
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XI (2012), 653-706

CMC hypersurfaces condensing to geodesic segments

and rays in Riemannian manifolds

ADRIAN BUTSCHER AND RAFE MAZZEO

Abstract. We construct examples of compact and one-ended constant mean
curvature surfaces with large mean curvature in Riemannian manifolds with ax-
ial symmetry by gluing together small spheres positioned end-to-end along a
geodesic. Such surfaces cannot exist in Euclidean space, but we show that the
gradient of the ambient scalar curvature acts as a ‘friction term’ which permits
the usual analytic gluing construction to be carried out.

Mathematics Subject Classification (2010): 53A10 (primary); 35J93, 35B25
(secondary).

1. Introduction

Background. The study of constant mean curvature (CMC) surfaces in R3, or in
more general three-dimensional Riemannian manifolds, is a well established field of
Riemannian geometry and there is a vast literature concerning the construction and
properties of such surfaces. One particular method for constructing CMC surfaces
is by analytic gluing techniques. This goes back to the work of Kapouleas [6, 7]
and has been further developed by many others, including the first author with Pac-
ard [1,2] and the second author with Pacard and also with Pollack [10,12]. (See [13]
and [16] for surveys about the current state of this approach.) The general idea in
this approach is to take connected sums of simple surfaces, e.g. the sphere, cylinder
or Delaunay surfaces, joined by approximately catenoidal necks, to produce ‘ap-
proximate CMC’ surfaces and then perturbing these by PDE arguments to obtain
surfaces with exactly constant mean curvature.

The simplest examples of complete noncompact embedded CMC surfaces in
R3 are the Delaunay surfaces; these are the unique rotationally symmetric CMC
surfaces and each has a discrete translational symmetry as well. This family in-
terpolates between the cylinder and an infinite string of mutually tangent spheres
arranged along an axis; elements of this family are distinguished by a ‘necksize’
parameter which measures the length of the shortest closed geodesic.
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The structure of more general complete, Alexandrov-embedded CMC surfaces
with finite topology in R3 is fairly well understood. Meeks [14] proved that each
end of such a surface is cylindrically bounded; Korevaar, Kusner and Solomon [8]
subsequently showed that each end converges exponentially to the end of some
Delaunay surface. Hence to any such surface we may assign a set of parameters
describing the asymptotic Delaunay surface corresponding to each end. There are
limitations on the asymptotic parameters which can be achieved by complete CMC
surfaces, as well as a moduli space theory which describes the infinitesimal and
local variations of these asymptotic parameters as one varies the CMC surface,
see [3–5] and [9].

An alternative description of these asymptotic parameters is provided by the
flux integral, discovered by Kusner, which is a vector obtained by integrating a lo-
cally defined quantity over any closed loop in a surface. When the surface is CMC,
this only depends on the homology class of the loop, and in particular, the flux of
a simple positively oriented loop around each end determines the direction of the
axis and necksize, but not the ‘phase’ of the translation, of the asymptotic Delaunay
model for that end. The homological invariance also shows that the sum of these
fluxes over all ends must vanish; this is a global balancing condition for the CMC
surface, which is the simplest of the limitations referred to above. For example,
an immediate consequence is that there exists no complete Alexandrov-embedded
CMC surface in R3 with only one end. However, these fluxes play an even more
central role in the gluing theory: one of the key features of the approximate CMC
configurations which allows them to be perturbed to be exactly CMC is that the total
flux over each gluing region (i.e. the necks in the connected sum) is nearly zero. In
fact, as we explain more carefully below, there are other local balancing conditions,
and also a certain global ‘flexibility’, stated in terms of fluxes, which are crucial for
the analytic method to be carried out.

Our goal in this paper is to construct new examples of CMC surfaces in more
general three-manifolds which exhibit new types of behaviour not possible in Eu-
clidean space. These are once again perturbations of collections of small spheres
joined together by even smaller catenoidal necks, all arranged along a curve γ . As
one expects with these gluing constructions, the sizes of the catenoidal necks are
quite small compared to the radii of the spheres. However, quite strikingly, these
neck-sizes must vary along this chain of spheres. This variation is due to a new
contribution in the flux integral from the scalar curvature S of the ambient mani-
fold. Indeed, in this curved setting, the flux over a curve which is homologically
trivial need not vanish, but can be expressed in terms of a surface integral involving
∇S. This is completely analogous to the generalized Pohozaev identity discovered
by Schoen which arises in his construction of metrics of constant positive scalar
curvature [19]. In our setting, this shows that the difference between successive
neck sizes in the initial approximate CMC configuration must involve the gradient
of the scalar curvature along the axis connecting these two necks. In other words,
∇S acts as a ‘friction’ which forces a change in the size of the connections between
adjacent spheres along γ . Our central result states that if this effect is managed
correctly, one can find exact CMC surfaces where the string of spheres eventually
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‘caps off’ at one or both ends, and thus we obtain CMC surfaces arranged along an
interval or ray.

To explain this all more carefully, and also to set it into final context, we dis-
cuss a newer theme in this subject. In Euclidean space, dilation by the scalar λ
transforms a CMC surface with mean curvature H into one with mean curvature
λ−1H ; hence the precise value of the mean curvature is irrelevant (so long as it
is nonzero). By contrast, in a curved 3-manifold there is a marked contrast be-
tween the study of CMC surfaces with ‘small’ mean curvatures, which tend to be
very rigid objects, and those with very large mean curvature. We focus here on the
latter. The general expectation is that a sequence of CMC surfaces with mean cur-
vature tending to infinity should ‘condense’ onto a curve, or perhaps some slightly
more complicated one-dimensional set. For example, if # is a fixed (complete,
Alexandrov-embedded) surface with mean curvature H ≡ 2 in R3, and if ε j → 0,

then ε j# has H = ε−1
j , and by the structure theory discussed above, this sequence

condenses onto a union of half-lines emanating from the origin. This seems to be a
general phenomenon: Rosenberg [18] has shown that if # is a closed CMC surface
in an arbitrary compact 3-manifold M , with mean curvature H % 0, then M \ #
has two components, and the inradius at any point in one of these components is
bounded above by C/H . In other words, # is contained in — and perhaps looks
like — a tube around some (presumably 1-dimensional) set γ . This leads to the
following central question:

Question: What are the possible condensation sets γ in a 3-manifold M for
sequences of CMC surfaces # j with mean curvatures Hj ↗ ∞?

This might be regarded as some sort of CMC analogue of the problem, famously
studied in depth by Colding and Minicozzi, about the behaviour of sequences of
minimal surfaces without area bounds.

One indication about the possible nature of the condensation set is provided by
a formal calculation, which shows that if # j is a sequence of CMC surfaces with
Hj → ∞ condensing to a smooth curve γ , and if we assume that the pointwise
norm of the second fundamental form on # j is everywhere comparable to Hj , then

γ is a geodesic. This and the previous example of dilated surfaces inR3 leads to the
conjecture that the condensation set must be a network of geodesic arcs and rays.
In fact, one might even conjecture that each edge of this geodesic network inherits
a ‘weight’ encoding the Delaunay parameters of the CMC tubular piece converging
to that edge.

As a preliminary step toward understanding this condensation phenomenon,
the second author and Pacard [11] proved that if γ is any closed geodesic in M
which is non-degenerate (in the sense that its Jacobi operator is invertible), then
geodesic tubes of sufficiently small radius about γ , at least for most radii, can be
perturbed to CMC surfaces with large H .

The present paper contains one further step toward understanding this con-
densation phenomenon by showing that at least for certain very special ambient
geometries, there exist sequences of CMC surfaces which condense to a geodesic
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ray or a finite geodesic interval. However, one of the central points of our con-
struction also points in a different direction and indicates that the geodesic nature
of the limiting set γ is not really the crucial feature, but rather, that the gradient of
the ambient scalar curvature plays an equally important role in the geometry of this
condensation set.

We have already noted that the scalar curvature S contributes to the flux inte-
gral. However, this function has appeared elsewhere in this theory too. Indeed, the
first result about CMC surfaces with large H , by Ye [20] in the early 1990’s, states
that if p is a non-degenerate critical point of the scalar curvature function S (in a
manifold M of any dimension), then the geodesic spheres Bp(r) with small radius
may be perturbed to CMC surfaces H ∼ 1/r . He also showed a partial converse:
a sequence of CMC spheres with bounded eccentricity and with H → ∞ converge
to a point p where ∇S(p) = 0. By contrast, the scalar curvature of M plays no role
in the location of the geodesic which is the condensation set in [11]. In light of the
construction here, this is almost surely because the CMC surfaces constructed there
are nearly cylindrical.

The balancing formula. We finally provide come to a more quantitative descrip-
tion of our results. Let # be a surface with constant mean curvature H in (M3, g).
Suppose that U is an open set in #, and let W be another open set in M with

piecewise smooth boundary such that ∂W ∩ # = U . (The other portion of ∂W
is denoted Q.) If X is a Killing field on M , then the first variation formula for
the area of U with the volume ofW fixed relative to the one-parameter family of
diffeomorphisms for X gives that

∫

∂U
g(ν, X) − H

∫

Q

g(N , X) = 0; (1.1)

here ν is the unit normal vector field of ∂U in # and N is the unit normal vector
field of Q in M . More generally, the flux itself is defined as

∫

γ
g(ν, V ) − H

∫

Q

g(N , V ) (1.2)

where γ is a curve in #, Q is any surface in M with ∂Q = γ , and V is any vector
field on M . This integral is always independent of the choice of Q, and if # has
CMC and V is a Killing vector field, then (1.1) states that the flux depends only on
the homology class of γ in #. These formulæ first appeared in [8] (for surfaces in
R3).

Let us explain how these flux integrals help to determine when an approxi-
mately CMC surface can be perturbed to be exactly CMC. Suppose first that M =
R3 and let # consist of a collection of spheres of radius r (hence mean curvature
n/r) connected to each other by small catenoidal necks. Let U be one of these
spheres with small spherical caps removed where the necks are attached, Q the
union of disks capping these boundaries andW the slightly truncated ball enclosed
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by U ∪ Q. Then (1.1) becomes

∫

∂U
g(ν, V ) − 2

r

∫

Q

g(N , V ) =
∑

all necks

rεi Vi +O(rε2), (1.3)

where Vi is the unit vector pointing from the center of sphere in question to the i
th

neck, rεi is the width of this neck and ε := maxi {εi }. If # were exactly CMC,
the left hand side would necessarily vanish. If # is not exactly CMC, then to find
a nearby CMC surface, the leading term on the right in (1.3) must vanish for each
spherical region U in#. If this condition is satisfied, the approximate CMC surface
# is called balanced. Note that there is no balanced approximately CMC surface
where some sphere has only one spherical neighbour.

Now let # be an approximately surface formed by attaching together some
large collection of geodesic spheres of very small radius r in a more general (M3,g).
Although there are usually no ambient Killing fields, we can still use the approxi-
mate Killing fields corresponding to translations and rotations in Riemann normal
coordinates based at the center of any one of these spheres. Formula (1.1) now
becomes

∫

∂U
g(ν, V )−H

∫

Q

g(N , V ) =
∑

all necks

rεi Vi−Cr4∇S(p)+O(rε2)+O(r6) (1.4)

where ∇S is the gradient of the scalar curvature of M and C is an explicit dimen-
sional constant. Note that when applied to a sphere with no neighbours, i.e. all
εi = 0, this gives a condition which appears in Ye’s work that the right hand side of
(1.4) must vanish like r6.

The main point in this paper is to exploit the contribution of ∇S in (1.4).
Spheres of radius r are joined by necks of width rε, where by this same formula
it is natural to assume that ε = O(r3); these configurations are arranged in such a
way that the leading term on the right in (1.4) vanishes. The perturbation argument
used to produce a nearby CMC surface is not so different from the ones appearing
elsewhere in the literature, so the novelty here is the new method of constructing
balanced approximate CMC configurations.

Description of the surfaces. Our goal here is a ‘demonstration of concept’ rather
than the most general possible construction based on the considerations above. We
shall produce two specific types of condensing sequences of CMC surfaces which
exhibit markedly different properties than those which had been observed previ-
ously. As will be evident, the technicalities are formidable, so in order to minimize
these and illuminate the main ideas, we shall focus on some very special examples
inside three-manifolds M of a very special type. This provides a very good illus-
tration about what should happen in more general situations, although we do not
make any claims about what actually happens in these more general situations here.
More specifically, we assume that (M, g) contains a geodesic (ray or interval) γ , in
some neighbourhood of which the metric has an axial symmetry. In other words,
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suppose that γ is parametrized by arc length t and that in some neighbourhood of
γ , in Fermi coordinates the metric is given by

g = dt2 + A(t)δ; (1.5)

here δ is the Euclidean metric on D and A(t) is a smooth, strictly positive function
of the arclength t along γ . The initial configurations here are a union of geodesic
spheres arranged along γ and connected by small catenoidal necks. Semi-infinite
configurations are obtained by attaching to these one half of a Delaunay surface
with small neck size. In either case, each component has at most two neighbours.

The scalar curvature of g is S := A−2(−2A Ä+ 1
2 Ȧ

2). We shall place different
conditions on the warping function A depending on whether we are trying to obtain
finite-length or one-ended CMC surfaces.

1. To construct surfaces condensing to a geodesic interval, assume that A is an even
function of t , and that t = 0 is a non-degenerate local maximum of S.

2. To construct one-ended surfaces condensing to a geodesic ray, assume that when
t > 0, the scalar curvature is negative, monotonically increasing, and satisfies
|S(t)| ≤ Ce−αt for some α > 0. (An example is A(t) := 1+ e−t .)

Note that in either case, ∇S points along γ .
As already noted, these assumptions significantly reduce the complexity of the

perturbation argument. The great defect in considering only this special case is
that γ is not only a geodesic for g but also an integral curve for ∇S. It is unclear
which of these features is the crucial one, and in fact we expect that in more general
ambient geometries, the condensation curves will have some sort of mixed charac-
terization, i.e. be determined by a differential equation which is some perturbation
of the geodesic equation by a term involving ∇S.

Our main result can now be expressed as follows.

Theorem. Let M3 be a Riemannian manifold with the special features described
above.

• Let I = γ ([−L , L]) where γ is the central geodesic and L < ∞. Then there
exists an r0 > 0 so that for every 0 < r < r0, there is a CMC surface #F

r which
is a small perturbation of a surface constructed by gluing together length(I )/r
spheres of radius r with centers lying on γ .

• Let I = γ ([0,∞)). Then there exists an r0 > 0 so that for every 0 < r < r0,
there is a CMC surface #OE

r which is a small perturbation of a surface con-
structed by gluing together a number O(1/r) spheres of radius r with centers
lying on γ , together with an end of a Delaunay surface whose axis lies along γ .

The rescalings of #F
r and #OE

r by the factor 1/r converge as r → 0 to an infinite
or semi-infinite string of spheres of radius 1 with centers arranged along a segment
or ray in R3. More details about this convergence will be stated in the course of the
proof.
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As we have explained, the proof follows the strategy of previous gluing theo-
rems for CMC surfaces. After constructing the initial balanced approximately CMC
surface #̃ (by gluing together small geodesic spheres and catenoidal necks) we seek
to perturb this approximate solution into an exact solution using small normal de-
formations parametrized by functions on #̃. This transforms the problem into a
nonlinear elliptic PDE on #̃. However, #̃ is close to CMC only when all param-
eters (spherical radii and necksizes) are very small, so we face the difficulty that
we must solve this PDE only near this degenerate limit. There are now three steps.
First we must invert the linearized mean curvature operator (i.e. the Jacobi opera-
tor) L with suitable bounds on the inverse. One now-standard way to do this, used
already by Kapouleas [6, 7], is by semi-localization. To solve Lu = f , first solve
this problem on each building block and then combine these solutions appropri-
ately (with a perturbation argument) to construct a solution on all of #̃. Kapouleas
does this using the Dirichlet problem on each building block, considered as sur-
faces with boundary, e.g. the spheres with small disks excised. We use the slightly
different (but equivalent) approach of studying the Jacobi operators on the limits of
the building blocks, where the parameters have tended to zero. In either approach,
the main technical difficulty is the existence of small eigenvalues for the Jacobi
operators on each building block, and we must identify these eigenspaces, at least
approximately, so as to be able to work orthogonally to them. The second step of
the construction is to use the (generalized) inverse of the Jacobi operator in a fixed-
point argument to solve the non-linear PDE on the orthogonal complement of the
approximate nullspace of the linearized PDE. Here this approximate nullspace is
finite dimensional. This yields a solution whose mean curvature is constant modulo
a term in this approximate nullspace. The final step shows that by repositioning the
various building blocks relative to one other, one can kill the remaining approxi-
mate nullspace term. The balancing formula (1.1) plays an essential role here. The
quantitative estimates throughout all steps of the proof involve keeping careful track
of dependence on the neck sizes and radii, and this necessitates the introduction of
various weighted function spaces. These steps constitute the approximate plan for
the layout of this paper.

As a final remark, and to address a comment of the referee, let us note that since
our strong symmetry assumptions reduce this problem to an ordinary differential
equation,it may be possible (as the referee suggests) to use an ODE shooting method
to prove our main results. Even this approach would be very subtle though since one
wishes to find highly oscillatory solutions with a large prescribed number of slightly
positive minima. There are indeed results of this type in dynamical systems. We do
not follow this line of argument, both because it would not properly illuminate the
role of how ∇S enters the balancing conditions, but also because it sheds no light
on the more general non-symmetric situation.

ACKNOWLEDGEMENTS. The authors wish to thank Frank Pacard for interesting
discussions and encouragement during the course of this work. They also thank the
referee for carefully reading this paper and for many constructive suggestions on
how to improve the exposition.
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2. Preliminary geometric calculations

The approximate solutions constructed in Section 3 are assembled from small
geodesic spheres centered on points of the geodesic γ in M connected to one an-
other by small catenoidal necks. It is most convenient to use geodesic normal co-
ordinates centered at points of γ . Since the ambient metric g is a second order
perturbation of the Euclidean metric in these coordinates, the first step in every es-
timate is to perform the computations for a Euclidean metric; the second step is
to incorporate the perturbations coming from the metric into the estimates. In this
section we derive various expansions of the mean curvature and other geometric
quantities that will be used routinely in what follows.

