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On surfaces of general type with q = 5

MARGARIDA MENDES LOPES, RITA PARDINI AND GIAN PIETRO PIROLA

Abstract. We prove that a complex surface S with irregularity q(S) = 5 that has
no irrational pencil of genus > 1 has geometric genus pg(S) ≥ 8. As a conse-
quence, we are able to classify minimal surfaces S of general type with q(S) = 5
and pg(S) < 8. This result is a negative answer, for q = 5, to the question asked
in [13] of the existence of surfaces of general type with irregularity q that have
no irrational pencil of genus > 1 and with the lowest possible geometric genus
pg = 2q − 3 (examples are known to exist only for q = 3, 4).

Mathematics Subject Classification (2010): 14J29.

1. Introduction

Let S be a smooth complex projective surface with irregularity q(S) := h0(!1
S)≥3.

The existence of a fibration f : S → B with B a smooth curve of genus b > 1 (“an

irrational pencil of genus b > 1”) gives much geometrical information on S (cf. the

survey [14]). However, surfaces with an irrational pencil of genus b > 1 can hardly

be regarded as “general” among the irregular surfaces of general type: for instance,

for b < q(S) the Albanese variety of such a surface S is not simple.
By the classical Castelnuovo-De Franchis theorem (cf. [6, Proposition X.9]),

if S has no irrational pencil of genus > 1 then the inequality pg(S) ≥ 2q(S) − 3

holds, where pg(S) := h0(KS) is, as usual, the geometric genus. This fundamen-
tal inequality has been recently generalized in [17] to Kähler varieties of arbitrary

dimension.

The surfaces of general type S for which the equality pg(S) = 2q(S)−3 holds
are studied in [13]. There those with an irrational pencil of genus > 1 are classified

and the inequality K 2S ≥ 7χ(S)−1 is proven for S minimal. However, the question
of the existence of surfaces with pg(S) = 2q(S) − 3 having no irrational pencil of
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genus b > 1 is wide open. At present, the state of the art is as follows:

• for q = 3, the only such surfaces are (the minimal desingularization of) a theta

divisor in a principally polarized Abelian threefold ([11, 18]);

• for q = 4, a family of examples is constructed in [19];

• for q ≥ 5, no example is known.

One is led to conjecture that for q > 4 there are no surfaces with pg = 2q − 3 that

have no irrational pencil. In this note we settle the case q = 5:

Theorem 1.1. Let S be a smooth projective complex surface with q(S) = 5 that

has no irrational pencils of genus > 1. Then:

pg(S) ≥ 8.

As a consequence we obtain the following classification theorem:

Theorem 1.2. Let S be a minimal complex surface of general type with q(S) = 5

and pg(S) ≤ 7. Then either :

(i) pg(S) = 6, K 2S = 16 and S is the product of a curve of genus 2 and a curve of

genus 3; or

(ii) pg(S) = 7, K 2S = 24 and S = (C × F)/Z2, where C is a curve of genus 7 with

a free Z2-action, F is a curve of genus 2 with a Z2-action such that F/Z2 has
genus 1 and Z2 acts diagonally on C × F . The map f : S → C/Z2 induced by
the projection C × F → C is an irrational pencil of genus 4 with general fibre

F of genus 2.

The idea of the proof of Theorem 1.1 is to obtain contradictory upper and lower

bounds for K 2S under the assumption that pg(S) < 8 and S is minimal.

For fixed q and pg, by Noether’s formula giving an upper bound for K
2 is

the same as giving a lower bound for the topological Euler characteristic c2. More

precisely, it is the same as giving a lower bound for h1,1, the only Hodge number

which is not determined by pg and q. In our situation, the upper bound follows

directly from the result of [9] that if S is a surface of general type with q = 5,

having no irrational pencils, then h1,1 ≥ 11 + t , where t is bigger or equal to the

number of curves contracted by the Albanese map.

If the canonical system |KS| has no fixed components, one can apply the results
of [2] to get a lower bound for K 2S which is enough to rule out this possibility.

Hence the bulk of the proof consists in obtaining a lower bound for K 2S under the

assumption that |KS| has a fixed part Z > 0. This is done in Section 2, where we

improve by 1 in the case Z > 0 a well known inequality for surfaces with birational

bicanonical map due to Debarre (cf. Corollary 2.7). The proof is based on a subtle

numerical analysis of the intersection properties of the fixed and moving part of

|KS| that is, we believe, of independent interest.
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It would be possible to generalize Theorem 1.1 for q ≥ 6, if a good lower

bound for h1,1(S) could be established. Unfortunately it is very difficult to extend
the methods of [9] for q ≥ 6. Recently, a lower bound on h1,1 has been obtained

in [12] by completely different methods, but it is not strong enough for our purposes.

