), (3.2)

‖Rn f ||L2(Br ) "C‖ f ‖L2(Br+1), and ‖Rn f ‖L2(R3\Br ) "C‖ f ‖L2(R3\Br−1). (3.3)

Moreover for all n ∈ N, there exists Cn > 0 such that for all f ∈ L2(R3),

‖Rn f ‖L∞(R3) " Cn‖ f ‖L2(R3). (3.4)

3.2. Approximate solutions

The following lemma claims the existence of global solutions to some regularized
problem.

Lemma 3.1. For all n ∈ N, there exists Un := (un, vn) ∈ C([0,∞),L2), with

vn ∈ C([0,∞), L∞(!, Rd)) ∩ C1([0,∞), L2(!, Rd)), (3.5)

solution to the regularized problem:

(∂t + B)un = (κ−1 · l)Fn for x ∈ R3, (3.6)

∂tv
n = Fn for x ∈ !, (3.7)

where

Fn(t, x) := F(x, vn(t, x), Rnun(t, x)), (3.8)

with Uinit as initial data. Moreover, for all n ∈ N,

(a) For almost all x ∈ R3, for all t ! 0, |vn(t, x)| " |vinit(x)|eKt (with K from

(2.5)).
(b) For all T > 0, there is C = C(T, F, l, κ, ‖vinit‖L∞) such that, for all t ∈

[0, T ], ‖(un, vn)(t)‖L2 + ‖∂tvn(t)‖L2(!) " C‖Uinit‖L2 .
Proof. The local-in-time solution is constructed via a usual fixed point argument
for the mappingAn : C([0, T ],L2) → C([0, T ],L2),

An(u, v)(t, ·)

=
(
exp(−t B)uinit+

∫ t

0

exp((t−t ′)B)(κ−1 · l)Fn(t ′, ·)dt ′, vinit+
∫ t

0

Fn(t ′, ·)dt ′
)

,

where

Fn(t, ·) := F(·, v(t, ·), Rnu(t, ·)).
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For T > 0 small enough, An is shown to be a contraction mapping thanks to
properties (2.3)-(2.5) of F , (3.4), and because B is a skew self-adjoint operator in
the Hilbert space L2(R3, R6) endowed with the scalar product 〈·, ·〉κ1,κ2 .

Global existence is given by the a priori bounds (a) and (b). The first one
follows directly from (2.5) and Gronwall’s lemma. In the same way, taking the L2

norm of (un, vn)(t) = An(un, vn)(t), one gets

‖(un, vn)(t)‖L2 " ‖Uinit‖L2 +
∫ t

0

(1+ ‖κ−1 · l‖L∞)‖Fn(t ′, ·)‖L2dt ′.

One may add to this inequality the one obtained from (3.7),

‖∂tvn(t, ·)‖L2 " ‖Fn(t, ·)‖L2 .
From (2.3), (2.4), we have

‖Fn(t, ·)‖L2 " CF (‖vinit‖L∞eKt )‖(un, vn)(t)‖L2,
so that Gronwall’s lemma concludes.

3.3. Passing to the limit n → ∞
Let us stress that Estimate (3.4) is not uniform with respect to n. However, we have:

Proposition 3.2. For all T > 0, there is a subsequence of (Un)n∈N given by

Lemma 3.1 that strongly converges in C([0, T ],L2) toU :=(u, v)∈C([0,∞),L2),
global finite energy solution to (2.6)-(2.8) with Uinit as initial data, and satisfying
the estimates (i), (ii), (iii) of Theorem 2.6.

Proof. First we infer from the bounds (a)-(b) in Lemma 3.1 that there exists a sub-
sequence, still denoted (un, vn), such that un (respectively Fn) tends to u (respec-
tively to Flim) in L

∞((0, T ),L2) weak∗ (respectively L∞((0,T ), L2(R3)) weak ∗)
and vn tends to v inW 1,∞((0, T ),L2(!)) weak ∗ and in L∞((0, T ),L∞(!))weak∗.
This is enough to ensure that (u, v) satisfies (2.6). Moreover, Fatou’s lemma yields
that u and v satisfy (i)-(ii) of Theorem 2.6 for almost every t in (0, T ).

Since the function F is not linear, these weak limits do not suffice to pass to
the limit in Equation (3.7). The strategy is to carefully study the nonlinear term
Fn to prove that the solutions Un of the regularized problems (3.6)-(3.7) actually
converge (strongly) in L2. The key step consists in proving the strong convergence
of vn .

It shall be useful several times to keep in mind that, thanks to the growth con-
ditions (2.4) on F and to the pointwise bound Lemma 3.1, (a) of the vn , there holds,
for all n,m ∈ N, for all (t, x) ∈ [0, T ] × R3,

|Fni (t, x)| " CF (eKT ‖vinit‖L∞), (3.9)

|Fni (t, x) − Fmi (t, x)| " CF (eKT ‖vinit‖L∞)|vn(t, x) − vm(t, x)|, (3.10)

where Fni = Fi (x, vn), i = 0, 1.
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Strong convergence of vn . We perform energy estimates on (3.6)-(3.7). Since
u may be unbounded, we introduce a weight function, which precisely depends on
u. More exactly, we choose a positive function ρ0(x) in L

∞(R3) ∩ L2(R3) and
define

ρ(t, x) := ρ0(x)e
−L

∫ t
0 |u(s,x)|ds, (3.11)

with L ! CF (eKT ‖vinit‖L∞). First, using (3.7) we get

1

2

d

dt

(
‖ρ(vn − vm)‖2

L2(!)

)
(t)

=
∫

!
ρ2(vn − vm) · (Fn − Fm)dx − L

∫

!
ρ2|u||vn − vm |2dx .

Next, decompose Fn − Fm according to (2.3) to get

1

2

d

dt

(
‖ρ(vn − vm)‖2

L2(!)

)
(t) =

∫

!
ρ2(vn − vm) · (Fn0 − Fm0 )dx

+
∫

!
ρ2(vn−vm) · (Fn1 Rnun−Fm1 R

mum)dx−L

∫

!
ρ2|u||vn−vm |2dx .

(3.12)

The first term in the right hand side of (3.12) can be estimated by C‖ρ(vn −
vm)‖2

L2(!)
(t) thanks to (3.10). Now, decompose Fn1 R

nun − Fm1 R
mum into

Fn1 R
nun − Fm1 R

mum = Fn1
(
Rnun − u

)
− Fm1

(
Rmum − u

)
+

(
Fn1 − Fm1

)
u.

The terms produced by the third parenthesis are estimated thanks to (3.10), and
absorbed by the last term in (3.12), so that

1

2

d

dt

(
‖ρ(vn − vm)‖2

L2(!)

)
(t) " C‖ρ(vn − vm)‖2

L2(!)
(t)

+
∫

!
ρ2(vn − vm) · Fn1 (Rnun − u)dx

+
∫

!
ρ2(vm − vn) · Fm1 (Rmum − u)dx .

Then, decompose Rnun and Rmum according to the orthogonal projector P to get

1

2

d

dt

(
‖ρ(vn − vm)‖2

L2(!)

)
(t) " C‖ρ(vn − vm)‖2

L2(!)
(t)

+
3∑

j=1
h j,m,n(t) + h j,n,m(t),

(3.13)
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where

h1,m,n(t) :=
∫

!
ρ2(vn − vm) · Fn1 Rn P(un − u)dx,

h2,m,n(t) :=
∫

!
ρ2(vn − vm) · Fn1 Rn(I d − P)(un − u)dx,

h3,m,n(t) :=
∫

!
ρ2(vn − vm) · Fn1 (Rnu − u)dx .

The following lemma deals with the term h1,m,n(t).

Lemma 3.3. There holds

∀δ > 0, ∃Nδ ∈ N, ∀n ! Nδ, ∀m ∈ N,

∣∣∣∣

∫ T

0

h1,m,n(t)dt

∣∣∣∣ " 2δ. (3.14)

Proof. First notice that

h1,m,n(t) =
∫

R3
Rn

(
ρ2(vn − vm) · Fn1

)
P(un − u)dx .

We first handle the case where x is outside of a large ball. Using the Cauchy-
Schwarz inequality, the second property of Rn in (3.3), the uniform bound in
L∞([0, T ], L2(R3)) for vn given in Lemma 3.1, (b) and the bound (3.9) for Fn1 ,
we get that

∫ T

0

∫

R3\Br

∣∣∣Rn
(
ρ2(vn − vm)Fn1

)
· P(un − u)

∣∣∣dxdt

" C

∫ T

0

‖ρ(t)2‖L2(R3\Br−1)dt.
(3.15)

By definition of ρ there exists r > 0 so that this integral is less than δ.
It remains to tackle the case where x ∈ Br . We use the following compactness

lemma:

Lemma 3.4 (Jochmann[23, Lemma 3.4]). Let (Gn)n∈N and (Kn)n∈N be bounded
sequences in L∞([0, T ), L2(R3, R6)), with Kn converging to 0 in L∞([0, T ),
L2(R3, R6)) weak ∗. Suppose that (Gn)n∈N is equicontinuous from [0, T ] to
L2(R3,R6) and that BKn=∂tC

n with (Cn)n∈N bounded in L∞([0,T ),L2(R3,R6)).
Then for all r > 0,

sup
p∈N

∣∣∣∣

∫ T

0

∫

Br

G p(t) · PKn(t)dxdt

∣∣∣∣ −→
n→∞ 0. (3.16)
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Let us denote Gk,l = Rk
(
ρ2(vk − vl) · Fk1

)
and Kn = un − u. Thanks to (3.9),

(3.2) and to Lemma 3.1, (b), we get that (Gk,l)k,l∈N and (Kn)n∈N are bounded in
L∞([0, T ), L2(R3)). Moreover Kn tends to zero in L∞([0, T ), L2(R3)) weak ∗,
by definition of u. Let us denoteFn =

∫ t
0 (κ

−1 ·l)Fndt ′ andF =
∫ t
0 (κ

−1 ·l)Flimdt ′.
From (3.6) we infer that

BKn = ∂tC
n, with Cn := Fn − un − (F − u).