2.1. Geometry of surfaces in a geodesic normal coordinate chart

If p is any point in a Riemannian manifold (M, g), then in terms of geodesic normal
coordinates centered at p,

g := g̊ + P :=
(
δi j + Pi j (x)

)
dxi ⊗ dx j

where g̊ is the Euclidean metric and P is the perturbation term. It is well known
that

Pi j (x) = 1

3

∑

l,m

Ril jm(0)xl xm + 1

6

∑

l,m,n

Ril jm;n(0)xl xmxn +O(‖x‖4). (2.1)

where Ri jkl := Rm( ∂
∂xi

, ∂
∂x j

, ∂
∂xk

, ∂
∂xl

) and Ri jkl;m := ∇̄ ∂
∂xm

,Rm( ∂
∂xi

, ∂
∂x j

, ∂
∂xk

, ∂
∂xl

)

are components of the ambient Riemann curvature tensor and its covariant deriva-
tive. (The ambient covariant derivative with respect to g is here denoted ∇̄. Let us
also denote the ambient covariant derivative with respect to the Euclidean metric of
the coordinate chart by D.)

Suppose that # is a surface in a geodesic normal coordinate chart of M . The
following results provide expansions for various geometric quantities of # in terms
of P . Here and in the rest of the paper, let h,*,∇,+, N , B, H be the induced
metric, Christoffel symbols, covariant derivative, Laplacian, unit normal vector,
second fundamental form, and mean curvature of # with respect to the metric g,

and let h̊, *̊, ∇̊, +̊, N̊ , B̊, H̊ be these same objects with respect to the Euclidean
metric in the coordinate chart. Let {E1, E2} be a local coordinate frame for T#
near x ∈ #. Define the linear operator ϒ by ϒ(X,Y, Z) := 1

2

(
X ⊗ Y ⊗ Z + Y ⊗

X ⊗ Z − Z ⊗ X ⊗ Y
)
and introduce the notation XA := E j when A = j and

XA = N̊ when A = 0. Now define

PAB := P(XA, XB)

PABC := DP ◦ ϒ(XA, XB, XC) .
(2.2)

Straightforward geometric calculations then yield the following results.
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Lemma 2.1. The induced metric of # and the associated Christoffel symbols are

given by

hi j = h̊i j + Pi j and *i jk = *̊i jk + Pi jk + P0k B̊i j .

The normal vector of # satisfies

N = N̊ − hi jP0 j Ei
(
1+ P00 − h̊i jP0iP0 j

)1/2 .

The second fundamental form of # satisfies

Bi j =
(
1+ P00 − h̊i jP0iP0 j

)1/2
B̊i j + Pi j0 − h̊klP0kPi jl

(
1+ P00 − h̊i jP0iP0 j

)1/2 .

We will need to make many more comparisons between geometric objects defined
on a surface # computed with respect to the Euclidean metric and those same ob-
jects computed with respect to the metric g = δ + P . We prove here the most
important ones. Let Y := ∑

i x
i ∂
∂xi

be the position vector field in the coordinate
chart; we will also use Y to denote this vector field restricted to #. In the estimates
that follow, let [h]α := supx1,x2 |h(x1) − h(x2)|/dist(x1 − x2)

α denote the Hölder
seminorm of a function h in the coordinate chart. We will also make the assumption

that ‖Y‖‖B̊‖ + ‖Y‖1+α[B̊]α ≤ C where C is some constant depending only on the
curvature tensor of M in the coordinate chart. This will be justified later on.

Lemma 2.2. If the second fundamental form of# satisfies ‖Y‖‖B̊‖+‖Y‖1+α[B̊]α ≤
C then the operators L := + + ‖B‖2 and L̊ := +̊ + ‖B̊‖2 satisfy

|L(u) − L̊(u)| + ‖Y‖α[L(u) − L̊(u)]α
≤ C

(
|u| + ‖Y‖‖∇̊u‖ + ‖Y‖2‖∇̊2u‖ + ‖Y‖2+α[∇̊2u]α

) (2.3)

where C is a constant depending only on the geometry of M in the coordinate chart.

Proof. We use the expressions for h,*, B in terms of h̊, *̊, B̊ from Lemma 2.1.
Without loss of generality, we can assume that the coordinates satisfy *̊ = 0. Thus
we have

|+u − +̊u| ≤ |hi j − h̊i j ||u,i j | + |hst*i j t ||u,s |
≤ C

(
‖Y‖2‖∇̊2u‖ + ‖Y‖(1+ ‖Y‖‖B̊‖)‖∇̊u‖

)

since hi j − h̊i j = A2(Y ) and *i j t = [A1(Y )]i j t + [A2(Y )]t B̊i j where Ak(z) is a
degree-k analytic function. Next, re-using the above results together with the fact
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that the derivativeA′
k(z) = Ak−1(z) and that [Y ]α ≤ ‖Y‖1−α we obtain

[+u − +̊u]α
≤ [hi j − h̊i j ]α|u,i j | + [hst*i j t ]α|u,s | + |hi j − h̊i j |[u,i j ]α + |hst*i j t |[u,s]α
≤ |A′

2(Y )|[Y ]α‖∇̊2u‖
+

(
|A′

1(Y )|[Y ]α + |A′
2(Y )|[Y ]α‖B̊‖ + |A2(Y )|[B̊]α

)
‖∇̊u‖

+ ‖Y‖2[∇̊2u]α + ‖Y‖[∇̊u]α
≤ ‖Y‖2−α‖∇̊2u‖ +

(
1+ ‖Y‖‖B̊‖ + ‖Y‖1+α[B̊]α

)
‖Y‖1−α‖∇̊u‖

+ ‖Y‖2[∇̊2u]α + ‖Y‖[∇̊u]α .

Finally, we use the form B = (1+A2(Y ))B̊ +A1(Y ) to derive
∣∣‖B‖2u − ‖B̊‖2u

∣∣ ≤ C max{‖B‖, ‖B̊‖} · ‖B − B̊‖ · |u|
≤ C‖B̊‖

(
‖A2(Y )‖‖B̊‖ + ‖A1(Y )‖

)
|u|

≤ C‖Y‖‖B̊‖|u|
and

[
‖B‖2u − ‖B̊‖2u

]
α

≤
[
‖B‖2 − ‖B̊‖2

]
α
|u| +

∣∣‖B‖2 − ‖B̊‖2
∣∣[u]α

≤ C
(
max{[B]α, [B̊]α} · ‖B − B̊‖ +max{‖B‖, ‖B̊‖} · [B − B̊]α

)
|u|

+ C‖Y‖‖B̊‖[u]α
≤ C

(
‖Y‖(1+ ‖Y‖‖B̊‖)[B̊]α + C‖B̊‖‖Y‖1−α(1+ ‖Y‖‖B̊‖ + ‖Y‖1+α[B̊]α)

+ ‖Y‖‖B̊‖[u]α
)

.

The desired estimates follow by combining all the above results.

Lemma 2.3. If the second fundamental form of# satisfies ‖Y‖‖B̊‖+‖Y‖1+α[B̊]α ≤
C then the mean curvature of # satisfies

∣∣H − H̊ −H(00)(Y, B̊)
∣∣ + ‖Y‖α

[
H − H̊ −H(00)(Y, B̊)

]
α

≤ C‖Y‖3

where

H(00)(Y, B̊) := 1

6

(
Rm(N̊ ,Y, N̊ ,Y ) + 1

2
∇̄YRm(N̊ ,Y, N̊ ,Y )

)
H̊

− 1

3

(
Rm(Ei ,Y, E j ,Y ) + 1

2
∇̄YRm(Ei ,Y, E j ,Y )

)
B̊i j

− 2

3
Ric(Y, N̊ ) − 1

2
∇̄YRic(Y, N̊ ) + 1

12
∇̄N̊Ric(Y,Y )

− 1

6
∇̄N̊Rm(N̊ ,Y, N̊ ,Y )

(2.4)



CMC HYPERSURFACES CONDENSING TO GEODESIC SEGMENTS AND RAYS 663

and Rmp and Ricp are the Riemann curvature tensor and Ricci tensor M of the am-

bient manifold at the centre of the coordinate chart and C is a constant depending

only on the geometry of M in the coordinate chart.

Proof. The starting point is once again Lemma 2.1 from which we deduce that the

induced metric of # satisfies hi j = h̊i j − h̊is h̊ j tPst + A4(Y ) where we use the
same notation forAk as in the previous lemma. Next, we can expand

Bi j =
(
1+ 1

2
P00

)
B̊i j + Pi j0 +A3(Y ) +A4(Y ) · B̊i j .

Taking the trace of Bi j with h
i j now yields an expansion for the mean curvature as

H =
(
1+ 1

2
P00

)
H̊ + h̊is h̊ j tPst B̊i j + h̊i jPi j0 +A3(Y ) + [A4(Y )]i j B̊i j .

Finally, explicitly expanding the P-quantities in terms of the curvature tensor at
the centre of the coordinate chart and estimating the remainder in the same way as
before establishes the lemma.

2.2. Mean curvature calculations in euclidean space

Let # be a surface in Euclidean space. Choose a function f : # → R and define
µ̊ f : # → R3 as the normal deformation of # generated by f . It is well known

that the mean curvature operator f 1→ H̊
[
µ̊ f (#)

]
with respect to the Euclidean

metric decomposes as

H̊
[
µ̊ f (#)

]
= H̊ + L̊( f ) + Q̊( f ) (2.5)

where L̊( f ) := +̊ f +‖B̊‖2 f is the linearized mean curvature operator with respect
to the Euclidean metric and Q̊( f ) is the quadratic and higher-order remainder term.

We now remind the reader of the expansion for Q̊( f ) in terms of f . Although this
result is fairly standard, it is important for our purposes to track the dependence of

the various terms in the expansion on ‖B̊‖.
To begin, let E1, E2 be a geodesic normal coordinate frame for T#. Use a

comma to denote ordinary differentiation in the coordinate directions. Now intro-
duce the quantities

βst := h̊st − f B̊st

βst :=
[
Inverse of β

]st

D :=
(
1+ βikβ jl f,k f,l h̊i j

)1/2
.

(2.6a)

After some work, one finds that the tangent vector fields [E f ]i for i = 1, 2, the

components of the Euclidean induced metric h̊ f and its inverse, and the Euclidean
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unit normal vector N̊ f of µ̊ f (#) are

[E f ]i := h̊ jkβi j Ek + f,i N̊

[h̊ f ]i j := βikβ jl h̊
kl + f,i f, j

[h̊−1
f ]i j := βimβ jn

(
h̊mn − βkpβlq f,k f,l h̊mph̊nq

D2

)

N̊ f := 1

D

(
N̊ − βi j f,i E j

)
.

(2.6b)

Further computations show that the second fundamental form B̊ f := B̊[µ̊ f (#)]
can be expressed as

D × [B̊ f ]i j = B̊i j + f;i j − f B̊ki B̊k j + βkl f,l( f,i B̊ jk + f, j B̊ik + f B̊ jk;i ) (2.7)

where a semicolon denotes the covariant derivative of # with respect to h̊st . We
expand the inverse of the induced metric as

h̊
i j
f := h̊i j + 2 f B̊i j − 1

D2
βimβ jnβkpβlq f,k f,l h̊mph̊nq + ηimη jn h̊mn

where the remainder term ηi j are the components of a tensor defined by ηi j :=
βi j − h̊i j − f B̊i j which satisfies ‖η‖ = O(| f |2‖B̊‖2). Now taking the trace of (2.7)
with respect to h̊

i j
f yields the mean curvature H̊ f := H̊(µ̊ f (#) which satisfies

D× H̊ f

= H̊ + +̊ f + ‖B̊‖2 f + 2 f B̊i j f;i j − 2 f 2h̊i j B̊ik B̊
k
l B̊

l
j

+ h̊i jβkl f,l(2 f,i B̊ jk + f B̊ jk;i )

+
(
− 1

D2
βimβ jnβkpβlq f,k f,l h̊mph̊nq+ηimη jn h̊mn

)
(B̊i j+ f;i j− f B̊ki B̊k j )

+
(
2 f B̊i j − 1

D2
βimβ jnβkpβlq f,k f,l h̊mph̊nq + ηimη jn h̊mn

)

· βkl f,l(2 f,i B̊ jk + f B̊ jk;i ).

(2.8)

We now easily recognize the terms in the expansion of the mean curvature.

Lemma 2.4. The linear parts of B̊ f and H̊ f are

[B̊(1)( f )]i j := f;i j − f B̊ki B̊k j

L̊( f ) := +̊ f + ‖B̊‖2 f .
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The quadratic remainder parts of B̊ f and H̊ f satisfy

D × [B̊(2)( f )]i j := βkl f,l( f,i B̊ jk + f, j B̊ik + f B̊ jk;i )

+ (1− D)(B̊i j + f;i j − f B̊ki B̊k j )

D × Q̊( f ) := 2 f B̊i j f;i j − 2 f 2Trδ(B̊
3) + h̊i jβkl f,l(2 f,i B̊ jk + f B̊ jk;i )

+
(
− 1

D2
βimβ jnβkpβlq f,k f,l h̊mph̊nq + ηimη jn h̊mn

)

· (B̊i j + f;i j − f B̊ki B̊k j )

+
(
2 f B̊i j − 1

D2
βimβ jnβkpβlq f,k f,l h̊mph̊nq + ηimη jn h̊mn

)

· βkl f,l(2 f,i B̊ jk + f B̊ jk;i )

+ (D − 1)
(
H̊ + +̊ f + ‖B̊‖2 f

)
.

The quadratic parts of both B̊ f and H̊ f are unwieldy, but only basic structural
facts about them are needed in the sequel. To simplify matters, we suppose that

| f |‖B̊‖ + ‖∇̊ f ‖ 3 1, which will be justified later on. Furthermore, both B̊(2)( f )

and Q̊( f ) can be expanded into a sum of terms which are each linear combinations

of the coefficients of the tensor f i · (∇̊ f )⊗ j ⊗ (∇̊2 f )⊗k ⊗ B̊⊗l ⊗ (∇̊ B̊)⊗m , where
i, j, k, l,m are positive integers such that k + m ≤ 1 and i + 1 = k + l + 2m (i.e.
the number of times the function f appears is smaller by one than the sum of the
number of covariant derivatives and the number of occurrences of the second fun-
damental form). Consequently the dominant terms in B̊(2)( f ) and Q̊( f ) are O(1)
linear combinations of components of

(∇̊ f )2 ⊗ B̊, f ∇̊ f ⊗ B̊2, f ∇̊ f ⊗ ∇̊ B̊, f 2 B̊3, f ∇̊2 f ⊗ B̊ and (∇̊ f )2 ⊗ ∇̊2 f.

The following estimates are now straightforward consequences of this discussion.

Lemma 2.5. Assuming that | fi |‖B̊‖ + ‖∇̊ fi‖ 3 1 for i = 1, 2, the quadratic re-
mainders in the second fundamental form and mean curvature satisfy the following

two estimates. First, these operators satisfy the pointwise bounds

|B̊(2)( f1) − B̊(2)( f2)| + |Q̊( f1) − Q̊( f2)|
≤ C| f1 − f2| ·max

i

(
| fi |‖B̊‖3 + ‖∇̊ fi‖‖B̊‖2 + ‖∇̊ fi‖‖∇̊ B̊‖ + ‖∇̊2 fi‖‖B̊‖

)

+ C‖∇̊ f1−∇̊ f2‖ ·max
i

(
| fi |‖B̊‖2 + ‖∇̊ fi‖‖B̊‖ + | fi |‖∇̊ B̊‖ + ‖∇̊ fi‖‖∇̊2 fi‖

)

+ C‖∇̊2 f1 − ∇̊2 f2‖ ·max
i

(
| fi |‖B̊‖ + ‖∇̊ fi‖2

)
.
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We also have the bounds

[B̊(2)( f1) − B̊(2)( f2)]α + [Q̊( f1) − Q̊( f2)]α
≤ C[ f1− f2]α ·max

i

(
| fi |‖B̊‖3 + ‖∇̊ fi‖‖B̊‖2 + ‖∇̊ fi‖‖∇̊ B̊‖ + ‖∇̊2 fi‖‖B̊‖

)

+ C[∇̊ f1−∇̊ f2]α ·max
i

(
| fi |‖B̊‖2+ ‖∇̊ fi‖‖B̊‖ + | fi |‖∇̊ B̊‖ + ‖∇̊ fi‖‖∇̊2 fi‖

)

+ C[∇̊2 f1−∇̊2 f2]α ·max
i

(
| fi |‖B̊‖ + ‖∇̊ fi‖

)

+ C| f1− f2| ·max
i

(
[ fi ]α‖B̊‖3+| fi |‖B̊‖2[B̊]α+[∇̊ fi ]α‖B̊‖2+‖∇̊ fi‖‖B̊‖[B̊]α

+ [∇̊ fi ]α‖∇̊ B̊‖ + ‖∇̊ fi‖[∇̊ B̊]α + [∇̊2 fi ]α‖B̊‖ + ‖∇̊2 fi‖[B̊]α
)

+ C‖∇̊ f1−∇̊ f2‖ ·max
i

(
[ fi ]α‖B̊‖2+| fi |‖B̊‖[B̊]α+[∇̊ fi ]α‖B̊‖+‖∇̊ fi‖[B̊]α

+ [ fi ]α‖∇̊ B̊‖ + | fi |[∇̊ B̊]α + [∇̊ fi ]α‖∇̊2 fi‖ + ‖∇̊ fi‖[∇̊2 fi ]α
)

+ C‖∇̊2 f1 − ∇̊2 f2‖ ·max
i

(
[ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α‖∇̊ fi‖

)

where C is independent of f1, f2 and ‖B̊‖.

2.3. Mean curvature calculations for a perturbed background metric

Consider now a surface µ̊ f (#) deformed by the amount f in the direction of the
Euclidean normal to #. Working again in a geodesic normal coordinate system
centered at some point of γ , this time we decompose the mean curvature operator
f 1→ H f := H [µ̊ f (#)] as

H f = H̊ f +H( f ) (2.9)

where H̊ f := H̊ [µ̊ f (#)] andH( f ) collects all the terms in the mean curvature H f

that depend on the perturbation term P in the background metric g = δ + P of the
coordinate chart. We would like to further expand H( f ) := H(0) +H(1)( f ) and
find a reasonable expression for the latter quantity (from Lemma 2.3 we already

knowH(0) = H(00)(Y, B̊) +O(‖Y‖3) provided ‖Y‖‖B̊‖ is bounded).
The way to do this is to substitute the quantities given in equation (2.6a) and

(2.6b), as well as the position vector field Y f := Y + f N̊ of µ̊ f (#) relative to the
center of the normal coordinate chart into the formulæ from Lemma 2.1. Unfor-
tunately, the resulting expressions are extremely unwieldy, but luckily their exact
form is not needed in the sequel. We will only need certain estimates.

