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Nonuniformly hyperbolic cocycles: admissibility and robustness

LUIS BARREIRA AND CLAUDIA VALLS

Abstract. We give a relatively short proof of the robustness of nonuniformly
hyperbolic cocycles in a Banach space under sufficiently small perturbations. In
strong contrast to former proofs, we do not need to construct projections leading
to the stable and unstable subspaces. Instead, these are obtained fairly explicitly
depending only on the boundedness respectively of forward and backward orbits.
A difficulty is that we need to construct from the beginning appropriate sequences
of Lyapunov norms, with respect to which one can measure the boundedness of
the orbits. These norms need not only to be guessed a priori but also all the
computations would change if these were not appropriate, both for the original
and for the perturbed cocycles. The proof of the robustness is based on the relation
between the notions of nonuniform exponential dichotomy and of admissibility,
together with nontrivial norm bounds for the expansion and contraction and for
the norms of the projections. This relation allows us to construct an invertible
operator from the set of bounded perturbations to the set of bounded solutions,
and thus to conclude that under sufficiently small perturbations a similar operator
exists for the perturbed cocycle.

Mathematics Subject Classification (2010): 34D09 (primary); 37D25 (sec-
ondary).

1. Introduction

Our main aim is to give a relatively short proof of the robustness of nonuniformly

hyperbolic cocycles in a Banach space under sufficiently small perturbations. This

means that a sufficiently small perturbation of a nonuniform exponential dichotomy

is again a nonuniform exponential dichotomy.

A principal motivation for weakening the notion of uniform exponential behav-

ior is given by ergodic theory and the theory of nonuniform hyperbolicity. Namely,

consider a flow (φt )t∈R defined by an autonomous equation x ′ = f (x) in Rn pre-

serving a finite measure µ. This means that

µ(φt A) = µ(A)
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for any measurable set A ⊂ Rn and any t ∈ R. One can show that the trajectory
of µ-almost every point x with nonzero Lyapunov exponents gives rise to a linear
variational equation

v′ = Ax (t)v, with Ax (t) = dφt x f,

determining a nonuniform exponential dichotomy. Correspondingly, our results are

also a contribution to the theory of nonuniform hyperbolicity. We refer to [1] for a

detailed exposition of the theory.

Besides considering the general case of nonuniform hyperbolicity, we also con-

sider the general case when the cocycle is only invertible along the unstable direc-

tion. This causes several nontrivial difficulties when compared to former work. In

particular, the nonuniform exponential behavior causes that we need to construct

from the beginning appropriate sequences of so-called Lyapunov norms, with re-

spect to which the behavior becomes uniform. On the other hand, particularly since

there are many Lyapunov norms, one does not know a priori for which ones the

actual computations (which must be entirely redone once the norms are changed)

actually lead to a proof of the robustness property. Another difficulty is caused by

considering cocycles that in general are only invertible along the unstable direction.

Namely, after specifying a candidate for unstable subspace of the perturbed cocycle

one needs to show that the dynamics is indeed invertible along this subspace.

Due to the central role played by the exponential behavior in a large part of the

theory of dynamical systems, it is not surprising that the study of robustness has a

long history. In particular, the problem was discussed by Massera and Schäffer [10]

(see also [11]), Coppel [6], and in the case of Banach spaces by Dalec′ki ı̆ and
Kreı̆n [7], with different approaches and successive generalizations. For more re-

cent works we refer to [5, 15, 17, 18] and the references therein. We note that all

these works consider only the case of uniform exponential dichotomies. We re-

fer to [2, 3] for the study of robustness in the more general setting of nonuniform

exponential behavior.

Our proof of the robustness is based on the relation between the notions of

nonuniform exponential dichotomy and of admissibility, together with nontrivial

norm bounds for the expansion and contraction and for the norms of the projec-

tions. We recall that the notion of admissibility refers to the existence of bounded

solutions for any bounded nonlinear perturbation of the original cocycle. This al-

lows us to construct an invertible operator from the set of bounded perturbations

to the set of bounded solutions, and thus to conclude that under sufficiently small

perturbations a similar operator exists for the perturbed cocycle. We emphasize that

in strong contrast to other works, our main concern is what consequences can be

obtained from the admissibility property, and not the admissibility itself, of course

independently of its interest in other situations.

Concerning the remaining parts of the proof, as candidates for invariant stable

and unstable subspaces we take respectively the forward and backward orbits that

are bounded, although now with respect to a sequence of Lyapunov norms, since a

posteriori this yields a characterization of these subspaces. This approach is stan-

dard in the uniform hyperbolicity theory (for related approaches in the context of



NONUNIFORMLY HYPERBOLIC COCYCLES 547

admissibility see for example [8, 23]), but now we must address the nonuniform

exponential behavior. To estimate the contraction and expansion along the stable

and unstable subspaces, we use a similar approach to that in [22] (now for discrete

time).

We note that in strong contrast to the proofs of the robustness property pre-

sented in [2, 3], we do not need to construct projections leading to the stable and

unstable subspaces (again, these subspaces are obtained fairly explicitly depending

only on the boundedness respectively of the forward and backward orbits).

