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Resonant nonlinear Neumann problems

with indefinite weight
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Abstract. We consider nonlinear Neumann problems driven by the p-Laplacian
plus an indefinite potential. First we develop the spectral properties of such dif-
ferential operators. Subsequently, using these spectral properties and variational
methods based on critical point theory, truncation techniques and Morse theory,
we prove existence and multiplicity theorems for resonant problems.
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1. Introduction

The aim of this paper is to study the existence and multiplicity of solutions for res-

onant nonlinear Neumann problems driven by the p-Laplacian plus an indefinite

potential. To do this, we need to develop the spectral properties of such differen-

tial operators. Thus far, such differential operators were used only in the context

of Dirichlet boundary value problems. In this direction we mention the works of

Cuesta [11], Cuesta-Ramos Quoirin [12], Del Pezzo-Fernandez Bonder [15], Fer-

nandez Bonder-Del Pezzo [16], Leadi-Yechoui [26], Lopez Gomez [32], who deal

only with the eigenvalue problem. On the other hand Birindelli-Demengel [7] study

Dirichlet problems with the p-Laplacian plus an indefinite potential and a superlin-

ear reaction. The study of the corresponding Neumann problems is lagging behind.

We mention the recent semilinear (i.e. p = 2) works of Li [27] and Qian [38] and

the quasilinear (i.e. p > 1) work of Aizicovici-Papageorgiou-Staicu [1]. However,

all the three works consider strictly positive potentials. In [1, 38] the reaction is su-

perlinear, while Li [27] considers a reaction which exhibits an oscillatory behaviour.

Our work is divided into two parts. In the first part we deal with the eigenvalue

problem and we develop the basic spectral properties of the Neumann p-Laplacian

plus an indefinite potential, i.e. of eigenvalue problems having the form





−!pu + β|u|p−2u = λ̂|u|p−2u in $,
∂u

∂n
= 0 on ∂$,
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where$ is a bounded and smooth domain ofRN , N ≥ 1,!pu = div(|Du|p−2N Du)
is the usual p-Laplace differential operator and β is a weight function which may
change sign.

In the second part of the paper we study asymptotically p-linear problems,

which may be resonant, and we prove existence and multiplicity results for prob-

lems of the form




−!pu + β|u|p−2u = f (z, u) in $,
∂u

∂n
= 0 on ∂$,

where f : $ × R → R is a function having asymptotically p-linear growth at

infinity and obeying different hypotheses, according to the different cases we shall

study.

Our tools are variational methods based on critical point theory, truncation

techniques and Morse theory.

We prove several existence and multiplicity results, allowing the weight to be

both unbounded or bounded, according to the conditions we put on the reaction

term. The semilinear case, i.e. when p = 2, can be investigated with the stronger

tools of Morse theory, improving the general multiplicity results we get in the gen-

eral quasilinear case.

For the reader’s convenience, in the next section we recall some of the main

notions and results from the aforementioned theories that we will use in the sequel.

2. Mathematical background

We start by recalling some elements from critical point theory. Let X be a Banach

space and let X∗ be its topological dual. By 〈· , ·〉 we denote the duality brackets
for the pair (X∗, X). Let φ ∈ C1(X); we say that φ satisfies the “Palais-Smale
condition” (“PS-condition” for short) if the following holds:

every sequence {xn}n≥1 ⊆ X such that {φ(xn)}n≥1 ⊆ R is bounded and

φ′(xn) → 0 in X∗ as n → ∞, admits a strongly convergent subsequence.

Sometimes it is more convenient to use a more general compactness condition,

known as the ”Cerami condition” (“C-condition” for short): we say that φ ∈ C1(R)
satisfies the C-condition if the following holds:

every sequence {xn}n≥1 ⊆ X such that {φ(xn)}n≥1 ⊆ R is bounded

and (1+ ‖xn‖)φ′(xn) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.

It was shown by Bartolo-Benci-Fortunato [3] that the Deformation Theorem, and

consequently the minimax theory of critical values, remains valid if the usual PS-

condition is replaced by the weaker C-condition.

The following topological notion is important in critical point theory and will

be used in the following sections.
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Definition 2.1. Let Y be a Hausdorff topological space and D0, D and S be

nonempty closed subsets of Y such that D0 ⊆ D. We say that the pair {D0, D}
is linking with S in Y if and only if

(a) D0 ∩ S = ∅;
(b) for all h ∈ C(D,Y ) satisfying h|D0 = I d|D0 , we have h(D) ∩ S /= ∅.

Using this notion, we have the following basic minimax principle (see, for example,

[18]).

Theorem 2.2. If X is a Banach space, D0, D and S are nonempty closed subsets

of X , the pair {D0, D} is linking with S in X , φ ∈ C1(R) satisfies the C-condition,

sup
D0

φ ≤ inf
S

φ,

set ' :=
{
γ ∈ C(D, X) : γ|D0 = I d|D0

}
and

c := inf
γ∈'

sup
u∈D

φ(γ (u)),

then c ≥ infS φ and c is a critical value for φ. Moreover, if c = infS φ, then we can
find a critical point of φ in S.

By an appropriate choice of the linking sets, we obtain as corollaries of Theo-

rem 2.2, the Mountain Pass Theorem, the Saddle Point Theorem and the General-

ized Mountain Pass Theorem. For future use, we state the Mountain Pass Theorem.

Theorem 2.3. If X is a Banach space, φ∈C1(X) satisfies the C-condition, x0, x1∈
X satisfy

max
{
φ(x0),φ(x1)

}
≤ inf

{
φ(x) : ‖x − x0‖ = ρ

}
= ηρ, ‖x1 − x0‖ > ρ,

set ' :=
{
γ ∈ C([0, 1], X) : γ (0) = x0, γ (1) = x1

}
and

c := inf
γ∈'

sup
t∈[0,1]

φ(γ (t)),

then c ≥ ηρ and c is a critical value for φ. Moreover, if c = inf∂Bρ(x0) φ, then we
can find a critical point of φ in ∂Bρ(x0).

Remark 2.4. It is easy to see that Theorem 2.3 follows from Theorem 2.2 if we

choose D0 = {x0, x1}, D = [x0, x1] =
{
x ∈ X : x = (1− t)x0 + t x1, 0 ≤ t ≤ 1

}

and S = ∂Bρ(x0).
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Next, let us recall some basic definitions and facts from Morse theory which

we will use in the sequel. Let (Y1,Y2) be a topological pair with Y2 ⊆ Y1 ⊆
X . For every integer k ≥ 0, by Hk(Y1,Y2) we denote the k

th-relative singular

homology group with integer coefficients for the pair (Y1,Y2). We also recall that
Hk(Y1,Y2) = 0 for any integer k < 0. Moreover, if φ ∈ C1(X) and c ∈ R, we
introduce the following sets:

φc :=
{
x ∈ X : φ(x) ≤ c

}
, Kφ :=

{
x ∈ X : φ′(x) = 0

}

and Kc
φ =

{
x ∈ Kφ : φ(x) = c

}
.

The critical groups of φ at an isolated critical point x ∈ X with φ(x) = c are

defined by

Ck(φ, x) := Hk(φ
c ∩U,φc ∩U \ {x}) for all k ≥ 0,

where U is a neighborhood of x such that Kφ ∩ φc ∩U = {x} (see Chang [9]). The
excision property of singular homology theory implies that the previous definition

of critical groups is independent of the particular choice of the neighborhood U .

Now, suppose that φ ∈ C1(X) satisfies the C-condition and that infφ(Kφ) >
−∞. Let c < φ(Kφ); the critical groups of φ at infinity are defined by

Ck(φ,∞) := Hk(X,φc) for all k ≥ 0,

see Bartsch-Li [5].

The Deformation Theorem, which is valid since by assumption φ satisfies the
C-condition (see [3]), implies that the definition of critical groups of φ at infinity is
independent of the particular choice of the level c < infφ(Kφ) used.

If Kφ is finite, defining

M(t, x) :=
∑

k≥0
rankCk(φ, x)tk for all t ∈ R, x ∈ Kφ

and

P(t,∞) :=
∑

k≥0
rankCk(φ,∞)tk for all t ∈ R,

we have the Morse relation

∑

x∈Kφ

M(t, x) = P(t,∞) + (1+ t)Q(t), (2.1)

where Q(t) := ∑
k≥0 βkt

k is a formal series in t ∈ R with nonnegative integer

coefficients (see Chang [9, page 36]).

Now, let X = H be a Hilbert space, x ∈ H , U is a neighborhood of x and

φ ∈ C2(H). If x is a critical point of φ, then its “Morse index” is defined to be



RESONANT NONLINEAR NEUMANN PROBLEMS WITH INDEFINITE WEIGHT 733

the supremum of the dimensions of the vector subspaces of H on which φ′′(x) is
negative definite. Also, we say that x is nondegenerate if φ′′(x) is invertible. The
critical groups of φ at a nondegenerate critical point x ∈ H with Morse index m are

given by

Ck(φ, x) = δk,mZ for all k ≥ 0, (2.2)

where δk,m is the usual Kronecker delta function

δk,m =
{
1 if k = m,

0 if k /= m.

In this study, we consider a bounded domain$with C2 boundary; in addition to the

usual Sobolev space W 1,p($), we will also use the following “natural Neumann”
spaces:

C1n($̄) :=
{
u ∈ C1($̄) : ∂u

∂n
= 0 on ∂$

}

and

W
1,p
n ($) := C1n($̄)

‖·‖
,

where ‖ · ‖ denotes the usual norm in W 1,p($). When p = 2 we also use the

notation H1n ($). The Banach space C1n($̄) is an ordered Banach space, with order
cone

C+ :=
{
u ∈ C1n($̄) : u(z) ≥ 0 for all z ∈ $̄

}
.

The cone above has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ $̄

}
.

Another result which we will use is a theorem relatingC1n($̄) – andW
1,p
n ($) – min-

imizers of a C1 functional. More precisely, let f0 : $ × R → R be a Carathéodory

function (i.e., the map z 1→ f (z, x) is measurable for all x ∈ R and x 1→ f (z, x)
is continuous for a.e. z ∈ $) which has subcritical growth, i.e.

| f0(z, x)| ≤ a0(z) + c0|x |r−1 for a.e. z ∈ $ and all x ∈ R,

with a0 ∈ L∞($)+ =
{
u ∈ L∞($) : u ≥ 0

}
, c0 > 0 and

1 < r < p∗ =






Np

N − p
if p < N ,

∞ if p ≥ N .

Let F0(z, x) =
∫ x

0 f0(z, s) ds, and consider the C
1 functional ψ0 : W 1,p

n ($) → R
defined by

ψ0(u) = 1

p
‖Du‖pp −

∫

$
F0(z, u(z)) dz for all u ∈ W

1,p
n ($).
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Concerning C1n($̄)- and W
1,p
n ($)-minimizers for the functional ψ0, we have the

following result:

Theorem 2.5. If u0 ∈ W
1,p
n ($) is a local C1n($̄)-minimizer of ψ0, i.e. there exists

ρ0 > 0 such that

ψ0(u0) ≤ ψ0(u0 + h) for all h ∈ C1n($̄) with ‖h‖C1n ($̄) ≤ ρ0,

then u0 ∈ C1n($̄) and u0 is also a local W
1,p
n ($)-minimizer of ψ0, i.e. there exists

ρ1 > 0 such that

ψ0(u0) ≤ ψ0(u0 + h) for all h ∈ W
1,p
n ($) with ‖h‖ ≤ ρ0.

Remark 2.6. For the “Dirichlet”space H10 ($), this result was first proved by

Brezis-Nirenberg [8]. It was extended to the spacesW
1,p
0 ($) (1 < p < ∞) by Gar-

cia Azorero-Manfredi-Peral Alonso [17] (see also Guo-Zhang [22] where p ≥ 2).

The corresponding result for the “Neumann spaces” W
1,p
n ($) (1 < p < ∞) is due

to Motreanu-Motreanu-Papageorgoiu [34].

Let 〈·, ·〉 denote the duality brackets for the pair (W
1,p
n ($)∗,W 1,p

n ($)) and

consider the nonlinear map A : W 1,p
n ($) → W

1,p
n ($)∗ defined by

〈A(u), v〉 =
∫

$
|Du|p−2N (Du, Dv)Ndz for all u, v ∈ W

1,p
n ($).

Concerning the map A, we have the following classical result:

Proposition 2.7. The nonlinear map A : W 1,p
n ($) → W

1,p
n ($)∗ defined above is

monotone, continuous (hence maximal monotone) and of type (S)+, i.e., if un ⇀ u

in W
1,p
n ($) and lim supn→∞〈A(un), un − u〉 ≤ 0, then un → u in W

1,p
n ($).

As final remarks concerning notations, throughout this work, by ‖ · ‖ we will
denote the norm in the Sobolev space W 1,p($); as it is already clear from the

definition of ψ0, by ‖ · ‖p (1 ≤ p ≤ ∞) we shall denote the norm of L p($) or of

L p($, RN ), by (·, ·)N and |·|N the scalar product and the norm inRN , respectively,

while the Lebesgue measure inRN will be denoted byLN (·). Finally, we shall also
use the notation r± = max{±r, 0} for any r ∈ R.

3. The eigenvalue problem

In this section we develop the spectral properties of the Neumann p-Laplacian plus

an indefinite potential. Let $ ⊂ RN be a bounded domain with a C2 boundary ∂$.
We consider the following nonlinear Neumann eigenvalue problem:





−!pu + β|u|p−2u = λ̂|u|p−2u in $,
∂u

∂n
= 0 on ∂$.

(3.1)
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Here !pu = div(|Du|p−2N Du) is the p-Laplace differential operator and β ∈
Lq($), Np

p−1 < q ≤ ∞, is a weight function which may change sign. By an

eigenvalue we mean a real number λ̂ for which (3.1) has a nontrivial weak solution

u ∈ W
1,p
n ($). First we show that problem (3.1) has a principal eigenvalue. Note

that the weight function β can be both indefinite (i.e. changes sign) and unbounded.
We mention that problem (3.1) was studied for N = 1 (ordinary differential equa-

tions), using completely different methods by Zhang [43] and Binding-Rynne [6].

Proposition 3.1. If β ∈ Lq($) with q > Np
p−1 , then problem (3.1) has a smallest

eigenvalue λ̂1 ∈ R which is simple and has a positive eigenfunction û1 ∈ C1,α($)
with 0 < α < 1.

Proof. Let E : W 1,p($) → R be the C1 functional defined by

E (u) = ‖Du‖pp +
∫

$
β|u|pdz,

and consider the set M ⊂ W 1,p($) defined by

M =
{
u ∈ W 1,p($) : ‖u‖p = 1

}
.

By Liusternik’s Theorem (see, for example, [36], page 74) we know that M is a C1

Banach manifold. Let

λ̂1 := inf
{
E (u) : u ∈ M

}
. (3.2)

Claim 1: λ̂1 > −∞.

Note that q > Np
p−1 = Np′ (p′ being the conjugate exponent of p, i.e. 1

p
+ 1

p′ = 1),

hence q ′ < (Np′)′ = Np
Np−p+1 , and so we have pq

′ < p∗. Then, if u ∈ W 1,p($),

by the Sobolev Embedding Theorem, we have |u|p ∈ Lq
′
($). Hence, by virtue of

Hölder’s inequality, we have

∣∣∣∣

∫

$
β|u|pdz

∣∣∣∣ ≤ ‖β‖q‖u‖ppq ′ . (3.3)

We know thatW 1,p($) ↪→ L pq
′
($) ↪→ L p($) and the first embedding is compact.

So, invoking Ehrling’s inequality (see, for example, [36], page 698), given ε > 0,

we can find c(ε) > 0 such that

‖u‖pq ′ ≤ ε‖u‖ + c(ε)‖u‖pp for all u ∈ W 1,p($). (3.4)

From (3.3) and (3.4) we have

‖Du‖pp + ‖u‖pp −
∫

$
β|u|pdz ≤ ‖Du‖pp + ‖u‖pp + ε‖β‖q‖u‖p + c(ε)β‖q‖u‖pp,



736 DIMITRI MUGNAI AND NIKOLAOS S. PAPAGEORGIOU

so that

(1− ε‖β‖q)‖u‖p ≤ E (u) + (1+ c(ε)‖β‖q)‖u‖pp.
We now choose ε ∈

(
0, 1/‖β‖q

)
. Then

ĉ(ε)‖u‖p ≤ E (u)+(1+c(ε)‖β‖q)‖u‖pp, with ĉ(ε) := c(ε)−ε‖β‖q > 0. (3.5)

So, if u ∈ M , then from (3.5) we see that

−(1+ c(ε)‖β‖q) ≤ E (u),

and thus λ̂1 > −∞, which proves Claim 1.