Proposition 2.6. Let f1, f2 satisfy the assumptions | f∗|‖B̊‖ + ‖∇̊ f∗‖ 3 1. Sup-
pose also that ‖Y‖‖B̊‖ + ‖Y‖1+α[B̊]α ≤ C . Then the operator H(1) satisfies the
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estimates

|H(1)( f1) −H(1)( f2)|
≤ C‖B̊ f1 − B̊ f2‖max

i
‖Y fi ‖2

+ C max
i

‖B̊ fi ‖
(
‖Y fi ‖| f1 − f2| + ‖Y fi ‖2

(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

))

+ C max
i

(
| f1 − f2| + ‖Y fi ‖

(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

))

[H(1)( f1) −H(1)( f2)]α
≤ C‖B̊ f1 − B̊ f2‖max

i

(
‖Y f ‖[Y f ]α + ‖Y f ‖2

(
[ f ]α‖B̊‖ + | f |[B̊]α + [∇̊ f ]α

))

+ C[B̊ f1 − B̊ f2]α max
i

‖Y fi ‖2

+ C max
i

[B fi ]α
(
‖Y fi ‖| f1 − f2| + ‖Y fi ‖2

(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

))

+ C max
i

(
1+‖B fi ‖‖Y fi ‖

)(
([ fi ]α‖B̊‖+| fi |[B̊]α+[∇̊ fi ]α)| f1− f2|+[ f1− f2]α

+
(
[Y fi ]α+‖Y fi ‖

(
[ fi ]α‖B̊‖+| fi |[B̊]α+[∇̊ fi ]α

))(
| f1− f2|‖B̊‖+‖∇̊ f1−∇̊ f2‖

)

+ ‖Y fi ‖
(
[ f1 − f2]α‖B̊‖+| f1 − f2|[B̊]α + [∇̊ f1 − ∇̊ f2]α

))

where C is a constant depending only on the geometry of M in the coordinate chart.

Proof. We will use similar notation as Lemma 2.3, so that [Ak(z)]i j ···kl··· indicates a
tensor whose components are analytic functions in z := (z1, z2, z3) and degree k in

z1. The mean curvature H f is obtained by substituting (Y, E, N̊ ) 1→ (Y f , E f , N̊ f )
into the P-quantities appearing in the formulæ for Bi j and hi j appearing in Lemma
2.1, and then replacing B̊i j and h̊i j appearing there by [B̊ f ]i j and [h̊ f ]i j . By in-
specting the kinds ofP-quantities which occur in the resulting expression and using
the fact that h

i j
f = h̊

i j
f +A2(Y f , f B̊, ∇̊ f ) = h̊i j +A0(Y f , f B̊, ∇̊ f ), we see that

the operatorH is of the form

H( f ) = [A2(Y f , f B̊, ∇̊ f )]i j [B̊ f ]i j +A1(Y f , f B̊, ∇̊ f )| . (2.10)

To estimate (2.10), we begin with the required estimates for theA-quantities. First,
use the fact that Ak has degree k in its first argument and the boundedness of

| f |‖B̊‖ + ‖∇̊ f ‖ to deduce
‖Ak(Y f , f B̊, ∇̊ f )‖ ≤ C‖Y f ‖k .

Next, we deduce from the structure of Ak(z) and Ak(z) −Ak(z
′) as analytic func-

tions, as well as the assumptions about f1, f2 that

[Ak(Y f , f B̊, ∇̊ f )]α ≤ C
(
‖Y f ‖k−1[Y f ]α + ‖Y f ‖k([ f ]α‖B̊‖+ | f |[B̊]α+ [∇̊ f ]α)

)
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and

|Ak(Y f1, f1 B̊, ∇̊ f1) −Ak(Y f2, f2 B̊, ∇̊ f2)|
≤ C max

i

(
‖Y fi ‖k−1| f1 − f2| + ‖Y fi ‖k

(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

))

and

[Ak(Y f1, f1 B̊, ∇̊ f1) −Ak(Y f2, f2 B̊, ∇̊ f2)]α
≤ max

i
[Ak−1(Y fi , fi B̊, ∇̊ fi )]α| f1 − f2|

+max
i

|Ak−1(Y fi , fi B̊, ∇̊ fi )|[ f1 − f2]α
+max

i
[Ak(Y fi , fi B̊, ∇̊ fi )]α

(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

)

+max
i

|Ak(Y fi , fi B̊, ∇̊ fi )|
(
[ f1 − f2]α‖B̊‖ + | f1 − f2|[B̊]α + [∇̊ f1 − ∇̊ f2]α

)

≤ C max
i

((
[Y fi ]α + ‖Y fi ‖k−1

(
([ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α)| f1 − f2|

+ [ f1 − f2]α
)
+ ‖Y fi ‖k−1

(
[Y fi ]α + ‖Y fi ‖

(
[ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α

))

·
(
| f1 − f2|‖B̊‖ + ‖∇̊ f1 − ∇̊ f2‖

)

+ ‖Y fi ‖k
(
[ f1 − f2]α‖B̊‖ + | f1 − f2|[B̊]α + [∇̊ f1 − ∇̊ f2]α

))
.

We can now estimate

|H( f1) −H( f2)| ≤ C‖Y f2‖2‖B̊ f1 − B̊ f2‖ + ‖A2(Y f1, f1 B̊, ∇̊ f1)

−A2(Y f2, f2 B̊, ∇̊ f2)‖‖B̊ f1‖
+ |A1(Y f1, f1 B̊, ∇̊ f1) −A1(Y f2, f2 B̊, ∇̊ f2)|

and also

[H( f1) −H( f2)]α ≤ [A2(Y f2, f2 B̊, ∇̊ f2)]α‖B̊ f1 − B̊ f2‖
+ |A2(Y f2, f2 B̊, ∇̊ f2)|[B̊ f1 − B̊ f2]α
+ |A2(Y f2, f2 B̊, ∇̊ f2) −A2(Y f1, f1 B̊, ∇̊ f1)|[B̊ f1]α
+ [A2(Y f2, f2 B̊, ∇̊ f2) −A2(Y f1, f1 B̊, ∇̊ f1)]α‖B̊ f1‖
+ [A1(Y f2, f2 B̊, ∇̊ f2) −A1(Y f1, f1 B̊, ∇̊ f1)]α .

Once we substitute the appropriate estimates for the A-quantities derived above
into these expressions, we obtain the estimates of the proposition since H( f1) −
H( f2) = H(1)( f1) −H(1)( f2).
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2.4. Comparison between graphing functions

In this paper we will consider global normal deformations of a surface # in M
given by a function f : # → R of the form µ f (#), where µ is the exponential
map in the normal direction of# with respect to the metric of M . In order to use the
estimates derived in the previous sections, we will need to represent the intersection
of µ f (#) and a given normal coordinate chart U as µ̊ f0(#) ∩ U where µ̊ is the
normal deformation operator with respect the Euclidean metric of the coordinate
chart and f0 is a different function. We will need the following estimates for f0 in
the sequel.

Lemma 2.7. Let # be a surface belonging to a geodesic normal coordinate chart

U ⊆ M . Under the assumption that d := diam(U) is sufficiently small, and that
| f |‖B̊‖ + ‖∇̊ f ‖ 3 1 on # ∩ U , then there exists a function f0 : # → R so that

µ f (# ∩ U) = µ̊ f0(# ∩ U). Moreover, f, f0 satisfy

3∑

k=0
‖Y‖k‖∇̊k f0 − ∇k f ‖ ≤ Cd2

3∑

k=0
‖Y‖k‖∇k f ‖

where C is a constant that depends only on the geometry of M and Y is the position

vector field inside the coordinate chart.

Proof. Let dist(·,#′) and dist0(·,#′) be the signed distance functions to #′ with
respect to the metric g and to the Euclidean metric of the coordinate chart, re-
spectively. Let us assume without loss of generality that all distances are positive.
Choose p ∈ # ∩ U and then f (p) := dist(p, µ f (#)) = dist(p, µ f (p)) and
f0(p) := dist0(p, µ f (#)) by definition. Define a function F : # ∩ U → # ∩ U
by f (p) := dist0(p, µ f (F(p)) and note that f0(p) = 〈µ f (F(p)) − p, N̊ (p)〉0
since 〈µ f (F(p)) − p, X〉0 = 0 for any X ∈ Tp# by virtue of the fact that p and
µ f (F(p)) are at minimum Euclidean distance from each other. Here 〈·, ·〉0 is the
Euclidean inner product.

Nowµ f (q) = expq( f (q)N (q))where exp is the exponential map with respect
to the metric of M and N (q) is the unit normal vector of # at q with respect to the
metric of M . Let us write this as µ f (q) := G(q, f (q)N (q)) where G(q, V ) :=
expq(V ). Since the metric of M and the Euclidean metric satisfy maxi j |gi j −
δi j | + d maxi jk |gi j,k | + d2 maxi jkl |gi j,kl | ≤ Cd2 in the coordinate chart, and the
Euclidean-exponential map is G0(q, V ) := q + V , it can be shown that G(q, V ) =
q+V +G1(q, V )where G1(q, V ) is analytic in its arguments and can be expanded
in a Taylor series about the origin of the coordinate chart beginning with quadratic
terms and coefficients depending only on the geometry of M . Therefore with q :=
F(p) we have

f0(p) = f (q)〈N (q), N̊ (p)〉0 + 〈q − p, N̊ (p)〉0 (2.11a)

+ 〈G1(q, f (q)N (q)), N̊ (p)〉0
0 = f (q)〈N (q), X〉0 + 〈q − p, X〉0 (2.11b)

+ 〈G1(q, f (q)N (q)), X〉0 ∀ X ∈ Tp# .
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The second equation above implies that ‖(q − p)‖‖ ≤ Cd2| f |C0(U) based on our
estimates for G1 and the comparison estimates from the Section 2.1 for geometric
objects with respect to the two different metrics of the coordinate chart. Since q and

p both lie on #, we thus get ‖(q − p)⊥‖ ≤ Cd4| f |2
C0(U)

‖B̊‖C0(U) and therefore

‖q − p‖ ≤ Cd2| f |C0(U) using the assumptions and the comparison estimates of
Section 2.1. Hence the first equation above implies

| f0(p) − f (p)| ≤ | f (p) − f (q)| + | f (q)||〈N (q), N̊ (p)〉0 − 1|
+ |G1(q, f (q)N (q))|

≤ Cd2| f |C0(U)

again using the assumptions and previous estimates. Finally, the higher deriva-
tive estimates follow by differentiating equations (2.11) and proceeding by similar
means.

3. The approximate solutions

We now construct two families of approximate CMC surfaces. The first family con-
sists of finite-length surfaces invariant under the reflection t 1→ −t constructed by
gluing together K small geodesic spheres of radius r along the (t, 0, 0) geodesic
with small interpolating necks. Here K is approximately 1/r so that the surface
fills out a region along γ of bounded length which does not tend to 0 with r . The
second family consists of one-ended surfaces in an asymptotically flat Riemannian
manifold. These are constructed by taking a configuration of K spheres as above
and then attaching a semi-infinite Delaunay surface to the last sphere. These two
families are denoted #̃F

r (σ, δ) and #̃OE
r (σ, δ), respectively. These depend on pa-

rameters σ1, σ2, . . . and δ1, δ2, . . . which govern the precise locations of the com-
ponent spheres and necks. For brevity, we will often just write #̃r (σ, δ) for either
family when the context is clear or does not matter.

3.1. The finite-length surface

Let γ be the (t, 0, 0) geodesic and (with slight abuse of notation) also the arc-length
parametrization of this geodesic given by γ (t) := (t, 0, 0). Introduce the small
radius r and the (much smaller) separation parameters σk . Let t0 = 0 and tk :=
2kr + ∑k−1

l=0 (σl) and let p±k := (±tk, 0, 0). The geodesic spheres that will be used
in the gluing construction are S±k := ∂Br (p±k). Also let p

0
k := γ (tk + r + σk/2)

be the point half-way between Sk and Sk+1 and let p±
k := γ (tk ± r) be the points

in Sk ∩ γ . Define p±
−k and p

0
−k in a symmetrical manner. In the definitions above,

the index k ranges from zero to K .
The construction of the first surface consists of three steps. The first step is

to replace each Sk with S̃k which is obtained from Sk \ {p+
k , p−

k } or S0 by a small
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normal perturbation designed to make Sk look more like a catenoid near p
±
k . The

next step is to find the truncated and rescaled catenoids that fit optimally into the

space between S̃k and its neighbours, the precise location of which is governed by
displacement parameters δk . The final step is to use cut-off functions to glue each

S̃k smoothly to its neighbouring necks. The result of this process will be a family of
surfaces that depends on r and the parameters σ1, σ2, . . . and δ1, δ2, . . .. A number
of additional small parameters ε±

k and εk will be introduced below and it will be

shown how these depend on the σ and δ. Denote by ε := maxk{εk, ε+
k , ε−

k } below
and in the rest of the paper.

Step 1. Let LS := +̊ + ‖B̊‖2 be the linearized mean curvature operator of Sk
with respect to the Euclidean metric and let Jk : Sk → R be the smooth function
in the kernel of LS that is cylindrically symmetric with respect to the axis defined
by the geodesic γ and normalized to have unit L2-norm. (It is defined by taking the
correct multiple of the Euclidean normal component of the translation vector field
∂
∂t .)

Now introduce small positive scale parameters ε ±
k that have yet to be deter-

mined and define Gk : Sk \ {p±
k } → R for k = 0, . . . , K − 1 as the unique solution

of the equation
LS(Gk) = ε +

k δ+ + ε −
k δ− + Ak Jk (3.1a)

where δ± denotes the Dirac δ-function at p±
k and the real number Ak is chosen to

ensure that the right hand side of (3.1a) is L2-orthogonal to Jk . Also, let G
′
0 be the

unique solution of the equation

LS(G ′
K ) = ε −

K δ− + A′
K JK (3.1b)

where A′
K is chosen to ensure that the right hand side of (3.1b) is L

2-orthogonal to
JK . Note that |Ak | ≤ Cε for k = 1, . . . , N and A0 = 0 by symmetry.

To complete this step, introduce another small radius parameter rk yet to be

determined, and define S̃k as the Euclidean normal graph over Sk \
[
Brk/2(p

+
k ) ∪

Brk/2(p
−
k )

]
that is generated by the function rGk . Also define the terminal sphere

S̃′
K as the Euclidean normal graph over SK \ BrK /2(p

−
K ) that is generated by the

function rG ′
K as well as its symmetrical counterpart under the t 1→ −t symmetry.

Step 2. Coordinatize a neighbourhood of p
0
k using geodesic normal coordinates

centered at p
0
k and scaled by a factor of r . Let the coordinate map beψk : BR(p

0
k) ⊆

M → (−R′, R′)×BR′(0) ⊆ R×R2, where R, R′ are appropriate radii (one should
think of R = O(r) and R′ = O(1)). Note that the R coordinate corresponds to a
translation of the scaled arc-length coordinate along γ and γ itself maps to the

curve x0 1→ (x0, 0) with p
0
k mapping to the origin. The gluing procedure that

will now be described applies to any pair of perturbed spheres S̃k, S̃k+1, including
the last pair S̃K−1, S̃K . The images of S̃k+1 and S̃k under the coordinate map, at
least near the origin, can be represented as graphs over the R2 factor of the form
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{(x0, x) : x0 = F±
sph(x)} where + and − correspond to ψk(S̃k+1) and ψk(S̃k)

respectively. One can check that the Taylor series expansions for Gk near p
±
k and

for ψk imply corresponding expansions for F
±
sph near x = 0, which results in the

fact that ψk(S̃k) is the set of points

x0 = F−
sph(x) := σk

2r
+ ε −

k+1
(
c−k+1 + C−

k+1 log(‖x‖)
)
+O(‖x‖2) +O(ε‖x‖2)

while ψk(S̃k+1) is the set of points

x0 = F+
sph(x) := −σk

2r
− ε +

k

(
c+k + C+

k log(‖x‖)
)
+O(‖x‖2) +O(ε‖x‖2) .

Here, c±k and C
±
k are constants.

The interpolation between ψk(S̃k+1) and ψk(S̃k), will be done using a standard
catenoid that has been scaled by a factor of εk and translated by a small amount
along its axis. The x0 > 0 end of such catenoid is given by

x0=F+
neck(εk, dk; x) := εk arccosh(‖x‖/εk) + εkdk

= εk
(
log(2)− log(εk)

)
+ εk log(‖x‖) + εkdk +O(ε3k/‖x‖2)

near the origin, where dk is the translation parameter. The x
0 < 0 end is given by

x0= F−
neck(εk,dk;x) := − εk arccosh(‖x‖/εk) + εkdk

= − εk
(
log(2)−log(εk)

)
−εk log(‖x‖)+εkdk+O(ε3k/‖x‖2)

near the origin. Optimal matching of these asymptotic expansions of the catenoid

with those of ψk(S̃k+1) and ψk(S̃k) given above then requires

ε +
k = εk

C+
k

ε −
k+1 = εk

C−
k+1

dk = 1

2

(
c−k+1
C−
k+1

− c+k
C+
k

)

and

σk = 2k(εk) := rεk

(
2
(
log(2) − log(εk)

)
−

c−k+1
C−
k+1

− c+k
C+
k

)
. (3.2)

These equations imply that once the spacing σk between S̃k+1 and S̃k has been de-
cided upon, then one can determine εk by inverting the equation σk = 2k(εk), and
then the other parameters describing the optimally matched neck can be computed
from εk .

Finally, observe that the matching between ψk(S̃k+1) and ψk(S̃k) and the neck
defined by the choice of parameters above is most optimal in the region of x where
the error quantity O(‖x‖2) +O(ε3k/‖x‖2) is smallest. It is easy to check that this
occurs when ‖x‖ = O(ε

3/4
k ). Hence the radii rk in Step 1 should be chosen as

rk := rε
3/4
k , where the factor of r takes the scaling into account.
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Step 3. Choose dk , ε
±
k and εk as above. Also, introduce displacement parameters

δ1, δ2, . . . that serve to slightly displace the necks from their optimal locations. De-
fine a smooth, monotone cut-off function χ : [0,∞) → [0, 1] which equals one in
[0, 12 ] and vanishes outside [0, 1]. Define the functions F̃± : B1(0) → R by

F̃±(x) := χ(‖x‖/ε3/4k )F±
neck(εk, dk + δk; x) +

(
1− χ(‖x‖/ε3/4k )

)
F±
sph(x) . (3.3)

Now define the catenoidal interpolation between ψk(S̃k+1) and ψk(S̃k) as

Ñk := {(F̃+(x), x) : εk ≤ ‖x‖ ≤ ε
3/4
k } ∪ {(F̃−(x), x) : εk ≤ ‖x‖ ≤ ε

3/4
k } .

Finally, one can define the finite-length approximate solutions as follows.