The study of the admissibility property goes back to pioneering work of Per-

ron in his seminal paper [16], and referred originally to the existence of bounded

solutions of the equation

x ′ = A(t)x + f (t)

in Rn for any bounded continuous function f : R+
0 → Rn . This property can be

used to deduce the stability or the conditional stability under sufficiently small per-

turbations of a linear equation. The work of Perron is also a notable contribution

to the so-called robustness problem, which asks whether the stability of a linear

contraction (or the conditional stability of a linear dichotomy) persists under suffi-

ciently small linear perturbations. In particular, a relatively simple modification of

Perron’s work yields the following result for discrete time.

Theorem 1.1. Let (Am)m∈N be a sequence of n × n matrices. If for each bounded

sequence ( fm)m∈N ⊂ Rn there exists x0 ∈ Rn such that the sequence

xm = Am−1xm−1 + fm, m ∈ N (1.1)

is bounded, then any bounded sequence (Am · · · A1x)m∈N tends to zero asm → ∞.

The assumption in Theorem 1.1 is called the admissibility of the pair of spaces

in which we take the perturbation ( fm)m∈N and look for the solution (xm)m∈N of
relation (1.1). The case when there is simultaneously contraction and expansion is

somewhat more complicated (we refer to Section 3 for a detailed discussion).

There is a very extensive literature concerning the relation between admissibil-

ity and stability, also in infinite-dimensional spaces. For some of the most relevant

early contributions in the area we refer to the books by Massera and Schäffer [11]

(culminating the development started with their paper [10]) and by Dalec′kiı̆ and
Kreı̆n [7]. We also refer to the book [9] for some early results in infinite-dimensional

spaces (which are important particularly in view of the applications of the theory

to partial differential equations). For more recent work we mention in particular

the papers [8, 12–14, 19–23], and for an additional list of references we refer to the

book by Chicone and Latushkin [4] (see in particular the final remarks of Chapters 3

and 4).
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2. Setup

Given a sequence (Am)m∈Z of linear operators in a Banach space X we define a
cocycle by

A(m, n) =
{
Am−1 · · · An if m > n,

Id if m = n,

for each m, n ∈ Z. We always assume in the paper that

‖An‖ ≤ c, n ∈ Z (2.1)

for some constant c ≥ 1. We say that a sequence (Am)m∈Z admits a nonuniform
exponential dichotomy if there exist:

1. projections Pm for each m ∈ Z such that

A(m, n)Pn = PmA(m, n),

with the map

A(m, n) := A(m, n)| ker Pn : ker Pn → ker Pm

invertible for each m ≥ n;

2. constants D, a > 0 and ε ≥ 0 such that

‖B(m, n)‖ ≤ De−a(m−n)+ε|n| (2.2)

and

‖C(n,m)‖ ≤ De−a(m−n)+ε|m| (2.3)

for every m ≥ n, with

B(m, n) = A(m, n)Pn and C(n,m) = A(m, n)−1Qm,

where Qm = Id−Pm is the complementary projection of Pm .

Moreover, we say that a sequence (Am)m∈Z admits a uniform exponential dichotomy
if it admits a nonuniform exponential dichotomy with ε = 0.

The following example shows that there exist nonuniform exponential dichot-

omies that are not uniform, for which (2.1) holds.

Example 2.1. Given ω < 0 and δ > 0 with ω + δ < 0, we consider constants

Am = eω+δ(m+1) sin log(m+1)−δm sin logm+δ sin log(m+1)−δ sin logm

for m ∈ N, and Am = eω+δ for m ∈ Z \ N. We note that

Am = eω+2δ sin log(m+1)−δ sin logm+δm[sin log(m+1)−sin logm]

≤ eω+3δ+δm[log(m+1)−logm]
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for m ∈ N. Since

m[log(m + 1) − logm] = m log
(
1+ 1

m

)
≤ m · 1

m
= 1,

we obtain Am ≤ eω+4δ for each m ∈ N, and thus (2.1) holds. Moreover, for each
m ≥ n ≥ 1 we have

A(m, n) = eω(m−n)+δm sin log(m+1)−δn sin log n+δ sin logm−δ sin log n

≤ e2δe(ω+δ)(m−n)+δm(sin logm−1)−δn(sin log n−1)

≤ e2δe(ω+δ)(m−n)+2δn.

(2.4)

Since ω + δ < 0, this shows that the sequence (Am)m∈Z admits a nonuniform
exponential dichotomy with a = −(ω + δ), ε = 2δ, D = e2δ , and Pn = Id for each

m ∈ Z.
It also follows easily from (2.4) that ε cannot be taken equal to zero. Indeed,

let us write

A(m, n) = e(ω+δ)(m−n)+δm(sin logm−1)−δn(sin log n−1)+δ sin logm−δ sin log n.

Given η ∈ (0, 1/2), we take m, n ∈ N with m ≥ n such that

|sin logm − 1| < η and |sin log n + 1| < η.