Notation and conventions: a surface is a smooth complex projective surface. We

use the standard notation for the invariants of a surface S: pg(S) := h0(ωS) =
h2(OS) is the geometric genus, q(S) := h0(!1

S) = h1(OS) is the irregularity and
χ(S) := pg(S) − q(S) + 1 is the Euler–Poincaré characteristic.

An irrational pencil of genus b of a surface S is a fibration f : S → B, where

B is a smooth curve of genus b > 0.

We use ≡ to denote linear equivalence and ∼ to denote numerical equivalence

of divisors.

An effective divisor D on a smooth surface is k-connected if for every decom-

position D = A + B, with A, B > 0 one has AB ≥ k. (Recall that on a minimal

surface of general type every n-canonical divisor is 1-connected and, unless n = 2

and K 2S = 1, it is also 2-connected (cf. [3])).
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2. Reider divisors

Let S be a surface and let M be a nef and big divisor on S such that M2 ≥ 5. By

Reider’s theorem, if a point P of S is a base point of |KS + M|, then there is an
effective divisor E passing through P such that either:

• E2 = −1, ME = 0 or

• E2 = 0, ME = 1.

This suggests the following definition:

Definition 2.1. Let M be a nef and big divisor on a surface S. An effective divisor

E such that E2 = k and EM = s is called a (k, s) divisor of M .

By [8, (0.13)], the (−1, 0) divisors and the (0, 1) divisors are 1-connected.
In addition, if E is a (−1, 0) divisor, using the index theorem one shows that the

intersection form on the components of E is negative definite. In particular, there

exist only finitely many (−1, 0) divisors of M on S.

Lemma 2.2. Let M be a nef divisor with M2 ≥ 5 on a surface S. Then:
(i) if E is a reducible (0, 1) divisor E of M , and 0 < C < E then C2 < 0;
(ii) if E1, E2 are two distinct (0, 1) divisors of M , then E1E2 = 0 and E1 and E2

are disjoint.
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Proof. Let E , C be as in (i). The index theorem gives C2 < 0 if MC = 0 and

C2 ≤ 0 if MC = 1. Assume that C2 = 0. Then EC = (E − C)C > 0, since E is

1-connected, and therefore (E + C)2 ≥ 2. Since M2 ≥ 5 and M(C + E) = 2 we

have a contradiction to the index theorem. Hence C2 < 0.

Next we prove (ii). We have:

M2 ≥ 5, M(E1 + E2) = 2, M(E1 − E2) = 0,

hence by the index theorem we obtain:

2E1E2 = (E1 + E2)
2 ≤ 0, −2E1E2 = (E1 − E2)

2 ≤ 0.

So E1E2 = 0. By 1-connectedness of E1, E2 we conclude that neither divisor is

contained in the other. Then we can write E1 = A+ B, E2 = A+C where A ≥ 0,

B,C > 0 and B and C have no common components.

Since M is nef and MEi = 1, we have 1 ≥ MB(= MC) and so B2 ≤ 0,C2 ≤
0. Then, since 0 = (E1−E2)

2 = (B−C)2, we conclude that B2 = C2 = BC = 0.

Hence by (i) B = E1 and C = E2, namely A = 0 and E1 and E2 are disjoint.

Lemma 2.3. Let S be a surface and let M be a nef and big divisor such that the

linear system |M| has no fixed components. Let E be a (0, 1) divisor of M and let

C be the only irreducible component of E such that MC = 1. Then either |M| has
a base point on C or C is a smooth rational curve.

Proof. Suppose |M| has no base points on C . Then, since MC = 1 the restriction

map H0(M) → H0(C,M|C) has image of dimension at least 2. It follows that C
is a smooth rational curve.

Proposition 2.4. Let X be a non ruled surface and let M be a divisor of X such

that:

• M2 ≥ 5,
• the linear system |M| has no fixed components and maps X onto a surface.

Let C be an irreducible curve contained in the fixed locus of |KX +M|. Then either:

(i) C is contained in a (−1, 0) divisor of M , MC = 0 and C2 < 0;
or

(ii) C is contained in a (0, 1) divisor of M , MC ≤ 1 and C2 ≤ 0.

Proof. Let P ∈ C be a point. By Reider’s theorem, there is a (−1, 0) divisor or a
(0, 1) divisor of M passing through P .