Claim 2: The infimum in (3.2) is realized at a function û1 ∈ M .

Let {un}n≥1 ⊂ M be a minimizing sequence, i.e. E (un) → λ+
1 as n → ∞. It

is clear from (3.5) that {un}n≥1 ⊂ W 1,p($) is bounded. So, up to a subsequence,
we may assume that

un ⇀ û1 in W
1,p($) and un → û1 in L

pq ′
($) as n → ∞. (3.6)

From (3.6) we infer that

‖Dû1‖pp ≤ lim inf
n→∞ ‖Dun‖pp and lim

n→∞

∫

$
β|un|pdz =

∫

$
β|û1|pdz,

and thus E (û1) ≤ λ1.

It is clear from (3.6) that ‖û1‖p = 1, i.e. û1 ∈ M . Hence E (û1) = λ̂1, and this
proves Claim 2.

The Lagrange multiplier rule (see, for example, [36, page 76], implies that

λ̂1 is an eigenvalue for problem (3.1), with û1 ∈ W 1,p($) being the associated
eigenfunction. An application of the Moser iteration technique (see, for example,

Hu-Papageorgiou [23]) implies that û1 ∈ L∞($). Then, invoking Theorem 4.4

of Le [25], we infer that û1 ∈ C1,α($) for some α ∈ (0, 1). Moreover, since
E (|u|) = E (u), we deduce that û1 does not change sign and we may assume that
û1 ≥ 0. Then, using the Harnack inequality of Trudinger [41], we conclude that

û1(z) > 0 for all z ∈ $.
To show the simplicity of λ̂1, we use the generalized Picone identity due to

Allegretto-Huang [2]. Let v̂1 ∈ W 1,p($) be another eigenfunction associated to

λ̂1. From the previous discussion we know that v̂1 ∈ C1,α($) and we may also
assume that v̂1(z) > 0 for all z ∈ $ . Now set v̂n1 := v̂1 + 1/n, n ≥ 1, and

introduce the following functions defined in $:

L(û1, v̂
n
1 ) := |Dû1|pN + (p − 1)

û
p

1

(v̂n1 )
p
|Dv̂n1 |

p
N − p

û
p

1

(v̂n1 )
p
|Dv̂n1 |

p−2
N (Dv̂n1 , Dû1)N ,

R(û1, v̂
n
1 ) := |Dû1|pN − |Dv̂n1 |

p−2
N

(
D

(
û
p

1

(v̂n1 )
p−1

)
, Dv̂n1

)

N

.
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From the generalized Picone identity of Allegretto-Huang [2] (see also [36, page

328], we have

0 ≤
∫

$
L(û1, v̂

n
1 )dz =

∫

$
R(û1, v̂

n
1 )dz

=
∫

$

[
|Dû1|pN − |Dv̂n1 |

p−2
N

(
Dv̂n1 , D

(
û
p

1

(v̂n1 )
p−1

))

N

]
dz;

since û
p

1 /v̂
n
1 ∈ W 1,p($), by the nonlinear Green’s identity (see [36, page 330], the

last integral equals

∫

$

[
|Dû1|pN + !pv̂

n
1

û
p

1

(v̂n1 )
p−1

]
dz =

∫

$

[
|Dû1|pN + !pv̂1

û
p

1

(v̂n1 )
p−1

]
dz.

Since v̂1 solves (3.1), then the last integral is equal to

∫

$

[
|Dû1|pN + (β − λ̂1)v̂

p−1
1

û
p

1

(v̂n1 )
p−1

]
dz.

By the Lebesgue Dominated Convergence Theorem, passing to the limit, we finally

get

0 ≤
∫

$

[
|Dû1|pN + βû

p

1

]
dz − λ̂1‖û1‖pp = E (û1) − λ̂1,

since û1∈M . This clearly implies that
∫
$ L(û1, v̂1)dz=0, and since L(û1, v̂1)≥0

(see [2, 36]), then

L(û1(z), v̂1(z)) = 0 for a.e. z ∈ $,

which implies that there exists k > 0 such that

û1 = kv̂1,

see [2, 36].

This proves that λ̂1 is simple, i.e. λ̂1 is a principal eigenvalue.

If β ∈ L∞($) (bounded weight function), then we can improve the conclusion
of the previous proposition.

Proposition 3.2. If β ∈L∞($), then problem (3.1) has a smallest eigenvalue λ̂1∈R
which is simple and has an eigenfunction û1∈ intC+ ∩C1,α($̄) for some α∈(0, 1].
Proof. The existence and simplicity of the smallest eigenvalue λ̂1 ∈ R follows from
Proposition 3.1, and again we have û1 ∈ L∞($). Since β ∈ L∞($), we can apply
Theorem 2 of Lieberman [29] and conclude that û1 ∈ C1,α($̄) for some α ∈ (0, 1),
and that û1 ≥ 0. Note that

!pû1 ≤ (‖β‖∞ + λ̂1)û
p−1
1 a.e. in $,

and thus û1 ∈ intC+, see Vazquez [42] and Pucci-Serrin [37, page 120].
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Remark 3.3. In (3.1) we can admit a weighted right hand side of the form

λ̃m(z)|u(z)|p−2u(z) with m ∈ L∞($), m ≥ 0, m /≡ 0. Indeed, as above, we

have a principal eigenvalue λ̃1(m) ∈ R. Moreover, m 1→ λ̃1(m) is continuous on
L∞($)+ and exhibits the following monotonicity property: if m ≤ m′, m /≡ m′,
then λ̃1(m

′) < λ̃1(m), see (3.2) and Proposition 3.1.

Next we show that any eigenfunction corresponding to an eigenvalue λ /= λ̂1
is nodal (i.e. sign changing) and that λ̂1 is isolated.

Proposition 3.4. If β ∈ Lq($), q > Np
p−1 , then every eigenvalue λ /= λ̂1 has nodal

eigenfunctions and λ̂1 is isolated.

Proof. Let λ be an eigenvalue different from λ̂1 and let u ∈ W 1,p($) be an eigen-
function associated to it. We know that u ∈ C1,α($) for some α ∈ (0, 1] (see
Le [25]). Suppose that u is not nodal. Then, without loss of generality, we may

assume that u ≥ 0. As before, using the Harnack inequality of Trudinger [41]

(see also Pucci-Serrin [37, page 163]), we have u(z) > 0 for every z ∈ $. Set
uε = u + ε, ε > 0. Then, as in the proof of Proposition 3.1, using the generalized

Picone identity, we have

0 ≤$ L(û1, u
ε) dz =

∫

$
R(û1, u

ε) dz

λ̂1 −
∫

$
βû

p

1 dz +
∫

$
βu p−1

û
p

1

(u + ε)p−1
dz − λ

∫

$
u p−1

û
p

1

(u + ε)p−1
dz.

By the Lebesgue Dominated Convergence Theorem this implies

0 ≤ (λ̂1 − λ)

∫

$
û
p

1 dz = λ̂1 − λ < 0,

since λ > λ̂1. This is a contradiction, thus proving that the eigenfunction u corre-
sponding to λ must be nodal.

Now, let D ⊆ $ be a nodal domain of u (i.e., a connected component of

$ \ {u = 0}). We know that uχD ∈ W 1,p($) and D(uχD) = (Du)χD , χD being
the characteristic function of the set D. We also have

A(u) + β|u|p−2u = λ|u|p−2u. (3.7)

Acting on (3.7) with h = uχD , we obtain

〈A(u), uχD〉 +
∫

D

β|u|pdz = λ

∫

D

|u|pdz,

that is, since D(uχD) = (Du)χD ,

∫

D

|Du|pNdz +
∫

D

β|u|pdz = λ

∫

D

|u|pdz.
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Hence

E (uχD) = λ

∫

D

|u|pdz. (3.8)

From the proof of Proposition 3.1 (see (3.5)), we know that there exists c1 > 0 such

that
‖uχD‖p ≤ c1(E (uχD) + ‖uχD‖pp)

= c1(λ + 1)‖uχD‖pp by (3.8)

≤ c1(λ + 1)LN (D)1−p/p∗‖uχD‖pp∗,

since p < p∗ and so L p
∗
($) ↪→ L p($). Thus, by the Sobolev Embedding Theo-

rem, there exists c2 > 0 such that

‖uχD‖pp∗ ≤ c2LN (D)1−p/p∗‖uχD‖pp∗,

and hence, since u /= 0,

1 ≤ c2LN (D)1−p/p∗
. (3.9)

Using this estimate, we can prove that the principal eigenvalue λ̂1 is isolated.
We argue by contradiction: suppose that we can find a sequence {λn}n≥1 ⊂ R such

that λn → λ̂+
1 and λn is an eigenvalue for problem (3.1) for every n ≥ 1. Then

there exist un ∈ W 1,p($) ∩ C1($) \ {0} such that
A(un) + β|un|p−2un = λn|un|p−2un ∀ n ≥ 1. (3.10)

Let yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1, and so we can assume that

yn ⇀ y in W 1,p($) and yn → y in L pq
′
($) and a.e. in $ as n → ∞. (3.11)

Multiplying (3.10) by ‖un‖1−p, we obtain

A(yn) + β|yn|p−2yn = λn|yn|p−2yn for all n ≥ 1. (3.12)

Acting on (3.12) with y − yn ∈ W 1,p($), passing to the limit as n → ∞ and using

(3.11), we obtain

lim
n→∞〈A(yn, yn − y〉 = 0,

which implies, by Proposition 2.7, that

yn → y in W 1,p($) and a.e. in $. (3.13)

Therefore, if in (3.12) we pass to the limit as n → ∞ and use (3.13), we have

A(y) + β|y|p−2y = λ̂1|y|p−2y with ‖y‖ = 1 by (3.13).

Hence

E (y) = λ̂1‖y‖pp,
and so, by Proposition 3.1, there exists k ∈ R \ {0} such that y = kû1.
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Without any loss of generality, we may assume that k > 0. Now, let Dn
− ={

z ∈ $ : yn(z) < 0
}
. Since û1 > 0 in $, we have LN (Dn

−) → 0 as n → ∞,

which, together with (3.13), contradicts (3.9). Therefore, we conclude that λ̂1 is
isolated.

Denote by σp($) the set of all eigenvalues for problem (3.1). It is clear from
the proof of Proposition 3.4 above, that the following result holds.

Proposition 3.5. If β ∈ Lq($) with q > Np
p−1 , then the set σp($) ⊂ R of eigenval-

ues of (3.1) is closed.

From Propositions 3.4 and 3.5 it follows that

λ̂2 = inf
{
λ : λ ∈ σp($) \ {λ̂1}

}
∈ σp($),

and this is the second eigenvalue for problem (3.1). For this second eigenvalue, we

have the following minimax characterization.

Proposition 3.6. If β ∈ Lq($) with q > Np
p−1 , then

λ̂2 = inf
γ∈'

max
−1≤t≤1

E (γ (t)),

where ' =
{
γ ∈ C([−1, 1],M) : γ (−1) = −û1, γ (1) = û1

}
.

Proof. First we show that E satisfies the PS-condition on the manifold M: let

{un}n≥1 ⊆ M be such that

|E (un)| ≤ M1 for some M1 > 0 and for all n ≥ 1 (3.14)

and

∣∣∣〈A(un), h〉 +
∫

$
β|un|p−2unh dz

∣∣∣ ≤ εn‖h‖ for all h ∈ Tun M, (3.15)

where εn → 0+ as n → ∞. Here, as usual, Tun M denotes the tangent space to M

at un . We know that

Tun M =
{
h ∈ W 1,p($) :

∫

$
|un|p−2unh dz = 0

}
, n ≥ 1,

for example see [18, page 600]. Then, for every y ∈ W 1,p($), we have that

h = y −
(∫

$
|un|p−2un y dz

)
un ∈ Tun M for all n ≥ 1.
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Using this h as a test function in (3.15), we obtain

∣∣∣〈A(un), y〉 +
∫

$
β|un|p−2un y dz −

(∫

$
|un|p−2un y dz

)
E (un)

∣∣∣ ≤ εn‖h‖

for all n ≥ 1. By [20, page 48], there exists c3 > 0 such that

∣∣∣〈A(un), y〉+
∫

$
β|un|p−2un y dz−

(∫

$
|un|p−2un y dz

)
E (un)

∣∣∣ ≤ εnc3‖y‖ (3.16)

for all n ≥ 1.

From the proof of Proposition 3.1, see (3.5), we know that there exists c4 > 0

such that

‖un‖p ≤ c4(E (un) + 1) for all n ≥ 1.

Hence, by (3.14), we get that {un}n≥1 ⊆ W 1,p($) is bounded. Thus we may
assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($). (3.17)

In (3.16) we choose y = un − u ∈ W 1,p($), pass to the limit as n → ∞ and use

(3.17); in this way we obtain

lim
n→∞〈A(un), un − u〉 = 0,

which, together with Proposition 2.7, implies that

un → u in W 1,p($) as n → ∞.

This proves that E satisfies the PS-condition on the C1 Banach manifold M .

Now, we know that ±û1 are both minimizers of E with E (±û1) = λ̂1. More-
over, it is clear that both ±û1 are strict local minimizers of E . More precisely, we
will now show that for ρ0 > 0 small enough, we can find ρ± ∈ (0, ρ0) such that

E (±û1)< inf
{
E (u) : u ∈ M and ‖u−(±û1)‖ = ρ±

}
and ρ± < 2‖û1‖. (3.18)

We do the proof for û1, the proof being analogous for −û1. Arguing by contra-
diction, suppose that, given any ρ ∈ (0, ρ0), we can find a sequence {un}n≥1 ⊆
M ∩ ∂Bρ(û1) such that E (un) → E (û1) as n → ∞. By (3.5) it is readily seen that

{un}n≥1 ⊆ W 1,p($) is bounded, thus we may assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($). (3.19)

Since E is sequentially weakly lower semicontinuous, from (3.19) it immediately

follows that

E (u) ≤ lim inf
n→∞ E (un) = E (û1) = λ̂1.
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By (3.19) we get that u ∈ M; hence from E (u) = E (û1) = λ̂1 we get u = û1 by

Proposition 3.1. By the Mean Value Theorem we can find tn ∈ (0, 1) such that

E (un) − E
(
un + û1

2

)
= 〈E ′

(
tnun + (1− tn)

un + û1

2

)
,
un − û1

2
〉

= 〈A
(
tnun + (1− tn)

un + û1

2

)
,
un − û1

2
〉

+
∫

$
β
∣∣∣tnun+(1−tn)

un+û1
2

∣∣∣
p−2 (

tnun+(1− tn)
un+û1
2

)
un−û1
2

dz.

Assuming without loss of generality that tn → t ∈ [0, 1], we pass to the limit as
n → ∞ in the previous equality: from (3.19), the sequential weak lower semicon-

tinuity of E , the convergence E (un) → E (û1), since tn + 1 > 0 and recalling that

u = û1, we obtain

lim sup
n→∞

tn + 1

2

〈
A

(
tnun + (1− tn)

un + û1

2

)
, un − û1

〉
≤ 0,

and thus

lim sup
n→∞

〈
A

(
tnun + (1− tn)

un + û1

2

)
, tnun + (1− tn)

un + û1

2
− û1

〉
≤ 0,

which implies by Proposition 2.7 that

tnun + (1− tn)
un + û1

2
→ û1 in W 1,p($).

But note that

0 ← ‖tnun + (1− tn)
un + û1

2
− û1‖ = tn + 1

2
‖un − û1‖ ≥ ρ

2
for all n ≥ 1,

since tn + 1 > 1, a contradiction. Similarly for −û1 and these two things together
prove (3.18).

It follows that

λ̃ = inf
γ∈'

max
−1≤t≤1

E (γ (t)) > E (±û1) = λ̂1,

since every path joining û1 and−û1 necessarily crosses ∂Bρ±(±û1). Since E |M sat-
isfies the PS-condition, we can apply Corollary 3.6 of Ghoussoub [19, page 53-54]

and infer that λ̃ is a critical value of E |M , and thus an eigenvalue for problem(3.1)
with λ̃ > λ̂1.