To see that such integers indeed exist, since the sequence logm is unbounded, it is

sufficient to note that

log(m + 1) − logm → 0 when m → ∞.

Furthermore, the difference m − n can be taken arbitrarily small. We thus obtain

A(m, n) ≥ e(ω+δ)(m−n)−δmη+δn(2−η)−2δ

= e(ω+δ−δη)(m−n)+δn(1−η)−2δ

≥ e(ω+δ/2)(m−n)+δn/2−2δ

for each m ≥ n ≥ 1. This shows that ε cannot be taken smaller than δ/2. By con-
sidering a second component which expands we obtain a nonuniform exponential

dichotomy with projections Pm different from the identity.

Now let (Am)m∈Z be a sequence admitting a nonuniform exponential dichot-
omy. For each v ∈ X and n ∈ Z we introduce the norm

‖v‖∗
n = ‖v‖sn + ‖v‖un,

where

‖v‖sn = sup
{
‖B(k, n)v‖ea(k−n) : k ≥ n

}
,

and

‖v‖un = sup
{
‖C(k, n)v‖e−a(k−n+2) : k ≤ n − 1

}
.

It follows readily from (2.2) and (2.3) that the suprema are finite.
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Proposition 2.2. For each v ∈ X and n ∈ Z we have

1

c
‖v‖ ≤ ‖v‖∗

n ≤ 2Deε|n|‖v‖. (2.5)

Proof. By (2.1), for every n ∈ Z and v ∈ X we obtain

‖v‖un + ‖v‖sn ≥ ‖Pnv‖ + ‖Ā(n, n − 1)−1Qnv‖

≥ ‖Pnv‖ + ‖Qnv‖
‖Ā(n, n − 1)‖

≥ ‖Pnv‖ + 1

c
‖Qnv‖

≥ 1

c
‖(Pn + Qn)v‖ = 1

c
‖v‖.

On the other hand, by (2.2) and (2.3) we have

‖v‖sn ≤ Deε|n|‖Pnv‖ and ‖v‖un ≤ De−2aeε|n|‖Qnv‖.
This yields the second inequality in (2.5).

3. Admissibility

Now we consider the vector space

L =
{
( f (n))n∈Z ⊂ X : sup

n∈Z
‖ f (n)‖∗

n < ∞
}
,

endowed with the norm

‖ f ‖∗ = sup
n∈Z

‖ f (n)‖∗
n

for each sequence f = ( f (n))n∈Z ⊂ X . One can easily verify that L is a

Banach space. Given f ∈ L, we define a sequence x f by

x f (n) =
n∑

p=−∞
B(n, p) f (p) −

+∞∑

p=n+1
C(n, p) f (p).

We want to show that f ,→ x f is an invertible bounded linear operator with

bounded inverse from L to itself. We start with the following statement.

Theorem 3.1. For each f ∈ L:

1. x f is a well-defined sequence in L with

‖x f ‖∗ ≤ ea + 1

ea − 1
‖ f ‖∗; (3.1)
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2. x f is the unique sequence in L satisfying

x f (n + 1) = Anx f (n) + f (n + 1), n ∈ Z. (3.2)

Proof. To show that x f is well-defined we first note that

‖B(n, p)‖∗ := sup
x -=0

‖B(n, p)x‖∗
n

‖x‖∗
p

≤ ea(p−n) (3.3)

for n ≥ p. Indeed, for each n ≥ p we have

‖B(n, p)x‖∗
n = sup

{
‖B(k, n)B(n, p)x‖ea(k−n) : k ≥ n

}

= sup
{
‖B(k, p)x‖ea(k−n) : k ≥ n

}

≤ ea(p−n) sup
{
‖B(k, p)x‖ea(k−p) : k ≥ p

}
= ea(p−n)‖x‖∗

p.

Then

n∑

p=−∞
‖B(n, p) f (p)‖∗

n ≤
n∑

p=−∞
‖B(n, p)‖∗‖ f (p)‖∗

p

≤ ‖ f ‖∗
n∑

p=−∞
ea(p−n) = 1

1− e−a
‖ f ‖∗.

(3.4)

Furthermore,

‖C(n, p)‖∗ := sup
x -=0

‖C(n, p)x‖∗
n

‖x‖∗
p

≤ e−a(p−n) (3.5)

for n ≤ p. Indeed, for each n ≤ p we have

‖C(n, p)x‖∗
n = sup

{
‖C(k, n)C(n, p)x‖e−a(k−n+2) : k ≤ n − 1

}

= sup
{
‖C(k, p)x‖e−a(k−n+2) : k ≤ n − 1

}

≤ e−a(p−n) sup
{
‖B(k, p)x‖e−a(k−p+2) : k ≤ p − 1

}

= e−a(p−n)‖x‖∗
p.

Then

+∞∑

p=n+1
‖C(n, p) f (p)‖∗

n ≤
∞∑

p=n+1
‖C(n, p)‖∗‖ f (p)‖∗

p

≤ ‖ f ‖∗
∞∑

p=n+1
e−a(p−n) = 1

ea − 1
‖ f ‖∗.