Definition 3.1. Let K be given. The finite-length surface with parameters σ :=
{σ1, . . . , σK } and δ := {δ1, . . . , δK } is the surface given by

#̃F
r (σ, δ) :=

[
S̃0 \

[
BR(p+

0 ) ∪ BR(p−
0 )

]]

∪
[
K−1⋃

k=1
S̃k \

[
BR(p+

k ) ∪ BR(p−
k )

]
]

∪
[
S̃K \ BR(p−

K )
]

∪
[
K−1⋃

k=0
ψ−1
k (Ñk)

]

∪ π

([
K−1⋃

k=1
S̃k \

[
BR(p+

k ) ∪ BR(p−
k )

]
]

∪
[
S̃K \ BR(p−

K )
]

∪
[
K−1⋃

k=0
ψ−1
k (Ñk)

])
.

where π is the t 1→ −t reflection.

3.2. The one-ended surface

The one-ended family of approximate solutions is constructed by attaching a half
Delaunay surface to a finite-length surface as constructed above. This Delaunay
surface has very small necksize parameter, so we will need the detailed analysis of
these from [10].

Step 1. Let K be a large integer. Exactly as in the previous section, construct

K perturbed spheres of the form S̃k for k = 1, . . . , K and one terminal perturbed

sphere of the form S̃′
0 (which in this case is a normal graph over S0\Br0(p+

0 )), along

with perturbed necks ψ−1
k (Ñk) for k = 0, . . . , K − 1. Then glue these building

blocks together using cut-off functions and matched asymptotics again as before.
This construction should be equipped with the appropriate separation and displace-
ment parameters σ0, . . . σK−1 and δ0, . . . , δK−1.
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Step 2. The standard Delaunay surface of mean curvature 2 and with the appro-
priate small neck radius can be rescaled by a factor of r and translated along the

geodesic γ until there is overlap with the last perturbed sphere S̃K of the construc-
tion of Step 1. Optimal overlap can be achieved because the neck region of this
Delaunay surface is to first approximation a standard catenoid.

To be a bit more precise with this idea, one proceeds as follows. First recall that
Delaunay surfaces of mean curvature 2 are the surfaces of revolution generated by
the functions ρT : R → R studied in [10, Section 3]. These functions are periodic
with period T and have local minima at the integer multiples of T . Introduce the
parameters dK (which will be fixed once and for all below), and δK and σK (which
remain free). Define T := 2+ σK /r and εK := ρT (0) and TK := tK + r(dK + δK )
where tK is the arc-length parameter for the center of the perturbed sphere S̃K .
Now parametrize a family of translated Delaunay surfaces of mean curvature 2

r
and

period 2r + σK via

6 : (t, θ) 1→
(
rρT

(
t − TK

r

)
cos(θ) , rρT

(
t − TK

r

)
sin(θ) , t

)
.

Note that the t-parameter now corresponds exactly to the arc-length parameter of
γ . Define truncations of these Delaunay surfaces via

D+
r (σK , δK ) :=

{
6(t, θ) : t ∈ [TK − ω,∞) and θ ∈ S1

}

where ω is a small number of sizeO(rε3/4).
Next, one must find the optimally matching Delaunay surface. First note that

the neck size εK of the Delaunay surface D
+
r (σK , δK ) depends on σK . Now as in

Step 2 of the construction of the finite-length surface, the equality of the constant
and logarithmic terms of the expansion of the first neck of D+

r (σK , 0) and of the

asymptotic region of S̃K near p
+
K determines dK and ε+

K uniquely in terms of the
remaining free parameter σK . Nowmodify D

+
r (σK , 0) by means of cut-off function

as in Step 3 of of the construction of the finite-length surface so that it coincides

exactly with S̃K in the region S̃K ∩ {(t, x) : 1
2rω ≤ ‖x‖ ≤ rω}. Construct also

surfaces where δK := 0, introducing mis-match. Denote the family of modified

surfaces by D̃+
r (σK , δK ). The definition of the one-ended approximate solutions is

finally at hand.

Definition 3.2. Let K be given. The one-ended surface with parameters σ :=
{σ0, . . . , σK } and δ := {δ0, . . . , δK } is

#̃OE
r (σ, δ) := S̃′

0\BR(p+
0 )∪

[
K⋃

k=0
S̃k \ BR(p

0
k)

]
∪

[
K−1⋃

k=0
ψ−1
k (Ñk)

]
∪D̃+

r (σK , δK ) .

4. Function spaces and norms

The constant mean curvature equation for normal perturbations of the approximate
solutions #̃r (σ, δ) constructed in the previous section will be solved for functions in
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weighted Hölder spaces. The weighting will account for the fact that the geometry
of #̃r (σ, δ) is nearly singular in the small neck-size limit that will be considered
here. In fact, two slightly different function spaces will be introduced. The space

Ck,α
ν (#̃F

r (σ, δ)) will consist of all Ck,α
loc functions on #̃F

r (σ, δ) where the rate of

growth in the neck regions of #̃F
r (σ, δ) is controlled by the parameter ν. The space

C
k,α
ν,ν̄ (#̃OE

r (σ, δ)) will consist of all Ck,α
loc functions on #̃OE

r (σ, δ) where the rate of

growth in the neck regions of #OE
r (σ ) is controlled by the parameter ν and the rate

of growth in the asymptotic region along the axis of #̃OE
r (σ, δ) is controlled by the

parameter ν̄. This latter degree of control is necessitated by the non-compactness
of #̃OE

r (σ, δ). The two types of spaces described above will collectively be denoted

C
k,α
∗ (#̃r (σ, δ)) for brevity whenever needed.

4.1. Function spaces and norms for the finite-length surface

To begin, one must introduce a number of objects. Define a weight function ζr :
#̃r (σ, δ) → R to achieve control of the growth of functions on #̃r (σ, δ) in the neck
regions:

ζr (p) :=






r‖x‖ ψk(p) = (t, x) ∈ Ñk with x ∈ B̄R′/2(0) for some k

Interpolation ψk(p) = (t, x) ∈ ψk(S̃k) with x ∈ B̄R′(0) \ BR′/2(0)

for some k

r elsewhere

where the interpolation is such that ζr is smooth and monotone in the region of
interpolation, has appropriately bounded derivatives, and is invariant under all the
symmetries of #̃r (σ, δ). For the norms themselves, first introduce the following
terminology. If U is any open subset of #̃r (σ, δ) and T is any tensor field on U ,
define

|T |0,U := sup
x∈U

‖T (x)‖ and [T ]α,U := sup
x,x ′∈U

‖T (x ′) − 6x,x ′(T (x))‖
dist(x, x ′)α

,

where the norms and the distance function that appear are taken with respect to the
induced metric of #̃r (σ, δ), while 6x,x ′ is the parallel transport operator from x to
x ′ with respect to this metric. Then, for any function f : U → R define

| f |k,α,ν,U :=
k∑

i=0
|ζ i−ν
r ∇i f |0,U + [ζ k+α−ν

r ∇k f ]α,U .

The norms for the finite-length and one-ended surfaces can now be defined.
Define a collection of overlapping open subsets of #̃F

r (σ, δ) as follows. Let R̄

be a fixed radius such that
⋃

k B2R̄(p
0
k) contains all the neck regions of #̃F

r (σ, δ)

andA := #̃F
r (σ, δ) \

[⋃
k B̄R̄(p

0
k)

]
is the disjoint union of all the spherical regions
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of #̃r (σ, δ). Let AR := #̃F
r (σ, δ) ∩

[⋃
k B2R(p

0
k) \ B̄R(p

0
k)

]
for any choice of

R ∈ (0, R̄).

Definition 4.1. Let U ⊆ #̃F
r (σ, δ) and ν ∈ R and α ∈ (0, 1). The Ck,α

ν norm of a
function defined on U is given by

| f |
C
k,α
ν (U)

:= | f |k,α,U∩A + sup
R∈(0,R̄)

| f |k,α,U∩AR
.

The function spaces that will be used in the case of the finite-length surface are
simply the usual spaces Ck,α(#̃F

r (σ, δ)), but endowed with the Ck,α
ν norm. This

space will be denoted Ck,α
ν (#̃F

r (σ, δ)).

4.2. Function spaces and norms for the one-ended surface

The definition of the weighted norm that will be used in the case of the one-ended
approximate solution builds upon the norm just defined above. Extend the collec-

tion of overlapping open subsets used above by defining the points p
0
k for k ≥ K

as the points of γ upon which the neck regions of D̃+
r (σK , δK ) are centered, and

then re-definingA andAR as infinite unions over all k ∈ N. Furthermore, re-define
the weight function ζr by leaving it unchanged on #̃OE

r (σ, δ) \ D̃+
r (σK , δK ) and

defining

ζr (p) :=






r‖x‖ ψk(p)=(t,x)∈ D̃+
r (σK ,δK ) with x ∈ B̄R′/2(0)

Interpolation ψk(p)=(t,x)∈ D̃+
r (σK ,δK ) with x ∈ B̄R′(0)\BR′/2(0)

r elsewhere

Finally, for any subset U ⊆ #̃OE
r (σ, δ) and function f ∈ C

k,α
loc (U) define the

norm | f |k,α,ν,U as above. A second collection of overlapping open subsets of

D̃+
r (σK , δK ) will be now be introduced. Let T̄ := tK/2 be the arc-length param-

eter corresponding to the point pN/2 and for any choice of T ≥ T̄ define CT :=
#̃OE
r (σ, δ) ∩ {(x, t) ∈ R2 × R : t ∈ [T, T + r]}. Also define C := #̃OE

r (σ, δ) \CT̄ .
Definition 4.2. Let U ⊆ #̃OE

r (σ, δ) and ν, ν̄ ∈ R and α ∈ (0, 1). The Ck,α
ν,ν̄ norm

of a function defined on U is given by

| f |
C
k,α
ν,ν̄ (U)

:= | f |k,α,ν,U∩A∩C

+ sup
T>T̄

T−ν̄

(
| f |k,α,ν,U∩A∩CT + sup

R∈(0,R0)

| f |k,α,ν,U∩AR∩CT

)
.

The function spaces that will be used in the case of the one-ended surface are the

spaces C
k,α
ν,ν̄ (#̃OE

r (σ, δ)) := { f ∈ C
k,α
loc (#̃OE

r (σ, δ)) : | f |
C
k,α
ν,ν̄

< ∞} endowed with
the C

k,α
ν,ν̄ norm.
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Remark 4.3. At first glance, the norm of Definition 4.2 looks different from the
norm used to study the linearized mean curvature operator of near-degenerate De-
launay surfaces in [10, Section 4]. This is because the norm in [10, Section 4] is
defined using a different parametrization (the s-parameter). However, it is straight-
forward to check, using the estimates of [10, Section 4] relating the s-parameter to

the arc-length parameter, that the norm in [10, Section 4] is equivalent to the C
k,α
0,ν̄

norm defined above.

5. The solution up to finite-dimensional error

5.1. The finite-length surface

5.1.1. Strategy

Let µ : C2,αν (#̃F
r (σ, δ)) → Emb(#̃F

r (σ, δ),M) be the exponential map of #̃F
r (σ, δ)

in the unit normal direction of #̃F
r (σ, δ) with respect to the backgroung metric g.

Hence µr f

(
#̃F
r (σ, δ)

)
is the scaled normal deformation of #̃r (σ, δ) generated by

f ∈ C2,αν (#̃F
r (σ, δ)). The equation

H
[
µr f

(
#̃F
r (σ, δ)

)]
= 2

r
(5.1)

selects f ∈ C2,αν (#̃F
r (σ, δ)) so that µr f (#̃

F
r (σ, δ)) has constant mean curvature

equal to 2
r
. In addition, the function f will be assumed symmetrical with respect

to all the symmetries satisfied by #̃F
r (σ, δ). Using a fixed-point argument and a

suitable choice of weight parameters, the equation (5.1) will be solved up to a finite-
dimensional error term. That is, we fill find a solution of

H
[
µr f

(
#̃F
r (σ, δ)

)]
= 2

r
+ E ,

where E belongs to a finite-dimensional subspace of functions that will be denoted
W̃F and specified below. At first glance, this error comes from terms in the solution
procedure that are not sufficiently small. However, the true reason for the presence
of E is geometric and will be explained in Section 6, where we additionally show
how to eliminate it and thus solve equation (5.1) exactly.

To begin, we write H
[
µr f

(
#̃F
r (σ, δ)

)]
:= H [#̃r (σ, δ)] +L(r f ) + Pert where

L := + + ‖B‖2 and Pert is a perturbation term. Note that L is not the linearized
mean curvature operator of #̃F

r (σ, δ) since that operator differs from L by an am-
bient curvature term. The first step in the solution procedure is to construct a

suitably bounded parametrix R : C0,αν−2(#̃
F
r (σ, δ)) → C2,αν (#̃F

r (σ, δ)) satisfying

L ◦ R = Id + E where E : C0,αν−2(#̃
F
r (σ, δ)) → W̃F is an error term. Now we

set w0 := H
[
#̃F
r (σ, δ)

]
− 2

r
and use the Ansatz f := 1

r
R (w − w0) to transform
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equation (5.1) into

w − H
[
µR(w−w0)

(
#̃F
r (σ, δ)

)]
+ 2

r
+ E(w − w0) = w + E(w − w0) . (5.2)

Let Nr : C0,αν−2(#̃
F
r (σ, δ)) → C

0,α
ν−2(#̃

F
r (σ, δ)) be the non-linear operator given by

the left hand side of (5.2). We will show that Nr is a contraction mapping onto a
neighbourhood of zero containing w0. Once this is done, then we will have solved

the equation (5.7) up to the term E(w − w0) ∈ W̃F .
Showing that Nr is a contraction mapping onto a neighbourhood of zero con-

taining w0 is a matter of verifying that two estimates hold when r is sufficiently
small. First, that

|w|
C
0,α
ν−2

≤ 2|w0|C0,αν−2
=⇒ |Nr (w)|

C
0,α
ν−2

≤ 2|w0|C0,αν−2
(5.3a)

when r is sufficiently small. This establishes thatNr maps a ball of radius 2|w0|C0,αν−2
into itself. Second, that

|w|
C
0,α
ν−2

≤ 2|w0|C0,αν−2
=⇒ |Nr (w1)−Nr (w2)|C0,αν−2

≤ 1

2
|w1−w2|C0,αν−2

(5.3b)

when r is sufficiently small. This establishes that Nr is a contraction mapping on
this ball.

We will apply the following strategy for obtaining the necessary estimates for
Nr . Since #̃F

r (σ, δ) is constructed from a number of pieces that are each defined in
their own geodesic normal coordinate chart, we will obtain our estimate by patching
together estimates in each of these charts. To see how this is done, considerNr (w)
at a point of #̃F

r (σ, δ) in some geodesic normal coordinate chart U . By Lemma
2.7 we know that we can write µ f (#̃

F
r (σ, δ) ∩ U) = µ̊ f0(#̃

F
r (σ, δ) ∩ U) which

is the normal deformation of #̃F
r (σ, δ) with respect to the Euclidean metric within

the chart by an amount equal to a different function f0. Let us view the correspon-
dence f 1→ f0 as having been given by a mapping : : C2,αν (#̃F

r (σ, δ) ∩ U) →
C2,αν (#̃F

r (σ, δ) ∩ U). Therefore in U we can write

Nr (w)= w − H
[
µ̊:◦R(w−w0)

(
#̃F
r (σ, δ)

)
+ 2

r
+ E(w − w0)

= w − H̊
[
#̃F
r (σ, δ)

]
− L̊

(
: ◦R(w − w0)

)
− Q̊

(
: ◦R(w − w0)

)

−H
(
: ◦R(w − w0)

)
+ 2

r
+ E(w − w0)

= w − H̊
[
#̃F
r (σ, δ)

]
− (L̊ ◦ : − L) ◦R(w − w0)

)
− L ◦R(w − w0)

−Q̊
(
: ◦R(w−w0)

)
−H(0)−H(1)

(
: ◦R(w−w0)

)
+ 2
r

+E(w−w0)

= −(L̊ ◦ : − L) ◦R(w − w0)
)
− Q̊

(
: ◦R(w − w0)

)

−H(1)
(
: ◦R(w − w0)

)
(5.4)
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using the expansions of the mean curvature in geodesic normal coordinate charts
from Section 2. Consequently the estimates (5.3) can be derived by computing five
estimates: in Section 5.1.2 we construct and estimate the parametrixR; in Section
5.1.3 we estimate |w0|C0,αν−2

; in Section 5.1.4 we estimate the operators L̊◦:−L and
H(1) and Q̊; then finally in Section 5.1.5 we put these estimate together to establish
that Nr is indeed a contraction mapping on the ball of radius 2|w0|C0,αν−2

when r is

sufficiently small.

5.1.2. The linear analysis

We now construct a parametrix R satisfying L ◦ R = id + E where E has finite
rank. In each normal coordinate chart, L is close to the linearized mean curvature
operator with respect to the Euclidean metric L̊( f ) := +̊ f + ‖B̊‖2 f . Patching
together inverses for the latter operator gives a parametrix with an error which de-
composes into terms which are genuinely small (and thus can be made to vanish
after iteration), and those which together constitute E .

We make a few preliminary definitions of the cut-off functions that we will
need. First, denote Annτ (p) := Bτ (p) \ Bτ/2(p) and define subsets of #̃

F
r (σ, δ) by

S τ
k := #̃F

r (σ, δ) \
[
Bτ (p

0
k) ∪ Bτ (p

0
k−1)

]

N τ
k := #̃F

r (σ, δ) ∩ Bτ (p
0
k)

T τ
k,− := #̃F

r (σ, δ) ∩ Annτ (p
0
k−1)

T τ
k,+ := #̃F

r (σ, δ) ∩ Annτ (p
0
k) .

Now define the smooth, monotone cut-off functions

χτ
neck,k(x) :=






1 x ∈ N τ
k

Interpolation x ∈ T τ
k,+ ∪ T τ

k+1,−
0 elsewhere

χτ
ext,k(x) :=






1 x ∈ S τ
k

Interpolation x ∈ T τ
k,+ ∪ T τ

k,−
0 elsewhere

so that
∑

k χτ
ext,k + ∑

k χτ
neck,k = 1 for all τ . Moreover, let us suppose that these

functions are invariant with respect to all symmetries satisfied by #̃F
r (σ, δ).

Proposition 5.1. Let ν ∈ (1, 2). There is an operator R : C0,αν−2(#̃
F
r (σ, δ)) →

C2,αν (#̃F
r (σ, δ)) that satisfies L ◦R = id − E where E : C0,αν−2(#̃

F
r (σ, δ)) → W̃F .