We will now show that λ̃ = λ2 by showing that there is no eigenvalue of

(3.1) contained in the open interval (λ̂1, λ̃). We argue indirectly: suppose by con-
tradiction that λ ∈ (λ1, λ̃) is an eigenvalue of (3.1) and let u ∈ W 1,p($) be an
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eigenfunction associated to λ. From Proposition 3.4 we know that u is nodal, and
so both u+ /= 0 and u− /= 0. Now consider the following two paths on the manifold

M:

γ1(t) = u+ − tu−

‖u+ − tu−‖p
, t ∈ [0, 1]

(
this path joins u+

‖u+‖p and u
)

γ2(t) = −u− + (1− t)u+

‖ − u− + (1− t)u+‖p
, t ∈ [0, 1]

(
this path joins u and −u−

‖u−‖p
)

The concatenation of the two paths γ = γ1 ∪ γ2 joins
u+

‖u+‖p and
−u−

‖u−‖p . More-
over, note that the functions u+ and u− have disjoint interior supports, and since
A(u) + β|u|p−2u = λ|u|p−2u, acting first with u+ ∈ W 1,p($) and then with
u− ∈ W 1,p($), we obtain

E (u+) = λ‖u+‖pp and E (u−) = λ‖u−‖pp.

Therefore, it easily follows that

E (γ1(t)) = E (γ2(t)) = λ for all t ∈ [0, 1].

We now consider the set L̂2 = {u ∈ W 1,p($) : E (u) < λ}. Evidently, L̂2
is not path-connected, or otherwise we could violate the minimax expression of

λ̃ > λ. Moreover, using the Ekeland variational principle and using the fact that

E |M satisfies the PS-condition, we infer that every path component of L̂2 contains

a critical point of E |M . Since the only critical points of E |M in L̂2 are ±û1 and, as
already observed, L̂2 is not path-connected, we infer that L̂2 has exactly two path

components, one containing û1, and the other containing −û1.
Note that u+

‖u+‖p cannot be a critical point of E |M , since u+
‖u+‖p has constant sign

and E
(

u+
‖u+‖p

)
= λ. So we can find a path s : [−ε, ε] → M such that

s(0) = u+

‖u+‖p
and

d

dt
(E |M)(s(t)) /= 0.

Hence, starting with this path, we can move from u+
‖u+‖p to a point y ∈ M along a

path on the manifold M which stays within L̂2, with the exception of the starting

point u+
‖u+‖p . So u ∈ L̂2, and we denote byU1 the path-component of L̂2 containing

y. Without any loss of generality, we may assume that û1 ∈ U1. Then we can join

y and û1 with a path remaining in U1. Concatenating such a path with the path s,

we see that finally we have a path γ+ : [0, 1] → U1 such that

γ+(0) = û1, γ+(1) = u+

‖u+‖p
and γ+(t) ∈ U1 ⊆ L̂2 for all t ∈ [0, 1).
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In a similar fashion, if U2 is the other path-component of L̂2 with −û1 ∈ U2, we

can produce a path γ− : [0, 1] → U2 such that

γ−(0) = −u−
‖u−‖p , γ−(1) = −û1 and γ−(t) ∈ U2 ⊆ L̂2 for all t ∈ (0, 1].

Concatenating γ+, γ , γ−, we produce a path γ∗ ∈ ' such that E (γ∗(t)) ≤ λ for all
t ∈ [−1, 1]; hence λ̃ ≤ λ, a contradiction with the fact that λ < λ̃. Therefore, there
is no eigenvalue of (3.1) in the interval (λ̂1, λ̃), and so we conclude that λ̃ = λ̂2.

Remark 3.7. In fact from the above proof we see that we also have the characteri-

zation

λ̂2 = inf
γ̂∈'̂

max
−1≤t≤1

E (γ̂ (t)),

where

'̂ =
{
γ̂ ∈ C([−1, 1],M) : γ̂ (−1) ≤ 0 ≤ γ̂ (1)

}
.

Now, let V =
{
u ∈ W 1,p($) :

∫
$ û1u dz = 0

}
and set

λ̂V = inf
{
E (u) : u ∈ M ∩ V

}
. (3.20)

Proposition 3.8. λ̂1 < λ̂V ≤ λ̂2.

Proof. First of all, it is clear from (3.20) that λ̂1 ≤ λ̂V .

Suppose by contradiction that λ̂1= λ̂V . Then we can find a sequence {un}n≥1⊂
M ∩ V such that E (un) → λ̂1 = λ̂V . By (3.5) we immediately see that {un}n≥1 ⊂
W 1,p($) is bounded, and so we may assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($). (3.21)

Exploiting the sequential weak lower semicontinuity of E , by (3.21) and since u ∈
M ∩ V , we have

λ̂1 ≤ E (u) ≤ lim inf
n→∞ E (un) = λ̂1 = λ̂V ,

and hence

E (u) = λ̂1,

which implies that u = ±û1, a contradiction to the fact that u ∈ M ∩ V .

Thus λ̂1 < λ̂V .
Now, suppose that λ̂2 < λ̂V . Then, by virtue of Proposition 3.6, we can find

γ ∈ ' such that

E (γ (t)) < λ̂V for all t ∈ [−1, 1]. (3.22)
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From the very definition of ', we know that γ (−1) = −û1 and γ (1) = û1. So, if

we consider the continuous function σ : [−1, 1] → R defined by

σ (t) =
∫

$
û1γ (t) dz for all t ∈ [−1, 1],

then σ (−1) < 0 < σ (1), and so by Bolzano’s Theorem on intermediate values, we

can find t∗ ∈ (−1, 1) such that σ (t∗) = 0. Hence γ (t∗) ∈ V and so λ̂V ≤ E (γ (t∗))
by (3.20), which contradicts (3.22).

Remark 3.9. Let S =
{
V ⊆ W 1,p($) : W 1,p($) = R ⊕ V

}
, i.e. S is the set of

all topological complements of R in W 1,p($) and set

λ̂S = inf
V∈S

sup
v∈V

E (v).

A natural question is wether λ̂S = λ̂2.

4. Nonlinear problems: existence theorems

In this section we use the spectral properties established in Section 3, in order to

study the existence of nontrivial smooth solutions for the following nonlinear Neu-

mann problem with indefinite weight:





−!pu + β|u|p−2u = f (z, u) in $,
∂u

∂n
= 0 on ∂$.

(4.1)

First we prove an existence theorem for resonant (hence noncoercive) equations.

The hypotheses on the reaction function f are the following:

H1: f : $ × R → R is a Carathéodory function such that f (z, 0) = 0 a.e. in $
and

(i): there exist a ∈ L∞($)+, c > 0 such that | f (z, x)| ≤ a(z) + c|x |p−1 for a.e.
z ∈ $ and all x ∈ R;

(ii): there exists η0 < λ̂2, β0 > 0 and τ ∈ [1, p] such that, if F(z, x) =∫ x

0 f (z, s) ds, then

λ̂1 ≤ lim inf
|x |→∞

pF(z, x)

|x |p ≤ lim sup
|x |→∞

pF(z, x)

|x |p ≤ η0 uniformly for a.e. z ∈ $

and

β0 ≤ lim inf
|x |→∞

pF(z, x) − f (z, x)x

|x |τ uniformly for a.e. z ∈ $.
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(iii): there exist δ0 > 0 and µ ∈ (1, p) such that µF(z, x) ≥ f (z, x)x > 0 for

a.e. z ∈ $ and for all 0 < |x | ≤ δ0. Moreover, there exist K > 0 such that

F(z, x) ≥ K |x |µ for a.e. z ∈ $ and for all |x | ≤ δ0.

Remark 4.1.

1. It is clear that hypothesis H1(ii) permits resonance at infinity with respect to

the principal eigenvalue λ̂1; as a consequence, this hypothesis makes the energy
functional associated to problem (4.1) (see below) noncoercive.

2. Condition H1(iii) is a reversed Ambrosetti-Rabinowitz condition near 0.

3. The second requirement in H1(iii) is automatically satisfied if f : $̄ × R → R
is continuous, but in general is not true if f is defined only in $, unless
infz∈$ F(z,±δ0) > 0, although this fact is not noted very often. For example,

consider a function f : (0,π)×R → R which, for x small, is defined as f (z, x) =
sin z|x |µ−2x ; then it obviously verifies µF(z, x) ≥ f (z, x)x > 0 a.e. in $ for all

x /= 0, but there is no K > 0 such that F(z, x) ≥ K |x |µ a.e. in $ for x small. See

Mugnai [35].

Example 4.2. The following function satisfies assumption H1 (for the sake of sim-

plicity we drop the z-dependence):

f (x) =
{

θ |x |µ−2x if |x | ≤ 1,

η|x |p−2x − (η − θ)|x |q−2x if |x | > 1,

with θ < λ̂1 ≤ η < λ̂2 and 1 < q < p, 1 < µ < p.

Let φ : W 1,p($) → R be the energy functional associated to problem (4.1),

defined by

φ(u) = 1

p
E (u) −

∫

$
F(z, u) dz for all u ∈ W 1,p($).

Evidently, assuming the hypotheses above, φ ∈ C1(W 1,p($)).

Proposition 4.3. If hypotheses H1(i), (ii) hold and β ∈ Lq($) with q > Np
p−1 , then

φ satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ W 1,p($) be a sequence such that

|φ(un)| ≤ M2 for some M2 > 0 and all n ≥ 1, (4.2)

and

(1+ ‖un‖)φ′(un) → 0 in W 1,p($)∗ as n → ∞. (4.3)

From (4.3) we have

|〈φ′(un), h〉|≤
εn‖h‖
1+ ‖un‖

for all h ∈ W 1,p($), with εn → 0 as n → ∞. (4.4)
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In (4.4) we choose h = un ∈ W 1,p($) and obtain

∣∣∣E (un) −
∫

$
f (z, un)un dz

∣∣ ≤ εn for all n ≥ 1. (4.5)

On the other hand, from (4.2) we have

−E (un) + p

∫

$
F(z, un) dz ≤ pM2 for all n ≥ 1. (4.6)

We add (4.5) and (4.6) and obtain

∫

$
[pF(z, un) − f (z, un)un] dz ≤ M3 for some M3 > 0 and all n ≥ 1. (4.7)

By virtue of hypotheses H1(i), (ii), we can find β1 ∈ (0,β0) and c3 > 0 such that

β1|x |τ − c3 ≤ pF(z, x) − f (z, x)x for a.e. z ∈ $ and all x ∈ R. (4.8)

We use (4.7) and (4.8) and obtain that

{un}n≥1 ⊆ Lτ ($) is bounded. (4.9)

An additional estimate is needed: recall that τ ≤ p < p∗ (see hypothesis H1(ii)).
So we can find t ∈ [0, 1) such that 1

p
= 1−t

τ + t
p∗ . Invoking the interpolation

inequality, we have

‖un‖p ≤ ‖un‖1−tτ ‖un‖tp∗,

and thus there exists M4 > 0 such that

‖un‖pp ≤ M4‖un‖tpp∗ for all n ≥ 1. (4.10)

First suppose that N /= p and recall that in this caseW 1,p($) ↪→ L p
∗
($) (Sobolev

Embedding Theorem, with p∗ = ∞ if N > p). Thus, from (4.10) we have that

there exists M5 > 0 such that

‖un‖pp ≤ M5‖un‖tp for all n ≥ 1. (4.11)

Hypothesis H1(i) implies that

| f (z, x)x | ≤ c4(1+ |x |p) for a.e. z ∈ $, all x ∈ R and some c4 > 0. (4.12)

From (4.5) and (4.12) we have

E (un) ≤ M6(1+ ‖un‖pp) for some M6 > 0 and all n ≥ 1;

and so, by (3.5),

‖un‖p ≤ M7(1+ ‖un‖pp) for some M7 > 0 and all n ≥ 1,
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which implies, with (4.11), that

‖un‖p ≤ M8(1+ ‖un‖tp) for some M8 > 0 and all n ≥ 1.

Now recall that 0 ≤ t < 1, and so it follows that

{un}n≥1 ⊆ W 1,p($) is bounded. (4.13)

If N = p, then W 1,p($) ↪→ Lq($) for all q ∈ [1,∞) by Sobolev Embedding
Theorem, and p∗ = ∞. Thus, replacing p∗ by any q > p in the previous reasoning,

we get (4.13) again.

By (4.13) we may assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($) as n → ∞. (4.14)

Now in (4.4) we choose h = un − u ∈ W 1,p($), we pass to the limit as n → ∞
and use (4.14) to obtain

lim
n→∞〈A(un), un − u〉 = 0,

which implies, by Proposition 2.7, that un → u in W 1,p($), i.e. φ satisfies the
C-condition.

Recall that û1 ∈ C1,α($) (0 < α < 1), û1 ≥ 0 is the L p-normalized principal

eigenfunction for problem (3.1) (see Proposition 3.1).

Proposition 4.4. If hypotheses H1(i), (ii) hold and β ∈ Lq($) with q > Np
p−1 , then

φ|Rû1 is anticoercive, i.e. φ(t û1) → −∞ as |t | → ∞.

Proof. It is clear from hypothesis H1(ii) that, without any loss of generality, wemay
assume that τ < p. Moreover, we can find β1 ∈ (0,β0) and M9 = M9(β1) > 0

such that

β1|x |τ ≤ pF(z, x) − f (z, x)x for a.e. z ∈ $ and all x ≥ M9. (4.15)

Thus (4.15) implies

d

dx

(
F(z, x)

x p

)
= f (z, x)x − pF(z, x)

x p+1
≤ −β1x

τ−p−1 (4.16)

for a.e. z ∈ $ and all x ≥ M9.

Integrating (4.16) over [y, x], M9 ≤ y ≤ x , we obtain

F(z, x)

x p
− F(z, y)

y p
≤ β1

p − τ

(
1

x p−τ
− 1

y p−τ

)
(4.17)

for a.e. z ∈ $ and all x ≥ y ≥ M9.
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We now let x → ∞; since τ < p, from (4.17) and hypothesis H1(ii), we have

λ̂1

p
− F(z, y)

y p
≤ − β1

(p − τ )y p−τ
for a.e. z ∈ $ and all y ≥ M9,

that is

λ̂1

p
y p − F(z, y) ≤ − β1

(p − τ )
yτ for a.e. z ∈ $ and all y ≥ M9,

and so

λ̂1

p
y p − F(z, y) ≤ − β1

(p − τ )
yτ + c5 for a.e. z ∈ $ and all y ≥ 0, (4.18)

for some c5 > 0.

Now, take t > 0, so that by (4.18) we get

φ(t û1) = λ̂1

p
‖t û1‖pp −

∫

$
F(z, t û1) dz ≤ − β1

(p − τ )
tτ‖û1‖τ

τ + c6

for some c6 > 0, and so φ(t û1) → −∞ as t → ∞.

In a similar fashion, we also show that

φ(t û1) → −∞ as t → −∞,

and therefore we can conclude that φ|Rû1 is anticoercive.

We now introduce the set

S =
{
u ∈ W 1,p($) : E (u) = λ̂2‖u‖pp

}
. (4.19)

Proposition 4.5. If hypotheses H1(i), (ii) hold and β ∈ Lq($) with q > Np
p−1 , then

φ|S is coercive.

Proof. By virtue of hypotheses H1(i), (ii), we can find η1 ∈ (η0, λ̂2) and c7 > 0

such that

F(z, x) ≤ η1

p
|x |p + c7 for a.e. z ∈ $ and all x ∈ R. (4.20)

Then from (3.5) and (4.19) we have that

‖u‖p ≤ c8‖u‖pp for some c8 > 0 and all u ∈ S. (4.21)
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Therefore, if u ∈ S, we have

φ(u) = 1

p
E (u) −

∫

$
F(z, u) dz

≥ 1

p
(λ̂2 − η1)‖u‖pp − c7LN ($) (by (4.20) and the fact that u ∈ S)

≥ 1

c8 p
(λ̂2 − η1)‖u‖p − c7LN ($) (by (4.21)),

and thus φ|S is coercive, since η1 < λ̂2.

Propositions 4.4 and 4.5 imply that we can find t∗ > 0 large enough, and

bigger than 1, such that

φ(±t∗û1) < inf
S

φ = mS. (4.22)

Now, set D0 = {±t∗û1} and denote by D the convex hull of −t∗û1 and t∗û1, i.e.
D =

{
u ∈ W 1,p($) : u = ε(−t∗û1) + (1− ε)(t∗û1), ε ∈ [0, 1]

}
.

Proposition 4.6. If hypotheses H1(i), (ii) hold and β ∈ Lq($) with q > Np
p−1 , then

the pair {D0, D} is linking with S in W 1,p($) (see Definition 2.1).