(3.6)
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It follows from (3.4) and (3.6) that

‖x f (n)‖∗
n ≤

n∑

p=−∞
‖B(n, p) f (p)‖∗

n +
+∞∑

p=n+1
‖C(n, p) f (p)‖∗

n ≤ ea + 1

ea − 1
‖ f ‖∗,

and in particular the sequence x f is well-defined.

Furthermore,

x f (n + 1) =
n+1∑

p=−∞
B(n + 1, p) f (p) −

+∞∑

p=n+2
C(n + 1, p) f (p)

=
n∑

p=−∞
AnB(n, p) f (p) + Pn+1 f (n + 1)

+ Qn+1 f (n + 1) −
+∞∑

p=n+1
AnC(n, p) f (p)

= Anx f (n) + f (n + 1),

and thus x f is a solution of equation (3.2). To show that it is the unique solution

in L we proceed by contradiction. Let (y f (n))n∈Z ∈ L be another solution of

equation (3.2). Setting

z1(n) = Pn(y f (n) − x f (n)) and z2(n) = Qn(y f (n) − x f (n)),

we obtain z1(m) = B(m, n)z1(n) for each m ≥ n, and z2(m) = C(m, n)z2(n) for
each m ≤ n. Therefore, by (3.3), for each m ∈ Z and n ≤ m we have

‖z1(m)‖∗
m = ‖B(m, n)z1(n)‖∗

n

≤ e−a(m−n)‖z1(n)‖∗
n ≤ e−a(m−n)‖z1‖∗.

Letting n → −∞ we obtain ‖z1(m)‖∗
m = 0, and hence z1(m) = 0 for all m ∈ Z.

Similarly, by (3.5), for each m ∈ Z and n ≥ m we have

‖z2(m)‖∗
m = ‖C(m, n)z2(n)‖∗

n

≤ ea(m−n)‖z2(n)‖∗
n ≤ ea(m−n)‖z2‖∗.

Letting n → +∞ we obtain ‖z2(m)‖∗
m = 0, and hence z2(m) = 0 for all m ∈ Z.

This shows that y f (m) = x f (m) for all m ∈ Z.

The second property in Theorem 3.1 is a version of the so-called admissibility

property. The first property allows us to define a linear operator

Q : L → L, Q( f ) = x f .

Moreover, it follows from (3.1) that Q is bounded.
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Proposition 3.2. The operator Q is invertible.

Proof. If x f = 0, then it follows from (3.2) that

f (n + 1) = x f (n + 1) − Anx f (n) = 0

for every n ∈ Z, and hence f = 0. This shows that Q is injective.

Now we show that Q is surjective. Let g ∈ L. We consider the sequence
f : Z → X defined by

f (n) = g(n) − An−1g(n − 1).

We have

‖ f (n)‖∗
n ≤ ‖g(n)‖∗

n + ‖An−1g(n − 1)‖∗
n ≤ ‖g(n)‖∗

n

+ sup
{
‖B(k, n)An−1g(n − 1)‖ea(k−n) : k ≥ n

}

+ sup
{
‖C(k, n)An−1g(n − 1)‖e−a(k−n+2) : k ≤ n − 1

}

≤ ‖g(n)‖∗
n + e−a sup

{
‖B(k, n − 1)g(n − 1)‖ea(k−n+1) : k ≥ n

}

+ sup
{
‖C(k, n − 1)g(n − 1)‖e−a(k−n+2) : k ≤ n − 1

}

≤ ‖g(n)‖∗
n + e−a sup

{
‖B(k, n − 1)g(n − 1)‖ea(k−n+1) : k ≥ n

}

+ e−a‖Qn−1g(n − 1)‖
+ sup

{
‖C(k, n − 1)g(n − 1)‖e−a(k−n+2) : k ≤ n − 2

}

≤ ‖g(n)‖∗
n + e−ac‖Qn−1g(n − 1)‖∗

n−1
+ e−a sup

{
‖B(k, n − 1)g(n − 1)‖ea(k−n+1) : k ≥ n − 1

}

+ ea sup
{
‖C(k, n − 1)g(n − 1)‖e−a(k−n+3) : k ≤ n − 2

}

≤ ‖g(n)‖∗
n + e−ac‖g(n − 1)‖∗

n−1 + ea‖g(n − 1)‖∗
n−1.

(3.7)

Thus, taking the supremum over n ∈ Z we obtain

‖ f ‖∗ ≤ (1+ e−ac + ea)‖g‖∗ < +∞, (3.8)

which shows that f ∈ L. Moreover, by construction we have g = Q( f ), and so
the operator Q is surjective.

It follows from the proof of Proposition 3.2 that the inverse Q−1 : L → L is

given by

(Q−1g)(n) = g(n) − An−1g(n − 1), n ∈ Z. (3.9)

Moreover, by (3.8) the operator Q−1 is bounded.
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4. Robustness

Now we consider linear perturbations of a nonuniform exponential dichotomy de-

fined by a sequence (Am)m∈Z of linear operators. Namely, given another sequence
(Bm)m∈Z of linear operators we consider the cocycle

D(m, n) =
{

(Am−1 + Bm−1) · · · (An + Bn) if m > n,

Id if m = n.