Here W̃F is a finite-dimensional space that will be defined below. The estimates

satisfied byR and E are

|R(w)|
C
2,α
ν

+ |E(w)|
C
0,α
2

≤ C|w|
C
0,α
ν−2

for all w ∈ C
0,α
ν−2(#̃

F
r (σ, δ)), where C is a constant independent of r , ε and δ.
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Proof. Let w ∈ C
0,α
ν−2(#̃

F
r (σ, δ)) be given. The task at hand is to solve the equation

L(u) = w + E(w) for a function u ∈ C2,αν (#̃F
r (σ, δ)) and an error term E(w) ∈

W̃F . To begin, introduce four radii τ1 < τ2 < τ3 < τ4 3 r with the property that

the supports of the gradients of the cut-off functions χ
τi∗ and χ

τ j
∗ do not overlap for

i := j . These radii will be further specified below.

Step 1. Let wneck,k := wχ
τ3
neck,k . This function has compact support in N

τ3
k and

thus can be viewed as a function of compact support on the standard scaled catenoid.
Now consider the equationLN (u) = wneck,k on the standard scaled catenoid, where
LN is the linearized mean curvature operator of the scaled catenoid rεk N with
respect to the Euclidean metric. Then the pull-back of L to the standard scaled
catenoid is a small perturbation of LN . By the theory of the Laplace operator on

asymptotically flat manifolds, the operator LN is surjective onto C
0,α
ν−2(rεk N ) when

ν ∈ (1, 2). Hence there is a solution uneck,k as desired, satisfying the estimate
|uneck,k |C2,αν

≤ C|w|
C
0,α
ν−2

where these norms can be taken as the pull-backs of the

weighted Hölder norms being used to measure functions on #̃F
r (σ, δ). Finally, ex-

tend uneck,k to all of #̃F
r (σ, δ) by the definition ūneck,k := uneck,kχ

τ4
neck,k and set

ūneck := ∑
k ūneck,k .

Step 2. Define wext,k :=
(
w − L(ūneck)

)
χ

τ2
ext,k . Then wext,k is a function of com-

pact support on Sτ2
k and thus can be viewed as a function of compact support on the

sphere Sk \ {p+
k , p−

k }. Now consider the equation LS(u) = wext,k , where LS is the
linearized mean curvature operator of the sphere of radius r with respect to the Eu-
clidean metric. Then the pull-back of L to the sphere is a small perturbation of LS .
It is not a priori possible to solve the equation LS(uext,k) = wext,k on Sk because
of the one-dimensional kernel of LS that is invariant with respect to the symmetries
that have been imposed. A basis for the kernel is given by the function Jk : Sk → R
defined by Jk := g̊(N̊ , ∂

∂t )where g̊ is the Euclidean metric and N̊ is the unit normal

vector of Sk . Let w
⊥
ext,k := wext,k − 〈wext,k, Jk〉Jk be the projection of wext,k to the

orthogonal complement of span{Jk} with respect to the Euclidean L2-inner product
denoted by 〈·, ·〉. Now there is a solution of the equation LS(uext,k) = w⊥

ext,k sat-

isfying the estimate |uext,k |∗C2,α ≤ C|w⊥
ext,k |∗C0,α where | · |∗

Ck,α
is the scale-invariant

Ck,α norm where derivatives and the Hölder coefficient are weighted by appropriate

factors of r . Furthermore, one has |w⊥
ext,k |∗C0,α ≤ C|wext,k |∗C0,α ≤ Cτν−2

2 |w|∗
C
0,α
ν−2
.

A modified solution satisfying weighted estimates can be obtained as follows.
First, write uext,k := vext,k + a+

k η+
k + a−

k η−
k where vext,k satisfies |vext,k(x)| ≤

Cτν−2
2 dist(x, p∗

k )
2|w|

C
0,α
ν−2

near p∗
k , while the function η±

k equals one near p
±
k and

vanishes a small but ε-independent distance away from these points, and a± ∈
R satisfies |a±| ≤ Cτν−2

2 |w|
C
0,α
ν−2
. This decomposition is achieved by studying

the Taylor series expansion of uext,k near p
±
k and using the symmetries satisfied

by uext,k . Finally, by adding the correct multiple of Jk to uext,k on each Sk , one
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can arrange to have a−
k = 0 for every k ≥ 1 and a±

0 = 0 by symmetry. To

extend the functions uext,k to all of #̃
F
r (σ, δ), define ūext := v̄ext + A where v̄ext :=∑

k χ
τ1
ext,kvext,k and A := ∑

k a
+
k η+

k χ
τ1
neck,k . Then one has the estimate |v̄ext|C2,αν

+
|A|

C
2,α
ν

≤ Cτν−2
2 |w|

C
0,α
ν−2
.

Step 3. Let u(1) := v̄ext + ūneck and E (1)(w) := −∑
kχ

τ1
ext,k〈wext,k, Jk〉Jk −∑

kχ
τ1
ext,kLS(A). By collecting the estimates from Steps 1 and 2, one has |u(1)|

C
2,α
ν

≤
C|w|

C
0,α
ν−2
. The claim is that

|L(u(1))−w−E (1)(w)|
C
0,α
ν−2

≤θ |w|
C
0,α
ν−2

and |E (1)(w)|
C
0,α
2

≤Cτν−2
2 |w|

C
0,α
ν−2

(5.5)

where θ can be made as small as desired by adjusting τ1, . . . , τ4 and ε suitably. The
consequence is that one can iterate Steps 1 and 2 to construct sequences u(n) and
E (n)(w) that converge to u := R(w) and E(w) respectively, satisfying the desired
bounds.

Therefore to complete the proof of the proposition, it remains to compute the
estimates given in 5.5. The idea is to exploit the fact that L differs very little from
LN and LS in the regions where u(1) equals v̄ext and ūneck, all while taking into
account the effects of the cut-off functions. With this in mind, and using the notation
[L,χ](u) := L(χu) − χL(u), one has

L(u(1))= (L−LS)(v̄ext)+
∑

k

[LS,χτ1
ext,k](vext,k)+

∑

k

χ
τ1
ext,kLS(vext,k)+L(ūneck)

=(L− LS)(v̄ext) +
∑

k

[LS,χτ1
ext,k](vext,k) +

∑

k

χ
τ1
ext,kwext,k

−
∑

k

χ
τ1
ext,k〈wext,k, Jk〉Jk −

∑

k

χ
τ1
ext,kLS(A) + L(ūneck)

=(L− LS)(v̄ext) +
∑

k

[LS,χτ1
ext,k](vext,k) +

∑

k

χ
τ2
ext,k(w − L(ūneck))

−
∑

k

χ
τ1
ext,k〈wext,k, Jk〉Jk −

∑

k

χ
τ1
ext,kLS(A) + L(ūneck)

=(L−LS)(v̄ext)+
∑

k

[LS,χτ1
ext,k](vext,k)+

∑

k

χ
τ2
ext,kw+

∑

k

χ
τ2
neck,kL(ūneck)

−
∑

k

χ
τ1
ext,k〈wext,k, Jk〉Jk −

∑

k

χ
τ1
ext,kLS(A)

=(L− LS)(v̄ext) +
∑

k

[LS,χτ1
ext,k](vext,k) +

∑

k

χ
τ2
neck,k(L− LN )(ūneck)

−
∑

k

χ
τ1
ext,k〈wext,k, Jk〉Jk −

∑

k

χ
τ1
ext,kLS(A) + w

sinceL(ūneck)=(L−LN)(ūneck)+
∑

k[LN ,χ
τ4
neck,k](uneck,k)+

∑
k χ

τ4
neck,kLN (uneck,k).

The facts χ
τ1
ext,k χ

τ2
ext,k = χ

τ2
ext,k and χ

τ2
neck,k χ

τ3
neck,k χ

τ4
neck,k = χ

τ2
neck,k and
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χ
τ2
neck,k[LN ,χ

τ4
neck,k] = 0 have also been used in the calculations above. The claim

now follows since both L−LS and L−LN can be handled using Lemma 2.2 while

|[LS,χτ1
ext,k]vext,k |C0,αν−2

≤ C|vext,k |C2,αν (supp(∇χ
τ1
ext,k))

≤ C

(
τ1

τ2

)2−ν

|w|
C
0,α
ν−2

can be made as small as desired by adjusting the ratio τ1/τ2.
The iteration leading to the exact solution of the equation L(u) = w + E(w)

now works as follows. Using the steps above, for every n ≥ 0 one has functions

u(n) ∈ C2,αν (#̃F
r (σ, δ)) and w(n) ∈ C

0,α
ν−2(#̃

F
r (σ, δ)) satisfying L(u(n)) = w(n−1) +

E(u(n−1)) + w(n) and w(0) = w along with the estimates

|u(n)|
C
2,α
ν

+ |E(w(n−1))|
C
2,α
0

≤C|w(n−1)|
C
0,α
ν−2

and |w(n)|
C
0,α
ν−2

≤ 1

2
|w(n−1)|

C
0,α
ν−2

.

Consequently the series u :=
∞∑
n=1

(−1)n+1u(n) and E(w) :=
∞∑
n=1

(−1)n+1E(w(n−1))

converge in the appropriate norms and satisfy L(u) = w + E(w) along with the
desired estimates.

The definition of the finite-dimensional image of the map E : C0,αν−2(#̃
F
r (σ, δ)) →

W̃F is a by-product of Step 3 of the previous proof.

Definition 5.2. Define

W̃F := span{χτ1
ext,k Jk , χ

τ1
ext,kLS(η

+
k χ

τ1
neck,k) : k = 1, . . . , K − 1} ∪ {χτ1

ext,K JK } .

5.1.3. The mean curvature estimate

We next estimate the quantity w0 := H
[
#̃F
r (σ, δ)

]
− 2

r
in the C

0,α
ν−2 norm when

ν ∈ (1, 2). In the following, set ε := max{ε±
k , εk} and δ := max{δk} and recall that

rk = O(rε3/4).

Proposition 5.3. Suppose ν ∈ (1, 2). The mean curvature of #̃F
r (σ, δ) satisfies the

estimate∣∣∣∣H
[
#̃F
r (σ, δ)

]
− 2

r

∣∣∣∣
C
0,α
ν−2

≤ C max
{
r3−ν, r1−νε3/2−3ν/4, δr1−νε1−3ν/4

}

for some constant C independent of r , ε, δ and K .

Proof. Since we can write H
[
#̃F
r (σ, δ)

]
in terms of H̊

[
#̃F
r (σ, δ)

]
and B̊

[
#̃F
r (σ, δ)

]

and quantities depending on the background geometry as in Section 2.1, we can
break up the estimate of H

[
#̃F
r (σ, δ)

]
into several steps. The first two steps are

to derive pointwise estimates for H̊
[
#̃F
r (σ, δ)

]
and B̊

[
#̃F
r (σ, δ)

]
with respect to

the Euclidean background metric of the geodesic normal coordinate charts used to
define the spherical and neck regions, respectively; the third step takes into account
the contribution from the actual background metric in each coordinate chart; and

the fourth step is to compute the desired C
0,α
ν−2 norms of H

[
#̃F
r (σ, δ)

]
− 2

r
. Finally,

we note that all estimates computed below are independent of K .
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Step 1. The first step it to find pointwise estimates for B̊ := B̊
[
#̃F
r (σ, δ)

]
and

H̊ := H̊
[
#̃F
r (σ, δ)

]
in the coordinate chart used to define the spherical region S̃k of

#̃F
r (σ, δ). The key to this estimate is to use the formulæ (2.7) and (2.8) for B̊ and H̊

in terms of the graphing function rG and the second fundamental form B̊(Sk) and

mean curvature H̊(Sk) of Sk with respect to the Euclidean metric in conjunction
with the estimates from Lemma 2.5. The results are

‖B̊‖+rα[B̊]α
≤ C

(
‖B̊(Sk)‖ + r‖∇̊2G‖ + r(|G| + rα[G]α)‖B̊(Sk)‖2 + rα[∇̊2G]α

)

≤ C

r

(
1+ |G| + r‖∇̊G‖ + r2‖∇̊2G‖ + r2+α[∇̊2G]α

)

and

∣∣∣H̊ − 2

r

∣∣∣ + rα
[
H̊

]
α

≤ Cr2
(
|G|2‖B̊(Sk)‖3 + |G|‖∇̊G‖‖B̊(Sk)‖2 + |G|‖∇̊2G‖‖B̊(Sk)‖

+‖∇̊G‖2‖B̊(Sk)‖ + r‖∇̊G‖2‖∇̊2G‖
)

+ Cr2+α
(
[G]α

(
|G|‖B̊(Sk)‖3 + ‖∇̊G‖‖B̊(Sk)‖2 + ‖∇̊2G‖‖B̊(Sk)‖

)

+ [∇̊G]α
(
|G|‖B̊(Sk)‖2 + ‖∇̊G‖‖B̊(Sk)‖ + r‖∇̊2G‖‖∇̊G‖

)

+ [∇̊2G]α
(
|G|‖B̊(Sk)‖ + r‖∇̊G‖2

)

+ |G|
(
[G]α‖B̊(Sk)‖3 + [∇̊G]α‖B̊(Sk)‖2 + [∇̊2G]α‖B̊(Sk)‖2

)

+ ‖∇̊G‖
(
[G]α‖B̊(Sk)‖2 + [∇̊G]α‖B̊(Sk)‖

)

+ r‖∇̊G‖
(
[∇̊G]α‖∇̊2G‖ + ‖∇̊G‖[∇̊2G]α

)

+ ‖∇̊2G‖
(
[G]α‖B̊(Sk)‖ + r[∇̊G]α‖∇̊G‖

))

≤ C

r

(
|G| + r‖∇̊G‖ + r2‖∇̊2G‖ + r2+α[∇̊2G]α

)2

+ Cr3‖∇̊G‖2
(
‖∇̊2G‖ + rα[∇̊2G]α

)
.

The reason the estimate for
∣∣H̊ − 2

r

∣∣ is so much better is because we can expand∣∣H̊ − 2
r

∣∣ =
∣∣rL̊(G) + Q̊(rG)

∣∣ =
∣∣Q̊(rG)

∣∣ since L̊(G) = 0 in Sk , meaning that the
dominant terms in the estimate come from the quadratic part of the mean curvature.
To proceed, we note that by standard interior elliptic estimates for G, we have
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|G| + r‖∇̊G‖ + r2‖∇̊2G‖ + r2+α[∇̊2G]α ≤ Cε for some constant C independent
of r or ε. Therefore

‖B̊‖ + rα[B̊]α ≤ C

r
and

∣∣∣H̊ − 2

r

∣∣∣ + rα
[
H̊

]
α

≤ Cε2

r

in the spherical region Sk .

Step 2. The next step is to look inside one of the scaled normal coordinate charts
used in the definition of the necks. Again, the calculations are performed with re-
spect to the scaled Euclidean metric, and computed in the transition region Tk :=
Ñk ∩ {(t, x) : x ∈ B

ε
3/4
k

(0) \ B
ε
3/4
k /2

(0)} as well as the neck region Nk := Ñk ∩
{(t, x) : x ∈ B

ε
3/4
k /2

(0)} itself. Of course, the estimates in Nk are extremely

straightforward since Nk is exactly the standard catenoid for which H̊ ≡ 0 and

‖B̊‖ =
√
2 εk ‖x‖−2. Hence the challenge lies in estimating H̊ and B̊ in Tk .

The transition region Tk is the graph of the function F̃ := ηF + (1 − η)G as
in (3.3), where F(x) := εk

(
arccosh(‖x‖/εk) + dk + δk

)
and G has an asymptotic

expansion that matches the asymptotic expansion of F except for the mismatch in-

troduced by δk , while η is a cut-off whose derivative is supported in 12ε
3/4
k ≤ ‖x‖ ≤

ε
3/4
k . Now, the scaled Euclidean second fundamental form and mean curvature of a
graph are

B̊i j = 1

D̊
∇̊2i j F̃

H̊ = 1

D̊

(
δi j − ∇̊i F̃ ∇̊ j F̃

D̊2

)
∇̊2i j F̃

where D̊ :=
(
1+ ‖∇̊ F̃‖2

)1/2
. Write F̃ := u + F where u := (1− η)(G − F) and

observe that
u = εkδk(1− η) + (1− η)(Ĝ − F̂)

for functions Ĝ and F̂ of size O(‖x‖2) +O(ε3‖x‖−2). When ‖x‖ = O(ε3/4) one
has

|u − εkδk(1− η)| +
3∑

k=1
ε3</4‖∇̊<u + εkδk∇̊<η‖ = O(ε3/2)

|F − c1 − c2 log(1/ε)| +
3∑

<=1
ε3</4‖∇̊<F‖ = O(ε)

for constants c1, c2. Thus plugging F̃ into the expression for B̊ and estimating
yields

‖B̊‖ + ε3α/4[B̊]α ≤ Cε−1/2 .
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Next, plugging F̃ into the expression for H̊ yields

D̊ H̊ = +̊u +


 1
√
1+ ‖∇̊F‖2

− 1
√
1+ ‖∇̊F + ∇̊u‖2



 F,i F, j F,i j

− u,i u, j u,i j + u,i u, j F,i j + 2u,i F, j u,i j + F,i F, j u,i j + 2F,i u, j F,i j√
1+ ‖∇̊F + ∇̊u‖2

where we have used +̊F − (1 + ‖∇̊F‖2)−1F,i F, j F,i j ≡ 0. This holds since F is
the graphing function for the catenoid which has zero mean curvature. Therefore
after some work one can estimate

|H̊ − 2+ εkδk+̊η| + ε3α/4[H̊ + εkδk+̊η]α ≤ C

where C is independent of ε. We remind the reader that the estimates derived here
are with respect to the r-scaled Euclidean metric in the coordinate chart. When
we make use of these estimates in the next two steps, we will need to reverse the
scaling.

Step 3. The next step is to compute the pointwise norm of H := H [#̃F
r (σ, δ)]

with respect to the actual background metric with the help of the expansions from
Lemma 2.3. This lemma can be invoked here because we have also shown in Steps

1 and 2 that ‖Y‖‖B̊‖ + ‖Y‖1+α[B̊]α ≤ C everywhere on #̃F
r (σ, δ).