The sequence (Cn)n∈N is bounded in L∞([0,T ),L2(R3)). In the same way, equicon-
tinuity is obtained from the bounds on ∂tv

n = Fn . We therefore apply the lemma
observing that, for all m, n ∈ N,

∣∣∣∣

∫ T

0

∫

Br

Gm,n(t) · PKn(t)dxdt

∣∣∣∣ " sup
k,l∈N

∣∣∣∣

∫ T

0

∫

Br

Gk,l(t) · PKn(t)dxdt

∣∣∣∣ .

Lemma 3.4 therefore ensures that there is Nr,δ ∈ N such that, for n ! Nr,δ and for
all m ∈ N,

∣∣∣∣

∫ T

0

∫

Br

Rn
(
ρ2(vn − vm)Fn1

)
· P(un − u)dxdt

∣∣∣∣ " δ,

and Lemma 3.3 is proved.

We now deal with the term h2,m,n(t).

Lemma 3.5. There holds

∀δ > 0, ∃Nδ ∈ N, ∀n ! Nδ, ∀m ∈ N,
∣∣∣∣

∫ T

0

h2,m,n(t)dt

∣∣∣∣ " δ + C‖ρ(vn − vm)‖L2t,x‖ρ(vn − v)‖L2t,x .
(3.17)

Proof. The (un, vn) satisfy (2.6) and so does their weak limit (u, v). Thus

h2,m,n(t) = −
∫

!
ρ2(vn − vm) · Fn1 Rn(I d − P)(κ−1 · l)(vn − v)dx

= −
∫

R3
ρ2(vn − vm) · Fn1 Rn(I d − P)(κ−1 · l)(vn − v)dx .

Then we decompose

∫ T

0

|h2,m,n(t)|dt"
∫ T

0

∣∣∣∣

∫

R3
(vn−vm)·Fn1

[
ρ2Rn(I d − P)(κ−1 · l)(vn − v)

− ρRn(I d − P)ρ(κ−1 · l)(vn − v)
]
dx

∣∣∣∣dt

+
∫ T

0

∣∣∣
∫

R3
ρ(vn − vm) · Fn1 Rn(I d − P)ρ(κ−1 · l)(vn − v)dx

∣∣∣dt.

(3.18)
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The second integral in the right hand side of (3.18) is estimated thanks to Hölder’s
inequality:

∫ T

0

∣∣∣∣

∫

R3
ρ(vn − vm) · Fn1 Rn(I d − P)ρ(κ−1 · l)(vn − v)dx

∣∣∣∣ dt

" C‖ρ(vn − vm)‖L2t,x‖ρ(vn − v)‖L2t,x ,

where C depends only on T, F, l, ‖vinit‖L∞ . To deal with the first integral in the
right-hand side of (3.18), we use the following commutation lemma.

Lemma 3.6 (Jochmann [23, Lemma 3.5]). Let ρ belong to L2((0,T ), L2(R3)) ∩
L∞((0, T ), L∞(R3)), and let (Mn)n∈N be a bounded sequence in W 1,∞((0, T ),
L2(R3))∩L∞((0,T ),L∞(R3)) which converges to 0 in L∞((0,T ),L2(R3)) weak ∗.
Then

∫ T

0

‖ρ(t)2Rn(I d−P)Mn−ρ(t)Rn(I d−P)ρ(t)Mn‖L1(R3)+L2(R3)dt −→
n→∞0, (3.19)

and

∫ T

0

‖ρ(t)2(I d−P)Mn−ρ(t)(I d−P)ρ(t)Mn‖L1(R3)+L2(R3)dt −→
n→∞0. (3.20)

We apply Lemma 3.6, (3.19) with Mn = (κ−1 · l)(vn − v): the first integral in the
right-hand side of (3.18) is estimated by

C(T,F,‖vinit‖L∞)

∫ T

0

‖vn−vm‖L∞∩L2‖ρ2Rn(I d−P)Mn−ρRn(I d−P)ρMn‖L1+L2dt,

and thus goes to zero as n goes to infinity, uniformly with respect to m. Hence, we
get (3.17).

For all δ > 0, we also bound h3,m,n by δ for all n ! Nδ and all m ∈ N thanks
to (3.2). Finally, summing up with (3.14) and (3.17), we have from (3.13):

∀δ > 0, ∃Nδ ∈ N, ∀n,m ! Nδ, ∀t ∈ [0, T ],
‖ρ(vn − vm)‖2

L2(!)
(t)

" C
(
δ + ‖ρ(vn − vm)‖2

L2((0,T )×!)
+ ‖ρ(vn − v)‖2

L2((0,T )×!)

)
.

(3.21)

Use Gronwall’s Lemma, then let m go to ∞, and use Gronwall’s Lemma again to
deduce:

∀δ > 0, ∃Nδ ∈ N, ∀n ! Nδ, ∀t ∈ [0, T ], ‖ρ(vn − v)‖2
L2(!)

(t) " Cδ,

which implies that vn converges towards v strongly in L2((0, T )×!, ρ(t,x)2dtdx).
Up to a subsequence, convergence then holds almost everywhere, for the measure
ρ2dtdx , or dtdx , since ρ is positive almost everywhere in (0, T )×!. Thanks to the
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pointwise estimates (a) from Lemma 3.1, dominated convergence thus ensures that
vn converges towards v strongly in L2((0, T ) × !, dtdx). Then, equicontinuity
of {v} ∪ {vn}n∈N in C([0, T ], L2(!)) implies (by Ascoli’s Theorem) the strong
convergence of vn in C([0, T ], L2(!)). This, together with the uniform bounds on
{v} ∪ {vn}n∈N and with the weak convergence of un , is enough to pass to the limit
in (3.6), (3.7) to get (2.7), (2.8).

Strong convergence of un . Since un and u satisfy (3.6) and (2.7) respectively, their
difference is solution to a hyperbolic equation with source terminL1((0,T ),L2(R3)),

(∂t + B)(un − u) = (κ−1 · l)(Fn − F(x, v, u)).

The standard energy estimate then gives

‖un−u‖L2(t)"C

∫ t

0

‖Fn − F(x, v, u)‖L2(t ′)dt ′

"C

∫ t

0

(
‖Fn0 −F0(x, v)‖L2(t ′)+‖Fn1 Rnun−F1(x, v)u‖L2(t ′)

)
dt ′.

(3.22)

Thanks to the growth conditions (2.4) of F and to the pointwise bound Lemma 3.1,
(a) of the vn , there holds, for all n,m ∈ N and (t, x) ∈ [0, T ] × R3,

|Fni (t, x) − Fi (x, v(t, x))| " CF (eKT ‖vinit‖L∞)|vn(t, x) − v(t, x)|. (3.23)

In particular this yields that for any t ′ ∈ [0, T ], ‖Fn0 − F0(x, v)‖L2(t ′) goes to zero
as n goes to infinity.

Furthermore,

|Fn1 Rnun−F1(x,v)u|" |Fn1 ||Rn(un−u)|+|Fn1 ||(Rn− I d)u|+|Fn1 −F1(x,v)||u|.

Thanks to the L∞ bounds on vn (cf. Lemma 3.1, (a)) and on Fn1 (cf. (3.9)), and to
the property (3.2) of the operator Rn , the first term in the right hand side above is
bounded by CF (eKT ‖vinit‖L∞)|un − u|. In the same way, the second term goes to
zero in L2 as n goes to infinity. Finally, up to a subsequence, the third term tends to
zero almost everywhere, and is bounded by C(F, T, ‖vinit‖L∞)|u|. By dominated
convergence, it thus goes to zero in L2. Finally, we get from (3.22):

‖un − u‖L2(t) " C(F, T, ‖vinit‖L∞)

∫ t

0

‖un − u‖L2(t ′)dt ′ + o(1),

and Gronwall’s Lemma shows that un converges to u in C([0, T ], L2).
Thanks to a diagonal extraction process (using times T ∈ N/), Proposition 3.2

produces U ∈ C([0,∞), L2), solution to (2.6)-(2.8) with Uinit as initial data.
Estimates (i) and (ii) are then straightforward. To prove Theorem 2.6, there re-
mains to show its last statement: the stability property. To this end, consider a
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sequence (Un
init)n∈N, bounded in Ldiv, and converging to Uinit in L2. It gener-

ates a (sub)sequence of solutions (Un)n∈N, with, from the bounds (i), (ii) in Theo-
rem 2.6, un converging to u in L∞

loc((0,∞), L2(R3)) weak ∗ and vn converging to

v in W 1,∞
loc ((0,∞), L2(!)) weakly * and in L∞

loc((0,∞), L∞(!)) weak ∗. Then,
define the weight ρ from (3.11) and estimate vn − vm as in (3.12), with Rnun and
Rmum replaced with un and um , respectively. This leads to the analogue to (3.13),
with no h3,m,n and h3,n,m terms, and no R

n in h1,m,n and h2,m,n . Apply Lemma 3.4
and Lemma 3.6, (3.20) (instead of (3.19)), to get strong C([0, T ], L2) convergence
of vn towards v (in (3.21), the term ‖vninit − vminit‖L2 goes to zero, and contributes
to δ). Strong convergence of the fields un is then obtained as above , with an initial
term ‖uninit − uinit‖L2 going to zero added to the right hand side of (3.22).

The same process proves Proposition 2.7.

4. Propagation of smoothness and uniqueness: proof of Theorem 2.8

It is worth noting that, under the smoothness assumption on ε and µ in (2.11),
u ∈ L2(R3, R6) with Pu ∈ Hµ(R3, R6) iff u ∈ L2(R3, R6) with curl ui ∈
Hµ−1(R3, R6) for i = 1, 2.