We define a linear operator R in L by

R(g)(n) = g(n) − (An−1 + Bn−1)g(n − 1), n ∈ Z.

This should be compared to (3.9). We also set

b = sup
n∈Z

(
‖Bn‖eε|n|

)
.

To establish the robustness property of nonuniform exponential dichotomies we first

obtain an auxiliary statement.

Proposition 4.1. Let (Am)m∈Z be a sequence of linear operators admitting a non-
uniform exponential dichotomy. If

b <
1

2Dc‖Q‖ , (4.1)

then R : L → L is an invertible bounded operator.

Proof. We first show that R(g) ∈ L for each g ∈ L. Indeed, in view of (3.9), by
(2.5) and (3.7) we have

‖R(g)(n)‖∗
n ≤ ‖(Q−1g)(n)‖∗

n + ‖Bn−1g(n − 1)‖∗
n

≤ ‖g(n)‖∗
n + (e−ac + ea)‖g(n − 1)‖∗

n−1
+ 2Deε|n|‖Bn−1g(n − 1)‖

≤ ‖g(n)‖∗
n + (e−ac + ea + 2Dbc)‖g(n − 1)‖∗

n−1,

and taking the supremum over n ∈ Z we obtain

‖R(g)‖∗ ≤ (1+ e−ac + ea + 2Dbc)‖g‖∗ < +∞. (4.2)

In particular, R is bounded. Moreover, since

(Q−1 − R)(g)(n) = Bn−1g(n − 1),
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we have

‖(Q−1 − R)(g)(n)‖∗
n ≤ ‖Bn−1g(n − 1)‖∗

n ≤ 2Dbc‖g(n − 1)‖∗
n−1.

This implies that

‖Id−RQ‖ ≤ ‖Q−1 − R‖ · ‖Q‖ ≤ 2Dbc‖Q‖ < 1, (4.3)

and hence RQ is invertible. Since R = (RQ)Q−1, we conclude that R is also
invertible.

By (3.1) we have ‖Q‖ ≤ (ea + 1)/(ea − 1).
We can now establish the main result of the paper. It shows that the sequence

(Am + Bm)m∈Z admits a nonuniform exponential dichotomy provided that the per-
turbation (Bm)m∈Z is ufficiently small.

Theorem 4.2. If the sequence (Am)m∈Z admits a nonuniform exponential dich-

otomy and (4.1) holds, then the sequence (Am + Bm)m∈Z also admits a nonuniform
exponential dichotomy.

Proof. We separate the proof of the theorem into several lemmas. We first introduce

some notation. For each (n, x) ∈ Z × X we consider the sequence

sn,x : Z → X, sn,x (k) =
{
D(k, n)x, k ≥ n,

0, k < n.

We also consider the set Un,x of all sequences

un,x : Z → X, un,x (k) =






0, k > n

x, k = n

xk, k < n

such that

xk = (Ak−1 + Bk−1)xk−1 for k ≤ n.

For each n ∈ Z we set
En =

{
x ∈ X : sn,x ∈ L

}
, (4.4)

and

Fn =
{
x ∈ X : Un,x ∩ L -= ∅

}
. (4.5)

One can easily verify that En and Fn are vector spaces. We will show that these

are stable and unstable subspaces for the sequence (Am + Bm)m∈Z. Incidentally,
the conditions in (4.4) and (4.5) essentially correspond to assume that respectively

the forward and backward orbits (up to a possible nonuniqueness) are bounded

(as it must happen with the stable and unstable subspaces). We first establish the

invariance of the subspaces En and Fn .
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Lemma 4.3. For each n ∈ Z we have

(An + Bn)En = En+1 and (An + Bn)Fn = Fn+1. (4.6)

Proof of the lemma. Since

sn+1,(An+Bn)x =
{
D(k, n)x, k ≥ n + 1,

0, k < n + 1,

we have

‖sn,x‖∗ = max
{
‖x‖∗

n, ‖sn+1,(An+Bn)x‖∗}.

This shows that sn,x ∈ L if and only if sn+1,(An+Bn)x ∈ L, that is, x ∈ En if and

only if (An + Bn)x ∈ En+1. This yields the first identity in (4.6).
For the second identity, we first note that there is a one-to-one correspondence

between the sets Un,x and Un+1,(An+Bn)x . Indeed, if un,x ∈ Un+1,x , then the se-
quence f defined by

f (m) =






0, m > n + 1,

(An + Bn)x, m = n + 1,

un,x (m), m ≤ n

is in Un+1,(An+Bn)x , and if un+1,(An+Bn)x ∈ Un+1,(An+Bn)x , then the sequence g

defined by

g(m) =
{
0, m ≥ n + 1,

un+1,(An+Bn)x (m), m ≤ n

is inUn+1,x . Thus, without danger of confusion of notation, for two sequences un,x
and un+1,(An+Bn)x related in this manner we have

‖un+1,(An+Bn)x‖∗ = max
{
‖(An + Bn)x‖∗

n+1, ‖un,x‖∗}.