To proceed, we again perform the necessary calculations in each of the differ-
ent regions identified in Steps 1 and 2. Consider first the spherical region Sk , where
‖Y‖ = O(r) and

∣∣∣∣H − 2

r

∣∣∣∣ + rα [H ]α ≤
∣∣∣∣H̊ − 2

r

∣∣∣∣ + rα
[
H̊

]
α

+ |H(00)(Y, B̊)|

+ rα[H(00)(Y, B̊)]α + C‖Y‖3

≤
∣∣∣∣H̊ − 2

r

∣∣∣∣ + rα
[
H̊

]
α

+ C‖Y‖ + C‖Y‖2‖B̊‖

≤ C

(
ε2

r
+ r

)

by previous estimates and inspection of the quantity H(00)(Y, B) given in Lemma
2.3. Consider now the transition region Tk . First, by reversing the scaling used

in Step 2, the second fundamental form and mean curvature in Ñk , measured with
respect to the Euclidean metric, satisfy the estimates

∣∣∣∣H̊− 2

r
+εkδk+̊η

∣∣∣∣+rαε3α/4
[
H̊+εkδk+̊η

]

α
≤ C

r
and ‖B̊‖+rαε3α/4[B̊]α ≤ C

rε1/2
.
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Now these estimates can be plugged into the expansion of the mean curvature, ex-

cept that Y is now the position vector field of ψ−1(Ñk) relative to the center of the
normal coordinate chart used in the construction of the neck. Thus ‖Y‖ = O(rε3/4)
so that

∣∣∣∣H − 2

r

∣∣∣∣ + rαε3α/4
[
H

]
α

≤ C

r

(
1+ δ

rε1/2

)

in the transition region. Finally, in order to obtain the required estimate in the neck
region itself, we must use the relation ‖Y‖2 = r2

(
‖x‖2 + ε2 arccosh2(‖x‖/ε)

)

between the position vector field and the x-coordinate used in the definition of the
neck. This allows us to deduce
∣∣∣∣H − 2

r

∣∣∣∣ + ‖Y‖α
[
H

]
α

≤ 2

r
+ Cr‖x‖ + Cr2‖x‖2 ·

√
2εk

r‖x‖2 ≤ C

r
+ Cr

(
‖x‖ + ε

)
.

Step 4. The remaining task is to estimate |H − 2
r
| in the C0,αν−2 norm for ν ∈

(1, 2). This estimate will be derived by once again considering the three regions of
#̃F
r (σ, δ) identified in the previous steps. For now, the only assumption that will

be made about ε and δ is that ε 3 r . First, consider a spherical region Sk where
ζr ≡ r . Hence

ζ 2−ν
r

∣∣∣∣H − 2

r

∣∣∣∣ + ζ 2+α−ν
r

[
H − 2

r

]

α

≤ Cr3−ν .

Next, in the transition region Tk where ζr = O(rε3/4) one has

ζ 2−ν
r

∣∣∣∣H − 2

r

∣∣∣∣ + ζ 2+α−ν
r

[
H − 2

r

]

α

≤ Cr1−ν
(
ε3(2−ν)/4 + δε1−3ν/4

)
.

Finally, in the neck region Ñk where ζr (x) = r‖x‖ in the local coordinates used
there one has

ζ 2−ν
r

∣∣∣∣H − 2

r

∣∣∣∣ + ζ 2+α−ν
r

[
H − 2

r

]

α

≤ Cr1−νε3(2−ν)/4 .

The proposition now follows by consolidating these three estimates.

As a by-product of the proof of the previous proposition, we have also obtained
a uniform bound for the weighted norm of the second fundamental form in the
geodesic normal coordinate charts used in the construction of #̃F

r (σ, δ).

Corollary 5.4. The second fundamental form of #̃F
r (σ, δ) with respect to the Eu-

clidean metric in any geodesic normal coordinate chart U used in the construction

of #̃F
r (σ, δ) satisfies the estimate

sup
U

(
ζr

∣∣B̊
∣∣ + ζ 2r ‖∇̊ B̊‖

)
+ ζ 2+α

r [∇̊ B̊]α,U ≤ C

for some constant C independent of r , ε, δ and K .
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Proof. The proof of Proposition 5.3 has already established that ζr‖B̊‖+ζ 1+α
r [B̊]α ≤

C for some constant C independent of r , ε, δ and K in every normal coordinate

chart used in the definition of #̃F
r (σ, δ). It thus remains to estimate ‖∇̊ B̊‖.

First, consider one of the spherical regions of #̃F
r (σ, δ). The calculations from

Section 2.2 when # is a sphere of radius r and f = rG where G is the function
from equation (3.1) give

[B̊(rG)]i j = (1− G)2h̊i j + r2(1− G)G;i j + r2G;iG; j

r
(
(1− G)2 + r2‖∇̊G‖2

)1/2

for the second fundamental form B̊(rG) of #̃r (σ, δ) with respect to the Euclidean

metric while h̊i j is the induced metric of the sphere of radius r . Similarly, the

induced metric [h̊(rG)]i j and Christoffel symbols [*̊(rG)]i jk of #̃F
r (σ, δ) with re-

spect to the Euclidean metric of the coordinate chart are related to the corresponding
quantities of the sphere of radius r by

[h̊(rG)]i j = (1−G)2h̊i j+r2G;iG; j and [*̊(rG)]i jk = (1−G)2*̊i jk+G1+r2G2
where G1 is a tensor formed out of O(1) linear combinations of components of

∇̊G ⊗ h̊ and G2 is a tensor formed out of O(1) linear combinations of components

of ∇̊2G ⊗ ∇̊G. We now compute
[B̊(rG)]i j;k = [B̊(rG)]i j,k − [B̊(rG)]s j [h̊(rG)]st [*̊(rG)]ikt

− [B̊(rG)]is[h̊(rG)]st [*̊(rG)] jkt
and after some work, we reach the desired estimate. The Hölder seminorm estimate
can be found by estimating the difference |[B̊(rG)]i j;k(x) − [B̊(rG)]i j;k(y)| at
two different points x, y using the above formula. A similar procedure, based on
differentiating the formula for the second fundamental form of a graph in Euclidean
space found in Step 2 of the proof of Proposition 5.3, yields the desired estimate for

‖∇̊ B̊‖ in the neck and transition regions. The details are left to the reader.

5.1.4. The operator estimates

The next task is to find estimates for the C0,αν norm of the quadratic remainder term
Q and the error term H for the finite-length surface. We do this by combining the
estimates from Section 2 with the specifics of the construction of #̃F

r (σ, δ) from

Section 3. But we first need to show that | f |‖B̊‖ + ‖∇̊ f ‖ 3 1 holds if | f |
C
2,α
ν
is

bounded and r is small enough.

Lemma 5.5. Let U ⊆ #̃F
r (σ, δ) be one of the normal coordinate charts used in the

construction of #̃F
r (σ, δ) where the second fundamental form with respect to the

Euclidean metric is B̊. Then the following estimate hold in U :
sup
x∈U

(
‖Y (x)‖‖B̊(x)‖ + ‖Y (x)‖1+α[B̊]α

)
≤ C
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and

sup
x∈U

(
| f (x)|‖B̊(x)‖ + ‖∇̊ f (x)‖

)
+ sup

x∈U
ζα
r (x)

[
f · B̊ + ∇̊ f

]
α,U

≤ Crν−1| f |
C
2,α
ν

for all f ∈ C
2,α
∗ (#̃F

r (σ, δ)). Here C is a constant independent of r , ε and δ.

Proof. The first estimate is proved in Steps 1 and 2 of Proposition 5.3. For the

second estimate, we not that Corollary 5.4 implies that we have ζr (x)‖B̊(x)‖ +
ζ 2r (x)‖∇̊ B̊(x)‖ ≤ C where C is some constant independent of r , no matter where

x is located in #̃F
r (σ, δ). Consequently,

| f (x)|‖B̊(x)‖ + ‖∇̊ f (x)‖ = ζ ν−1
r (x)

(
ζ−ν
r (x)| f (x)| · ζr (x)‖B̊(x)‖

+ ζ 1−ν
r (x)‖∇̊ f (x)‖

)

which yields the first of the desired estimates. For the other, we calculate

sup
U

ζα
r · [ f · B̊ + ∇̊ f ]α,U ≤ sup

U
ζα
r

(
[ f ]α,U‖B̊‖ + | f |[B̊]α + [∇̊ f ]α

)

≤ sup
U

ζ ν−1
r

(
ζα−ν
r [ f ]αζr‖B̊‖ + ζ−ν

r | f |ζ 1+α
r [B̊]α,U + ζ 1+α−ν

r [∇̊ f ]α,U
)

≤ Crν−1| f |
C
2,α
ν

by the Hölder seminorm estimate of Corollary 5.4.

We can now deduce the following.

Proposition 5.6. There exists M > 0 so that if f1, f2 ∈ C2,αν (#̃F
r (σ, δ)) for ν ∈

(1, 2) and satisfying | f1|C2,αν
+ | f2|C2,αν

≤ M , then the quadratic remainder term Q̊
satisfies the estimate

|Q̊( f1) − Q̊( f2)|C0,αν−2
≤ Crν−1| f1 − f2|C2,αν

max
{
| f1|C2,αν

, | f2|C2,αν

}

where C is a constant independent of r , ε and δ.

Proof. Since Lemma 5.5 ensures that | fi |‖B̊‖ + ‖∇̊ fi‖ can be made as small as
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needed, it is possible to invoke Lemma 2.5 and obtain

ζ 2−ν
r |Q̊( f1) − Q̊( f2)|

≤ Cζ−ν
r | f1 − f2|

·max
i

ζ 2r
(
| fi |‖B̊‖3 + ‖∇̊ fi‖‖B̊‖2 + ‖∇̊ fi‖‖∇̊ B̊‖ + ‖∇̊2 fi‖‖B̊‖

)

+ Cζ 1−ν
r ‖∇̊ f1 − ∇̊ f2‖

·max
i

ζr
(
| fi |‖B̊‖2 + ‖∇̊ fi‖‖B̊‖ + | fi |‖∇̊ B̊‖ + ‖∇̊ fi‖‖∇̊2 fi‖

)

+ Cζ 2−ν
r ‖∇̊2 f1 − ∇̊2 f2‖ ·max

i

(
| fi |‖B̊‖ + ‖∇̊ fi‖2

)

≤ C| f1 − f2|C2,αν

·max
i

{
| fi |C2,αν

}
(

3∑

k=1
‖B̊‖kζ k−1+ν + ‖∇̊ B̊‖ζ 1+ν

r + | fi |C2,αν
ζ 2(ν−1)
r + ζ ν−1

r

)

as well as

ζ 2+α−ν
r [Q̊( f1) − Q̊( f2)]α
≤ Cζα−ν

r [ f1 − f2]α
·max

i
ζ 2r

(
| fi |‖B̊‖3 + ‖∇̊ fi‖‖B̊‖2 + ‖∇̊ fi‖‖∇̊ B̊‖ + ‖∇̊2 fi‖‖B̊‖

)

+ Cζ 1+α−ν
r [∇̊ f1 − ∇̊ f2]α

·max
i

ζr
(
| fi |‖B̊‖2 + ‖∇̊ fi‖‖B̊‖ + | fi |‖∇̊ B̊‖ + ‖∇̊ fi‖‖∇̊2 fi‖

)

+ Cζ 2+α−ν
r [∇̊2 f1 − ∇̊2 f2]α ·max

i

(
| fi |‖B̊‖ + ‖∇̊ fi‖2

)

+ Cζ−ν
r | f1− f2| · ζ 2+α

r max
i

(
[ fi ]α‖B̊‖3 + | fi |‖B̊‖2[B̊]α + [∇̊ fi ]α‖B̊‖2

+‖∇̊ fi‖‖B̊‖[B̊]α+ [∇̊ fi ]α‖∇̊ B̊‖+‖∇̊ fi‖[∇̊ B̊]α+[∇̊2 fi ]α‖B̊‖+‖∇̊2 fi‖[B̊]α
)

+Cζ 1−ν
r ‖∇̊ f1−∇̊ f2‖ ·max

i
ζ 1+α
r

(
[ fi ]α‖B̊‖2+| fi |‖B̊‖[B̊]α + [∇̊ fi ]α‖B̊‖

+‖∇̊ fi‖[B̊]α+[ fi ]α‖∇̊ B̊‖+| fi |[∇̊ B̊]α+[∇̊ fi ]α‖∇̊2 fi‖+‖∇̊ fi‖[∇̊2 fi ]α
)

+ Cζ 2−ν
r ‖∇̊2 f1−∇̊2 f2‖ ·max

i
ζα
r

(
[ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α‖∇̊ fi‖

)

≤ C| f1 − f2|C2,αν

·max
i

{
| fi |C2,αν

}
(

3∑

k=1
‖B̊‖kζ k−1+ν + ‖∇̊ B̊‖ζ 1+ν

r + | fi |C2,αν
ζ 2(ν−1)
r

+
2∑

k=0
‖B̊‖k[B̊]αζ k+α+ν

r + [∇̊ B̊]αζ 1+α+ν
r + ζ ν−1

r

)
.
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The desired estimate now follows by Corollary 5.4.

Proposition 5.7. There exists M > 0 so that if f1, f2 ∈ C2,αν (#̃F
r (σ, δ)) for ν ∈

(1, 2) and satisfying | f1|C2,αν
+ | f2|C2,αν

≤ M , then

|H(1)( f1) −H(1)( f2)|C0,αν−2

≤ Cr2
(
1+ rν−1 max

{
| f1|C2,αν

, | f2|C2,αν

})
| f1 − f2|C2,αν

where C is a constant independent of r , ε and δ.

Proof. First observe that ‖Y f ‖ ≤ C(r + | f |) ≤ C
(
r + rν | f |

C
2,α
ν

)
≤ Cr by the

uniform boundedness of | f |
C
2,α
ν
and the fact that ν ∈ (1, 2). Similarly, it is also

true that ζα
r [Y f ]α ≤ C(r + ζα

r [ f ]α + | f |ζα
r [N̊ ]α) ≤ Cr since we can show that

the α-Hölder norm of the unit normal vector field N̊ with respect to the Euclidean

metric is uniformly bounded. This is turn follows because ‖∇̊ N̊‖ ≤ C‖B̊‖ and we
have a bound for ζr‖B̊‖ from Lemma 5.5. Next, since | fi |‖B̊‖ + ‖∇̊ fi‖ can be
made as small as needed according to Lemma 5.5, we can use Proposition 2.6 and
Corollary 5.4 to derive

ζ 2−ν
r |H(1)( f1) −H(1)( f2)|

≤ Cζ 2−ν
r ‖B̊ f1 − B̊ f2‖max

i
‖Y fi ‖2

+ C max
i

ζr‖B̊ fi ‖
(
ζr‖Y fi ‖(1+ ‖Y fi ‖‖B̊‖)ζ−ν

r | f1 − f2|

+ ‖Y fi ‖2ζ 1−ν
r ‖∇̊ f1 − ∇̊ f2‖

)

+ C max
i

(
ζ 2−ν
r | f1 − f2| + ζr‖Y fi ‖

(
ζ−ν
r | f1 − f2|ζr‖B̊‖

+ ζ 1−ν
r ‖∇̊ f1 − ∇̊ f2‖

))

≤ Cr2ζ 2−ν
r ‖B̊ f1 − B̊ f2‖ + Cr2| f1 − f2|C2,αν

≤ Cr2
(
1+ rν−1 max

{
| f1|C2,αν

, | f2|C2,αν

})
| f1 − f2|C2,αν

where to reach the last line above, we have used the pointwise bound for ‖B̊ f1 −
B̊ f2‖ from Lemma 2.5 and the techniques used in Proposition 5.6 to estimate its

C
0,α
ν−2 norm. Finally, we perform similar calculations on the Hölder seminorm esti-
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mate of Proposition 2.6 to deduce

ζ 2+α−ν
r [H(1)( f1) −H(1)( f2)]α

≤ Crζ 2+ν
r ‖B̊ f1 − B̊ f2‖max

i
ζα
r

(
[Y fi ]α + ‖Y fi ‖

(
[ fi ]α‖B̊‖

+ | fi |[B̊]α + [∇̊ f ]α
))

+ Cr2ζ 2+α−ν
r [B̊ f1 − B̊ f2]α

+ C max
i

ζ 1+α
r [B fi ]α

(
rζr (1+ ‖Y fi ‖‖B̊‖)ζ−ν

r | f1 − f2|

+ r2ζ 1−ν
r ‖∇̊ f1 − ∇̊ f2‖

))

+ Cζr max
i

(
ζ 1+α
r ([ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α)ζ−ν

r | f1 − f2|

+ ζα−ν
r [ f1 − f2]α

+ ζ 1+α
r

(
[Y fi ]α + ‖Y fi ‖

(
[ fi ]α‖B̊‖ + | fi |[B̊]α + [∇̊ fi ]α

))

×
(
ζ−ν
r | f1 − f2|ζr‖B̊‖ + ζ 1−ν

r ‖∇̊ f1 − ∇̊ f2‖
)

+ r
(
ζα−ν
r [ f1 − f2]αζr‖B̊‖ + ζ−ν

r | f1 − f2|ζ 1+α
r [B̊]α

+ ζ 1+α−ν
r [∇̊ f1 − ∇̊ f2]α

))

≤ Cr2
(
ζ 2+ν
r ‖B̊ f1 − B̊ f2‖ + ζ 2+α−ν

r [B̊ f1 − B̊ f2]α + | f1 − f2|C2,αν

)

+ Cr1+ν | f1 − f2|C2,αν

≤ Cr2
(
1+ rν−1 max

{
| f1|C2,αν

, | f2|C2,αν

})
| f1 − f2|C2,αν

using Lemma 2.5 once again.

Proposition 5.8. There exists M > 0 so that if f ∈ C2,αν (#̃F
r (σ, δ)) for ν ∈ (1, 2)

and satisfying | f |
C
2,α
ν

≤ M , then

|L̊ ◦ :( f ) − L( f )|
C
0,α
ν−2

≤ Cr2| f |
C
2,α
ν

where C is a constant independent of r , ε and δ.

Proof. We begin by estimating

|L̊ ◦ :( f ) − L( f )|
C
0,α
ν−2

≤ |L̊(:( f ) − f )|
C
0,α
ν−2

+ |(L̊− L)( f )
C
0,α
ν−2

≤ C|:( f ) − f |
C
2,α
ν

+ |(L̊− L)( f )
C
0,α
ν−2
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where C is the operator norm of L : C2,αν (#̃r (σ, δ)) → C
0,α
ν−2(#̃r (σ, δ)). This is a

constant indpendent of r , ε, δ because of Lemma 5.5 and the following computation:

ζ 2−ν
r |+̊ f | + ζ−ν

r | f | · ζ 2r ‖B̊‖2 + ζ 2+α−ν
r [+̊ f + ‖B̊‖2 f ]α

≤ C
(
| f |

C
2,α
ν

+ ζr‖B̊‖ · ζ 1+α
r [B̊]α · ζ−ν

r | f | + ζ 2r ‖B̊‖2 · ζα−ν
r [ f ]α

)

≤ C| f |
C
2,α
ν

.