Proof. We consider the set E =
{
u ∈ W 1,p($) : E (u) < λ̂2‖u‖p

}
. Note

that ±t∗û1 ∈ E by (4.22) and (4.19). We claim that E is not path-connected

and that ±t∗û1 belong to different path components of E . To this end, let γ̂ ∈
C([−1, 1],W 1,p($)) be a path which joins −t∗û1 and t∗û1. Then

γ̂ (−1) = −t∗û1 and γ̂ (1) = t∗û1.

We extend γ̂ along the line segments

conv
{
− t∗û1,−û1

}
=

{
u ∈ W 1,p($) : u = ε(−t∗û1)+(1−ε)(−û1), ε ∈ [0, 1]

}

and

conv
{
t∗û1, û1

}
=

{
u ∈ W 1,p($) : u = ε(t∗û1) + (1− ε)(û1), ε ∈ [0, 1]

}

in the obvious linear way, in order to reach−û1 and û1 respectively. We denote this
extension of γ̂ by γ̂0. Note that γ̂0 ∈ ' (see Proposition 3.6), and so

λ̂2 ≤ max
−1≤t≤1

E (γ̂0(t))

‖γ̂0(t)‖pp
by Proposition 3.6. Thus there exists t0 ∈ (0, 1) such that γ̂ (t0) /∈ E and this shows

that E is not path-connected and that the elements ±t∗û1 belong to different path
components of E .
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Now take γ ∈C(D,W 1,p($)) such that γ|D0 = I d|D0 . Then γ (−t∗û1)=−t∗û1
and γ (t∗û1) = t∗û1. Since±t∗û1 belong to distinct path components of E , we have
γ (D) ∩ ∂E /= ∅. But ∂E ⊆ S. Hence γ (D) ∩ S /= ∅ and this proves that the pair
{D0, D} is linking with S in W 1,p($).

Now we are ready for the first existence result.

Theorem 4.7. If hypotheses H1 hold and β ∈ Lq($) with q > Np
p−1 , then problem

(4.1) has a nontrivial smooth solution u0 ∈ C1,α($) (0 < α ≤ 1).

Proof. Propositions 4.3, 4.4, 4.5 and 4.6 permit the use of Theorem 2.2, so we can

find u0 ∈ W 1,p($) such that φ′(u0) = 0 and, by (4.22),

mS ≤ φ(u0) = inf
γ∈'∗ max0≤t≤1

φ(γ (t)),

where '∗ =
{
γ ∈ C([0, 1],W 1,p($)) : γ (0) = −t∗û1, γ (1) = t∗û1

}
. More-

over, we know that the pair {D0, D} and S homologically link in W 1,p($) (see
Chang [9, pages 89-90]). Hence, by [9, pages 89-90], we have

C1(φ, u0) /= 0. (4.23)

Hypothesis H1(iii), saying that F(z, x) ≥ K |x |µ for a.e. z ∈ $ and all |x | ≤ δ0 for
some K > 0, ensures that we can apply Proposition 2.1 of [24], see also [30], and

conclude that

Ck(φ, 0) = 0 for all k ≥ 0. (4.24)

Comparing (4.23) and (4.24), we see that u0 /= 0,and so it is a nontrivial solution

of problem (4.1). Nonlinear regularity theory (see Lieberman [29]) implies that

u ∈ C1,α($) for some α ∈ (0, 1].

If the weight is bounded, we can drop hypothesis H1(iii), which dictates a
p-concavity condition near the origin, and replace it by a condition which implies

a p-linear growth also near the origin, allowing for resonance with respect to the

principal eigenvalue λ̂1 to occur. More precisely, we now consider the following
hypotheses for the reaction function f :

H2: f : $ × R → R is a Carathéodory function such that f (z, 0) = 0 a.e. in

$, hypotheses H2(i), (ii) are the same as the corresponding hypotheses H1(i), (ii),
and

(iii): there exists δ0 > 0 such that F(z, x) ≤ λ̂1
p
|x |p for a.e. z ∈ $ and all |x | ≤ δ0.

Theorem 4.8. If hypotheses H2 hold and β ∈ L∞($), then problem (4.1) has a

nontrivial solution u0 ∈ C
1,α
n ($̄) (0 < α ≤ 1).
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Proof. Since H1(i), (ii) hold, we can apply all Proposition 4.3-4.6, so, as before,
via Theorem 2.2, we obtain a critical point u0 of φ such that

C1(φ, u0) /= 0. (4.25)

On the other hand, if δ0 is as postulated by hypothesis H2(iii) and u ∈ C1n($̄) is

such that ‖u‖C1n ($̄) < δ0, then F(z, u(z)) ≤ λ̂1
p
u(z)p a.e. in $, and so, by (3.2),

φ(u) ≥ 1

p
E (u) − λ̂1

p
‖u‖pp ≥ 0 = φ(0)

for all u ∈ C1n($̄) with ‖u‖C1n ($̄) ≤ δ0. Thus u = 0 is a local C1n($̄)-minimizer

of φ. Hence, by Theorem 2.5, u = 0 is also a local W
1,p
n ($)-minimizer for φ. By

(2.2) we have that

Ck(φ, 0) = δk,0Z for all k ≥ 0. (4.26)

Comparing (4.25) and (4.26), we conclude that u0 /= 0. Moreover, u0 ∈ C
1,α
n ($̄)

(0 < α ≤ 1), see Lieberman [29].

We have another existence result for resonant Neumann problems with the

following assumptions on f :

H3: f : $ × R → R is a Carathéodory function such that f (z, 0) = 0 a.e. in $,
hypothesis H3(i) is the same as the corresponding hypothesis H1(i),

(ii): lim
|x |→∞

pF(z, x)

|x |p = λ̂1 uniformly for a.e. z ∈ $ and

lim
|x |→∞

[pF(z, x) − f (z, x)x] = −∞ uniformly for a.e. z ∈ $;

(iii): there exists θ ∈ L∞($) such that

θ(z) ≤ λ̂1 a.e. in $, θ /= λ̂1

and

lim
x→0

f (z, x)

|x |p−2x ≤ θ(z) uniformly for a.e. z ∈ $.

Remark 4.9. Hypothesis H3(ii) implies that the problem is resonant at infinity

with respect to the principal eigenvalue λ̂1 from the left.

Example 4.10. The following function satisfies hypotheses H3 (again we drop the

z-dependence):

f (x) =





θ |x |p−2x if |x | ≤ 1,

λ̂1|x |p−2x − ĉ
x

|x |2 if |x | > 1,

where θ < λ̂1, ĉ = λ̂1 − θ > 0 and 1 ≤ r < ∞. Note that such a function does not

satisfy H1(ii).

We start with a simple lemma which will be useful also in the next section.
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Lemma 4.11. If θ ∈ L∞($), θ ≤ λ̂1 a.e. in $ and θ /= λ̂1, then there exists
µ0 > 0 such that

ψ(u) = E (u) −
∫

$
θ |u|pdz ≥ µ0‖u‖p for all u ∈ W 1,p($).

Proof. Evidently ψ ≥ 0. Suppose that the lemma is not true. Then, exploiting the

p-homogeneity of ψ , we can find a sequence {un}n≥1 ⊆ W 1,p($) such that

‖un‖ = 1 for all n ≥ 1 and ψ(un) → 0+ as n → ∞.

We may assume that

un ⇀ u in W 1,p($) and un → u in L p($) as n → ∞. (4.27)

It follows from (4.27) and the lower weak semicontinuity of E that ψ(u) ≤ 0, and

so

E (u) =
∫

$
θ |u|pdz ≤ λ̂1‖u‖pp. (4.28)

If u = 0, then from (3.5) applied to un and (4.27), we see that un → 0 in W 1,p($),
a contradiction to the fact that ‖un‖ = 1 for all n ≥ 1. Hence u /= 0. But from

(4.28) and (3.2) we have E (u) = λ̂1‖u‖pp, and so u = ±t û1 for some t > 0.

Recalling that û1(z) > 0 for all z ∈ $ (see Proposition 3.1), from (4.28) and the

hypothesis on θ , we have E (u) < λ̂1‖u‖pp, again a contradiction. The lemma is
thus proved.

Proposition 4.12. If hypotheses H3(i), (ii) hold, and β ∈ Lq($) with q > Np
p−1 ,

then φ satisfies the C-condition.

Proof. Let {un}n≥1 ⊆ W 1,p($) be a C-sequence satisfying (4.2) and (4.3). Then,
as in the proof of Proposition 4.3, starting from (4.2) and (4.3) but using the reversed

signs, we obtain an inequality opposite to (4.7), i.e.
∫

$
[pF(z, un)− f (z, un)un] dz≥M10 for some M10 > 0 and all n≥1. (4.29)

Claim: {un}n≥1 ⊆ W 1,p($) is bounded.
Suppose that the Claim is not true. Then, by passing to a suitable subsequence

if necessary, we may assume that ‖un‖ → ∞. Let yn = un/‖un‖, n ≥ 1. Then

‖yn‖ = 1 for all n ≥ 1 and so we may assume that

yn ⇀ y in W 1,p($) and yn → y in L pq
′
($) as n → ∞. (4.30)

Let F(z, x) = λ̂1
p
|x |p + F0(z, x). It is clear from hypothesis H3(ii) that

lim
|x |→∞

F0(z, x)

|x |p = 0 uniformly for a.e. z ∈ $. (4.31)
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Then (4.31), and hypothesis H3(i) imply that, given ε > 0, there exists Cε > 0

such that

F0(z, x) ≤ ε

p
|x |p + cε for a.e. z ∈ $ and all x ∈ R. (4.32)

From (4.2), recalling that {un}n≥1 is a C-sequence, we have that for all n ≥ 1

M2 ≥ φ(un) = 1

p
E (un) − λ̂1

p
‖un‖pp −

∫

$
F0(z, un) dz

≥ 1

p
E (un) − λ̂1 + ε

p
‖un‖pp − cεLN ($),

and hence
M2

‖un‖p
≥ 1

p
E (yn) − λ̂1 + ε

p
‖yn‖pp − cεLN ($)

‖un‖p
,

and so, by (4.30),

E (y) ≤ (λ̂1 + ε)‖y‖pp.
Since ε > 0 was arbitrary, we let ε → 0+ and obtain

E (y) ≤ λ̂1‖y‖pp,

and by Proposition 3.1

E (y) = λ̂1‖y‖pp.
Thus, either y = 0 or y = ±t û1 for some t > 0.

If y = 0, then yn → 0 in W 1,p($) by (3.5), a contradiction to the fact that
‖yn‖ = 1 for all n ≥ 1. So y = ±t û1, and since û1(z) > 0 for all z ∈ $, it follows
that |un(z)| → ∞ for all z ∈ $ as n → ∞. Thus, by H3(ii) we have

lim
n→∞ [pF(z, un) − f (z, un)un] = −∞ for all z ∈ $ as n → ∞,

and by Fatou’s Lemma we get

lim
n→∞

∫

$
[pF(z, un) − f (z, un)un] dz = −∞,

which contradicts (4.29). This proves the claim.

Because of the Claim, we may assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($) as n → ∞.

From this, using Proposition 2.7 and acting as in the proof of Proposition 4.3, we

conclude that φ satisfies the C-condition.
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Proposition 4.13. If H3(i), (ii) hold and β ∈ Lq($) with q > pN
p−1 , then φ|Rû1 is

anticoercive.

Proof. The proof is similar to that of Proposition 4.4, and so we only sketch it. By

H3(ii) it is readily seen that also

lim
|x |→∞

[pF0(z, x) − f0(z, x)x] = −∞ uniformly for a.e. z ∈ $.

Then

d

dx

(
F0(z, x)

x p

)
= f0(z, x)x − pF0(z, x)

x p+1
≥ 0 for a.e. z ∈ $ and all |x | ≥ M,

for some M > 0. Integrating over [M, x], we get F0(z, x) ≥ x pF0(z,M)/Mp and

analogously for x < 0. Hence lim|x |→∞ F0(z, x) = ∞ uniformly for a.e. z ∈ $.
Thus

lim
|t |→∞

φ(t û1) = − lim
|t |→∞

∫

$
F0(z, t û1) dz = −∞,

and the proof is complete.

Using hypothesis H3(iii) and Lemma 4.11 we can now show the following

proposition.

Proposition 4.14. If H3(i), (iii) hold and β ∈ Lq($) with q > Np
p−1 , then u = 0 is

a local minimizer of φ.

Proof. By virtue of hypotheses H3(i), (iii), given any ε > 0, we can find cε > 0

such that

F(z, x)≤ 1

p
(θ(z) + ε) |x |p + cε|x |r for a.e. z∈$, all x ∈R, with r> p. (4.33)

Then for every u ∈ W 1,p($) we have

φ(u) = 1

p
E (u) −

∫

$
F(z, u) dz

≥ 1

p
E (u) − 1

p

∫

$
θ |u|pdz − ε

p
‖u‖p − c9‖u‖r by (4.33)

≥ µ0 − ε

p
‖u‖p − c9‖u‖r by Lemma 4.11.

(4.34)

Choosing ε ∈ (0, µ0), from (4.34) we have

φ(u) ≥ c10‖u‖p − c9‖u‖r for some c10 > 0. (4.35)

Since r > p, from (4.35) we see that 0 is a local minimizer for φ.
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Now we are ready for the new existence theorem.

Theorem 4.15. If hypotheses H3 hold and β ∈ Lq($) with q > Np
p−1 , then problem

(4.1) has a nontrivial solution u0 ∈ C1,α($) (0 < α ≤ 1).

Proof. From Proposition 4.14 we know that u = 0 is a local minimizer of φ. By
(4.35) we actually have that u = 0 is a strict local minimizer. Hence we can find

ρ > 0 small enough such that

φ(0) = 0 < inf
{
φ(u) : ‖u‖ = ρ

}
= ηρ . (4.36)

Then Propositions 4.12 and 4.13 and (4.36) above allow us to use Theorem 2.3 (the

Mountain Pass Theorem), and so we obtain u0 ∈ W 1,p($) such that

φ′(u0) = 0 and φ(0) = 0 < ηρ ≤ φ(u0). (4.37)

From the inequality in (4.37) we see that u0 /= 0; from the equality we have that

u0 solves (4.1). Moreover, u0 ∈ C1,α($) (0 < α ≤ 1) by nonlinear regularity

theory.

As before, we can modify the behaviour of f (z, ·) near 0, assume that the
weight is bounded and produce a new existence theorem. So the new hypotheses

on f are the following:

H4: f : $ × R → R is a Carthéodory function such that f (z, 0) = 0 a.e. in $,
hypotheses H4(i), (ii) are the same as the corresponding hypotheses H3(i), (ii) and

(iii): there exist β̂ > λ̂2 and δ0 > 0 such that

β̂

p
|x |p ≤ F(z, x) for a.e.z ∈ $ and all |x | ≤ δ0

and

λ̂1|x |p ≤ f (z, x)x for a.e.z ∈ $ and all x ∈ R.

Remark 4.16. Hypothesis H4(iii) implies that u = 0 is not a local minimizer of

φ and so the mountain pass geometry fails. Thus our approach will be based on
Theorem 2.2. Note that Propositions 4.12 and 4.13 still remain valid under this new

set of assumptions.

Theorem 4.17. If hypotheses H4 hold and β ∈ L∞($), then problem (4.1) has a
nontrivial solution u0 ∈ C1,α($̄) (0 < α ≤ 1).
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Proof. As before, we write F(z, x) = λ̂1
p
|x |p + F0(z, x). Then for all u ∈ V (see

(3.20)), we have

φ(u)= 1

p
E (u) − λ̂1

p
‖u‖pp −

∫

$
F0(z, u) dz

≥ 1

p
E (u) − λ̂1

pλ̂V
E (u) − ε

p
‖u‖pp − cεLN ($) see (3.20) and (4.32))

≥ 1

p

(
1− λ̂1 + ε

λ̂V

)
E (u) − cεLN ($) by (3.20).

(4.38)

Now choose ε ∈ (λ̂1, λ̂V ) (see Proposition 3.8). Then, from (4.38) we see that φ|V
is coercive, and so it is bounded below. Using Proposition 4.13, we can find t∗ > 0

large enough such that φ(±t∗û1) < mV = infV φ.
We consider the sets D0 =

{
± t∗û1

}
, the convex hull

D = [−t∗û1, t∗û1] =
{
u ∈ W 1,p($) : u = ε(−t∗û1) + (1− ε)t∗û1, 0 ≤ ε ≤ 1

}

and the already introduced set V =
{
u ∈ W 1,p($) :

∫
$ û1u dz = 0

}
. As in

Proposition 4.6, we check that the pair {D0, D} is linking with V in W 1,p($). So
we can apply Theorem 2.2 and obtain u0 ∈ W 1,p($) such that

φ′(u0) = 0 and mV ≤ φ(u0) = c0 = inf
γ̂∈'̂

max
t∈[0,1]

φ(γ̂ (t)), (4.39)

where

'̂ =
{
γ̂ ∈ C([0, 1],W 1,p($) : γ̂ (0) = t∗û1, γ̂ (1) = −t∗û1

}
.