This shows that un,x ∈ L if and only if un+1,(An+Bn)x ∈ L. Again since there
is a one-to-one correspondence between Un,x and Un+1,(An+Bn)x , this shows that

there is a one-to-one correspondence between Un,x ∩ L and Un+1,(An+Bn)x ∩ L.
Therefore, x ∈ Fn if and only if (An + Bn)x ∈ Fn+1. This yields the second
identity in (4.6).

Lemma 4.4. For each n ∈ Z we have X = En ⊕ Fn .

Proof of the lemma. Let x ∈ En ∩ Fn . We consider the sequence

g : Z → X, g(k) =
{
sn,x (k), k ≥ n,

un,x (k), k ≤ n,
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for some un,x ∈ Un,x ∩ L. We note that sn,x (n) = un,x (n) = x . Since

‖g‖∗ ≤ ‖sn,x‖∗ + ‖un,x‖∗ < +∞,

we have g ∈ L. Moreover, g is a solution of the equation

xn+1 = (An + Bn)xn + fn+1, n ∈ Z

with f = 0, that is, R(g) = 0. It follows from Proposition 4.1 that g = 0, and

hence x = 0. This shows that En ∩ Fn = {0}.
To prove that En + Fn = X , let n ∈ Z and x ∈ X . We consider the sequence

f : Z → X defined by

f (m) =
{
x, m = n,

0, otherwise.
(4.7)

Clearly, f ∈ L, so there exists a unique g ∈ L such that R(g) = f . We note that

g(m) = D(m, n)g(n) for all m ≥ n. Since g ∈ L, this shows that sn,g(n) ∈ L, and
hence g(n) ∈ En . Now we consider the sequence

h : Z → X, h(k) =






0, k > n,

x − g(n), k = n,

−g(k), k < n.

One can easily verify that h ∈ Un,x− f (n). Since h ∈ L, this shows that h(n) =
x − g(n) ∈ Fn . Therefore,

x = g(n) + (x − g(n)) ∈ En + Fn,

which completes the proof of the lemma.

Now we set K = ‖Q‖/(1− 2Dbc‖Q‖).
Lemma 4.5. For each n ∈ Z, x ∈ En and m ≥ n we have

‖D(m, n)x‖∗
m ≤ K‖x‖∗

n.

Proof of the lemma. Let n ∈ Z and x ∈ En . Given m ≥ n, we consider the se-

quence f : Z → X defined by

f (k) =
{
x, k = n,

0, otherwise,

and the sequence g : Z → X defined by

g(k) =
{
D(k, n)x, k ≥ n,

0, k < n.
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We note that g = R−1( f ). Now we recall that by Proposition 4.1 the operator
R−1 : L → L is well-defined. We can write

R = [(RQ − Id) + Id]Q−1,

and thus,

R−1 = Q

∞∑

k=0
(−1)k(RQ − Id)k .

It follows from (4.3) that

‖R−1‖ ≤ ‖Q‖
∞∑

k=0
‖RQ − Id ‖k ≤ ‖Q‖

1− 2Dbc‖Q‖ = K . (4.8)

herefore, by (4.2),

‖D(m, n)x‖∗
m ≤ ‖g‖∗ = ‖R−1( f )‖∗

≤ ‖R−1‖ · ‖ f ‖∗ ≤ K‖x‖∗
n.

The proof of the lemma is complete.

Lemma 4.6. There exist constants C > 0 and λ > 0 such that for every n ∈ Z,
x ∈ En and m ≥ n we have

‖D(m, n)x‖∗
m ≤ Ce−λ(m−n)‖x‖∗

n.

Proof of the lemma. Given n ∈ Z, N ∈ N and x ∈ En , we define a sequence

f : Z → X by

f (m) =
{
D(m, n)x, n ≤ m < n + N ,

0, otherwise.

By Lemma 4.5, for each m ∈ Z we have

‖ f (m)‖∗
m ≤ ‖D(m, n)x‖∗

m ≤ K‖x‖∗
n, (4.9)

and thus, ‖ f ‖∗ ≤ K‖x‖∗
n . On the other hand, we have

R−1( f )(m) =






0, m < n,

(m − n + 1)D(m, n)x, n ≤ m < n + N ,

ND(m, n)x, m ≥ n + N .
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Using Lemma 4.5 with m replaced by n + N , n replaced by l, and x replaced by

D(l, n)x , we obtain

N (N + 1)

2
‖D(n + N , n)x‖∗

n+N

=
∥∥∥∥
n+N−1∑

l=n
(l − n + 1)D(n + N , n)x

∥∥∥∥
∗

n+N

≤
n+N−1∑

l=n
(l − n + 1)‖D(n + N , n)x‖∗

n+N

=
n+N−1∑

l=n
(l − n + 1)‖D(n + N , l)D(l, n)x‖∗

n+N

≤ K

n+N−1∑

l=n
(l − n + 1)‖D(l, n)x‖∗

l

= K

n+N−1∑

l=n
‖R−1( f )(l)‖∗

l ≤ K N‖R−1( f )‖∗.