Lemma 2.7 now shows that in any normal coordinate chart

3∑

k=0
ζ k−ν
r ‖∇̊k(:( f ) − f )‖ ≤ C

3∑

k=0
ζ−ν
r ‖Y‖k‖∇̊k(:( f ) − f )‖

≤ Cr2
3∑

k=0
ζ−ν
r ‖Y‖k‖∇k f ‖

≤ Cr2| f |C3ν (#̃r (σ,δ))

since ζr (x)
−1‖Y (x)‖ is bounded above and below away from zero by a constant

C independent of r , ε and δ for all x ∈ #̃r (σ, δ). We deduce |:( f ) − f |
C
2,α
ν

≤
Cr2| f |

C
2,α
ν
from this. Finally, Lemma 2.2 shows that in any normal coordinate

chart

ζ 2−ν
r |L̊( f ) − L( f )| + ζ 2+α−ν

r [L̊( f ) − L( f )]α

≤ Cζ 2r

(
2∑

k=0
ζ−ν
r ‖Y‖k‖∇̊ f ‖ + ‖Y‖2+αζ−ν

r [∇̊2 f ]α
)

≤ Cr2| f |
C
2,α
ν

.

Putting together the estimates we’ve found leads to the desired result.

5.1.5. The fixed-point argument

We are now in a position to solve the CMC equation up to a finite-dimensional error
by showing that the mappingNr defined by equation (5.2) is a contraction mapping.
We do so by establishing both estimates (5.3). Now, by Proposition 5.3 we know
that

∣∣H
[
#̃F
r (σ, δ)

]
− 2

r

∣∣
C
0,α
ν−2

≤ C max
{
r3−ν, r1−νε3/2−3ν/4, δr1−νε1−3ν/4

}
:=

R(r, ε, δ). To simplify the proof below, we will now assume that ε ≤ Cr2 and
δ ≤ Cr . This will be justified in Section 6.3 when the parameters εk and δk are
determined. If we make this simplification, then R(r, ε, δ) ≤ Cr4−5ν/2. When
ν ∈ (1, 6/5) then R(r, ε, δ) = o(r) which is needed so that | f |

C
2,α
ν
is small enough

to invoke the various operator estimates used below.
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Proposition 5.9. There exists w := wr (σ, δ) ∈ C
0,α
ν−2(#̃

F
r (σ, δ)) with ν ∈ (1, 6/5)

and f := fr (σ, δ) ∈ C2,αν (#̃F
r (σ, δ)) defined by f := 1

r
R

(
w − H

[
#̃F
r (σ, δ)

]
+ 2

r

)

so that

H
[
µr f

(
#̃F
r (σ, δ)

)]
− 2

r
= E (5.6)

where E ∈ W̃F. Moreover, the estimate

| f |
C
2,α
ν

≤ Cr3−5ν/2

holds for the function f , where the constant C is independent of r , ε and δ. Finally,
the mapping (σ, δ) 1→ f (σ, δ) is smooth in the sense of Banach spaces.

Proof. Letw0 := H
[
#̃r (σ, δ)

]
− 2

r
. From Proposition 5.3 we know that |w0|C0,αν−2

≤
R(r, ε, δ) when r is sufficiently small. We now establish the first estimate (5.3a)
as laid out in Section 5.1.1 when r is sufficiently small. To do so, we consider

the operator Nr in any normal coordinate chart and choose w ∈ C
0,α
ν−2(#̃r (σ, δ))

with |w|
C
0,α
ν−2

≤ 2|w0|C0,αν−2
. Using equation (5.4) and the results of Proposition 5.6,

Proposition 5.7 and Proposition 5.8, we deduce

|Nr (w)|
C
0,α
ν−2

≤ |(L̊ ◦ : − L)(R(w − w0))|C0,αν−2

+ |Q̊(:(R(w − w0)))|C0,αν−2
+ |H(1)(: ◦R(w − w0))|C0,αν−2

≤ Cr2
(
|R(w − w0)|C2,αν

+ |:(R(w − w0))|C2,αν

)

+ Crν−1|:(R(w − w0))|2
C
2,α
ν

≤ C(r2 + rν−1R(r, ε, δ)
)
|w0|C0,αν−2

.

We have also used the fact that |:( f )|
C
2,α
ν

≤ C| f |
C
2,α
ν
according to Lemma 2.7 and

the fact that |R( f )|
C
2,α
ν

≤ C| f |
C
0,α
ν−2

according to Proposition 5.1. It is now clear

that if we choose r sufficiently small, it is possible to have C(r2+rν−1R(r, ε, δ)
)

≤
2 which establishes the first estimate (5.3a). By performing essentially the exact
same calculations, we find that the second estimate (5.3b) holds with this same value
of r . Consequently, Nr is a contraction mapping on the ball of radius 2|w0|C0,αν−2

.

The size of the solution f := f (σ, δ) follows from our bounds on R; while the
smoothness of the mapping (σ, δ) 1→ f (σ, δ) is a standard consequence of the
contraction mapping theorem. Therefore the proposition follows.

5.2. The one-ended surface

5.2.1. Strategy

The strategy for solving the CMC equation (5.1) in the case of the one-ended surface
#̃OE
r (σ, δ)must be modified in order to take the non-compactness of #̃OE

r (σ, δ) into
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account. In fact, the modification required can be understood by considering the
outcome of the linear analysis, specifically the nature of the parametrix forL. In this
case, the outcome of the construction of the parametrix, which will mimic Propo-

sition 5.1 as closely as possible, will be an operator R : C0,αν−2,ν̄(#̃
OE
r (σ, δ)) →

C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) ⊕ Ṽ satisfying L ◦R = id + E . The operator E again maps into
a finite-dimensional subspace W̃OE. The subspace Ṽ is the new ingredient, and it
can be explained as follows. First, let J sDel for s = 0, 1 be the bounded and linearly
growing Jacobi fields of the standard Delaunay surface and define the space

Ṽ := span{χτ̄
Del J

1
Del , χτ̄

Del J
2
Del}

where χτ̄
Del is a smooth, monotone cut-off function that transitions from zero to one

in the neck region where the Delaunay end of #̃OE
r (σ, δ) is attached to the finite part

of #̃OE
r (σ, δ). The reason Ṽ is needed is simply because L : C2,αν,ν̄ (#̃OE

r (σ, δ)) →
C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) is not surjective but becomes so when growth like the first non-

decaying Jacobi fields of L is permitted. But now the fact that one component of
the solution of the linearized problem does not decay forces the modified approach
that will be outlined in the next two paragraphs, since the quadratic remainder of
the mean curvature will not behave appropriately for this component. An approach
similar to the one proposed below has been used in [17].

To compensate for the non-decaying component of the solution of the lin-
earized equation, one proceeds as follows. Let R(1) denote the component of

R mapping into C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) and let R(2) be the component of R mapping

into Ṽ . Furthermore, if R(2)(w) = a1χ
τ̄
Del J

1
Del + a2χ

τ̄
Del J

2
Del, then let us write

R(2)(w) := (a1(w), a2(w)) despite the slight abuse of notation that this represents.
Now the equation that needs to be solved is still

H
[
µr f

(
#̃OE
r (σ, δ)

)]
= 2

r
(5.7)

but for f ∈ C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)). Recall that the last two free parameters of

#̃OE
r (σ, δ), namely σK and δK , parametrize asymptotically non-trivial deformations

of #̃OE
r (σ, δ). That is, these cause the period and location of the entire Delaunay

end to change. The idea for converting (5.7) into a fixed-point problem is to asso-
ciateR(1) with f andR(2) with the parameters (σK , δK ).

This can be done as follows. Recall that there are specific values σK = σ̊K and
δK = 0 which produce optimal matching in the assembly of #̃OE

r (σ, δ). With slight

abuse of notation, write #̃OE
r (a) := #̃OE

r (σ, δ) with a := (a1, a2) and (σK , δK ) =
(σ̊K + a1, a2). Given the flexibility one has in the choice of Ṽ , one can arrange that

∂

∂ai
H

[
#̃OE
r (a1, a2)

]∣∣∣∣
a=0

= L(χτ̄
Del J

i
Del)
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for i = 1, 2. Consequently, the Ansätze

w0 := H
[
#̃OE
r (σ, δ)

]
− 2

r
f := 1

r
R(1)(w − w0) a := R(2)(w − w0)

transform equation (5.7) into

w − H
[
µR(1)(w−w0)

(
#̃OE
r

(
R(2)(w − w0)

))]
+ 2

r
+ E(w − w0)

= w + E(w − w0) .

(5.8)

To solve this problem (up to an error term) we show that the mapping Nr :
C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) → #̃OE

r (σ, δ) given by the left hand side of (5.8) is a contrac-

tion mapping onto a neighbourhood of zero containing H
[
#̃OE
r (σ, δ)

]
− 2

r
. Doing

so requires establishing the same kinds of estimates as (5.3) via the expansion (5.4)
that is still valid here. Therefore the next four section mimic Sections 5.1.2–5.1.5.
Once we have the necessary estimates, then we obtain a solution of the equation

(5.7) up to a term in W̃OE. This finite-dimensional error term must of course still
be dealt with in order to find a true CMC surface near to #̃OE

r (σ, δ), and this will
be carried out in Section 6.

5.2.2. The linear analysis

The construction of the parametrix in the case of the one-ended surface begins with
the definition of an additional set of partitions of unity for #̃OE

r (σ, δ) as follows.
For any τ̄ ∈ R let Cylτ̄ be the set {(x, t) ∈ M : ‖x‖ ≤ r and t ≥ τ̄ }, and let
Dτ̄ := #̃OE

r (σ, δ) ∩ Cylτ̄ . Now define the smooth, monotone cut-off function χτ̄
Del

that equals one in Dτ̄ and vanishes in #̃OE
r (σ, δ) \Dτ̄−r .

A second important ingredient that will be used in the construction of the
parametrix is a careful analysis of the properties of the linearized mean curvature

operator of a near-degenerate Delaunay surface with respect to the C
k,α
ν,ν̄ norm. This

was carried out in [10] and the relevant results from [10, Section 4] can be adapted
to the needs of this paper and will be quoted whenever they are used in the proof
given below.

Proposition 5.10. Let (ν, ν̄) ∈ (1, 2) × (−1, 0).
There is an operatorR : C0,αν−2,ν̄(#̃

OE
r (σ, δ)) → C

2,α
ν,ν̄ (#̃OE

r (σ, δ))⊕ Ṽ that satisfies
L ◦ R = id − E where E : C0,αν−2,ν̄(#̃

OE
r (σ, δ)) → W̃OE. Here W̃OE is a finite-

dimensional space that will be defined below. The estimates satisfied by R and E
are

|R(w)|
C
2,α
ν,ν̄ ⊕Ṽ + |E(w)|

C
2,α
0,ν̄

≤ C|w|
C
0,α
ν−2,ν̄

for all w ∈ C
0,α
ν−2(#̃

OE
r (σ, δ)), where C is a constant independent of r , ε, δ and K .
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Proof. Let w ∈ C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) be given. The solution of the equation L(u) =

w + E(w) will be constructed broadly along the same lines as in Proposition 5.1 in
that local solutions on the spherical constituents, the necks and the Delaunay end
of #̃OE

r (σ, δ) will be patched together. In this case, however, a preliminary step is
needed to reduce the interaction between the Delaunay end and the finite part of
#̃OE
r (σ, δ). This amounts to showing that one can assume that w ≡ 0 in a large part

of #̃OE
r (σ, δ).

Step 0. Define wmid := χ
tK
Del (1 − χ

t2K
Del )w. Using the methods of Proposition

5.1, one can solve the Dirichlet problem L(umid) = wmid + E(wmid) and umid =
0 on ∂

[
DtK \ Dt2K

]
. The estimate one obtains is |umid|C2,αν

+ |E(wmid)|C2,α0 ≤
C|wmid|C0,αν−2

≤ C|w|
C
0,α
ν−2,ν̄

where C is independent of r , ε and K . Then umid can be

extended to all of #̃OE
r (σ, δ) by defining ūmid := χ

tK−r
Del (1 − χ

t2K+r
Del ) umid. If one

now solvesL(u) = w−L(ūmid), then the function u+umid solvesL(u+umid) = w.
The advantage will be that the functionw−L(ūmid) vanishes inDtK \Dt2K but still
satisfies the same estimates as did w. One can also assume that K can be as large
as desired.

Step 1. Let w ∈ C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) be given and assume that w ≡ 0 in DtK \

Dt2K . Consider the equation L(ufin) = wfin + E(wfin) where wfin := (1− χ
t2K
Del )w

and view the function on the right hand side as being defined on the finite-length
surface. Using the methods of Proposition 5.1, one can find a solution ufin ∈
C2,αν (#̃F

r (σ, δ)) satisfying |ufin|C2,αν
+ E(wfin)|C0,α0 ≤ C|w|

C
0,α
ν−2,ν̄

for some constant

C independent of r , ε and K . Note that one must view DtK \ Dt2K as being very
close to a union of spherical and neck regions in order to do so. Furthermore,
by carefully analyzing the iteration process that leads to the solution, the fact that
supp(wfin) ⊆ #̃OE

r (σ, δ) \DtK implies that for x ∈ #̃OE
r (σ, δ) near ∂Dt2K one has

ζ−ν
r (x)|ufin(x)| ≤ Ce−K |w|

C
0,α
ν−2,ν̄

for some constant C independent of r , ε and K .

Extend ufin to all of #̃
OE
r (σ, δ) by defining ūfin := (1− χ

t2K+r
Del ) ufin.

Step 2. Forw ∈ C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) from Step 1, setwDel := χ

t2K
Del w and consider

now the equation LD(uDel) = wDel but viewed as an equation on the complete
Delaunay surface Dr . Then using the methods of [10, Section 4] and [15] along
with the condition ν̄ ∈ (−1, 0), there is a solution of this equation which can be
decomposed as uDel = vDel + a1Del χ

τ̄
Del J

1
Del + a2Del χ

τ̄
Del J

2
Del. Here vDel ∈ C

2,α
ν,ν̄ (Dr )

and one has the estimate |vDel|C2,αν
+ |a1Del| + |a2Del| ≤ C|wDel|C0,αν−2,ν̄

for some

constant independent of r and ε. Furthermore, because supp(wDel) ⊆ #̃OE
r (σ, δ) ∩

DtK one can arrange to have ζ−ν
r (x)|ufin(x)| ≤ Ce−K |w|

C
0,α
ν−2,ν̄

for x ∈ #̃OE
r (σ, δ)

near ∂Dt2K for some constant C independent of r , ε and K . Now it is possible to
view #̃OE

r (σ, δ) ∩DtK as a graph over Dr ∩DtK and hence uDel can be viewed as

a function defined on #̃OE
r (σ, δ) ∩DtK . Extend this function to all of #̃OE

r (σ, δ) by

defining ūDel := χ
tK−r
Del uDel.
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Step 3. The estimate of L(u) − w up to a finite-dimensional error term proceeds
in the same way as in Step 3 of Proposition 5.1. The extra exponential decay of
ūfin and ūDel near ∂

[
DtK \Dt2K

]
ensures that the cut-off errors that arise there are

small. Consequently one can iterate the steps above and find the desired solution

R(w) ∈ C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) ⊕ Ṽ and satisfying the desired estimate.

The definition of the finite-dimensional image of the map E : C0,αν−2(#̃
OE
r (σ, δ)) →

W̃OE is once again a by-product of the previous proof.

Definition 5.11. Define

W̃OE := span{χτ1
ext,k Jk , χ

τ1
ext,kLS(η

+
k χ

τ1
neck,k) : k = 0, . . . , K − 1} ∪ {χτ1

ext,K JK } .

5.2.3. The mean curvature estimate

The estimate of the mean curvature of the one-ended surface #̃OE
r (σ, δ) is a very

straightforward extension of the results obtained in Section 5.1.3. In fact, the result
is the same.

Proposition 5.12. Suppose ν ∈ (1, 2) and ν̄ ∈ (−1, 0) is sufficiently close to zero.
The mean curvature of #̃OE

r (σ, δ) satisfies the estimate

∣∣∣∣H − 2

r

∣∣∣∣
C
0,α
ν−2,ν̄

≤ C max
{
r3−ν, r1−νε3/2−3ν/4, δr1−νε1−3ν/4

}

for some constant C independent of r , ε, δ and K .

Proof. The computations of Proposition 5.3 give the estimate of the mean curvature
of the part #̃OE

r (σ, δ) constructed from spheres and catenoids. It thus remains only

to compute the estimate of the mean curvature of D̃+
r (σK , δK ) (actually, the part

of D̃+
r (σK , δK ) that is an un-perturbed Delaunay surface). Once again, the key is

to use Lemma 2.3, but this time realizing that the mean curvature of D̃+
r (σK , δK )

with respect to the Euclidean background metric in a tubular neighbourhood of γ is

exactly equal to 2
r
. Let p be any point on γ and let p′ be any point on D̃+

r (σK , δK )∩
Br (p). Then by the lemma,

∣∣∣∣H(p′) − 2

r

∣∣∣∣ ≤ C|R(p)|
(
‖Y (p, p′)‖2‖B̊(p′)‖ + ‖Y (p, p′)‖

)

where R is an expression that is linear in the components of the ambient Riemannian
curvature at p and Y (p, p′) is the position vector field of p′ with respect to p. The
constant C is independent of r and ε. Since the curvature is exponentially decaying
along γ , the same estimates from Proposition 5.3 continue to hold and yield the
estimate needed here.
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5.2.4. The operator estimates

The estimates for the quantities |Q̊( f1)−Q̊( f2)| and |H(1)( f1)−H(1)( f2)| and |L̊◦
:( f ) −L( f )| in the C0,αν−2,ν̄ norm needed to show that the mapNr is a contraction
mapping in the case of the one-ended surface are very similar to the analogous
estimates for the finite-length surface. First, the result of Lemma 5.5 continues to
hold because the calculations are essentially identical, the only difference being the
need to multiply by factors of e−ν̄T along the end of #̃OE

r (σ, δ). These growing
factors are compensated for by the exponential decay assumed for f . Consequently
it is possible to make ‖B‖| f | + ‖∇ f ‖ pointwise small everywhere by choosing
| f |

C
2,α
ν,ν̄
sufficiently small.

Next, the non-linear estimate analogous to Propositions 5.6–5.8 follow simi-
larly because all terms coming from the background metric decay exponentially.
One has the following results.