We thus split the proof of Theorem 2.8 in several steps. In Section 4.1, we
isolate a Cauchy problem for the projection Pu of u. This allows some dispersive
estimates that we etablish in Section 4.3, while in Section 4.2, Littlewood-Paley
decompositions are introduced. We consider first the case where µ is in (0, 1),
then we prove the part (a) of Theorem 2.8 in the case µ = 1, which concerns the
propagation of smoothness, and finally the part (b), which concerns uniqueness.

Remark 4.1. Let us mention that in the proof of the propagation of H1 regularity
given in [18], the step “µ ∈ (0, 1)” is missing, and the resulting estimates (collected
here in Lemma 4.18) are claimed without proof.

4.1. Preliminaries

Lemma 4.2. For any solutionU := (u, v) to (2.6)-(2.8) withUinit := (uinit, vinit) ∈
Ldiv as initial data given by Theorem 2.6, the part u := Pu solves for x ∈ R3,

(∂t + B)u = P(Au) + Pg, (4.1)

u|t=0 = Puinit, (4.2)

where

A(t, x) := (κ−1 · l)F1(x, v), (4.3)

g(t, x) := (κ−1 · l)F(x, v, (I d − P)(κ−1 · l)v), (4.4)

= (κ−1 · l)F0(x, v) + (κ−1 · l)F1(x, v)(I d − P)(κ−1 · l)v). (4.5)
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Proof. First, apply the projector P to the system (2.7), observing that P commutes
with both ∂t and B. Then, split F according to (2.3), split u into u = u+(I d− P)u
and finally use the constraint (2.6).

The projectors Pi , i = 1, 2, defined on L2(R3, R3), extend to L p(R3, R3) (this re-
sult extends the classical one by Calderón and Zygmund [11] on singular integrals,
in the spirit of the extension by Judovič [46]):

Lemma 4.3 (Starynkevitch [43, Lemma 3.13]). Under assumption (2.11), the
projectors Pi , i = 1, 2, extend to L p(R3, R3) and for all p0 > 1, there exists
C > 0 such that for all p ∈ [p0,∞), their norm from L p(R3, R3) into itself are
less than Cp.

We deduce estimates for the right-hand side of (4.1):

Lemma 4.4. As in Theorem 2.8, assume (2.3)-(2.5) and (2.11). Let Uinit :=
(uinit, vinit) ∈ Ldiv, and let U := (u, v) be any solution to (2.6)-(2.8) with Uinit :=
(uinit, vinit) ∈ Ldiv as initial data given by Theorem 2.6. The following holds true
for A and g given by (4.3)-(4.5):

A ∈ L∞
loc((0,∞), L∞(R3)), (4.6)

A ∈ C([0,∞), L2(R3)), (4.7)

∂t A ∈ L∞
loc((0,∞), L2(R3)), (4.8)

g ∈ ∩1!p<∞C([0,∞), L p(R3)), (4.9)

∂t g ∈ ∩1!q!2L∞
loc((0,∞), L p(R3)). (4.10)

Proof. For all t, t ′ ! 0, there holds

‖A(t)‖L∞(R3)"‖κ−1· l‖L∞(R3)CF (‖vinit‖L∞eKt ), (4.11)

‖A(t)−A(t ′)‖L2(R3)"‖κ−1· l‖L∞(R3)CF (‖vinit‖L∞eKt )‖v(t)−v(t ′)‖L2(!), (4.12)

‖∂t A(t)‖L2(R3)"‖κ−1· l‖L∞(R3)CF (‖vinit‖L∞eKt )‖∂tv(t)‖L2(!), (4.13)

what yields estimates (4.6)-(4.8).
Since v∈C([0,∞),L2(!))∩L∞

loc((0,∞),L∞(!)), we have v∈∩p"1C([0,∞),
L p(!)) – using the boundedness of ! for p < 2, and by interpolation for p > 2.
Lemma 4.3 then yields (4.9). Next, using that |Fi (x, v)| " CF (‖vinit‖L∞eKt )|v|
for i = 0, 1, we infer from (2.8) that ∂tv ∈ ∩1!q!2L∞

loc((0,∞), L p(R3)). Since

∂t g(t, x) = (κ−1 · l){∂vF0(x, v) · ∂tv + F1(x, v)(I d − P)(κ−1 · l)
· ∂tv + (∂vF1(x, v) · ∂tv) · (I d − P)(κ−1 · l)v},

thanks to Lemma 4.3, we finally get (4.10).

Also, for a given v, the “fields part” u is in fact uniquely determined:
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Lemma 4.5. Let A ∈ L∞
loc((0,∞), L∞(R3)) and g ∈ L1loc((0,∞), L2(R3)). For

any uinit ∈ L2(R3), there exists only one solution u ∈ C([0,∞), L2(R3)) to (4.1)-
(4.2) with Puinit as initial data. Furthermore, it satisfies u = Pu.

Proof. Existence is given by Lemma 4.2. To prove uniqueness, consider two solu-
tions u1 and u2 in C([0,∞), L2(R3)) to (4.1)-(4.2), and T > 0. Then

∀t ! 0, (u1 − u2)(t) =
∫ t

0

ei(t−s)B P A(u1 − u2)(s)ds,

so that, using (4.6), for t ∈ [0, T ],

‖(u1 − u2)(t)‖L2(R3) " C(κ, T )

∫ t

0

‖(u1 − u2)(s)‖L2(R3)ds.

Hence, by Gronwall’s Lemma, u1 = u2 on [0, T ], for any T > 0. Thus, there is
only one solution u. Finally, in the same way, u− Pu simply satisfies:

∀t ! 0, (∂t + B)(u− Pu)(t) = 0,

so that u = Pu.

4.2. Technical interlude 2: Fourier analysis

We recall the existence of a smooth dyadic partition of unity: there exist two radial
bump functions χ and φ valued in the interval [0, 1], supported respectively in the
ball B(0, 4/3) := {|ξ | < 4/3} and in the annulus C(3/4, 8/3) := {3/4 < |ξ | <
8/3}, such that

∀ξ ∈ R3, χ(ξ) +
∑

j"0
φ(2− jξ) = 1, ∀ξ ∈ R3 \ {0},

∑

j∈Z
φ(2− jξ) = 1,

| j − j ′| ! 2 ⇒ supp φ(2− j ·) ∩ supp φ(2− j ′ ·) = ∅,

j ! 1 ⇒ supp χ(2− j ·) ∩ supp φ(2− j ·) = ∅.

The Fourier transformF is defined on the space of integrable functions f ∈ L1(R3)
by (F f )(ξ) :=

∫
R3 e

−2iπx ·ξ f (x)dx , and extended to an automorphism of the space
S ′(R3) of tempered distributions, which is the dual of the Schwartz space S(R3) of
rapidly decreasing functions.

The so-called dyadic blocks + j correspond to the Fourier multipliers + j :=
φ(2− j D), that is

+ j u(x) := 23 j
∫

R3
h̃(2 j y)u(x − y)dy for j ! 0, where h̃ := F−1φ.
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We also introduce S0 := χ(D), that is

S0u(x) :=
∫

R3
h(y)u(x − y)dy, where h := F−1χ .

We will use the inhomogeneous Littlewood-Paley decomposition I d = S−1 +∑
j∈N+ j , which holds in the space of tempered distributions S ′(R3), and the homo-

geneous Littlewood-Paley decomposition I d = ∑
j∈Z + j , which holds in S ′

h(R3),
the space of tempered distributions u such that lim j→−∞ ‖∑

k! j +ku‖L∞(R3) = 0.
We now recall the definition of the inhomogeneous (respectively homoge-

neous) Besov spaces Bλ
p,q (respectively Ḃ

λ
p,q ) on R3 which are, for λ ∈ R (the

smoothness index), p, q ∈ [1,+∞] (respectively the integral-exponent and the
sum-exponent), the spaces of tempered distributions u in S ′(R3) (respectively
S ′
h(R3)) such that

‖ f ‖Bλ
p,q (R3) := ‖S0 f ‖L p(R3) + ‖(2 jλ‖+ j f ‖L p(R3)) j‖lq (N)

(respectively ‖ f ‖Ḃλ
p,q (R3) := ‖(2 jλ‖+ j f ‖L p(R3)) j‖lq (Z))

is finite. These Banach spaces do not depend on the choice of the dyadic partition
above (cf. for instance the book [3]).

4.3. Dispersion

Propagation of smoothness or singularities for solutions to hyperbolic Cauchy prob-
lems, such as

Lu := (∂t + B)u = f, with u|t=0 = uinit, (4.14)

obeys the laws of geometrical optics. Let us refer here to the survey [19] by Gårding
for an introduction to the subject. The characteristic variety of the operator L is
defined as

Char(L) := {(t, x, τ, ξ) ∈ R × R3 × C × (R3 \ {0}) | det L(t, x, τ, ξ) = 0},
where L(t, x, τ, ξ) denotes the (principal) symbol of the operator L , which is the
6× 6 matrix

L(t, x, τ, ξ) ≡ L(x, τ, ξ) := τ I d + B(x, ξ),

where B(x, ξ) :=
[

0 κ1(x)
−1ξ ∧ ·

κ2(x)
−1ξ ∧ · 0

]
.