It follows from (4.8) and (4.9) that

N (N + 1)

2
‖D(n + N , n)x‖∗

n+N ≤ K 2N‖ f ‖∗ ≤ K 3N‖x‖∗
n.

Therefore,

‖D(n + N , n)‖∗ = sup
x -=0

‖D(n + N , n)x‖∗
n+N

‖x‖∗
n

≤ 2K 3

N + 1
.

Now we take N0 ∈ N sufficiently large so that

s := 2K 3

N0 + 1
< 1. (4.10)

Given m, n ∈ Z with m ≥ n, we set r = [(m−n)/N0] where [·] denotes the integer
part. Then

D(m, n) = D(m,m + N0r)D(n + N0r, n),

and by Lemma 4.5 we have

‖D(m, n)‖∗ ≤ K‖D(n + N0r, n)‖∗ ≤ Ksr ≤ Ks(m−n)/N0−1

= (K/s)e(m−n)(1/N0) log s = Ce−λ(m−n),

where

C = K/s and λ = −(1/N0) log s > 0.

This completes the proof of the lemma.
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Lemma 4.7. The subspace En is closed for all n ∈ Z.

Proof of the lemma. Let n ∈ Z and take (x j ) j∈N ⊂ En with x j → x when j → ∞.

By Lemma 4.6 we have

‖D(k, n)x j‖∗
k ≤ Ce−λ(k−n)‖x j‖∗

n ≤ MCe−λ(k−n) (4.11)

for all k ≥ n and j ∈ N. Letting j → ∞ in (4.11) we obtain

‖D(k, n)x‖∗
k ≤ Ce−λ(k−n)‖x‖∗

n

for all k ≥ n, and thus,

sup
k∈N

‖D(k, n)x‖∗
k ≤ C‖x‖∗

n < +∞.

This shows that sn,x ∈ L, and hence x ∈ En .

Therefore, En is closed.

Lemma 4.8. For each n ∈ Z, x ∈ Fn and m ≥ n we have

‖D(m, n)x‖∗
m ≥ ‖x‖∗

n

K
.

Proof of the lemma. Let n ∈ Z and x ∈ Fn . By (4.5), there exists a sequence

un,x ∈ Un,x ∩ L. Given m ≥ n, we consider the sequence f : Z → X defined by

f (k) =
{

−D(m, n)x, k = m,

0, otherwise,

and the sequence g : Z → X defined by

g(k) =






0, k ≥ m,

D(k, n)x, n ≤ k < m,

un,x (k), k < n.

We note that g = R−1( f ). Moreover, since g(n) = x we have ‖g‖∗ ≥ ‖x‖∗
n .

Therefore, by (4.2) and (4.8),

‖x‖∗
n ≤ ‖g‖∗ = ‖R−1( f )‖∗ ≤ K‖D(m, n)x‖∗

m .

This completes the proof of the lemma.

It follows from Lemma 4.8 that the map D(m, n)|Fn : Fn → D(m, n)Fn is
invertible. Moreover, by Lemma 4.3 we have D(m, n)Fn = Fm , and hence, the

map D(m, n)|Fn : Fn → Fm is onto and invertible. For simplicity of the notation,

we write (D(m, n)|Fn)−1 = D(n,m).
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Lemma 4.9. For every n ∈ Z, x ∈ Fn and m ≤ n we have

‖D(m, n)x‖∗
m ≤ Ce−λ(n−m)‖x‖∗

n,

with C and λ as in Lemma 4.6.

Proof of the lemma. Given n ∈ Z, N ∈ N and x ∈ Fn , we define a sequence

f : Z → X by

f (m) =
{
D(m, n)x, n − N < m ≤ n,

0, otherwise.

It follows from Lemma 4.8 that

‖ f (m)‖∗
m ≤ ‖D(m, n)x‖∗

m ≤ K‖x‖∗
n

for every m ≤ n, and thus,

f ∈ L and ‖ f ‖∗
∞ ≤ K‖x‖∗

n. (4.12)

On the other hand,

N (N + 1)

2
‖D(n − N , n)x‖∗

n−N =
∥∥∥∥∥

n−1∑

l=n−N
(l − n)D(n − N , n)x

∥∥∥∥∥

∗

n−N

≤
n−1∑

l=n−N
(l − n)‖D(n − N , n)x‖∗

n−N

=
n−1∑

l=n−N
(l − n)‖D(n − N , l)D(l, n)x‖∗

n−N .

Since

R−1( f )(m) =






0, m ≥ n,

(m − n)D(m, n)x, n − N ≤ m < n,

−ND(m, n)x, m < n − N ,

we obtain

N (N + 1)

2
‖D(n − N , n)x‖∗

n−N ≤ K

n−1∑

l=n−N
(l − n)‖D(l, n)x‖∗

l

= K

n−1∑

l=n−N
‖R−1( f )(l)‖∗

l ≤ K N‖R−1( f )‖∗
∞

Moreover, by (4.8) we have ‖R−1( f )‖∗ ≤ K‖ f ‖∗, and hence, by (4.12),

N (N + 1)

2
‖D(n − N , n)x‖∗

n−N ≤ K 2N‖ f ‖∗
∞ ≤ K 3N‖x‖∗

n.