Proposition 5.13. There exists M > 0 so that if f1, f2 ∈ C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) for ν ∈
(1, 2) and ν̄ ∈ (−1, 0) sufficiently close to zero and satisfying | f1|C2,αν,ν̄

+ | f2|C2,αν,ν̄
≤

M , then the quadratic remainder term Q̊ satisfies the estimate

|Q̊( f1) − Q̊( f2)|C0,αν−2,ν̄
≤ Crν−1| f1 − f2|C2,αν,ν̄

max
{
| f1|C2,αν,ν̄

, | f2|C2,αν,ν̄

}

where C is a constant independent of r , ε and δ.

Proposition 5.14. There exists M > 0 so that if f1, f2 ∈ C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) for ν ∈
(1, 2) and ν̄ ∈ (−1, 0) sufficiently close to zero and satisfying | f1|C2,αν

+ | f2|C2,αν
≤

M , then

|H(1)( f1)−H(1)( f2)|C0,αν−2,ν̄
≤ Cr2

(
1+ rν−1 max

{
| f1|C2,αν,ν̄

, | f2|C2,αν,ν̄

})
| f1− f2|C2,αν,ν̄

where C is a constant independent of r , ε and δ.

Proposition 5.15. There exists M > 0 so that if f ∈ C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) for ν ∈
(1, 2) and ν̄ ∈ (−1, 0) sufficiently close to zero and satisfying | f |

C
2,α
ν

≤ M , then

|L̊ ◦ :( f ) − L( f )|
C
0,α
ν−2,ν̄

≤ Cr2| f |
C
2,α
ν,ν̄

where C is a constant independent of r , ε and δ.

5.2.5. The fixed-point argument

The fixed-point argument in the case of the one-ended surface is again essentially
identical to the argument in the case of the finite-length surface with the excep-
tion that dealing with the non-decaying component of the parametrix requires some
additional care. As before, let w0 := H

[
#̃OE
r (σ, δ)

]
− 2

r
and R(r, ε, δ) :=

max
{
r3−ν, r1−νε3/2−3ν/4, δr1−νε1−3ν/4

}
. We will once again assume that ε ≤

Cr2 and δ ≤ Cr so that when ν ∈ (1, 6/5) then R(r, ε, δ) ≤ Cr4−5ν/2.
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Proposition 5.16. There exists w := wr (σ, δ) ∈ C
0,α
ν−2,ν̄(#̃

OE
r (σ, δ)) with ν ∈

(1, 6/5) and ν̄ ∈ (−1, 0) sufficiently close to zero, along with f := fr (σ, δ) ∈
C
2,α
ν,ν̄ (#̃OE

r (σ, δ)) and (a1, a2) ∈ Ṽ defined by

f := 1

r
R(1)

(
w − H

[
#̃OE
r (σ, δ)

]
+ 2

r

)

and

(a1, a2) := R(2)

(
w − H

[
#̃OE
r (σ, δ)

]
+ 2

r

)

so that

H
[
µr f

(
#̃OE
r (a1, a2)

)]
− 2

r
= E

where E ∈ W̃OE. Moreover, the estimate

| f |
C
2,α
ν,ν̄

≤ Cr3−5ν/2

holds for the function f , where the constant C is independent of r , ε and δ. Finally,
the mapping (σ, δ) 1→ f (σ, δ) is smooth in the sense of Banach spaces.

6. Solving the finite-dimensional problem

6.1. Strategy

It has now been established for both the finite-length and one-ended families of sur-

faces that if r , σ and δ are sufficiently small, one can findwr (σ, δ) ∈ C
0,α
∗ (#̃r (σ, δ))

and corresponding fr (σ, δ) ∈ C
2,α
∗ (#̃r (σ, δ)) so that

H
[
µ fr (σ,δ)

(
#̃r (σ, δ)

)]
− 2

r
= Er (σ, δ)

where Er (σ, δ) is an error term belonging to the finite-dimensional space W̃∗ and
depending on the free parameters in #̃r (σ, δ). To complete the proof of the main
theorem, we must show that it is possible to find a solution where these error terms
vanish identically.

To proceed, let us consider the balancing map defined by

Br (σ, δ) := π
(
Er (σ, δ)

)
(6.1)

where π : W̃∗ → Rd is a suitable bounded projection operator and d is the dimen-

sion of W̃∗. (The operator π will be a certain bijective L2-orthogonal projection
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onto a finite-dimensional vector space.) Note that Br is a smooth map between
finite-dimensional vector spaces by virtue of the fact that the dependence of the
solution fr (σ, δ) on (σ, δ) is smooth and the mean curvature operator is a smooth
map of the Banach spaces upon which it is defined. It will be shown using the im-
plicit function theorem for finite-dimensional maps that for every sufficiently small
r > 0, there exists (σ, δ) := (σ (r), δ(r)) for which Br (σ, δ) ≡ 0 identically. The
precise nature of the scalar curvature of the background manifold M enters the pic-
ture exactly here, since it will guide the selection of the parameters σ and δ to first
approximation.

6.2. The balancing formula

The projection operators that will be used to study the finite-dimensional error
Er (σ, δ) can be defined as follows. For k = 0, . . . , K let Jk : Sk → R have
its usual meaning; and let Ik : rεk Nk → R be the function defined by Ik(x) :=
‖x‖(‖x‖2 − ε2k )

−1/2 using the coordinates of the neck introduced in Section 3.
This latter function is in the kernel of the linearized mean curvature operator of
the catenoid with respect to the Euclidean background metric; it is an odd function
with respect to the center of the catenoid and is asymptotic to ±1. Now for conve-
nience let f := fr (σ, δ) and # f := µr f (#̃r (σ, δ)) denote the solution found in the

previous section and define πk : W̃∗ → R2 by

πk(e) :=
(∫

# f

e · χτ1
neck,k Ik dVolg ,

∫

# f

e · χτ4
ext,k Jk dVolg

)
.

The notation for the cut-off functions from Section 5.1.2 has been used here. A
consequence of the following lemma is that if π(e) = 0 then e = 0. The proof is a
straightforward computation.

Lemma 6.1. Choose e ∈ W̃ and write e =
K∑
k=1

(
akχ

τ1
ext,k Jk+bkχ

τ1
ext,kLS(η

+
k χ

τ1
neck,k)

)

for some ak, bk ∈ R. Then

πk(e) =
(
C1bk + C ′

1r
2(ε

3/2
k ak − ε

3/2
k+1ak+1) , C2r

2ak
)

where C1,C
′
1,C2 are constants independent of r , ε and δ.

A fundamental application of the expansions of the mean curvature found in
Lemma 2.3 and equation (2.4) from Section 2.1 is to derive a formula relating
π(Er (σ, δ) to the geometry of #̃r (σ, δ). This is in effect the balancing formula
discovered by Korevaar, Kusner and Solomon [8]. It is via this formula that the
location of the spheres and necks in #̃r (σ, δ) and the background geometry of M
conspire to determine when a nearby CMC surface can be found.
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Proposition 6.2. Let # f := µ f (#r (σ, δ)) and f := fr (σ, δ) for convenience.
Then the mean curvature of # f satisfies the formulæ

∫

# f

(
H [# f ] − 2

r

)
χ

τ1
neck,k Ik dVolg

= C0δkrε
3/2 +O(ε11/4r2) +O(r2ε3/2) +O(rνR(r, ε, δ)ε2)

(6.2a)

∫

# f

(
H [# f ] − 2

r

)
χ

τ4
ext,k Jk dVolg

= r
(
C1εk+1 + C ′

1ε
2
k+1

)
− r

(
C1εk + C ′

1ε
2
k

)
− C2r

4 Ṡ(pk)

+O(εr3) +O(r2ε3/2) +O(r2R(r, ε, δ))

(6.2b)

where C1, C ′
1, C2 are constants independent of r , ε and δ; and Ṡ (pk) :=

g(∇γ̇ (tk)S(pk), γ̇ (tk)) is the component of the gradient of the scalar curvature of
the ambient metric along the geodesic γ at pk .

Proof. The formula (6.2b) will be derived first. Consider the subset Uk of #0 con-
sisting of the kth spherical region of # := #̃r (σ, δ) and its adjoining transition

regions. Let X = ∂
∂t and X̃ = χ

τ4
ext,k X using the normal coordinate system cen-

tered at pk used in the definition of # ∩ Uk . Furthermore, define the domainWk

in M by requiring ∂Wk = Uk ∪ c1 ∪ c2 where c1 and c2 are small embedded two-
dimensional disks with boundaries ∂c1 and ∂c2 contained in t = constant planes
with g̊-conormal vectors ν̊1 and ν̊2 tangent to Uk .

Now let#′ be either# f ∩Uk or#∩Uk ; let X ′ be a vector field supported on this
surface; and let g′ be any choice of background metric. Define I (#′, X ′, g′) to be
the integral in (6.2b) except with # f replaced by #′ and Jk replaced by g′(X ′, N ′)
where N ′ is the g′-unit normal vector field of#′ and the mean curvature and volume
form calculated from g′. It is now simple to phrase the means by which the formula
(6.2b) will be found. First, I (# f , X̃ , g) can be expressed as

I (# f , X̃ , g)= I (#, X, g̊) +
(
I (#, X, g) − I (#, X, g̊)

)

+
(
I (# f , X̃ , g)− I (#, X̃ , g)

)
+

(
I (#, X̃ , g)− I (#, X, g)

)
.

(6.3)

Then one can apply the first variation formula in Euclidean space to the first term,
yielding a pair of boundary integrals; one can apply the expansions for the mean
curvature with respect to the perturbed background metric from Lemma 2.3 to the
second term, yielding a curvature quantity; and one can treat the third and fourth
terms as small errors.

The details of the computation outlined above are as follows. For the first term,
the classical first variation formula for a surface with boundary in Euclidean space
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gives

∫

#∩Uk

(
H̊ [#] − 2

r

)
JkdVol0=

2∑

s=1
(−1)s

(∫

∂cs

g̊(X, ν̊s)dL0 + 2
r

∫

cs

g̊

(
X,

∂

∂t

)
dVol0

)

=
2∑

s=1
(−1)s r

(
C1εs + C ′

1ε
2
s

)

by direct computation, where εs is the neck scale parameter associated to the neck
adjoining the curve ∂cs , while C1 and C

′
1 are constants independent of r , ε and δ.

For the second term, the expansion in equation 2.4 implies

I (#, X, g) − I (#, X, g̊)

=
∫

#∩Uk
g̊(X, N̊ )

((
1

6
Ric(Y,Y ) + 1

12
∇̄YRic(Y,Y )

)(
H̊ − 2

r

)

−
(
1

3
Rm(Ei ,Y, E j ,Y ) + 1

6
∇̄YRm(Ei ,Y, E j ,Y )

)
B̊i j

− 2

3
Ric(N̊ ,Y ) − 1

2
∇̄YRic(N̊ ,Y )

+ 1

12
∇̄N̊Ric(Y,Y ) − 1

6
∇̄N̊Rm(N̊ ,Y, N̊ ,Y )

)
dVol0 +O(r5)

(6.4)

where Y is the position vector field of #k , while the quantities g, N , H, B and

g̊, N̊ , H̊ , B̊ have their usual meanings. Since Uk is the normal graph of the function
rG over the sphere Sk as in Section 3, one can replace the integral in (6.4) with an
integral over Sk , at the expense of an error of sizeO(ε| log(ε)|r3). Hence by direct
computation using H̊ = 2

r
and B̊i j = r h̊i j one finds

I (#, X, g) − I (#, X, g̊) = −C2r4 Ṡ(pk) +O(ε| log(ε)|r3)

where C2 > 0 is a constant independent of r , ε and δ. An similar computation is
performed in [20].

It remains to estimate the error terms appearing in (6.3). In the third term, the

fact that H [# f ] = H [#] + L̊(r f ) + Q̊(r f ) + H(r f ) must be used. Using the

estimates for H [#] and Q̊ andH from Propositions 5.3, 5.7 and 5.8 along with the
estimate of f from Proposition 5.9, we find

∣∣I (# f , X̃ , g) − I (#, X̃ , g)
∣∣ ≤ Cr2| f |

C
2,α
0 (#∩Uk) ≤ Cr2R(r, ε, δ) .



CMC HYPERSURFACES CONDENSING TO GEODESIC SEGMENTS AND RAYS 703

Finally, for the fourth term, observe that X̃ − X is supported in a collar of width
O(rε3/4) around the transition regions of # ∩ Uk . Hence

∣∣I (#, X̃ , g) − I (#, X, g)
∣∣ ≤ Cr2ε3/2

using the estimate from Step 3 of Proposition 5.3 for the mean curvature in the
transition region.

The derivation of the formula (6.2a) is similar to what has been done above.
That is, writing I (#′, X ′, g′) as before, but with X ′ equal to either X := ∂

∂t or

X̃ := χ
τ1
neck,k

∂
∂t , one finds the same decomposition as (6.3) for I (# f , X̃ , g). But

now,

∫

#∩N τ1
k

(
H̊ [#] − 2

r

)
Ik dVol0 = −2

r

∫

#∩N τ1
k

Ik dVol0 = Cδkrε
3/2
k

where δk is the displacement parameter of the neck Nk and C is a constant inde-

pendent of r , ε and δ. This is because
∫
#∩N τ1

k
H̊ [#] Ik dVol0 = 0 exactly (this is

the first variation formula for the exactly minimal surface # ∩ supp(χ
τ1
neck,k)) and

Ik is an odd function with respect to the neck having δk = 0, whereas the integral
is being taken over the neck with δk := 0. The remaining terms in the expansion

of I (# f , X̃ , g) are small error terms whose estimates are sufficiently similar to the
analogous ones above and will not be repeated for the sake of brevity.

6.3. Proof of the main theorem

The formulæ developed for the balancing map Br : Rd → Rd in the previous
section make it possible to choose an exactly CMC surface from amongst the family
of surfaces µr fr (σ,δ)

(
#̃r (σ, δ)

)
. This will be done as follows. First, because of

Lemma 6.1, it is sufficient to find (σ, δ) so that the right hand sides of equations
(6.2a) and (6.2b) vanish for every k. One should realize that pk in these equations

can be expressed in terms of ε1, ε2, . . . via the formula pk := γ (2kr + ∑k
l=1 εl)

and εk can be expressed in terms of σk via the formula σk := 2k(εk) as in Section
3. (In the case of the one-ended surface, let the relationship εK = ρT (0) for T =
2 + σK /r satisfied by the Delaunay end of #̃OE

r (σ, δ) be written εK := 2K (σK )
for consistency.) Note that σk and pk are smooth functions of εk . Finding the
appropriate value (σ, δ) will amount to applying the implicit function theorem for
smooth maps between finite dimensional spaces to this system of equations, and
will lead to a unique solution (σ, δ) := (σ (r), δ(r)) for all sufficiently small r > 0
and ε, δ satisfying r4 < ε < r2 and δ < ε1/2.

The finite-length surface. The equations that must be solved to produce the
finite-length CMC surface are as follows: if the various error quantities appear-
ing in equations (6.2), divided by r , are denoted Es,k(r, ε) where s = 1 refers to a
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neck and s = 2 refers to a sphere, then

0 = δ1 + ε
−3/2
1 E1,1(r, ε, δ)

...

0 = δK−1 + ε
−3/2
K E1,K−1(r, ε, δ)

(6.5a)

as well as

0 = −q1(ε1) + q2(ε2) − C2,1r
3 Ṡ(p1) + E2,1(r, ε, δ)

...

0 = −qk(εk) + qk+1(εk+1) − C2,kr
3 Ṡ(pk) + E2,k(r, ε, δ)

...

0 = −qK (εK ) − C2,Kr
3 Ṡ(pK ) + E2,K (r, ε, δ)

(6.5b)

where qk(ε) := C1,kε + C ′
1,kε

2 and pk := γ (2kr + ∑k
l=1 εl) while C1,k,C

′
1,k and

C2,k are various constants independent of r , ε and δ. Note that the Es,k are smooth
functions of ε. Also, because the t 1→ −t symmetry that has been imposed since
the beginning, the scalar curvature must have a critical point at p0.

One should now view the equations in (6.5) as a systems of equations for the ε
and δ variables depending on the parameter r that is to be treated using the implicit
function theorem. When r = 0 there is an exact solution δ1 = · · · = δK−1 = 0
and ε1 = · · · = εK = 0. Furthermore, it is easy to see that the derivative matrix
of the function =(ε, δ, r) defined by the right hand sides of (6.5a) and (6.5b) in
the ε and δ variables is invertible at r = 0 with a lower bound of size O(1) on
its determinant (the derivative matrix is upper-triangular with non-zero constants
of size O(1) on the diagonal). Hence by the inverse function theorem there is a
solution of (6.5) for all sufficiently small r , and the dependence of ε and δ on r

is smooth. Note that the solution for small r will have εk = O(r3
∑k

k′=0 S(pk′))

and hence C1r
4 ≤ εk ≤ C2r

2 for numerical constants C1 and C2 if we assume
that Ṡ(0) = 0. This is because the sum r

∑k
k′=0 Ṡ(pk′)) approximates a Riemann

sum for the integral of S along γ from t = 0 to t = 2Kr and a uniform bound on
the oscillation of the scalar curvature of the ambient manifold has been assumed.
Furthermore, it is also the case that δk < ε1/2 for small r simply by examining
the dependence of the E(r, ε, δ) quantities on its arguments. This completes the
construction of the finite-length CMC surface.

The one-ended surface. The equations that must be solved to produce the one-
ended CMC surface are slightly different. Using the same notation as above, these



CMC HYPERSURFACES CONDENSING TO GEODESIC SEGMENTS AND RAYS 705

equations are

0 = δ1 + ε
−3/2
1 E1,1(r, ε, δ)

...

0 = δK−1 + ε
−3/2
K E1,K−1(r, ε, δ)

(6.6a)

as well as

0 = q0(ε0) − C2,0r
3 Ṡ(p0) + E2,0(r, ε, δ)

0 = −q0(ε0) + q1(ε1) − C2,1r
3 Ṡ(p1) + E2,1(r, ε, δ)

...

0 = −qK−1(εk) + qK (εK ) − C2,Kr
3 Ṡ(pK ) + E2,K (r, ε, δ) .

(6.6b)

One should again view the equations in (6.6) as a systems of equations for the ε and
δ variables to be treated using the implicit function theorem, but this time depending
on the parameters r and the point p0. When r = 0 and p0 is any point on γ , there
is an exact solution δ1 = · · · = δK−1 = 0 and ε1 = · · · = εK = 0. Furthermore,
the derivative matrix of the function of (ε, δ, r) defined by the right hand sides of
(6.6) in the (ε, δ) variables is invertible at r = 0 with a lower bound of size O(1)
on its determinant. Hence by the inverse function theorem there is a solution of
(6.5) for all sufficiently small r , the dependence of ε and δ on r is smooth, and
the dependence of the solution on r is the same as before. This completes the
construction of the one-ended CMC surface.
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