For all (x, ξ) ∈ R3 × (R3 \ {0}), the matrix B(x, ξ) admits three eigenvalues:
λ±(x, ξ) := ±(κ1κ2(x))

−1/2|ξ | and 0, each one with multiplicity 2. The eigenspace
associated with the eigenvalue 0 is precisely ran (I d − P). We introduce

P±(x, ξ) := 1

2π i

∮

|z−λ±(x,ξ)|=r
L(x,−z, ξ)−1dz,
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where r is chosen small enough for λ±(x, ξ) being the only eigenvalue inside the
circle of integration. The matrix P±(x, ξ) is the spectral projection associated with
the eigenvalue λ±(x, ξ), that is the projection onto the kernel of L

(
x,−λ±(x, ξ), ξ

)

along its range. These spectral projections are homogeneous of degree 0 with re-
spect to ξ , and the associated pseudo-differential operators P± satisfy P+ + P− =
I d− P . In addition, I d− P , P+ and P− are orthogonal projectors (in the weighted
L2 space introduced in Section 2.1) commuting with B, and acting on Besov spaces.

Now the point is that considering the Cauchy problem (4.14) for solutions u
satisfying (I d − P)u = 0, we select the branch of the characteristic variety which
are curved, what generates dispersion. We shall need the following indices p1, r1,
q1, s1, µ, σ and ρ:

p1 ∈ [2,∞) and 1/r1 + 1/p1 = 1/2; (4.15)

q1 ∈ (1, 2] and 1/s1 + 1/q1 = 3/2; (4.16)

µ ∈ R, σ := µ − 1+ 2/p1 and ρ := µ − 1+ 2/q1. (4.17)

Proposition 4.6. Let p1, r1, q1, s1, µ, σ and ρ be given by (4.15)-(4.17). Under
assumption (2.1), there is a non-decreasing function C : (0,∞) → (0,∞) such
that, for any T > 0, for any initial data uinit in Ḣ

µ such that (I d − P)uinit = 0,
and for any source term f in Ls1((0, T ), Ḃ

ρ
q1,2

(R3)) such that (I d − P) f = 0, any

(weak) solution u to the Cauchy problem (4.14) belongs to Lr1((0, T ), Ḃσ
p1,2

(R3))
and satisfies u = Pu, as well as

‖Pu‖
Lr1

(
(0,T ),Ḃσ

p1,2
(R3)

)"C(T )

(
‖Puinit‖Ḣµ +‖P f ‖

Ls1
(
(0,T ),Ḃ

ρ
q1,2

(R3)
)
)

. (4.18)

In the case p1 = 2 (hence r1 = ∞, σ = µ), the function u = Pu is even in

C([0, T ], Ḣµ(R3)).

The result of Proposition 4.6 is false for r1 = 2, p1 = ∞, s1 = 1, q1 = 2 and
µ = ρ = 1, σ = 0. However, it is true when truncating frequencies. We use, for
λ > 0, the low frequency cut-off operator Sλ, which is the Fourier multiplier with
symbol χλ := χ(·/λ), where the cut-off function χ ∈ C∞

c (Rd , [0, 1]) takes value 1
when |ξ | " 1/2, and 0 when |ξ | ! 1. Then, we have:

Proposition 4.7. Under assumption (2.1), there is a non-decreasing function C :
(0,∞) → (0,∞) such that, for all λ, T > 0 and for any u ∈ C([0, T ), H1(R3))
solution to (4.14),

‖SλPu‖L2((0,T ),L∞(R3))

" C(T )
√
ln(1+ λT )

(
‖∂x Puinit‖L2(R3) + ‖∂x P f ‖L1((0,T ),L2(R3))

)
.

(4.19)

Estimate (4.19) is proved in the case where the operator P is P := −+ in [24]
Proposition 6.3. Even in this case Estimate (4.19) without the cut-off Sλ is false
[26,30]. Proposition 4.7 extends [24]’s result to (smooth) variable coefficients.
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Let us mention that one can deduce from these results some similar estimates
for the RN -valued solutions u of wave equations of the form:

(∂2t + A)u = f in R3, ∂ν
t u|t=0 = uν for ν = 0, 1,

where A := −a(x)+ + ∑n
j=1 Bj (x)∂ j + C(x), when a − 1 ∈ C∞

K (R3), a(x) !
c0 > 0 and the Bj and C are in C∞

K (R3,MN×N (R)). These equations stand for

the propagation of waves in an inhomogeneous isotropic compact medium K ⊂ R3
surrounded by vacuum.

To prove Proposition 4.6 and Proposition 4.7 we use the Lax method, that is
an explicit representation of the solution which allows to take advantage of oscilla-
tions via the method of stationary phase, for each dyadic block, to get a pointwise
dispersive estimate. The final step relies on the T T / argument and the summation
over the dyadic blocks.

This kind of strategy is now very classical. In particular, the T T / argument is
due to Ginibre and Velo [20], and the use of bilinear interpolation was initiated by
Keel and Tao [25]. We refer here to the book [3] by Bahouri, Chemin and Danchin
for a larger overview of its use and of its consequences. However we did not find
Proposition 4.7 in the literature so that we now detail a little bit its proof.

Proof of Proposition 4.6. Let us first remark that it is sufficient to prove Estimate
(4.18) for smooth data (by the usual regularization process) and locally in time.
More precisely, it suffices to prove that there is a constant C > 0 and T1 > 0 such
that, for all λ > 0 and for all u ∈ C([0, T1], H1(R3)) solution to (4.14),

‖Pu‖
Lr1

(
(0,T1),Ḃ

σ
p1,2

(R3)
) "C

(
‖Puinit‖Ḣµ +‖P f ‖

Ls1
(
(0,T1),Ḃ

ρ
q1,2

(R3)
)
)

. (4.20)

Indeed, apply several times Estimate (4.20) on time intervals of the form (kT1, (k+
1)T1), with k an integer ranging from zero to the integral part K of T/T1 (plus the

interval(KT1,T )): on the right hand side, ‖Pu(kT1)‖Ḣµ is estimated byC
(
‖Pu((k−

1)T1)‖Ḣµ + ‖P f ‖
Ls1

(
((k−1)T1,kT1),Ḃρ

q1,2
(R3)

)
)
. Summing up gives (4.18).

Now, consider the operator S(t) := e−t B P . It admits a parametrix, and thus
is given by a sum S(t) = I+(t) + I−(t) of operators on the dispersive eigenspaces,
which are Fourier Integral Operators: for any smooth function u(x),

(I±(t)u)(x) =
∫

R3×R3
e
i

(
7(t,x,ξ)−2πy·ξ

)

a(t, x, ξ)u(y)dξdy,

and we drop the subscript ± in the sequel. The phase 7(t, x, ξ) is real, positively
homogeneous of degree one in ξ , C∞ for ξ $= 0, and satisfies the eikonal equation:

∂t7(t, x, ξ) = ±(κ1κ2(x))
−1/2 |7 ′

x (t, x, ξ)|, (4.21)
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with

7|t=0(x, ξ) = 2πx · ξ. (4.22)

The amplitude a is in Hörmander’s class S0, and admits an asymptotic expansion
whose successive orders satisfy a sequence of linear hyperbolic equations. Such a
method was initiated by Lax in his pioneering paper [29]. Because of the caustic
phenomenon, the lifespan of smooth solutions to Equation (4.21) is limited. How-
ever, since 7 is homogeneous in ξ and the set K × S2 is compact, there exists
T1 > 0 such that the solution to (4.21)-(4.22) remains smooth on [−T1, T1]. Let us
mention here that Ludwig [33] succeeded in extending Lax’ analysis into a global-
in-time result. The arguments have been refined thanks to Hörmander’s theory of
Fourier Integral Operators [17, 22]. But we use the parametrices (and the solution
operators I (t)) only locally in time and we refer for their construction to the work
of Chazarain [15], Nirenberg and Treves [37] and [36], Kumano-go [27] and Bren-
ner [9]. In particular we refer to the last one for the following precious informations
about the phase ([9, Lemma 2.1]): there exist c,C > 0 such that

(i) c|ξ | " |7 ′
x | " C|ξ | on [−T1, T1] × R3 × (R3 \ {0});

(ii) cId " ±7 ′′
xξ " C Id, 7 ′′

xξ being real symmetric, on [−T1, T1] × R3 × (R3 \
{0});

(iii) 7 ′′
ξξ is semi-definite with rank 2 for |ξ | $= 0, t $= 0; and for |ξ | = 1, x ∈ K ,

there is a constant c0 > 0 such that the moduli of the non-zero eigenvalues of
7 ′′

ξξ are bounded from below by c0|t |;
(iv) for x /∈ K , the above results are consequence of the exact formula: 7(t,x,ξ)=

2πx · ξ ± 2π(κ1κ2(x))
−1/2t |ξ |.

Note that these results imply that the kernel of I (t) is a Lagrangian distribution.
We use the T T / method for the frequency localized operators

Tj (t) := + j I (t), j ∈ Z.

The composed operator Tj (t)Tj (t
′)/ is then

Tj (t)Tj (t
′)/ = + j I (t − t ′)+ j .

Here is the T T / result.

Lemma 4.8. There exist 0 < c < C such that for all j ∈ Z, u ∈ L2(R3), p, r ∈
[1,∞] and f ∈ Lr

′
((0, T ), L p

′
(R3)),

‖Tj (t)u‖Lr ((0,T ),L p(R3)) " ‖u‖L2(R3) sup
g∈B j

r,p

(b j (g, g))
1
2 , (4.23)

and

∥∥∥∥

∫ T

0

Tj (t)Tj (t
′)/ f (t ′)dt ′

∥∥∥∥
Lr ((0,T ),L p(R3))

= sup

g∈B j
r,p

|b j ( f, g)|, (4.24)
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with

b j ( f, g) :=
∫

(0,T )×(0,T )
〈Tj (t)Tj (t ′)/ f (t ′), g(t)〉L2(R3)dtdt ′,

B j
r,p the space of functions g(t, x) in Br,p whose Fourier transform is supported

in c2 j " |ξ | " C2 j , and Br,p the space of smooth functions g(t, x) satisfying
‖g‖

Lr
′(

(0,T ),L p
′
(R3)

) " 1.