Assume for contradiction that C is not a component of any (−1, 0) or (0, 1)
divisor of M . Since there are only finitely many distinct (−1, 0) divisors of M in S,

we can assume that there is a (0, 1) divisor passing through a general point P of C .
It follows that there are infinitely many (0, 1) divisors on S. Recall that two distinct
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(0, 1) divisors are disjoint by Lemma 2.2. Thus, since |M| has a finite number of
base points, by Lemma 2.3 X is ruled, against the assumptions.

So C is contained in a (−1, 0) divisor or a (0, 1) divisor E of M . In the first
case, M being nef implies that MC = 0 and so C2 < 0 by the index theorem.

In the second case, again by nefness MC ≤ 1 and again by the index theorem

C2 ≤ 0.

Lemma 2.5. Let S be a surface and let M be a nef and big divisor of S and let E be

a (0, 1) divisor of M . If L is a divisor such that (M− L)2 > 0 and M(M− L) > 0,

then EL ≤ 0.

Proof. Write γ := M(M− L). Then M(γ E− (M− L)) = 0. Since (M− L)2 > 0

and E2 = 0, γ (M− L) )∼ E . Thus, by the index theorem 0 > (γ E− (M− L))2 =
−2γ E(M − L) + (M − L)2.

So E(M − L) > 0, and therefore EL ≤ 0.

Proposition 2.6. Let S be a smooth minimal surface of general type and let M be

a divisor such that

• Z := KS − M > 0;
• the linear system |M| has no fixed components and maps S onto a surface.
Then the following hold:
(i) if M2 ≥ 5+ K Z , then h0(2M) < h0(KS + M);
(ii) if M2 ≥ 5, (M − Z)2 > 0 and M(M − Z) > 0, then there are no (0, 1)

divisors of M . Furthermore h0(2M) < h0(KS + M) and every irreducible
fixed component C of |KS + M| satisfies MC = 0.

Proof. We observe first of all that h0(2M) = h0(KS + M) if and only if Z is the
fixed part of |KS + M|.

(i) Assume for contradiction that h0(2M) = h0(KS + M). Let C be an irre-
ducible component of Z . By Proposition 2.4, C2 ≤ 0 and MC ≤ 1. Now

−2 ≤ C2 + KC ≤ C2 + K Z ,

and hence C2 ≥ −2− K Z . It follows

(M − C)2 = M2 − 2MC + C2 ≥ M2 − 2− 2− K Z = M2 − 4− K Z > 0.

In addition, we have:

M(M − C) = (M − C)2 + C(M − C) ≥ (M − C)2 − C2 ≥ (M − C)2 > 0.

Since MZ ≥ 2 by the 2-connectedness of canonical divisors, there is at least a

component D of Z such that MD > 0. By Proposition 2.4, we have MD = 1 and

D is contained in a (0, 1) divisor E of M . Then Lemma 2.5 gives EC ≤ 0 for all

the components of Z , and so EZ ≤ 0.
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But now since ME = 1 and E2 = 0 we obtain that K E = 1 + EZ ≤ 1. On

the other hand, KSE is > 0 by the index theorem and it is even by the adjunction

formula, hence we have a contradiction.

(ii) Let E be a (0, 1) divisor of M . Then we have EZ ≤ 0 by Lemma 2.5 and

we get a contradiction as above. So there are no (0, 1) divisors of M on S. Hence by

Proposition 2.4 every irreducible fixed curve of |KS + M| satisfies MC = 0. Since

MZ ≥ 2 by the 2-connectedness of the canonical divisors, not every component of

Z can be a fixed component of |KS+M| and therefore h0(KS+M) > h0(2M).

As a consequence, we obtain the following refinement of [10, Theorem 3.2 and

Remark 3.3]:

Corollary 2.7. Let S be a minimal surface of general type whose canonical map is

not composed with a pencil. Denote by M the moving part and by Z the fixed part

of |KS|. If Z > 0 and M2 ≥ 5+ KSZ , then

K 2S + χ(S) = h0(KS + M) + KSZ + MZ/2 ≥ h0(2M) + KSZ + MZ/2+ 1.

Furthermore, if h0(KS + M) = h0(2M) + 1 then |KS + M| has base points and
there is a (−1, 0) divisor or a (0, 1) divisor E of M such that EZ ≥ 1.

Proof. Since M is nef and big, by Kawamata-Viehweg vanishing h0(KS + M) =
χ(KS + M), hence the equality follows by the Riemann-Roch theorem whilst the
inequality is Proposition 2.6, (i).