From the first equation in (4.39) we see that u0 is a solution of (4.1) and u0 ∈
C1,α($̄) (0 < α ≤ 1), see Lieberman [29].

We need to show the nontriviality of u0. According to the minimax expression

of φ(u0) = c0 in (4.39), it suffices to produce a path γ̂∗ ∈ '̂ such that φ|γ̂∗ < 0.

To this end, let MC = M ∩ C1($̄). We consider M endowed with the relative

W 1,p($)-topology and MC furnished with the relative C
1($̄)-topology. Evidently

MC is dense in M . Now, let

' =
{
γ ∈ C([−1, 1],M) : γ (−1) = −û1, γ (1) = û1

}

and

'C =
{
γ ∈ C([−1, 1],MC) : γ (−1) = −û1, γ (1) = û1

}
.
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Then it is clear that 'C is dense in ', and so, invoking Proposition 3.6, we see that,
given δ > 0, we can find γ̃ = γ̃δ ∈ 'C such that

max
{
E (γ̃ (t)) : −1 ≤ t ≤ 1

}
≤ λ̂2 + δ. (4.40)

Since γ̃ ∈ 'C , we can find µ > 0 small enough such that µ|γ̃ (t)(z)| ≤ δ0 for all
t ∈ [−1, 1] and all z ∈ $̄, with δ0 as postulated by hypothesis H4(iii). Then

F(z, µγ̃ (t)(z)) ≥ β̂

p
|µγ̃ (t)(z)|p for all t ∈ [−1, 1] and a.e. z ∈ $. (4.41)

Therefore, for every t ∈ [−1, 1], we have

φ(µγ̃ (t)) = µp

p
E (γ̃ (t)) −

∫

$
F(z, µγ̃ (t)) dz

≤ µp

p
(λ̂2 + δ) − β̂

p
µp‖γ̃ (t)‖pp by (4.40) and (4.41)

= µp

p
(λ̂2 + δ − β̂),

(4.42)

since γ̃ has values in M .

Now recall that β̂ > λ̂2 (see H4(iii)). So, choosing δ ∈ (0, β̂ − λ̂2), we infer
that φ(µγ̃ (t)) < 0 for all t ∈ [−1, 1], and so

φ|µγ̃ < 0. (4.43)

Of course, we can always assume µ < t∗, and so we can consider σ : [µ, t∗] → R
defined by σ (s) = φ(sû1). Then σ is of class C1 and

σ ′(s) = 〈φ′(sû1), û1〉 = 1

s

(
E (sû1) −

∫

$
f (z, sû1)û1

)
≤ 0

by H4(iii), and so
σ (s) ≤ σ (µ) for all s ∈ [µ, t∗]. (4.44)

Now, we consider the linear path γ+ joining t∗û1 and µû1. Then from (4.43) and
(4.44), we see that

φ|γ+ < 0. (4.45)

We continue with γ̃µ = µγ̃ , which joins µû1 and −µû1, and along it we have
(4.43). Finally, reasoning as in the construction of γ+, we produce a path γ− joining
−µû1 and −t û1 such that

φ|γ− < 0. (4.46)

We now concatenate γ+, γ̃µ and γ−, producing a path γ̂∗ ∈ '̂ such that, due to

(4.43), (4.45) and (4.46),

φ|γ̂∗ < 0,

and so u0 /= 0.
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5. Nonlinear problems: multiplicity theorems

In this section we prove two multiplicity results for problem (4.1). In the first one

we assume that the weight function β is bounded, while in the second case we deal
with an unbounded weight function β.

For the first multiplicity result the hypotheses on f are the following:

H5: f : $ × R → R is a Carathéodory function such that f (z, 0) = 0 a.e. in

$, hypotheses H5(i), (iii) are the same as the corresponding hypotheses H1(i), (iii)
and

(ii): there exist two functions w± ∈ W 1,p($) ∩ C($̄) such that

w−(z) ≤ c− < 0 < c+ ≤ w+ for all z ∈ $̄,

ess sup
$

{
f (·, w+(·)) − β(·)w+(·)p−1

}
< 0

< ess inf
$

{
f (·, w−(·)) − β(·)|w−(·)|p−2w−(·)

}
,

A(w−) ≤ 0 ≤ A(w+) in W 1,p($)∗

and for r = max
{
‖w−‖∞, ‖w+‖∞

}
, there exists ξr > 0 such that for a.e.

z ∈ $ the function

x 1→ f (z, x) + ξr |x |p−2x
is nondecreasing on [−r, r].

Remark 5.1. Since H5 includes part of hypotheses H1, it is clear that again we

permit resonance with respect to the principal eigenvalue λ̂1.

Example 5.2. The following function satisfies hypotheses H5 (again we have

dropped the z-dependence):

f (x) =
{

|x |q−2x − ξ |x |p−2x if |x | ≤ 1,

η|x |p−2x − θ |x |τ−2x if |x | > 1,

with 1 < q, τ < p, ξ > 1+ ‖β‖∞, η ∈ [λ̂1, λ̂2) and θ = η + ξ − 1.

Example 5.3. With the function defined in the example above, a natural choice is

to take w− = −1 and w+ = 1.

First we produce constant sign smooth (i.e. C1,α($̄)) solutions.

Proposition 5.4. If hypotheses H5 hold and β ∈ L∞($), then problem (4.1) has
two nontrival constant sign smooth solutions

u0 ∈ intC+ satisfying w+ − u0 ∈ intC+
v0 ∈ −intC+ satisfying v0 − w− ∈ intC+

and both solutions are local minimizers of the energy functional φ.
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Proof. First we show the existence of the positive smooth solution. To this end,

take λ > ‖β‖∞ and consider the following truncation-perturbation of the reaction

term f :

g+
λ (z, x) =






0 if x ≤ 0,

f (z, x) + λx p−1 if 0 ≤ x ≤ w+(z),

f (z, w+(z)) + λw+(z)p−1 if w+(z) ≤ x .

(5.1)

Of course, this is a Carathéodory function. We set G+
λ (z, x) =

∫ x

0 g
+
λ (z, s) ds and

we introduce the C1 functional φ+
λ : W 1,p

n ($) → R defined by

φ+
λ (u) = 1

p
E (u) + λ

p
‖u‖pp −

∫

$
G+

λ (z, u) dz for all u ∈ W
1,p
n ($).

From (5.1) and since λ > ‖β‖∞, we see that φ+
λ is coercive. Moreover, exploiting

the compact embedding of W
1,p
n ($) into L pq

′
($), we easily check that φ+

λ is se-

quentially weakly lower semicontinuous. Thus, by the Weierstrass Theorem, there

exists u0 ∈ W
1,p
n ($) such that

φ+
λ (u0) = inf

{
φ+

λ (u) : u ∈ W
1,p
n ($)

}
= m+

λ .

Of course, we can always assume that δ0 < min{1, c+}, see hypotheses H5(ii), (iii).
Moreover, recall that by H5(iii) there exist δ0 > 0, µ ∈ (1, p) and K > 0 such that

F(z, x) ≥ K |x |µ a.e. in $ for all |x | ≤ δ0. (5.2)

Then for any ε ∈ (0, δ0] we have (recall that constant functions belong toW 1,p
n ($))

φ+
λ (ε) ≤ ‖β‖∞

p
ε p −

∫

$
F(z, ε) dz see (5.1)

≤ ‖β‖∞
p

ε p − KεµLN ($).

(5.3)

Since µ < p, from (5.3) we see that by choosing ε ∈ (0, δ0], even smaller if
necessary, we will have φ+

λ (ε) < 0. Thus

m+
λ = φ+

λ (u0) < 0 = φ+
λ (0),

and so u0 /= 0.

Now, recall that (φ+
λ )′(u0) = 0, that is

A(u0) + (λ + β)|u0|p−2u0 = N+
λ (u0), (5.4)

where

N+
λ (u)(·) = g+

λ (·, u(·)) for all u ∈ W
1,p
n ($).
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On (5.4) we act with −u−
0 ∈ W

1,p
n ($) and obtain

−
∫

$
|Du−

0 |pNdz −
∫

$
(β + λ)(u−

0 )pdz = 0 see (5.1),

and so ‖u−
0 ‖ = 0, i.e.

u0 ≥ 0, u0 /= 0. (5.5)

Then

A(u0) + (λ + β)u
p−1
0 = N+

λ (u0), (5.6)

that is 



−!pu0 + (λ + β)u

p−1
0 = g+

λ (z, u0) a.e. in $,
∂u

∂n
= 0 on ∂$.

By nonlinear regularity theory (see [23] and [29]), we have that u0 ∈ C+ \ {0}.
Next we act on (5.4) with (u0 − w+)+ ∈ W

1,p
n ($), and recalling (5.1), we

obtain

〈A(u0), (u0 − w+)+〉 +
∫

$
(λ + β)u

p−1
0 (u0 − w+)+dz

=
∫

$
( f (z, w+) + λw

p−1
+ )(u0 − w+)+dz

≤
∫

$
(λ + β)w

p−1
+ (u0 − w+)+dz by H5(ii).

Since A(w+) ≥ 0 by hypothesis H5(ii), from the previous inequality we get

〈A(u0) − A(w+), (u0 − w+)+〉 ≤
∫

$
(λ + β)(w

p−1
+ − u

p−1
0 )(u0 − w+)+dz ≤ 0,

that is
∫

{u0>w+}
(|Du0|p−2N Du0 − |Dw+|p−2N Dw+, Du0 − Dw+)Ndz ≤ 0,

so thatLN ({u0 > w+}) = 0, i.e. u0 ≤ w+.
Therefore, we have 0 ≤ u0 ≤ w+, and so (5.6) becomes, by (5.1),

A(u0) + βu
p−1
0 = N (u0),

with N (u)(·) = f (·, u(·)) for all u ∈ W
1,p
n ($), that is





−!pu0(z) + β(z)u

p−1
0 = f (z, u0(z)) a.e. in $,

∂u0

∂n
= 0 on ∂$.

(5.7)
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Now, let ξr > 0 be as in hypothesis H5(i i). We can always assume that ξr > ‖β‖∞,
and then we have

−!pu0(z) + (ξr + β(z))u
p−1
0 = f (z, u0(z)) + ξr u0(z)

p−1 ≥ 0 a.e. in $,

and then

!pu0(z) ≤ (ξr + ‖β‖∞)u
p−1
0 a.e. in $.

By the Strong Maximum Principle (see Vazquez [42] and Pucci-Serrin [37]) the last

inequality implies that u0 ∈ intC+.
Next, let δ > 0 and set uδ = u0 + δ ∈ intC+. Then

− !puδ(z) + (ξr + β(z))uδ(z)
p−1

= − !pu0(z) + (ξr + β(z))u0(z)
p−1 + ρ(δ) with ρ(δ) → 0+ as δ → 0+

= f (z, u0(z) + ξr u0(z)
p−1 + ρ(δ)

≤ f (z, w+(z)) + ξrw+(z)p−1 + ρ(δ) a.e. in $

(5.8)

by H5(ii) and the fact that u0 ≤ w+.
Let σ = ess sup

$

{
f (·, w+(·)) − β(·)w+(·)p−1

}
< 0 by H5(ii). Since ρ(δ) →

0+ as δ → 0+, for δ > 0 small we have that ρ(δ) ≤ −σ . Hence

ρ(δ) + f (z, w+(z)) ≤ β(z)w+(z)p−1 a.e. in $,

and by (5.8) we immediately get

A(uδ) + (ξr + β)u
p−1
δ ≤ (ξr + β)w

p−1
+ ≤ A(w+) + (ξr + β)w

p−1
+

by H5(ii), and so

A(uδ) − A(w+) + (ξr + β)(u
p−1
δ − w

p−1
+ ) ≤ 0.

Acting on this inequality with (uδ − w+)+ ∈ W
1,p
n ($), we immediately obtain

uδ ≤ w+, and so w+ −u0 ∈ intC+. Recalling that u0 ∈ intC+, we can find ρ > 0

so small that

B
C1n ($̄)

(u0) =
{
u ∈ C1n($̄) : ‖u − u0‖C1n ($̄) ≤ ρ

}

⊆ [0, w+] =
{
u ∈ W

1,p
n ($) : 0 ≤ u(z) ≤ w+(z) a.e in $

}
.

Note that φ+
λ |[0,w+] = φ|[0,w+]. Therefore, u0 is a local C1n($̄)-minimizer of φ, and

hence u0 is a local W
1,p
n ($)-minimizer of φ by Theorem 2.5.
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To produce the negative smooth solution, we introduce the “negative” trun-

cation-perturbation of f defined by

g−
λ (z, x) =






f (z, w−(z)) + λ|w−(z)|p−2w−(z) if x < w−(z),

f (z, x) + λ|x |p−2x if w−(z) ≤ x ≤ 0,

0 if x > 0.

(5.9)

Of course, this is a Carathéodory function. Then, as natural, we set G−
λ (z, x) =∫ x

0 g
−
λ (z, s) ds and we consider the C1 functional φ−

λ : W 1,p
n ($) → R defined by

φ−
λ (u) = 1

p
E (u) + λ

p
‖u‖pp −

∫

$
G−

λ (z, u(z)) dz

for all u ∈ W
1,p
n ($). Working as above, using this time (5.9) in place of (5.1),

and w− in place of w+, we can produce a second smooth constant sign solution
v0 ∈ −intC+ with v0 − w− ∈ intC+, which is a local minimizer of φ.

The previous result can be immediately improved by using the tools recalled

above.

Theorem 5.5. If hypotheses H5 hold and β ∈ L∞($), then problem (4.1) has at
least three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1n($̄) \ {0}.

Proof. From Proposition 5.4 we already have two constant sign smooth solutions

u0 ∈ intC+ and v0 ∈ −intC+. We also know that both are local minimizers of
φ, and without loss of generality we may assume that φ(v0) ≤ φ(u0). Now, let
ρ ∈ (0, 1) be so small that

φ(v0) ≤ φ(u0) < inf
{
φ(u) : ‖u − u0‖ = ρ

}
= ηρ . (5.10)

Let D0 =
{
v0, u0

}
, D =

{
u = εu0 + (1 − ε)v0 : 0 ≤ ε ≤ 1

}
and S = ∂Bρ(u0).

It is easy to see that the pair {D0, D} is linking with S in W 1,p
n ($). Also, since

H5(i), (ii) coincide with H1(i), (ii), Proposition 4.3 can be invoked, and thus φ
satisfies the C-condition. In conclusion, we can apply Theorem 2.2 and find y0 ∈
W
1,p
n ($) such that

φ′(y0) = 0 and φ(v0) ≤ φ(u0) < ηρ ≤ φ(y0) = inf
γ∈'

max
t∈[0,1]

φ(γ (t)), (5.11)

where ' =
{
γ ∈ C([0, 1],W 1,p

n ($)) : γ (0) = v0, γ (1) = u0
}
and ηρ is defined

in (5.10).
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From the second relation in (5.11), we see that y0 /∈ {v0, u0} and from [9, pages
84-85, page 90] we know that (recall that y0 is a critical point of mountain pass type)

C1(φ, y0) /= 0. (5.12)

On the other hand, recall that, by [24, Proposition 2.1], hypothesis H5(iii) implies
that

Ck(φ, 0) = 0 for all k ≥ 0. (5.13)

Comparing (5.12) and (5.13), we infer that y0 /= 0. Finally, from the equality in

(5.11) we have that y0 solves (4.1), and nonlinear regularity theory implies that

y0 ∈ C1n($̄).

In Theorem 5.5 the weight function β is bounded, and this requirement appears
to be essential in the proof. It is natural to ask wether we can have a multiplicity

result when β is unbounded. In this case, for the solutions we do not have regularity
up to the boundary, and so we do not have at out disposal Theorem 2.5 relating

local Sobolev and Hölder minimizers. For the case of unbounded β, we will prove
a multiplicity theorem for coercive (hence nonresonant) problems.

Remark 5.6. We believe it is an interesting open problem wether one can have a

multiplicity theorem for resonant problems in presence of an unbounded weight

function β.