Proof. Begin with

‖Tj (t)u‖Lr ((0,T ),L p(R3)) = sup
g∈Br,p

∣∣∣∣

∫

(0,T )×R3
Tj (t)u(x) · g(t, x)dtdx

∣∣∣∣ .

Then, use the Plancherel identity plus the properties of the support of the Fourier
transform of Tj (t)u to get

‖Tj (t)u‖Lr ((0,T ),L p(R3)) = sup

g∈B j
r,p

∣∣∣∣

∫

(0,T )×R3
Tj (t)u · gdtdx

∣∣∣∣ .

Using Fubini’s principle, transposition and Cauchy-Schwarz inequality, observe
that

‖Tj (t)u‖L2((0,T ),L∞(R3)) " ‖u‖L2(R3) sup
g∈B j

r,p

∥∥∥∥

∫ T

0

Tj (t)
/gdt

∥∥∥∥
L2(R3)

. (4.25)

Using again Fubini’s principle and transposition, get

∥∥∥∥

∫ T

0

Tj (t)
/g(t)dt

∥∥∥∥
2

L2(R3)
= b j (g, g). (4.26)

This leads to (4.23). Moreover,

∥∥∥∥

∫ T

0

Tj (t)Tj (t
′)/ f (t ′)dt ′

∥∥∥∥
Lr ((0,T ),L p(R3))

= sup

g∈B j
r,p

∣∣∣∣

∫

(0,T )×R3

(∫ T

0

Tj (t)Tj (t
′)/ f (t ′)dt ′

)
· g(t)dtdx

∣∣∣∣

= sup

g∈B j
r,p

|b j ( f, g)|.

Now, we need to estimate b j ( f, g). We start with a pointwise estimate.
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Lemma 4.9. There exists C > 0 such that for all j ∈ Z, (t, t ′) ∈ (0, T ) × (0, T )
and u ∈ L1(R3),

‖Tj (t)(Tj )(t ′)/u‖L∞(R3) " C23 j (1+ 2 j |t − t ′|)−1‖u‖L1(R3).

Proof. Since+ j is a bounded operator on L
p(R3) for all p ∈ [1,∞], it is sufficient

to prove that for all t ∈ (−T, T ) and u ∈ L1(R3),

‖I (t)+ j u‖L∞(R3) " C23 j (1+ 2 j |t |)−1‖u‖L1(R3). (4.27)

Writing down I (t)+ j u, we get, for all x ∈ R3:

(I (t)+ j u)(x) =
∫

R3×R3
ei(7(t,x,ξ)−2πy·ξ)a(t, x, ξ)ϕ(2− j D)u(y)dξdy

=
∫

R3
ei7(t,x,ξ)a(t, x, ξ)ϕ(2− jξ)û(ξ)dξ

= 23 j
∫

R3
ei2

j7(t,x,η)a(t, x, 2 jη)ϕ(η)û(2 jη)dη,

so that

|(I (t)+ j u)(x)| " 23 j sup
y∈R3

∣∣∣∣

∫

R3
ei2

j (7(t,x,η)−y·η)a(t, x, 2 jη)ϕ(η)dη

∣∣∣∣ ‖u‖L1(R3).

To get (4.27), simply apply the following lemma of stationary phase.

Lemma 4.10 (Littman [31]). Let 7(ξ) be a real function C∞ such that the rank

of its Hessian matrix 7 ′′
ξξ is at least ρ and let v(ξ) be a function supported in a

ring. Then there exists M ∈ N and C > 0 (which depends only on a finite number
of derivatives of 7, of a lower bound of the maximum of the abolute values of the

minors of order ρ of 7 ′′
ξξ , on supp v) such that, for all ( ∈ R,

‖F−1(ei(7v)‖L∞(R3)) " C(1+ |(|)− ρ
2 ·

∑

|α|!M

‖Dαv‖L1(R3).

To use this lemma, distinguish between short times, for which the eikonal equation
(4.21) implies that the phase 7 admits the expansion

7(t, x, ξ) = 2π
(
x · ξ ± t (κ1κ2(x))

−1/2|ξ |
)

+ O(t2),

(thus ρ = 2, ( = 2 j (κ1κ2(x))
−1/2t is suitable), and subsequent times, for which

Estimate (4.3) on the phase gives ρ = 2 (and ( = 2 j ). This yields

sup
y∈R3

∣∣∣∣

∫

R3
ei2

j (7(t,x,η)−y·η)a(t, x, 2 jη)ϕ(η)dη

∣∣∣∣ " C(1+ 2 j t)−1. (4.28)
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Since Tj (t)Tj (t
′)/ is also bounded on L2(R3), from the above result and the Riesz-

Thorin Interpolation Theorem, we infer the following.

Lemma 4.11. There exists C > 0 such that for all j ∈ Z, (t, t ′) ∈ (0, T ) × (0, T ),

p ∈ [2,∞] and u ∈ L p
′
(R3),

‖Tj (t)Tj (t ′)/u‖L p(R3) "C23 j (1−2/p)(1+2 j |t−t ′|)−(1−2/p)‖u‖
L p

′
(R3). (4.29)

Lemma 4.12. For any p1, p2 ∈ [2,∞), define r1 and r2 by 1/r1 + 1/p1 = 1/2
and 1/r2 + 1/p2 = 1/2. Then, there exists C > 0 such that for all j ∈ Z,
f ∈ Lr

′
1((0, T ), L p

′
1(R3)) and g ∈ Lr

′
2((0, T ), L p

′
2(R3)),

|b j ( f, g)| " C22 j (1/r1+1/r2)‖ f ‖
L
r ′
1

(
(0,T ),L

p′
1 (R3)

)‖g‖
L
r ′
2

(
(0,T ),L

p′
2 (R3)

). (4.30)

Proof. Using (4.29), we apply Hölder’s inequality to get

|b j ( f, g)| " C26 j/r1
∣∣∣
∣∣∣
(
(1+ 2 j | · |)−2/r1 / ‖ f ‖

L
p′
1 (R3)

)
(t ′) ‖g(t ′)‖

L
p′
1 (R3)

∣∣∣
∣∣∣
L1(0,T )

.

Using again Hölder’s inequality, we get

|b j ( f, g)|
" C26 j/r1

∥∥∥
(
(1+ 2 j | · |)−2/r1 / ‖ f ‖

L
p′
1 (R3)

)
(t ′)

∥∥∥
Lr1 (0,T )

‖g‖
L
r ′
1

(
(0,T ),L

p′
1 (R3)

).

Thus, the Hardy-Littlewood-Sobolev inequality implies

|b j ( f, g)| " C24 j/r1‖ f ‖
L
r ′
1

(
(0,T ),L

p′
1 (R3)

)‖g‖
L
r ′
1

(
(0,T ),L

p′
1 (R3)

). (4.31)

Moreover, (4.26) yields
∥∥∥∥

∫ T

0

Tj (t)
/ f (t)dt

∥∥∥∥
L2(R3)

= b j ( f, f )
1/2 " C22 j/r1‖ f ‖

L
r ′
1

(
(0,T ),L

p′
1 (R3)

). (4.32)

Now, we observe that

b j ( f, g) =
∫ T

0

〈∫ T

0

Tj (t
′)/ f (t ′)dt ′, Tj (t)/g(t)

〉

L2(R3)
dt.

We use the Cauchy-Schwarz and the uniform boundedness of the Tj (t)
/, for t in

(0, T ), in L2(R3) to get

|b j ( f, g)| " b j ( f, f )
1/2‖g‖L1((0,T ),L2(R3)). (4.33)

Using now Equation (4.32) yields

|b j ( f, g)| " C22 j/r1‖ f ‖
L
r ′
1

(
(0,T ),L

p′
1 (R3)

)‖g‖L1((0,T ),L2(R3)). (4.34)

Interpolating between (4.31) and (4.34), we find (4.30).
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To complete the proof of Proposition 4.6, we need to sum over all frequencies.
Apply Duhamel’s principle to get

Pu(t) = e−t B Puinit +
∫ t

0

e(t
′−t)B P f (t ′)dt ′. (4.35)

The first term in + j Pu(t) is thus

+ j I (t)uinit =
∑

k∈Z
+ j I (t)+kuinit.

An important fact in order to estimate + j I (t)uinit is that the quasi-orthogonality
of the dyadic blocks is not destroyed by the parametrix I (t). Actually, according
to [9, Proposition 1.1 and Lemma 1.4], there exists L ∈ N∗ such that for all j ∈ Z,

+ j I (t) =
∑

| j−k|!L

+ j I (t)+k + R j (t),

where R(t) := ∑
j∈Z R j (t) satisfies

‖R(t)v‖Lr1 ((0,T ),Ḃσ
p1,2

(R3)) " C‖v‖Ḣµ. (4.36)

This shows that there is C > 0 such that

‖+ j I (t)uinit‖L p1 (R3) " C‖+ j I (t)+ j uinit‖L p1 (R3) + ‖R j (t)uinit‖L p1 (R3),
so that

‖I (t)uinit‖Lr1 ((0,T ),Ḃσ
p1,2

(R3))

" C

∥∥∥‖(2 jσ‖+ j I (t)+ j uinit‖L p1 (R3)) j‖l2(Z)

∥∥∥
Lr1 (0,T )

+
∥∥∥‖(2 jσ‖R j (t)uinit‖L p1 (R3)) j‖l2(Z)

∥∥∥
Lr1 (0,T )

" C‖(2 jσ‖+ j I (t)+ j uinit‖Lr1 ((0,T ),L p1 (R3))) j‖l2(Z)

+ ‖(2 jσ‖R j (t)uinit‖Lr1 ((0,T ),L p1 (R3))) j‖l2(Z) by Minkowski’s inequality

" C‖(2 j (σ+2/r1)‖+ j uinit‖L2(R3)) j‖l2(Z)

+ ‖(2 jσ‖R j (t)uinit‖Lr1 ((0,T ),L p1 (R3))) j‖l2(Z) by (4.23) and (4.30)

" C‖uinit‖Ḣµ for some new constant C, using µ = σ + 2/r1 and (4.36).