For the second assertion it suffices to notice that h0(KS + M) = h0(2M) + 1

means that the image of the restriction map H0(KS + M) → H0(Z , (KS + M)|Z )
is 1-dimensional. Since (KS+M)Z ≥ 2, the system |KS+M| has necessarily base
points. Thus there is a (−1, 0) divisor or a (0, 1) divisor E of M . By adjunction
KSE − E2 is even and so necessarily EZ ≥ 1.

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Let a : S → A be the Albanese map of S. Notice that by

the classification of surfaces the assumptions that q(S) = 5 and S has no irrational

pencil of genus > 1 imply that S is of general type and a is generically finite onto

its image. Without loss of generality we may assume that S is minimal. By [5], an

irregular surface of general type having no irrational pencils of genus > 1 satisfies

pg ≥ 2q − 3. We assume for contradiction that pg(S) = 7 = 2q(S) − 3, so that

χ(S) = 3. We denote by ϕK : S → P6 the canonical map and by & the canonical

image. Since q(S) > 2, & is a surface by [20].

We denote by t the rank of the cokernel of the map a∗ : NS(A) → NS(S).
Note that t is bigger than or equal to the number of irreducible curves contracted by

the Albanese map.
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Denote as usual by bi (S) the i-th Betti number and by c2(S) the second Chern
class of S. By [9, Theorem 1,(3)], we have b2(S) ≥ 31+ t , namely c2(S) ≥ 13+ t .

By Noether’s formula this is equivalent to:

K 2S ≤ 23− t. (3.1)

Denote byG the Grassmannian of 2-planes of H0(!1
S)

∨ and byG∨ the Grassman-
nian of 2-planes in H0(!1

S). By the Castelnuovo–De Franchis theorem, the kernel

of the map ρ : ∧2
H0(!1

S) → H0(KS) does not contain any nonzero simple ten-

sor. Hence ρ induces a morphismG∨ → P(H0(KS))which is finite onto its image.
Since dimG∨ = 6, it follows that ker ρ has dimension 3, ρ is surjective and it in-
duces a finite map G∨ → P(H0(KS)). As a consequence, we have the following
facts:

(a) the surface S is generalized Lagrangian, namely there exist independent 1-

forms η1, . . . η4 ∈ H0(!1
S) such that η1 ∧ η2 + η3 ∧ η4 = 0. In addition, we

may assume that η1∧η2 is a general 2-form of S. In that case, the fixed part of
the linear system P(∧2V ), where V =< η1, . . . η4 >, coincides with the fixed
part of the canonical divisor (cf. [15, Section 3]) .

(b) the canonical image & is contained in the intersection of G with the codimen-

sion 3 subspace T = P(Imρ∨) ⊂ P9 = P(
∧2

H0(!1
S)) (where ρ∨ is the

transpose of ρ),
(c) sinceG∨ is the dual variety ofG, the space T is not contained in an hyperplane

tangent to G, hence Y := G ∩ T is a smooth threefold.

Using the Lefschetz hyperplane section theorem we see that Pic(Y ) is generated
by the class of a hyperplane. Then & is the scheme theoretic intersection of Y

with a hypersurface of degree m ≥ 2 of P6. Thus, since G has degree 5 (cf. [16,

Corollary 1.11]), it follows that deg& = 5m and by [16, Proposition 1.9] we have

ω& = O&(m − 2). By [13, Theorem 1.2], the degree d of ϕK is different from
2. Since K 2S ≤ 23 by (3.1), the inequality K 2S ≥ d deg& = 5dm gives d = 1,

namely ϕK is birational onto its image. So we have m ≥ 3, since ωG = OG(−5)
(cf. [16, Proposition 1.9]) and & is of general type.

Write |KS| = |M| + Z , where Z is the fixed part and M is the moving part.

If Z = 0, then in view of (a) we have K 2S ≥ 8χ = 24 by [2, Theorem 1.2]. This

would contradict (3.1), hence Z > 0.