In light of the considerations just made, the hypotheses on the reaction f now

are the following:

H6: f : $ × R → R is a Carathéodory function such that f (z, 0) = 0 a.e. in $,
hypothesis H6(i) is the same as the corresponding hypothesis H1(i) and

(ii): there exists θ ∈ L∞($) such that

θ(z) ≤ λ̂1 a.e. in $, θ /= λ̂1

and

lim
x→0

pF(z, x)

|x |p ≤ θ(z) uniformly for a.e. z ∈ $;

(iii): lim
x→0

f (z, x)

|x |p−2x = λ uniformly for a.e. z ∈ $, with λ > λ̂2 and λ /∈ σp($).

Remark 5.7. Hypotheses H6(iii) is not very satisfactory, because from the point of
view of the spectral properties developed in Section 3, it is not excluded the possi-

bility that at least for some domains$ we will have σp = {λ̂1}∪ [λ̂2,∞). We must
underline that this is not the case if p = 2 (see Section 6) and if N = 1 (ordinary

differential equations, see Zhang [43] and Binding-Rynne [6]). Nevertheless, such

hypothesis has been already used in the literature (see, for example, Liu-Li [30] and

Medeiros-Perera [33].
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Example 5.8. The following function f satisfies hypotheses H6:

f (x) =
{

λ|x |p−2x if |x | ≤ 1,

θ |x |p−2x + (λ − θ)|x |q−2x if |x | > 1,

with λ > λ̂2, λ /∈ σp($), θ < λ̂1 and 1 < q < p.

Let λ > λ̂2, λ /∈ σp($), and consider the C1 functional ψλ : W 1,p($) → R
defined by

ψλ(u) = 1

p
E (u) − λ

p
‖u‖pp for all u ∈ W 1,p($).

Proposition 5.9. C0(ψλ, 0) = C1(ψλ, 0) = 0.

Proof. Consider the open set U =
{
u ∈ W 1,p($) : E (u) < λ‖u‖pp

}
. Clearly

±û1 ∈ U .
We now show that U is path connected. To this end, let u ∈ U and let Vu be

the path component of U containing u and set

ηu = inf

{
E (v)

‖v‖pp
: v ∈ Vu

}
< λ. (5.14)

For the previous optimization problem (5.14), we consider a minimizing sequence

{un}n≥1 ⊆ Vu , and due to the p-homogeneity of E , we can suppose that

‖un‖p = 1 for all n ≥ 1 and E (un) → ηu as n → ∞. (5.15)

From (3.5) and (5.15) we immediately infer that {un}n≥1 ⊆ W 1,p($) is bounded.
So, passing to a suitable subsequence, if necessary, we may assume that

un ⇀ u in W 1,p($) and un → u in L pq
′
($) as n → ∞. (5.16)

Invoking the Ekeland variational principle and recalling that M =
{
v ∈ W 1,p($) :

‖v‖p = 1
}
, we can find a sequence {vn}n≥1 ⊆ Vu ∩ M such that

E (vn) ≤ E (un) ≤ ηu + 1

n2
, ‖vn − un‖ ≤ 1

n

and

E (vn) ≤ E (v) + 1

n2
‖v − vn‖ for all v ∈ Vu ∩ M . (5.17)

If vn ∈ ∂(Vu ∩ M) for infinitely many n’s, then from Lemma 3.5(c) of Cuesta-de
Figueiredo-Gossez [13], for the related sequence of indexes, say for all n ≥ 1, we

have that

E (vn) = λ ≤ E (un) ≤ ηu + 1

n2
< λ,
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a contradiction. Therefore, vn ∈ Vu ∩ M for all n ≥ 1 and so, from (5.17), we get

in a standard fashion

(E |M)′(vn) → 0 as n → ∞. (5.18)

From the proof of Proposition 3.6, we know that E |M satisfies the PS-condition.

Therefore, from (5.18) it follows that, at least for a subsequence, we have

vn → v0 in W 1,p($) as n → ∞,

and thus

v0 ∈ Vu ∩ M and E (v0) = ηu < λ.

As above, via Lemma 3.5(c) of [13], we infer that v0 ∈ Vu ∩ M . Hence, in order to

show the path-connectedness of U , it suffices to join û1 and v0 with a path staying
in U . If v0 ≤ 0, then by virtue of Proposition 3.4, we have v0 = −û1, and then the
desired path exists because of Proposition 3.6 and since λ > λ̂2. Analogously, if
v0 ≥ 0, then v0 = û1 and we are done. So, we may assume that v

±
0 /= 0. Let

yt = v+
0 − (1− t)v−

0

‖v+
0 − (1− t)v−

0 ‖p
∈ M for all t ∈ [0, 1].

By (5.18) and the strong convergence of vn to v0, we know that

〈A(v0), h〉 +
∫

$
β|v0|p−2v0h dz = ηu

∫

$
|v0|p−2v0h dz for all h ∈ W 1,p($).

(5.19)

In (5.19) first we choose h = v+
0 , and then h = −v−

0 , obtaining respectively

E (v+
0 ) = ηu‖v+

0 ‖pp and E (v−
0 ) = ηu‖v−

0 ‖pp

From these equalities and since the functions v+
0 and v−

0 have disjoint interior sup-

ports, we have

E (yt ) = ηu‖yt‖pp = ηu for all t ∈ [0, 1],

and thus yt ∈ U for all t ∈ [0, 1].
Finally, note that y0 = v0/‖v0‖p = v0, since v0 ∈ Vu ∩ M , and y1 =

v+
0 /‖v+

0 ‖p = û1 by Proposition 3.4. Therefore, the map t 1→ yt is the desired

path in U which joins v0 and û1. This proves that U is path connected.
Now, let z ∈ U . Then we have (for example, see [9, page 5])

H0(U , z) = 0. (5.20)

The p-homogeneity of the functional ψλ easily implies that the set

ψ0
λ =

{
u ∈ W 1,p($) : ψλ(u) ≤ 0

}
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is contractible (it is enough to consider the segment tu for any u ∈ ψ0
λ ). Hence (for

example, see [21, page 389]),

Hk(ψ
0
λ , z) = 0 for all k ≥ 0. (5.21)

The Second Deformation Lemma (see, for example, [18, page 628]), ensures that

ψ0
λ \ {0} and ψ−ε

λ are homotopy equivalent for ε > 0 small enough, since u = 0 is

the only critical point of ψλ. Similarly, if

ψ̇0
λ =

{
u ∈ W 1,p($) : ψλ(u) < 0

}
,

then from Granas-Dugundji [21, page 407], we have that ψ̇0
λ = U and ψ−ε

λ are

homotopy equivalent if ε > 0 is small enough. Therefore, it follows that U and

ψ0
λ \ {0} are homotopy equivalent, and so

Hk(U , z) = Hk(ψ
0
λ \ {0}, z) for all k ≥ 0,

H0(ψ
0
λ \ {0}, z) = 0 (see (5.20)).

(5.22)

Now, we consider the following reduced homology sequence:

. . . Hk(ψ
0
λ \ {0}, z)→Hk(ψλ, z)=0

i∗→ Hk(ψ
0
λ ,ψ0

λ \ {0}) ∂∗→Hk−1(ψ0
λ \ {0}, z) → . . . ,

(5.23)

where i∗ is the group homomorphism arising from the inclusion map, and ∂∗ is
the boundary homomorphism (for example, see Granas-Dugundji [21, page 388]).

From (5.23), together with (5.21), we have

ker ∂∗ = im i∗ = {0}.
Thus ∂∗ is an isomorphism between Hk(ψ0

λ ,ψ0
λ \{0}) and a subgroup of Hk−1(ψ0

λ \
{0}, z). Hence, by (5.22), and noting that u = 0 is the only critical point of ψλ, we

get

C1(ψλ, 0) = H1(ψ
0
λ ,ψ0

λ \ {0}) = 0.

This identity and (5.23) finally imply that

C0(ψλ, 0) = 0,

and the proposition is thus completely proved.

Using this proposition, we can now prove our multiplicity result for problem

(4.1) when the weight function β is unbounded.

Theorem 5.10. If hypotheses H6 hold and β ∈ Lq($) with q> Np
p−1 , then problem

(4.1) has at least three nontrivial smooth solutions u0, v0, y0∈C1,α($) (0 < α≤1)
with

v0(z) < 0 < u0(z) for all z ∈ $.
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Proof. Let β̂(z) = |β(z)| + 1, so that β̂ ∈ Lq($)+, and consider the following
truncation-perturbations of the reaction f :

f̂+(z, x) =
{
0 if x ≤ 0,

f (z, x) + β̂(z)x p−1 if x > 0,
(5.24)

and

f̂−(z, x) =
{
f (z, x) + β̂(z)|x |p−2x if x ≤ 0,

0 if x > 0.
(5.25)

Of course, both f̂± are Carathéodory functions. Then we set F̂±(z,x)=
∫ x

0 f̂±(z,s)ds

and consider the C1 functional φ̂± : W 1,p($) → R defined by

φ̂±(u) = 1

p
E (u) + 1

p

∫

$
β̂(z)|u(z)|pdz −

∫

$
F̂±(z, u(z)) dz

for all u ∈ W 1,p($).
First we produce the positive solution u0. By virtue of hypothesis H6(ii), given

ε > 0, there exists c11 = c11(ε) > 0 such that

F(z, x) ≤ 1

p
(θ(z) + ε)|x |p + c11 for all x ∈ R and a.e. z ∈ $. (5.26)

Therefore, for u ∈ W 1,p($) we have

φ̂+(u) = 1

p
E (u) + 1

p

∫

$
β̂(z)|u(z)|pdz −

∫

$
F̂+(z, u(z)) dz

≥ 1

p
E (u) + 1

p

∫

$
β̂|u|pdz − 1

p

∫

$
θ(u+)pdz − ε

p
‖u+‖pp − c11LN ($)

by (5.24) and (5.26). The last line of the previous inequality is

≥ 1

p

[
E (u+) −

∫

$
θ(u+)pdz

]
− ε

p
‖u+‖p

+ 1

p

[
E (u−) +

∫

$
β̂(u−)pdz

]
− c11LN ($)

≥ µ0 − ε

p
‖u+‖p + 1

p
‖Du−‖pp

+ 1

p

∫

$
(β̂ + β)(u−)pdz − c11LN ($)( by Lemma 4.11)

≥ µ0 − ε

p
‖u+‖p + 1

p
‖Du−‖pp + 1

p
‖u−‖pp − c11LN ($),

since β̂ + β = 2β+ + 1.
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Choosing ε ∈ (0, µ0), we see that

φ̂+(u) ≥ c12‖u‖p − c11LN ($) for some c12 > 0,

and so φ̂+ is coercive.
Moreover, it is easy to see that φ̂+ is sequentially weakly lower semicontinuous

in W 1,p($). Therefore, by the Weierstrass Theorem, we can find u0 ∈ W 1,p($)
such that

φ̂+(u0) = inf
{
φ̂+(u) : u ∈ W 1,p($)

}
= m+. (5.27)

By virtue of hypothesis H6(iii), we can find δ0 > 0 such that

F(z, x) > λ̂1
p
|x |p for a.e. z ∈ $ and all 0 < |x | ≤ δ0.

Thus, if t ∈ (0, 1) is sufficiently small, we have t‖û1‖∞ < δ0, and hence

φ̂+(t û1) = 1

p
E (t û1) −

∫

$
F(z, û1) dz (see (5.24))

≥
∫

$

(
λ̂1

p
(t û1)

p − F(z, t û1)

)
dz < 0,

and so, recalling (5.27),

φ̂(u0) = m̂+ < 0 = φ̂(0),

i.e. u0 /= 0.

From (5.27) we also have φ̂′
+(u0) = 0, that is

A(u0) + (β + β̂)|u0|p−2u0 = N̂+(u0), (5.28)

where N̂+(u)(·) = f̂+(·, u(·)) for all u ∈ W 1,p($).
On (5.28) we now act with −u−

0 ∈ W 1,p($); by (5.24), and recalling that

β̂ + β ≥ 1, we immediately obtain

‖Du−
0 ‖pp + ‖u−

0 ‖pp ≤ 0,

that is u−
0 ≡ 0, and so u0 ≥ 0, u0 /= 0.

Therefore (5.28) becomes

A(u0) + βu
p−1
0 = N (u0),

with, by (5.24),

N (u)(·) = f (·, u(·)) for all u ∈ W 1,p($);
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that is 



−!pu0(z) + β(z)u

p−1
0 (z) = f (z, u0(z)) a.e. in $,

∂u0

∂n
= 0 on ∂$,

i.e. u0 solves problem (4.1), and, as usual, u0 ∈ C1,α($) for some α ∈ (0, 1].
Moreover, from the Harnack inequality of Trudinger [41] (see also Damascelli

[14] and Pucci-Serrin [37]), we have that u0(z) > 0 for any z ∈ $.
Next we show that u0 is also a local minimizer for φ. Thus, suppose that

un → u0 in W
1,p($) as n → ∞. We will show that there exists n0 ≥ 1 such that

φ(un) ≥ φ(u0) for all n ≥ n0. (5.29)

To this end, we write

φ(un) = 1

p

[
E (u+

n ) + E (u−
n )

]
−

∫

$
F(z, u+

n ) dz −
∫

$
F(z, u−

n ) dz

≥ φ(u+
n ) + 1

p
E (u−

n ) − c13‖un‖ppq ′

(5.30)

for some c13 > 0, thanks to Hölder’s inequality and hypotheses H6(i), (iii).
Since u0 > 0 and un → u0 in W

1,p($), we have

u+
n → u+

0 and u−
n → 0 as n → ∞.

If u−
n = 0 for all n ≥ n0, then u

+
n = un for all n ≥ n0 and so (5.29) holds from

(5.30). Thus, passing to a subsequence if necessary, we may assume that u−
n /= 0

for all n ≥ 1. Now, for every n ≥ 1, we set $−
n =

{
z ∈ $ : un(z) < 0

}
, which has

thus positive measure.

Claim 1: LN ($−
n ) → 0 as n → ∞.

From the regularity of the Lebesgue measure on RN , we know that, given ε > 0,

we can find a compact set Kε ⊂ $ such thatLN (KC
ε ) = LN ($ \ Kε) ≤ ε. From

the very definition of $−
n we have

‖un − u0‖pp =
∫

$
|un − u0|pdz ≥

∫

$n∩Kε

|un − u0|pdz ≥
∫

$n∩Kε

|u0|pdz,

and so

‖un − u0‖pp ≥ µp
ε LN ($−

n ∩ Kε), (5.31)

where µε = min
{
u0(z) : z ∈ Kε

}
> 0.

Since un → u0 in W
1,p($), in particular we have that un → u0 in L

p($),
and so from (5.31), we have

LN ($−
n ∩ Kε) → 0 as n → ∞. (5.32)
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On the other hand, note that

$−
n ⊆ ($−

n ∩ Kε) ∪ KC
ε = ($−

n ∩ Kε) ∪ ($ \ Kε),

and so

LN ($−
n ) ≤ LN ($−

n ∩ Kε) + LN ($ \ Kε) ≤ LN ($−
n ∩ Kε) + ε for all n ≥ 1;

(5.32) now immediately implies that

lim sup
n→∞

LN ($−
n ) ≤ ε.

Since ε > 0 is arbitrary, we can conclude that LN ($−
n ) → 0 as n → ∞, and

Claim 1 is thus proved.

Claim 2: there exists n0 ≥ 1 such that

1

p
E (u−

n ) > c13‖u−
n ‖p

pq ′ for all n ≥ n0.

We argue by contradiction: so, suppose that, at least for a subsequence, we have

1

p
E (u−

n ) ≤ c13‖u−
n ‖p

pq ′ for all n ≥ 1.

Set yn = u−
n

‖u−
n ‖pq′

, n ≥. Then, using the homogeneity of E , we get

1

p
E (yn) ≤ c13 for all n ≥ 1,

and so, by (3.5), we have that {yn}n≥1 ⊆ W 1,p($) is bounded. Hence, we may
assume that

yn ⇀ y in W 1,p($) and yn → y in L pq
′
($) as n → ∞.

Note that ‖y‖pq ′ = 1 and that y ≥ 0, y /= 0. Thus, we can find 7 > 0 so small

that, setting $7 =
{
z ∈ $ : y(z) ≥ 7

}
, we have

LN ($7) > 0. (5.33)

Then

‖yn − y‖pp =
∫

$
|yn − y|pdz ≥

∫

$7\$−
n

|yn − y|pdz

≥
∫

$7\$−
n

y pdz (by definition of $7)

≥ 7pLN ($7 \ $−
n ) ≥ 7p(LN ($7) − LN ($−

n )) for all n ≥ 1,
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and so, by Claim 1,

0 = lim
n→∞ ‖yn − y‖pp = 7pLN ($7),

which contradicts (5.33). This proves Claim 2.