The estimate for
∫ t
0 e

(t ′−t)B P f (t ′)dt ′ follows the same lines, using (4.24) instead
of (4.23).

To conclude the proof of Proposition 4.6, consider the case p1 = 2. As (4.18)
holds, it is easy to see that u is continuous with respect to time: using a smooth
approximation fk ∈ Ls1((0, T ), Ḣµ) of f , we get Luk = fk , and since s1 ! 1, the
usual energy estimates show that (uk)k is a Cauchy sequence in C([0, T ], Ḣµ). By
(4.18), as fk tends to f in Ls1((0, T ), Ḃ

ρ
q1,2

), uk tends to u in C([0, T ], Ḣµ).
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Proof of Proposition 4.7. Now, in order to prove Proposition 4.7, it suffices to come
back to the proof of Lemma 4.12, taking p1 = ∞ (and r1 = 2). Using the standard
Young inequality instead of the Hardy-Littlewood-Sobolev inequality leads to

|b j ( f, g)| " C22 j ln(1+ 2 j T )‖ f ‖L2((0,T ),L1(R3))‖g‖L2((0,T ),L1(R3)). (4.37)

In particular for any g in L2((0, T ), L1(R3)), this yields

|b j (g, g)|1/2 " C2 j
√
ln(1+ 2 j T )‖g‖L2((0,T ),L1(R3)).

Then we apply Lemma 4.8 with (p, r) = (2,∞) and use (4.33), where we commute
f and g, to estimate the right hand side of (4.24). We find that for any u ∈ L2(R3),
for any f ∈ L1((0, T ), L2(R3)),

‖Tj (t)u‖L2((0,T ),L∞(R3))"C2 j
√
ln(1+2 j T )‖u‖L2(R3),∥∥∥∥

∫ T

0

Tj (t)Tj (t
′)/ f (t ′)dt ′

∥∥∥∥
L2((0,T ),L∞(R3))

"C2 j
√
ln(1+2 j T )‖ f ‖L1((0,T ),L2(R3)).

Then we proceed as in the proof of Proposition 4.6 to sum over the dyadic blocks
whose frequencies are below the cut-off parameter λ, with an extra factor√
ln(1+ λT ) (and (4.36) holds for r1 = 2, p1 = ∞).

4.4. Propagation of smoothness: proof of Theorem 2.8, case where µ ∈ (0, 1)

In the case where µ ∈ (0, 1), Theorem 2.8 is a consequence of the following propo-
sition:

Proposition 4.13. Suppose that A and g satisfy the estimates (4.6)-(4.10), that
µ ∈ (0, 1) and uinit ∈ L2(R3, R6) with Puinit ∈ Hµ(R3, R6). Then the unique
solution u ∈ C([0,∞), L2(R3)) of (4.1)-(4.2) given by Lemma 4.5 belongs to
C([0,∞), Hµ(R3)).

In order to prove Proposition 4.13 we introduce, for T > 0, the space

Yµ(T ):=C([0,T ],Hµ(R3))∩C1([0,T ],Hµ−1(R3))∩Lr((0,T ),B0p,2(R3)), (4.38)

where p := 2/(1 − µ) and r := 2/µ. These indices belong to (2,∞). We shall
also use the space Zµ(T ) := Z

µ
1 (T ) + Z

µ
2 (T ), where

Z
µ
1 (T ) := L1((0, T ), Hµ(R3)) ∩ C([0, T ], L2(R3)),

Z
µ
2 (T ) := { f ∈ C([0, T ], L2(R3)) ∩ Lr ((0, T ), B−1

p,2(R
3)) |

∂t f ∈ L1((0, T ), Hµ−1(R3)) + Ls((0, T ), B0q,2(R3))},

where q = 2/(2− µ) and s = 2/(1+ µ). These indices belong to (1, 2).
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Lemma 4.14. Suppose that µ, T ∈ (0, 1), and f ∈ Zµ(T ). Then there exists

C > 0 such that for any uinit in H
µ(R3, R6) such that Puinit = uinit, the unique

corresponding solution u ∈ C([0,∞), L2(R3)) to Lu = f , with u|t=0 = uinit,
belongs to Yµ(T ) and

‖u‖Yµ(T ) " C(‖uinit‖Hµ(R3) + ‖ f ‖Zµ(T )). (4.39)

Proof. By definition f splits into f = f1 + f2, with fi ∈ Z
µ
i (T ), and u into

u = u0 + u1 + u2, where the ui solve the following hyperbolic Cauchy problems:

Lu0 = S0 f with u0|t=0 = S0uinit,

Lu1 = (I d − S0) f1 with u1|t=0 = (I d − S0)uinit,

Lu2 = (I d − S0) f2 with u2|t=0 = 0.

We already have by energy estimates that the ui are in C([0,∞), L2(R3)). Then
one gets the estimates of the ui in C

1([0, T ], Hµ−1(R3)) by using the equations.
To get the estimates in Yµ(T ) it therefore only remains to get the estimates in
Lr ((0, T ), B0p,2(R3)).

For u0 this just follows the energy estimate thanks to Bernstein lemma.
In order to estimate u1 we apply Proposition 4.6 with p1 = p, r1 = r , q1 = 2,

s1 = 1, σ = 0, ρ = µ. This gives the estimate of u1 in L
r ((0, T ), B0p,2(R3)) by

the right-hand side of (4.39).
In order to estimate u2 we observe that ∂t u2 satisfies L∂t u2 = (I d − S0)∂t f2,

with ∂t u2|t=0 = (I d − S0) f2|t=0. By assumption there exists ga ∈ L1((0, T ),
Hµ−1(R3)) and gb ∈ Ls((0, T ), B0q,2(R3)) such that ∂t f2 = ga + gb. We split

accordingly ∂t u2 into ∂t u2 = ua + ub, where ua solves Lua = ga, with ua|t=0 =
(I d − S0) f2|t=0, and ub solves Lub = gb, with ub|t=0 = 0. In order to estimate
ua (respectively ub) we apply Proposition 4.6 with p1 = p, r1 = r , q1 = 2,
s1 = 1, σ = −1, ρ = µ − 1 (respectively with p1 = p, r1 = r , q1 = q,
s1 = s, σ = −1, ρ = 0 and µ − 1 instead of µ). This yields the estimate of

∂t u2 in L
r ((0, T ), B−1

p,2(R3)) by ‖ f2‖Zµ
2 (T ). As a consequence Bu2 = −∂t u2 +

(I d − S0) f2 ∈ Lr ((0, T ), B−1
p,2(R3)). Since Pu2 = u2 this entails that u2 ∈

Lr ((0, T ), B0p,2(R3)).

The proof of Proposition 4.13 follows by induction of the following lemma:

Lemma 4.15. Suppose that A and g satisfy the estimates (4.6)-(4.10), and µ ∈
(0, 1). Then there exists T1 > 0 and C > 0 such that for any uinit ∈ L2(R3, R6)
with Puinit∈Hµ(R3,R6), the unique corresponding solution u∈C([0,∞),L2(R3))
to (4.1)-(4.2) given by Lemma 4.5 belongs to Yµ(T1) and

‖u‖Yµ(T1) " C(‖Puinit‖Hµ(R3) + ‖g‖Zµ(T1)). (4.40)

Proof. In order to prove Lemma 4.15 we recall the following estimate:
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Lemma 4.16 (Joly-Métivier-Rauch [24, Lemma 5.3]). There is a constant C ,

which depends only on ‖A‖L∞((0,T ),L∞(R3)), ‖∂t A‖L∞((0,T ),L2(R3)) andµ, such that
for all T ∈ (0, 1) and u ∈ Yµ(T ), Au belongs to Zµ(T ), and

‖Au‖Zµ(T ) " CTµ/2‖u‖Yµ(T ) + C‖u‖L∞((0,T ),L2(R3)). (4.41)

Let us warn the reader that there is a small misprint in the right hand side in [24,
Lemma 5.3], which is corrected above. We also have:

Lemma 4.17. If g satisfies (4.9)-(4.10), then for any T > 0, g belongs to Zµ(T ).

Proof. Since 1<q<2< p<∞ there hold continuous embeddings Lq ⊂ B0q,2 and

L p ⊂ B0p,2 ⊂ B−1
p,2, so that, using (4.9)-(4.10), we get, for any T > 0, that g is in

Z
µ
2 (T ) ⊂ Zµ(T ).

According to Lemma 4.16 and Lemma 4.17 there is a constant C such that for
all T ∈ (0, 1), if u ∈ Yµ(T ) then f := P(Au) + Pg ∈ Zµ(T ) and

‖ f ‖Zµ(T ) " CTµ/2‖u‖Yµ(T ) + C‖u‖L∞((0,T ),L2(R3)). (4.42)

Therefore applying Lemma 4.14 and choosing T1 small enough we get Lemma
4.15.

4.5. Propagation of smoothness: proof of Theorem 2.8 (a), case where µ = 1

We now consider Uinit in Ldiv with curl uinit,i ∈ L2(R3), for i = 1, 2, and we
consider U solution to (2.6)-(2.8) with Uinit as initial data given by Theorem 2.6.
The idea is to estimate B(Pu) = P(Au) + Pg − ∂t Pu from (4.1).

Lemma 4.18. Define A and g by (4.3)-(4.5). The following holds true:

∂t A ∈ L∞
loc((0,∞), L3(R3)), (4.43)

∂t g ∈ L∞
loc((0,∞), L2(R3)). (4.44)

Proof. We apply Theorem 2.8 in the case µ = 1/2. This yields that u belongs
to C([0,∞), H1/2(R3)) and thus also to L∞

loc((0,∞), L3(R3)). We then infer that
∂tv ∈ L∞

loc((0,∞), L3(R3)) and then we get the estimates (4.43) and (4.43).