562 LUIS BARREIRA AND CLAUDIA VALLS

Therefore,

‖D(n − N , n)‖∗ ≤ 2K 3

N + 1
.

Given m, n ∈ Z with m ≤ n, we set r = [(n − m)/N0] with N0 as in (4.10). Then

D(m, n) = D(m,m − N0r)D(n − N0r, n),

and hence,

‖D(m, n)‖∗ ≤ K‖D(n − N0r, n)‖∗ ≤ Ksr ≤ Ks(n−m)/N0−1

= (K/s)e(n−m)(1/N0) log s = Ce−λ(n−m).

This completes the proof of the lemma.

Lemma 4.10. The subspace Fn is closed for all n ∈ Z.

Proof of the lemma. Let n ∈ Z and (x j ) j∈N ⊂ Fn with x j → x when j → ∞.

Since x j ∈ Fn , there exists a (unique) sequence un,x j ∈ Un,x j ∩ L. Moreover,
since D(m, n)|Fn : Fn → Fm is onto and invertible, for each m ≥ n we have

D(k, n)x j ∈ Fk for all k ≤ n. Using Lemma 4.9 we obtain

‖x j − xl‖∗
n = ‖D(n, k)(un,x j (k) − un,xl (k))‖∗

n

≥ (1/C)eλ(n−k)‖un,x j (k) − un,xl (k)‖∗
k

for all n ≥ k and j, l ∈ N. This shows that we can define the sequence

f : Z → X, f (k) =
{
0, k > n,

lim j→∞ un,x j (k), k ≤ n.

Clearly, f ∈ Un,x . Moreover, since

‖un,x j (k)‖∗
k ≤ Ce−λ(n−k)‖D(n, k)un,x j (k)‖∗

n = Ce−λ(n−k)‖x j‖∗
n

for all j ∈ N and k ≤ n, we obtain

‖ f (k)‖∗
k ≤ C‖x‖∗

n, k ≤ n.

Therefore, f ∈ L, and we conclude that x = f (n) ∈ Fn . This completes the proof

of the lemma.

We proceed with the proof of the theorem. It follows from Lemmas 4.4, 4.7

and 4.10 that En ⊕ Fn = X , with En and Fn closed subspaces of X , for each n ∈ Z.
Let Pn and Qn = Id−Pn be the projections associated with this decomposition.

Then it follows easily from Lemma 4.4 that (An + Bn)Pn = Pn+1(An + Bn) for all
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n ∈ Z. Moreover, by Lemmas 4.3 and 4.8 the operator D(m, k)|Fk : Fk → Fm is

invertible.

Furthermore, for x ∈ En it follows from Lemma 4.6 that

‖D(m, n)x‖∗
m ≤ Ce−λ(m−n)‖x‖∗

n, m ≥ n.

By (2.5) we obtain

‖D(m, n)x‖ ≤ c‖D(m, n)x‖∗
m ≤ cCe−λ(m−n)‖x‖∗

n

≤ 2cCDe−λ(m−n)+ε|n|‖x‖
(4.13)

for any m ≥ n. Similarly, for x ∈ Fn it follows from Lemma 4.9 that

‖D(m, n)x‖∗
m ≤ Ce−λ(n−m)‖x‖∗

n, m ≤ n,

and proceeding as in (4.13) we get

‖D(m, n)x‖ ≤ c‖D(m, n)x‖∗
m ≤ cCe−λ(n−m)‖x‖∗

n

≤ 2cCDe−λ(n−m)+ε|n|‖x‖
(4.14)

for any m ≤ n. Finally, we estimate the norms of the projections Pn and Qn . Using

the notation in the proof of Lemma 4.4, given x ∈ X we have Pnx = g(n), where
g = R−1( f ) with f given by (4.7). Therefore,

‖Pn‖ = sup
x -=0

‖g(n)‖
‖x‖ = sup

x -=0

‖R−1( f )(n)‖
‖x‖ .

Using (2.5) we obtain

‖R−1( f )(n)‖ ≤ ‖R−1( f )(n)‖∗
n ≤ ‖R−1( f )‖∗ ≤ ‖R−1‖ · ‖ f ‖∗ = ‖R−1‖ · ‖x‖∗

n

≤ 2Deε|n|‖R−1‖ · ‖x‖,

and hence,

‖Pn‖ ≤ 2Deε|n|‖R−1‖. (4.15)

Therefore,

‖Qn‖ ≤ ‖ Id−Pn‖ ≤ 1+ ‖Pn‖ ≤ max
{
1, 2D‖R−1‖

}
eε|n|. (4.16)

It follows from (4.13) and (4.14) together with (4.15) and (4.16) that the sequence

(Am + Bm)m∈Z admits a nonuniform exponential dichotomy, and the proof of the
theorem is complete.
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