Returning to (5.30), and using Claim 2, we obtain

φ(un) ≥ φ(u+
n ) ≥ φ(u0) for all n ≥ n0,

since φ|W+ = (φ̂+)|W+ , where W+ =
{
u ∈ W 1,p($) : u ≥ 0

}
, that is u0 is a local

minimizer for φ.
Similarly, working with φ̂− and using (5.25) in place of (5.24), we obtain a

second constant sign smooth solution v0 such that

v0 ∈ C1,α($) (0 < α ≤ 1) and v0(z) < 0 for all z ∈ $

and such that v0 is another local minimizer for φ.
Having u0, v0 and assuming without any loss of generality that φ(v0) ≤ φ(u0),

as in the proof of Theorem 5.5, via the use of Theorem 2.2, we can find a third

critical point y0 of φ such that y0 /= u0, v0. Then y0 solves problem (4.1) and, as
usual, y0 ∈ C1,α($) (0 < α ≤ 1). Now we need to show that y0 /= 0.

We consider the homotopy h : [0, 1] × W 1,p($) → W 1,p($) defined by

h(t, u) = (1− t)φ(u) + tψλ(u) for all (t, u) ∈ [0, 1] × W 1,p($),

where ψλ : W 1,p($) → R is the C1 functional introduced in Proposition 5.9. We

will show that u = 0 is an isolated critical point of h(t, ·) uniformly in t ∈ [0, 1].
Arguing by contradiction, suppose we could find two sequences {tn}n≥1 ⊆ [0, 1]
and {un}n≥1 ⊆ W 1,p($) such that

tn → t ∈ [0, 1], un → 0 in W 1,p($) as n → ∞
and hu(tn, un) = 0 for all n ≥ 1.

(5.34)

From the equation in (5.34), we have

A(un) + β|un|p−2un = (1− tn)N (un) + tnλ|un|p−2un for all n ≥ 1, (5.35)

where, as above, N (u)(·) = f (·, u(·)) for all u ∈ W 1,p($).
Let yn = un

‖un‖ , n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may assume

that

yn ⇀ y in W 1,p($) and yn → y in L pq
′
($) as n → ∞. (5.36)

From (5.35) we obtain

A(yn) + β|yn|p−2yn = (1− tn)
N (un)

‖un‖p−1
+ tnλ|yn|p−2yn for all n ≥ 1. (5.37)
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On (5.37) we act with yn − y ∈ W 1,p($), pass to the limit as n → ∞ and use

(5.36), obtaining

lim
n→∞〈A(yn), yn − y〉 = 0,

which implies, with Proposition 2.7, that

yn → y in W 1,p($), and so ‖y‖ = 1. (5.38)

Using hypothesis H6(iii), we have

N (un)

‖un‖p−1
⇀ λ|y|p−2y in L p

′
($) as n → ∞. (5.39)

So, passing to the limit as n → ∞ in (5.37) and using (5.38), we obtain

A(y) + β|y|p−2y = λ|y|p−2y,

that is





−!p y(z) + β(z)|y(z)|p−2y(z) = λ|y(z)|p−2y(z) a.e. in $,
∂y

∂n
= 0 on ∂$.

(5.40)

Since λ /∈ σp($), from (5.40) we infer that y = 0, which contradicts (5.38).

Therefore, we can find ρ ∈ (0, 1) so small that u = 0 is the only critical point

in B̄ρ =
{
u ∈ W 1,p($) : ‖u‖ ≤ ρ

}
of h(t, ·) for all t ∈ [0, 1]. Note that

h(0, ·) = φ(·), which is coercive due to hypothesis H6(ii) and Lemma 4.11, hence
it satisfies the PS-condition, while h(1, ·) = ψλ(·), and since λ /∈ σp($), also
ψλ satisfies the PS-condition. Thus, from the homotopy invariance of the critical

groups (see Chang [10, page 334]), we have

Ck(h(0, ·), 0) = Ck(h(1, ·), 0) for all k ≥ 0,

that is

Ck(φ, 0) = Ck(ψλ, 0) for all k ≥ 0. (5.41)

From Proposition 5.9, we have C0(ψλ, 0) = c1(ψλ, 0) = 0, and so, from (5.41), we

get

C0(φ, 0) = C1(φ, 0) = 0. (5.42)

From Chang [9, pages 84-85] we know that

C1(φ, y0) /= 0, (5.43)

see also (5.12).

Comparing (5.42) and (5.43), we conclude that y0 /= 0, as claimed.
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6. Semilinear problems

In this section we deal with semilinear problems (i.e., p = 2), so the problem under

consideration is now the following:




−!u(z) + β(z)u(z) = f (z, u(z)) a.e. in $,
∂u

∂n
= 0 on ∂$.

(6.1)

In this section we will assume that β ∈ L∞($) and that f (z, ·) is a C1 function on
R. Using the tools of Morse theory, which is more effective since we work in the
framework of Hilbert spaces, we are able to obtain stronger multiplicity results.

We start by considering the following linear eigenvalue problem:




−!u(z) + β(z)u(z) = λ̂u(z) a.e. in $,
∂u

∂n
= 0 on ∂$.

(6.2)

Suppose that β ∈ Lq($) with q > N/2. Then, from the Sobolev Embedding

Theorem, we have that u ∈ H1($) implies u ∈ L2q
′
($). Also

∣∣∫
$ βu2dz

∣∣ ≤
‖β‖q‖u‖22q ′ . From (3.5) with p = 2 we have

‖u‖2 ≤ E (u) + c14‖u‖22 for some c14 > 0 and all u ∈ H1($). (6.3)

Therefore, by (6.3),

〈A(u), u〉 +
∫

$
βu2dz = ‖u‖2 +

∫

$
βu2dz = E (u) ≥ ‖u‖2 − c14‖u‖2

for all u ∈ H1($). Invoking Corollary 7.D, page 78, of Showalter [39], we see that

problem (6.2) has a sequence {λ̂n}n≥1 of distinct eigenvalues such that
−c14 < λ̂1 < λ̂2 ≤ . . . ≤ λ̂n → ∞ as n → ∞.

Moreover, we know that we can choose a corresponding sequence {ûn}n≥1 ⊆
C1($) of eigenfunctions which form an orthonormal basis for L2($) and an or-

thogonal basis for H1($). Again, only λ̂1 has constant sign eigenfunctions, while
all the other eigenvalues have nodal eigenfunctions. Finally, if β ∈ L∞($), then
{ûn}n≥1 ⊆ C1($̄).

We start with a multiplicity result for problems which are resonant at higher

parts of the spectrum, i.e. with respect to eigenvalues λ̂ > λ̂2. Now, we do not
require an oscillatory behaviour of f (z, ·) (as in hypothesis H5(iii)), and near the
origin we do not have concave terms (as in hypothesis H5(iii)). Moreover, in order
to exploit the full strength of Morse theory, we need a C2 energy functional, which

of course means that f (z, ·) is of class C1. More precisely, the new hypotheses on
f are:

H7: f : $ × R → R is a measurable function such that f (z, 0) = 0 and f (z, ·) ∈
C1(R) a.e. in $, and
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(i): there exist a ∈ L∞($)+, c > 0 and r ∈ [2, 2∗) such that

| f ′
x (z, x)| ≤ a(z) + c|x |r−2 for a.e. z ∈ $ and all x ∈ R;

(ii): there exist an integerm ≥ 2, η0∈L∞($), η0≥ λ̂m a.e. in$, η0 /= λm , β0 > 0

and τ ∈ (0, 2) such that

η0(z) ≤ lim inf
|x |→∞

f (z, x)

x
≤ lim sup

|x |→∞

f (z, x)

x
≤ λ̂m+1 uniformly for a.e. z ∈ $

and

β0 ≤ lim inf
|x |→∞

f (z, x)x − 2F(z, x)

|x |τ uniformly for a.e. z ∈ $;

(iii): f ′
x (z, 0) = lim

x→0

f (z, x)

x
≤ λ̂1 uniformly for a.e. z ∈ $ and fx (·, 0) /= λ̂1.

Remark 6.1. Hypotheses H7 dictate a linear growth for f (z, ·) both near zero and
near ±∞. Moreover, hypothesis H7(ii) permits resonance with an eigenvalue λ̂

bigger than the first two, i.e. λ̂ /∈ {λ̂1, λ̂2}.
Example 6.2. The following simple function f satisfies hypotheses H7:

f (x) =
{

θx + εx3 if |x | ≤ 1,

ηx − 3εx1/3 if |x | > 1,

with η < λ̂1, η ∈ (λ̂m, λ̂m+1], m ≥ 2, and ε = 1
4
(η − θ) > 0.

We will use the Sobolev space H1n ($) = C1n($̄)
‖·‖
, for which we have the

following orthogonal direct sum decomposition:

H1n ($) = ⊕i≥1E(λ̂i ),

where E(λ̂i ) denotes the eigenspace corresponding to the eigenvalue λ̂i . Recall that

the eigenspaces E(λ̂i ), i ≥ 1, have the “unique continuation property” (UCP for

short), namely: if u ∈ E(λ̂i ) vanishes on a set of positive measure, then u(z) = 0

for all z ∈ $̄.
Now, let φ : H1n ($) → R be the energy funtional associated to problem (6.1),

defined by

φ(u) = 1

2
E (u) −

∫

$
F(z, (u))dz for all u ∈ H1n ($).

Hypotheses H7 immediately imply that φ ∈ C2(H1n ($)).
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Proposition 6.3. If hypotheses H7(i), (ii) hold and β ∈ L∞($), then φ satisfies

the C-condition.

Proof. Let {un}n≥1 ⊆ H1n ($) be a sequence such that

|φ(un)| ≤ M12 for some M12 > 0 and all n ≥ 1 (6.4)

and

(1+ ‖un‖)φ′(un) → 0 in H1n ($)∗ as n → ∞. (6.5)

As in the proof of Proposition 4.3, from (6.4) and (6.5), we have

∫

$

[
f (z, un)un − 2F(z, un)

]
dz ≤ M13 for some M13 > 0 and all n ≥ 1,

which implies that

1

‖un‖τ

∫

$

[
f (z, un)un − 2F(z, un)

]
dz ≤ M13

‖un‖τ
for all n ≥ 1. (6.6)

Claim: the sequence {un}n≥1 ⊆ H1n ($) is bounded.
Suppose by contradiction that the Claim is not true. Without any loss of gen-

erality, we may assume that ‖un‖ → ∞ as n → ∞. We set yn = un/‖un‖, n ≥ 1.

Then ‖yn‖ = 1 for all n ≥ 1, and so we can assume that

yn ⇀ y in H1n ($) and yn → y in L2($) as n → ∞. (6.7)

Thus, from (6.5), we immediately have

∣∣∣∣〈A(yn), h〉+
∫

$
unh dz−

∫

$

N (un)

‖un‖
h dz

∣∣∣∣≤
εn‖h‖
1+ ‖un‖

for all h ∈ H1n ($), (6.8)

with εn → 0 as n → ∞, and, as above, N (u)(·) = f (z, u(·)) for all u ∈ H1n ($).
Hypotheses H7(i), (ii) readily imply the existence of â ∈ L∞($)+ and ĉ > 0 such

that

| f (z, x)| ≤ â(z) + ĉ|x | for a.e. z ∈ $ and all x ∈ R. (6.9)

From (6.7) and (6.9) it follows that
{
N (un)
‖un‖

}

n≥1
⊆ L2($) is bounded, and so we

may assume that
N (un)

‖un‖
⇀ g in L2($) as n → ∞. (6.10)

Using hypothesis H7(ii), we have that

g = η̂y with η0(z) ≤ η̂(z) ≤ λm+1 a.e. in $. (6.11)
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Now, recall that A ∈ L (H1n ($), H1n ($)∗). So, if in (3.11) we pass to the limit as
n → ∞ and use (6.7), (6.10) and (6.11), we obtain

A(y) + βy = η̂y. (6.12)

If η̂ /= λ̂m+1, then acting on (6.12) with y0 = proj
E(λ̂m+1)

y, where proj
E(λ̂m+1)

y is

the orthogonal projection of y onto the eigenspace E(λ̂m+1); exploiting the orthog-
onality of the spaces E(λ̂i ), we have

‖Dy0‖22 +
∫

$
β(y0)2dz =

∫

$
η̂(y0)2dz,

and so ∫

$
(η̂(z) − λ̂m+1)y0(z)2dz = 0.

On the other hand, by virtue of the UCP of E(λ̂m+1) (see above), we have
∫

$
(η̂(z) − λ̂m+1)y0(z)2dz < 0,

which contradicts the previous identity.

If η̂ = λ̂m+1, then from (6.12) we have




−!y + βy = λ̂m+1y a.e. in $,
∂y

∂n
= 0 on ∂$,

that is y ∈ E(λ̂m+1). Moreover, if in (6.8) we choose h = y − yn ∈ H1n ($), pass
to the limit as n → ∞ and use (6.7), we have

lim
n→∞〈A(yn), yn − y〉 = 0,

hence yn → y in H1n ($) by Proposition 2.7. Therefore, y ∈ E(λ̂m+1) \ {0}. By the
UCP of E(λ̂m+1), this implies that |y(z)| /= 0 a.e. in $, and then |un(z)| → ∞ for

a.e. z ∈ $ as n → ∞. Then, by virtue of hypothesis H7(ii), we have

β0 ≤ lim inf
n→∞

f (z, un(z))un(z) − 2F(z, un(z))

|un(z)|τ
for a.e. z ∈ $. (6.13)

Hence, by Fatou’s Lemma, we have

lim inf
n→∞

1

‖un‖τ

∫

$
[ f (z, un)un − 2F(z, un)] dz

= lim inf
n→∞

∫

$

f (z, un)un − 2F(z, un)

|un|τ
|yn|τdz

≥
∫

$
lim inf
n→∞

(
f (z, un)un − 2F(z, un)

|un|τ
|yn|τ

)
dz

≥
∫

$
β0|y|τdz > 0

(6.14)
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by (6.13) and (6.7). On the other hand, from (6.6) we have

lim sup
n→∞

1

‖un‖τ

∫

$
[ f (z, un)un − 2F(z, un)] dz ≤ 0. (6.15)

Comparing (6.14) and (6.15), we reach a contradiction and thus the Claim is proved.

By virtue of the Claim, we may assume that

un ⇀ u in H1n ($) and un → u in L2($). (6.16)

Then, choosing h = yn − y ∈ H1n ($) in (6.8), passing to the limit as n → ∞
and using as before (6.16) and Proposition 2.7, we conclude that φ satisfies the

C-condition.

Next we compute the critical groups of φ at infinity.

Proposition 6.4. If hypotheses H7(i), (ii) hold and β ∈ L∞($), then Ck(φ,∞) =
δk,dmZ for all k ≥ 0, where dm = dim⊕m

i=1 E(λ̂i ) ≥ 2.

Proof. We fix λ ∈ (λ̂m, λ̂m+1) and consider the C1 functional ψλ : H1n ($) → R
defined by

ψλ(u) = 1

2
E (u) − λ

2
‖u‖22 for all ui H1n ($).

Now, we consider the homotopy h : [0, 1] × H1n ($) → H1n ($) defined by

h(t, u) = (1− t)φ(u) + tψλ(u) for all (t, u) ∈ [0, 1] × H1n ($).

Evidently, h(0, ·) = φ, h(1, ·) = ψλ and both satisfy the C-condition (see Proposi-

tion (6.3) and recall that λ /∈ σ2($)).

Claim: There exist α ∈ R and δ > 0 such that for every (t, u) ∈ [0, 1] × H1n ($)
with h(t, u) ≤ α, there holds (1+ ‖u‖)‖hu(t, u)‖∗ ≥ δ.

We argue by contradiction and suppose the Claim is not true. Then we can find

two sequences {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆ H1n ($) such that

tn → [0, 1], h(tn, un) → −∞, ‖un‖ → ∞
and (1+ ‖un‖)hu(t, u) → 0 in H1n ($)∗ as n → ∞.