Lemma 4.19. Define A and g by (4.3)-(4.5). If u ∈ L∞
loc((0,∞), H1(R3))∩

W
1,∞
loc ((0,∞), L2(R3)) then f := P(Au+g) satisfies ∂t f ∈ L∞

loc((0,∞), L2(R3)),
and for any T > 0, there exists C > 0, which only depends on T , A and g, such

that

‖∂t f ‖L∞((0,T ),L2(R3))"C(‖u‖L∞((0,T ),H1(R3))+‖∂tu‖L∞((0,T ),L2(R3))+1). (4.45)
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Proof. We have ∂t f = P(∂t Au + A∂tu + ∂t g), so that using Hölder’s inequality,
the continuous embedding L6(R3) ⊂ H1(R3) and the estimates (4.43)-(4.44), we
get (4.45).

Now we observe that ∂tu solves for x ∈ R3,

(∂t + B)∂tu = ∂t (P(Au) + Pg), (4.46)

∂tu|t=0 = −Buinit + P(A|t=0uinit) + Pg|t=0. (4.47)

This provides an estimate of ∂tu in L
∞
loc((0,∞), L2(R3)), and using (4.1)-(4.2), of

Bu in L∞
loc((0,∞), L2(R3)), hence of u in L∞

loc((0,∞), H1(R3)).

4.6. Uniqueness: proof of Theorem 2.8 (b)

Let us recall that in this section we assume that there exists j ∈ {1, 2} such that
l3− j F = 0 and such that F depends only on (x, v, u j ). Let Uinit ∈ Ldiv with

curl uinit,i ∈ L2(R3), for i = 1, 2. Let U and U ′ be two solutions to (2.6)-(2.8),
given by Theorem 2.6, both with Uinit as initial data. The difference δU := U ′ −
U = (δu, δv) between U = (u, v) and U ′ = (u′, v′) is solution to the following
hyperbolic system

M(δU) := ((∂t + B)δu, ∂tδv) = ((κ−1 · l)δF, δF),

where δF = F(x, v′, u′
j ) − F(x, v, u j ).

(4.48)

Thanks to (2.3) we have

δF = F0(x, v
′, u′

j ) − F0(x, v, u j ) + (F1(x, v
′) − F1(x, v)) · u j

+ F1(x, v
′) · (u j − u′

j ).
(4.49)

The first and last terms in (4.49) are easily estimated in L2( R3 ) by
CF (‖v0‖L∞(R3)e

Kt )‖δU‖L2(R3). To deal with the second one we construct a L∞
approximation of the field u j (analogous to the ones of [24, Lemma 6.2], and [21,
Lemma 2.7]).

Lemma 4.20. There is a non-decreasing function C : (0,∞) → (0,∞) and for
all T > 0, there exists (uλ

‖, j )λ"e ⊂ L∞((0, T ) × R3) such that for all λ ! e,

‖uλ
‖, j (t)‖L∞((0,T )×R3) " C(T ) ln λ,

and ‖
(
(I d − Pj )u j − uλ

‖, j
)
(t)‖L2(R3) " C(T )/λ,

for all t ∈ [0, T ],
(4.50)

‖SλPju j‖L2((0,T ),L∞(R3)) " C(T )
√
ln λ,

and ‖
(
(I d − Sλ)Pju j (t)‖L2(R3) " C(T )/λ,

for all t ∈ [0, T ].
(4.51)
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Let us admit for a while Lemma 4.20 in order to finish the proof of Theorem 2.8.
Fix T > 0 and consider t ∈ (0, T ). In the second term on the right-hand side of

(4.49), decompose u j = uλ
‖, j +

(
(I d − Pj )u j − uλ

‖, j
)
+ SλPju j +(I d− Sλ)Pju j .

We infer from Lemma 4.20 that

‖δF‖L2(R3) " CF

(
‖vinit‖L∞(R3)e

KT
)

(4.52)

·
(
‖δU‖L2(R3)+

(
C(T )ln λ+‖SλPju j‖L∞(R3)

)
‖δv‖L2(R3)+2

C(T )

λ
‖δv‖L∞(R3)

)
.

The energy estimate, together with Gronwall’s Lemma, gives

‖δU(t)‖L2(R3) "2CFC(T )
t

λ
exp

(
CF

∫ t

0

(1+C(T ) ln λ+‖SλPju j (t
′)‖L∞(R3))dt

′
)

.

Since
∫ t
0 (1+ C(T ) ln λ + ‖SλPju j (t

′)‖L∞(R3))dt
′ " C(T ) ln λ with C(T ) −→

T→0
0,

we choose T0 small enough (in order to have C(T0) < 1), and let λ go to infinity.
This shows that δU(t) vanishes on [0, T0]. Repeat this procedure on intervals of
size T0 to get the desired conclusion.

Proof of Lemma 4.20. We define uλ
‖, j by setting u

λ
‖, j (t, x) := (I d − Pj )u j (t, x) if

|(I d − Pj )u j (t, x)| " C ln λ, and uλ
‖, j (t, x) := 0 otherwise, where the constant C

is chosen below (independently of (t, x) ∈ [0, T ]×R3). Therefore, for p ∈ [2,∞),

‖((I d − Pj )u j − uλ
‖, j )(t)‖2L2

=
∫

|(I d−Pj )u j |"C ln λ
|(I d−Pj )u j (t)|2dx"(C ln λ)2−p‖(I d−Pj )u j (t)‖pL p .

(4.53)

Now, according to Lemma 4.3, the projection I d − P acts continously in any L p

with a norm less than C0 p. Furthermore, we have

‖vinit‖pL p " ‖vinit‖pL∞ |!|,

so that (‖vinit‖L p )1!p!∞ is bounded. Thus, using Equation (2.6) and the bound
from Theorem 2.6 (iii), we infer from (4.53) that

‖((I d − Pj )u j − uλ
‖, j )(t)‖2L2 " (C0 p e

KT ‖vinit‖L p )p
(C ln λ)p−2

= (C ln λ)2λ
2 ln

(
2
C0
C
eKT sup1!q!∞ ‖vinit‖Lq

)

,

choosing p = 2 ln λ. With C big enough, we obtain (4.50) (C (T ) =
2C0e

KT+1 sup1!q!∞ ‖vinit‖Lq is suitable).
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We are now concerned with the first inequality in (4.51). Coming back to
(4.1)-(4.2), the idea is to use the Strichartz estimate (4.19). However, since we are
not able to bound ∂x f in L

∞
loc((0,∞), L2(R3)), we cannot apply (4.19) directly.

To overcome this difficulty we introduce some potential vectors. Since Puinit ∈
H1(R3) (respectively since f = ( f1, f2) ∈ W

1,∞
loc ((0,∞), L2(R3)) (cf. (4.42) and

(4.45)) and P f = f ), for i = 1, 2, there exists φinit := (φinit,1,φinit,2) ∈ H2(R3)
(respectively ψ := (ψ1,ψ2) ∈ W

1,∞
loc ((0,∞), H1(R3))) such that

div(κ3−iφinit,i ) = 0, curl(φinit,i ) = κi uinit,i , (4.54)

(respectively div(κ3−iψi ) = 0, curl(ψi ) = κi fi ). (4.55)

We consider the operator B̌ defined by

B̌(φ1,φ2) = (κ−1
2 curlφ2,−κ−1

1 curlφ1)

for φ := (φ1,φ2) ∈ D(B̌) := D(B) = Hcurl × Hcurl.

The operator B̌ is simply deduced from B by switching κ1 and κ2. It therefore
shares the same properties and estimates. In addition it satisfies the identity:

[
κ−1
1 curl 0

0 κ−1
2 curl

]
B̌ = B

[
κ−1
1 curl 0

0 κ−1
2 curl

]
. (4.56)

Let φ := (φ1,φ2) be the solution (for x ∈ R3) of

(∂t + B̌)φ = ψ, with φ|t=0 = φinit. (4.57)

Using the identity (4.56) and Lemma 4.5 we obtain

curl(φi ) = κi ui , for i = 1, 2. (4.58)

Now observe that ∂tφ verifies (∂t + B̌)∂tφ = ∂tψ , with ∂tφ|t=0 = ψ |t=0 − B̌φinit.
Applying the Strichartz estimate (4.19) we obtain

‖Sλ∂tφ‖L2((0,T ),L∞(R3))

" C(T )
√
ln(1+ λT )

(
‖∂x∂tφ|t=0‖L2(R3) + ‖∂t∂xψ‖L1((0,T ),L2(R3))

)
.

(4.59)

From the definitions of φ and ψ and from the estimates (4.42) and (4.45) of the
previous sections we get :

‖∂x∂tφ|t=0‖L2(R3) + ‖∂t∂xψ‖L1((0,T ),L2(R3)) " C(T )‖Puinit‖H1(R3). (4.60)

Using now (4.57), observing that f3− j and therefore ψ3− j vanish because of As-
sumption 2.12, and using (4.58), we obtain the first inequality in (4.51). The second
one follows by applying Bernstein lemma.
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5. Generic uniqueness: proof of Theorem 2.9

We apply the following general result of generic uniqueness for evolution equations
by Saint-Raymond.

Theorem 5.1 (Saint-Raymond [40, Theorem 1]). Let Einit be a topological space
and E a metric space. Let (S) be an evolution equation admitting a solution in E
for any initial data in Einit. Consider the following hypotheses.

(H1) For any initial data Uinit ∈ Einit, for any (U ε
init)ε tending to Uinit in Einit, for

any (U ε)ε in E respective solutions to (S) with U ε
init as initial data,

(i) there exists a limit point of (U ε)ε in E;
(ii) any limit point of (U ε)ε in E is solution to (S) with Uinit as initial data.