Since m > 2, every quadric that contains & must contain Y . Recall that Y

is obtained from G by intersecting with 3 independent linear sections. Denote by

R the homogeneous coordinate ring of G. Since R is Cohen–Macaulay and Y
has codimension 3 in G, these 3 linear sections form an R-regular sequence. As

a consequence (cf. [7, Proposition 1.1.5]) the (vector) dimension of the space of

quadrics of P6 containing Y is the same as the (vector) dimension of the space of
quadrics of P9 containing G. Since the latter dimension is 5 (cf. [16, Proposition
1.2]), it follows that:

h0(2M) ≥ h0(OP6(2)) − 5 = 23.
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Then by (3.1) and Corollary 2.7 we have:

26−t ≥ K 2S+χ(S) = h0(KS+M)+KSZ+MZ/2 ≥ 23+KSZ+MZ/2+1. (3.2)

So KSZ+MZ/2 ≤ 2−t . Recall that MZ ≥ 2 by the 2-connectedness of canonical

divisors.

Assume KSZ = 0. Then every component of Z is an irreducible smooth

rational curve with self-intersection−2 and as such it is contracted by the Albanese
map. Since KSZ+MZ/2 ≤ 2−t , the only possibility is t = 1 and MZ = 2. Hence

Z = r A, where A is a −2-curve. Since MZ = 2 and KSZ = 0, we have Z2 = −2
and so r = 1. Hence Z is a −2-cycle of type A1; in particular it is reduced and, in
the terminology of [2], it is contracted by any subspace V ⊆ H0(!1

S). Then, again

by (a) and [2, Theorem 1.2], we get K 2 ≥ 8χ = 24, a contradiction.

So KSZ > 0. Then by (3.2) necessarily KSZ = 1, MZ = 2 (yielding Z2 =
−1) and h0(KS + M) = 24 ≤ h0(2M) + 1. As we have already remarked, the

canonical image & has degree ≥ 15. Therefore M2 ≥ 15 > 5+ KSZ = 6 and, by

Corollary 2.7, there is a (−1, 0) or a (0, 1) divisor E of M . Since the hypotheses of
Proposition 2.6, (ii) are satisfied, E must be a (−1, 0) divisor of M .

Then M(E+Z) = 2 and so by the algebraic index theorem M2(E+Z)2−4 ≤
0, yielding (E+Z)2 ≤ 0. Since (E+Z)2 = −2+2EZ and, by Corollary 2.7, EZ ≥
1, the only possibility is EZ = 1 and (E+Z)2 = 0. In this case KS(E+Z) = 2 and

this is impossible by the proof of [2, Proposition 8.2], which shows that a minimal

irregular surface with q ≥ 4, having no irrational pencils of genus> 1, cannot have

effective divisors of arithmetic genus 2 and self-intersection 0.

Proof of Theorem 1.2. By [5], a surface of general type S with q(S) = 5 has

pg(S) ≥ 6 and, in addition, if pg(S) = 6 then S is the product of a curve of

genus C and a curve of genus 3. Now statement (ii) is a consequence of Theorem

1.1 and [13, Theorem 1.1].
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by A. Beauville, Bull. Soc. Math. France 110 (1982), 319–346.

[11] C. D. HACON and R. PARDINI, Surfaces with pg = q = 3, Trans. Amer. Math. Soc. 354
(2002), 2631–2638.

[12] R. LAZARSFELD and M. POPA, Derivative complex BGG correspondence and numerical
inequalities for compact Khaeler manifolds, Invent. Math. 182 (2010), 605–633.

[13] M. MENDES LOPES and R. PARDINI, On surfaces with pg = 2q − 3, Adv. Geom. 10
(2010), 549–555.

[14] M. MENDES LOPES and R. PARDINI, The geography of irregular surfaces, In: “Current
Developments in Algebraic Geometry”, Math. Sci. Res. Inst. Publ., Cambridge Univ. Press
59 (2012), 349–378.

[15] M. MENDES LOPES and R. PARDINI, Severi type inequalities for surfaces with ample
canonical class, Comment. Math. Helv. 86 (2011), 401–414.

[16] S. MUKAI, “Curves and Grassmannians”, Algebraic geometry and related topics (Inchon,
1992), 19–40, Conf. Proc. Lecture Notes Algebraic Geom., I, Int. Press, Cambridge, MA,
1993.

[17] G. PARESCHI and M. POPA, Strong generic vanishing and a higher dimensional
Castelnuovo-de Franchis inequality, Duke Math. J. 150 (2009), 269–28.

[18] G. P. PIROLA, Algebraic surfaces with pg = q = 3 and no irrational pencils, Manuscripta
Math. 108 (2002), 163–170.

[19] C. SCHOEN, A family of surfaces constructed from genus 2 curves, Internat. J. Math. 18
(2007), 585–612.

[20] G. XIAO, Irregularity of surfaces with a linear pencil, Duke Math. J. 55 (1987), 596–602.

Departamento de Matemática
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