(6.17)

From the last convergence in (6.17), after some rearrangements, we easily have

|〈A(un), h〉 +
∫

$
βunh dz − (1− tn)

∫

$
f (z, un)h dz − tnλ

∫

$
unh dz

∣∣∣∣

≤ εn‖h‖
1+ ‖un‖

(6.18)

for all h ∈ H1n ($) with ε → 0+ as n → ∞.
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Now, set yn = un/‖un‖, n ≥ 1. Then ‖yn‖ = 1 for all n ≥ 1 and so we may

assume that

yn ⇀ y in H1n ($) and yn → y in L2($). (6.19)

From (6.18) we have
∣∣∣∣〈A(yn), h〉 +

∫

$
βynh dz − (1− tn)

∫

$

f (z, un)h

‖un‖
dz − tnλ

∫

$
ynh dz

∣∣∣∣

≤ εn‖h‖
(1+ ‖un‖)‖un‖

(6.20)

for all h ∈ H1n ($) and all n ≥ 1.

From hypotheses H7(i), (ii) it is clear that
{
f (·,un(·))

‖un‖
}

n≥1
⊆ L2($) is bounded,

and so we may assume that

f (·, un(·))
‖un‖

⇀ g in L2($)

and g = η̂y, with η0(z) ≤ η̂(z) ≤ λm+1 a.e. in $,

(6.21)

thanks to hypothesis H7(ii).
As before, if in (6.20) we choose h = yn − y ∈ H1n ($) and pass to the limit

as n → ∞, then we end up with the fact that yn → y in H1n ($) as n → ∞ and

‖y‖ = 1.

If in (6.20) we pass to the limit as n → ∞ and use (6.19) and (6.21), then we

have

A(y) + βy =
[
(1− t)η̂ + tλ

]
y,

that is




−!y(z) + β(z)y(z) =

[
(1− t)η̂(z) + tλ

]
y(z) a.e. in $,

∂y

∂n
= 0 on ∂$.

(6.22)

If 0 < t ≤ 1, then




−!y(z) + β(z)y(z) = η̂t (z)y(z) a.e. in $,
∂y

∂n
= 0 on ∂$,

(6.23)

where we have set η̂t (z) = (1− t)η̂(z) + tλ, and with λ̂m < η̂t (z) < λm+1 a.e. in
$, since t > 0. From (6.23) and the UCP of the eigenspaces E(λ̂m) and E(λ̂m+1),
we infer that y = 0, a contradiction.

If t = 0, then (6.22) becomes




−!y(z) + β(z)y(z) = η̂(z)y(z) a.e. in $,
∂y

∂n
= 0 on ∂$.
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If η̂ /≡ λ̂m+1, then, as above, by virtue of the UCP of the eigenspaces, we have
y = 0, which is a contradiction.

If η̂ = λ̂m+1, then y ∈ E(λ̂m+1) and so y(z) /= 0 a.e. in $ by the UCP of

E(λ̂m+1); as a consequence, |un(z)| → ∞ for a.e. z ∈ $ as n → ∞. Then

β0 ≤ lim inf
n→∞

f (z, un(z))un(z) − 2F(z, un(z))

|un(z)|τ
for a.e. z ∈ $. (6.24)

From the second convergence in (6.17), we see that we can find an integer n0 ≥ 1

such that

E (un) − (1− tn)

∫

$
2F(z, un) dz − tnλ‖un‖22 ≤ 0 for all n ≥ n0. (6.25)

On the other hand, from (6.18) with h = un ∈ H1n ($), we see that, given ε > 0,

we can find n1 = n1(ε) ≥ n0 such that

−E (un) + (1− tn)

∫

$
f (z, un)un dz + tnλ‖un‖22 ≤ ε for all n ≥ n1. (6.26)

Recall that tn → 0, since we are considering the case t = 0, so we may assume that

1− tn > 0 for all n ≥ n1. Adding (6.25) and (6.26), we obtain

∫

$
[ f (z, un)un − 2F(z, un)] dz ≤ ε

1− tn
for all n ≥ n1,

and so

lim sup
n→∞

1

‖un‖τ

∫

$
[ f (z, un)un − 2F(z, un)] dz ≤ 0. (6.27)

O the other hand, from (6.24) and Fatou’s Lemma, we have

lim inf
n→∞

1

‖un‖τ

∫

$
[ f (z, un)un − 2F(z, un)] dz

= lim inf
n→∞

∫

$

f (z, un)un − 2F(z, un)

|un|τ
|yn| τdz

≥β0

∫

$
|y|τdz > 0.

(6.28)

Comparing (6.27) and (6.28) we reach a contradiction, and this proves the Claim.

The Claim permits us the use of Proposition 3.2 of Liang-Su [28], and so we

have

Ck(h(0, ·),∞) = Ck(h(1, ·),∞) for all k ≥ 0,

that is

Ck(φ,∞) = Ck(ψλ,∞) for all k ≥ 0 (6.29)



RESONANT NONLINEAR NEUMANN PROBLEMS WITH INDEFINITE WEIGHT 781

Since λ /∈ σ2($), the only critical point of ψλ is u = 0. Hence

Ck(ψλ,∞) = Ck(ψλ, 0) for all k ≥ 0. (6.30)

But clearly u = 0 is a nondegenerate critical point of ψλ of Morse index dm =
dim⊕m

i=1 E(λ̂i ) ≥ 2, since m ≥ 2. Hence

Ck(ψλ, 0) = δk,dmZ for all k ≥ 0. (6.31)

From (6.29), (6.30) and (6.31) we conclude that Ck(φ,∞) = δk,dmZ for all k ≥ 0,

as claimed.

Now we are ready for the first multiplicity result for the semilinear prob-

lem (6.1).

Theorem 6.5. If hypotheses H7 hold and β ∈ L∞($), then problem (6.1) has at
least three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1n($̄) \ {0}.

Proof. Let λ > ‖β‖∞, and consider the following truncation-perturbations of the
reaction f :

f λ
+(z, x) =

{
0 if x ≤ 0,

f (z, x) + λx if x > 0
(6.32)

and

f λ
−(z, x) =

{
f (z, x) + λx if x ≤ 0,

0 if x > 0.
(6.33)

Of course, both f λ
± are Carathédodory functions. We introduce the natural functions

Fλ
±(z, x) =

∫ x

0 f λ
±(z, s) ds and consider the functionals φλ

± : H1n ($) → R defined

by

φλ
±(u) = 1

2
E (u) + λ

2
‖u‖22 −

∫

$
Fλ

±(z, u) dz for all u ∈ H1n ($).

Evidently φλ
± is of class C

2 in H1n ($), with the only possible exception of the point
u = 0.

By virtue of hypothesis H7(i i i), given ε > 0, we can find δ = δ(ε) > 0 such

that

F(z, x) ≤ 1

2
(θ0 + ε)x2 for a.e. z ∈ $ and all |x | ≤ δ, (6.34)

where we have set θ0(·) = f ′
x (·, 0).
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Let u ∈ C1n($̄) be such that ‖u‖C1n ($̄) ≤ δ. Then we have

φλ
+(u) = 1

2
E (u) + λ

2
‖u‖2 −

∫

{u≥0}
F(z, u) dz − λ

2

∫

{u≥0}
u2 dz

≥ 1

2
E (u) − 1

2

∫

{u≥0}
θ0u

2 dz + λ

2

∫

$
(u+)2 dz − ε

2

∫

$
u2 dz

≥ 1

2
E (u) − 1

2

∫

$
θ0u

2 dz − ε

2
‖u‖2 (by (6.34))

≥ µ0 − ε

2
‖u‖2 (by Lemma 4.11).

(6.35)

Choosing ε ∈ (0, µ0), from (6.35) we see that

φλ
+(u) ≥ 0 = φλ

+(0) for all u ∈ C1n($̄) with ‖u‖C1n ($̄) ≤ δ,

and then u = 0 is a local minimizer of φλ
+ (see Theorem 2.5).

We may always assume that u = 0 is an isolated critical point of φλ
+. Indeed,

if this is not the case, we can find a sequence {un}n≥1 ⊆ H1n ($) such that un → 0

in H1n ($) as n → ∞ and

(φλ
+)′(un) = 0 for all n ≥ 1,

that is

A(un) + (β + λ)un = Nλ
+(un), (6.36)

where Nλ
+(u)(·) = f λ

+(·, u(·)) for all u ∈ H1n ($).

In (6.35) we act with −u−
n ∈ H1n ($). Thanks to (6.32) we thus have

E (u−
n ) + λ‖u−

n ‖22 = 0,

and so, recalling that λ > ‖β‖∞, we get ‖u−
n ‖ = 0, and hence un ≥ 0, un /= 0, for

all n ≥ 1.

Then (6.36) becomes

A(un) + βun = N (un) for all n ≥ 1,

where N (u)(·) = f (·, u(·)) for all u ∈ H1n ($). Thus u ∈ C+ solves (6.1) for all
n ≥ 1, and by the maximum principle of Vazquez [42], un ∈ intC+ for all n ≥ 1.

So we have produced a whole sequence of nontrivial smooth solutions of (6.1)

which are strictly positive in $, and the first statement of Theorem 6.5 is obviously
proved.
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Therefore, we assume that u = 0 is isolated; thus we can find ρ ∈ (0, 1) so
small that

φλ
+(0) = 0 < inf

{
φλ

+(u) : ‖u‖ = ρ
}

= ηλ
+. (6.37)

Hypothesis H7(ii) implies that

φλ
+(t û1) → −∞ as t → ∞. (6.38)

A slight modification of the proof of Proposition 6.3 shows that φλ
+ satisfies the C-

condition (recall that only the principal eigenvalue λ̂1 has constant sign eigenfunc-
tions). Thus, this fact, together with (6.37) and (6.38), permit the use of Theorem

2.3 (the Mountain Pass Theorem). Hence we can find u0 ∈ H1n ($) such that

φλ
+(0) = 0 < ηλ

+ ≤ φλ
+(u0) and (φλ

+)′(u0) = 0. (6.39)

From (6.39) it follows that u0 /= 0, and acting as done from (6.36) for un , we get

that u0 ∈ C+ \ {0} and solves (6.1).
Since f (z, ·) ∈ C1(R), by using hypothesis H7(i) we see that for every r > 0

we can find ξr > 0 such that for a.e. z ∈ $ the function x 1→ f (z, x) + ξr x is
nondecreasing on [0, r]. Let us choose r = ‖u0‖∞. Then

−!u0(z) + (β(z) + ξr ) u0(z) = f (z, u0(z)) + ξr u0(z) a.e. in $,

and so

!u0(z) ≤ (‖β‖∞ + ξr ) u0(z) a.e. in $.

As usual, an application of the Strong Maximum Principle of Vazquez [42], implies

that u0 ∈ intC+.
Since u0 is a critical point of mountain pass type, as above, we have

Ck(φ
λ
+, u0) = δk,1Z for all k ≥ 0, (6.40)

see Chang [10].

Now, recall that u0 ∈ intC+ and note that φλ
+|C+

= φ|C+ . Hence

Ck(φ
λ
+|C1n ($̄)

, u0) = Ck(φ|C1n ($̄), u0) for all k ≥ 0. (6.41)

But from Bartsch [4] and Liu-Wu [31] we know that

Ck(φ
λ
+|C1n ($̄)

, u0) = Ck(φ
λ
+, u0) for all k ≥ 0 (6.42)

and

Ck(φ|C1n ($̄), u0) = Ck(φ, u0) for all k ≥ 0. (6.43)

From (6.40), (6.41), (6.42) and (6.43) it follows that

Ck(φ, u0) = δk,1Z for all k ≥ 0. (6.44)
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Similarly, working with the functional φλ
− and using this time (6.33) in place of

(6.32), we produce another constant sign smooth solution v0 ∈ −intC+ such that

Ck(φ, v0) = δk,1Z for all k ≥ 0. (6.45)

Since u = 0 is a local minimizer of φ, we have

Ck(φ, 0) = δk,0Z for all k ≥ 0. (6.46)

From Proposition 6.4 we know that Ck(φ,∞) = δk,dmZ for all k ≥ 0. This means

that there is y0 ∈ H1n ($), a critical point of φ, such that

Cdm (φ, y0) /= 0. (6.47)

Since dm ≥ 2, comparing (6.47) with (6.44), (6.45) and (6.46), we infer that y0 /∈{
0 u0, v0

}
. Moreover, by regularity theory, y0 ∈ C1n($̄) and it solves problem

(6.1).

Remark 6.6. A natural question is whether it is possible to relax the assumption

on β, and to have the previous result when β ∈ Lq($) with q > N/2. Indeed,
if we were dealing with the Dirichlet problem, then this would have been the case.

Because then, by a bootstrap technique, we have that the solutions belong to C10($̄),
so they are smooth up to the boundary (see Struwe [40, pages 270-271]). For the

Neumann problem, this is no longer true. So our proof, with the application of

Theorem 2.5, fails, and we do not know if the multiplicity theorem is true when

β ∈ Lq($) with q > N/2.

Finally, we have the “semilinear” version of Theorem 5.5, producing this time

four nontrivial smooth solutions for problem (6.1).

The hypotheses on f now are:

H8: f : $ × R → R is a measurable function such that f (z, 0) = 0 and f (z, ·) ∈
C1(R) a.e. in $, hypothesis H8(i) is the same as the corresponding hypothesis
H7(i) and

(ii): there exist η0 ∈ L∞($), η0 ≥ λ̂1 a.e. in $, η0 /= λ1, β0 > 0 and τ ∈ [1, 2)
such that

η0(z)≤ lim inf|x |→∞
2F(z, x)

x2
≤ lim sup

|x |→∞

2F(z, x)

x2
< λ̂2 uniformly for a.e. z ∈ $

and

β0 ≤ lim inf
|x |→∞

f (z, x)x − 2F(z, x)

|x |τ uniformly for a.e. z ∈ $;

(iii): there exist δ0 > 0 andµ ∈ (1, 2) such thatµF(z, x) ≥ f (z, x)x > 0 a.e. in$
for all 0 < |x | ≤ δ0. Moreover, there exist K > 0 such that F(z, x) ≥ K |x |µ
a.e. in $ for all |x | ≤ δ0;
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(iv): there exist two functions w± ∈ H1($) ∩ C($̄) such that

w−(z) ≤ c− < 0 < c+ ≤ w+ for all z ∈ $̄,

ess sup
$

{
f (·, w+(·))−β(·)w+(·)

}
< 0 < ess inf

$

{
f (·, w−(·))−β(·)w−(·)

}
,

A(w−) ≤ 0 ≤ A(w+) in H1n ($)∗.

Remark 6.7. The reader will recognize that H8(iii) is simply H1(iii) = H5(iii)
with p = 2, while H8(iv) coincides with H5(ii) when p = 2.

Example 6.8. The following function satisfies hypotheses H8:

f (x) =
{

λx1/6 − ηx1/3 if |x | ≤ 1,

η0x − θ if |x | > 1,

with η0 ∈ (λ̂1, λ̂2], λ, η > 0, η − λ > ‖β‖∞ and θ = 2
3
η − 5

6
λ > 0.

Concerning problem (6.1), we have the following final multiplicity result.

Theorem 6.9. If hypotheses H8 hold and β ∈ L∞($), then problem (6.1) has at
least four nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+, y0, ŷ ∈ C1n($̄).

Proof. From Theorem 5.5 with p = 2, which can be applied thanks to Remark 6.1,

we already have three nontrivial smooth solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ C1n($̄).

By Proposition 5.4 applied with p = 2, we know that the two constant sign solu-

tions u0 and v0 are local minimizers of φ. Hence, by (2.2),

Ck(φ, u0) = Ck(φ, v0) = δk,0Z for all k ≥ 0. (6.48)

Moreover, y0 is a critical point of mountain pass type (see the proof of Theorem

5.5), and since φ ∈ C2(H1n ($)), we have

Ck(φ, y0) = δk,1Z for all k ≥ 0, (6.49)

see Bartsch [4].

Also, recall that hypothesis H8(iii) implies that

Ck(φ, 0) = 0 for all k ≥ 0. (6.50)

Finally, it is not hard to see that an analogous of Proposition 6.4 holds with dm = 1,

being m = 1 and E(λ̂1) = R; and from such a result we immediately have

Ck(φ,∞) = δk,1Z for all k ≥ 0. (6.51)
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Now, suppose by contradiction that {0, u0 v0} are the only critical points of φ. Us-
ing (6.48), (6.49), (6.50), (6.51) and the Morse relation (2.1), we obtain

2(−1)0 + (−1)1 = (−1)1,

a contradiction. This means that φ has one more critical point ŷ /∈ {0, u0 v0}. Then,
as usual, ŷ ∈ C1n($̄) and it solves problem (6.1).
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