(H2) There exists D, dense subset of E , such that for any Uinit in D, there exists
only one solution to (S) in E with Uinit as initial data.

Under these two hypotheses, there exists a Gδ dense Ẽinit of Einit such that for any
Uinit ∈ Ẽinit, there exists only one solution to (S) in E with Uinit as initial data.

Recall that we denote by τs and τw respectively the strong and weak topolo-
gies of L2(R3, R6), and by τ̃s the strong topology of L

2(!, Rd). We consider the
product topology τss (respectively τws) on L

2 obtained from τs (respectively τw)
and τ̃s .

For any Cinit > 0, consider

Einit := {Uinit ∈ Ldiv | ‖vinit‖L∞(!) " Cinit},

endowed with the topology τss (respectively τws) inherited from L
2, and

E := {U ∈ C([0,∞),L2), satisfying (2.9)

and the estimates (i), (ii), (iii) of Theorem 2.6},

endowed with the strong topology (respectively the weak ∗ topology relative to τws)
of C([0,∞),L2). Hypothesis (H1) is a direct consequence of the stability property
stated in Theorem 2.6 (respectively Proposition 2.7). Now, set

D := {Uinit ∈ Ldiv with curl uinit,i ∈ L2(R3), for i = 1, 2},

which is dense in Einit for the topology τss inherited from L
2. Moreover Theo-

rem 2.8 yields that Hypothesis (H2) is satisfied. We can therefore apply Theorem
5.1, what proves Theorem 2.9.
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6. Quasi-stationary limits: proof of Theorem 2.10, Proposition 2.11
and Theorem 2.12

Proof of Theorem 2.10. We first observe that the bounds (i), (ii) given by Theo-
rem 2.6 for Uη are uniform in η ∈ (0, 1). Therefore, up to a subsequence, Uη

converges to U := (u, v) in W 1,∞
loc ((0,∞), L2(!)) weak ∗ and vη converges to

v in L∞
loc((0,∞), L∞(!)) weak ∗. In addition, there holds Buη = ∂t D

η, with

Dη := −η(uη − (κ−1 · l)vη). Passing to the limit already yields that U satisfies
the (linear) equations (2.6) and Bu = 0. Using Proposition 2.7, we also get that U
satisfies (2.8), which means that v solves (2.15).

Proof of Proposition 2.11. The proof is very similar to the uniqueness proof in The-
orem 2.8 (b): it relies on some L∞ approximation of (I d − P)(κ−1 · l)v. Consider
v1, v2 ∈ C([0,∞), L2(!)) ∩ L∞

loc((0,∞), L∞(!)), solutions to (2.15) with the
same initial data vinit, and define δv := v1 − v2. Fix T > 0. From the properties
(2.3)-(2.5) of F , we get the pointwise estimate

∂t (|δv|2)"CF

(
(|(I d−P)(κ−1 · l)v1|+1)|δv|2+|(I d−P)(κ−1 · l)δv| |δv|

)

on [0, T ] × !,
(6.1)

for some constant CF = CF

(
‖viniteKT ‖L∞(!)

)
. Now, defining for M > 0

wM
‖ := 1|(I d−P)(κ−1·l)v1|!M(I d − P)(κ−1 · l)v1,

we get from Lemma 4.20 that there is C(T ) > 0 such that

∀M ! 1, ‖wM
‖ ‖L∞((0,T )×!) " M,

‖(I d − P)(κ−1 · l)v1 − wM
‖ ‖L∞((0,T ),L2(!)) " C(T )e−M/C(T ).

Integrating (6.1) over !, using the Cauchy-Schwarz inequality and increasing the
constant C (which is still independent of M), we obtain

∂t

(
‖δv‖2

L2(!)

)
" CF

(
(M + 1)‖δv‖2

L2(!)
+ C(T )e−M/C(T )

)
.

Then, Gronwall’s lemma yields

∀t ∈ [0, T ], ‖δv(t)‖2
L2(!)

" C(T )

M + 1
eCF (M+1)T−M/C(T ).

Now, choose T so small that CFMT − M/C(T ) < 0 (which is possible, since
C is a non-decreasing function of T ), and let M go to infinity. This shows that
δv vanishes on [0, T ]. Repeating the argument on successive time intervals yields
v1 = v2.
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Proof of Theorem 2.12. For each η ∈ (0, 1), consider a solution Uη (given by The-
orem 2.6) to (2.6), (2.8) and (2.13). Convergence of vη (and (I d−P)uη) is obtained
as in the proof of Theorem 2.10 above. Now, drop the index η for simplicity. Then,
symmetrizing the system by the change of dependent variables

ũi = κ
1/2
i ui ,

we get in the distributional sense:

for i = 1, 2, η∂t ũi + (−1)3−i R3−i ũ3−i = ηκ
−1/2
i · li∂t v̄,

and therefore, applying ∂t and combining,

for i = 1, 2, η2∂2t ũi+R/
i Ri ũi =(−1)iηR3−iκ−1/2

3−i l3−i∂t v̄+η2κ
−1/2
i li∂

2
t v̄, (6.2)

where we have set

i = 1, 2, Ri := κ
−1/2
3−i curl κ

−1/2
i (= R/

3−i , for the duality in L
2(R3, dx)).

System (6.2) shall be understood as a system of wave equations for the “divergence
free” parts πi ũi , when

for i = 1, 2, πi := κ
1/2
i Piκ

−1/2
i .

Then, π =(π1,π2) is an orthogonal projector in the space L
2(R3, dx)×L2(R3, dx).

Furthermore, from the description of ran Pi and ran (1 − Pi ) in (2.2), we deduce
that

for i = 1, 2, Riπi = Ri (and πi R
/
i = R/

i by transposition).

Thus, we have finally:

for i=1, 2, η2∂2t πi ũi−Qiπi ũi =(−1)iηR3−iκ−1/2
3−i l3−i∂t v̄+η2πiκ

−1/2
i li∂

2
t v̄, (6.3)

with

for i = 1, 2, Qi := −R/
i Ri + κ

1/2
i ∇

(
κ−2
i κ−1

3−i div(κ
1/2
i ·)

)
.

From [43, Lemma 3.10], we know that for i = 1, 2, the differential second-order
operator (−Qi ) is a self-adjoint, positive, and elliptic. Thus, with v ∈ L∞

loc((0,∞),

L∞(!)) ∩ W
1,∞
loc ((0,∞), L2(!)) given, and for given initial data,

πi ũi |t=0 = πiκ
1/2
i uinit,i and η(∂tπi ũi )|t=0

= ηπiκ
−1/2
i li F(vinit, uinit) + (−1)i R3−iκ1/23−i uinit,3−i ,
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the solution (π1ũ1,π2ũ2) to the linear wave equation system (6.3) is uniquely de-
termined. We recover it via vector potentials: defining

for i=1,2, η2∂2t φi−Qiφi =ηπiκ
−1/2
i li∂t v̄, φi |t=0=0, η∂tφi |t=0 =πi ũi |t=0, (6.4)

we have

for i = 1, 2, πi ũi = η∂tφi + (−1)i R3−iφ3−i . (6.5)

The problem (6.4) also determines uniquely the vector potentials φi . Since πiφi
also satisfies the problem (6.4) we infer that πiφi = φi . Furthermore, [43, Lemma
3.10] ensures that for i = 1, 2, Qi does not admit 0 as a resonance. One then needs
to assume the following:

for i = 1, 2, Qi is non-trapping. (6.6)

This is enough to apply

Theorem 6.1 (Starynkevitch [43, Theorem 3.2]). Let Q be a non-trapping,

(L2-)self-adjoint, negative, and elliptic differential second-order operator, for

which 0 is not a resonance. Let s > 1/2, γ ∈ (−3/2, 1/2) and R > 0. Then,

there exists C ! 0 such that: for all (u0, u1) ∈ Ḣ
γ+1
Q (R3) × Ḣ

γ
Q(R3), and f such

that 〈x〉s(−Q)γ /2 f ∈ L2((0,∞) × R3), the solution u to

∂2t u − Qu = f on (0,∞) × R3, with u|t=0 = u0, ∂t u|t=0 = u1,

satisfies

‖(u, ∂t u)‖L2((0,∞),Ḣ
γ+1
Q (BR)×Ḣ

γ
Q(BR))

" C

(
‖u0‖Ḣγ+1

Q (R3) + ‖u1‖Ḣγ
Q(R3) + ‖〈x〉s(−Q)γ /2 f ‖L2((0,∞)×R3)

)
.

For all µ ∈ R, the space Ḣµ
Q(R3) is defined by the norm

‖v‖Ḣµ
Q(R3) = ‖(−Q)µ/2v‖L2(R3).

We apply the result above to φi (ηt, x), whith γ = 0 and s = 1. This leads to:

∀R > 0, ∃CR > 0,

‖(φi , η∂tφi )‖L2((0,∞),Ḣ1(BR)×L2(BR)) " CR

(
η1/2‖πiκ1/2i uinit,i‖L2(R3)

+ η‖〈x〉πiκ−1/2
i li∂t v̄‖L2((0,∞),L2(R3))

)
.
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The right-hand side is controlled thanks to

Lemma 6.2 (Starynkevitch [43, Lemma 3.11]). For all R > 0, there exists CR >
0 such that, if m ∈ L2(R3) and supp(m) ⊂ BR , then

for i = 1, 2, |πim(x)| " CR〈x〉−3‖m‖L2(R3) for a.e. x ∈ R3.

Since πiφi = φi , by the usual T T
/ argument, ‖Riφi‖L2(BR) " ‖φi‖Ḣ1(BR), and we

deduce from (6.5):

for i = 1, 2, πi ũi = O(
√

η) in L2((0,∞), L2loc(R3)),

which yields the convergence of Puη to zero in L2((0,∞), L2loc(R3)).
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