
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XI (2012), 903-919

Convergence in capacity on compact Kähler manifolds

S!LAWOMIR DINEW AND PHA. M HOÀNG HIÊ. P

Abstract. The aim of this note is to study the convergence in capacity for func-
tions in the class E(X,ω). We study the problem under several restrictions on the
Monge-Ampère measures of the functions considered, such as common domina-
tion by a fixed measure or control on the variation.

Mathematics Subject Classification (2010): 32W20 (primary); 32Q15 (sec-
ondary).

1. Introduction

In [2,3] Bedford and Taylor laid down the foundations of the theory of the complex

Monge-Ampère operator which is nowadays a central part of pluripotential theory.

In [3] the notion of relative capacity Cn was introduced (see Section 2 for the defi-

nitions of all the notions appearing in this note). Initially Bedford and Taylor used

this capacity to solve deep problems concerning small sets in pluripotential the-

ory. It was soon realized, however, that capacities are very useful technical tools

in solving Monge-Ampère equations with singular data. Especially the discovery

of Xing [21], who proved that the complex Monge-Ampère operator is continuous

with respect to convergence in capacity, attracted much interest. This is in contrast

to convergence in L p, 1 < p < ∞, since it is known [8] that the Monge-Ampère

operator is discontinuous with respect to such topology. Recently convergence in

capacity in the setting of domains inCn (which for brewity will be referred to as the

local setting in this note) was studied by many authors. We refer to [4–6, 9, 15, 17],

which is by far an incomplete list of recent contributions, where the reader may

obtain a complete picture of the developments in the field.

Quite recently alternative pluripotential theory on compact Kähler manifolds

was developed by Guedj and Zeriahi [12,13] and Ko!lodziej [18]. It should be noted
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that both theories differ significantly especially when it comes to global results -

some of the differences were discussed in [13] and [11]. In [18] Ko!lodziej intro-
duced the capacity CX,ω on a compact Kähler manifold (X,ω), which is modelled
on the relative capacity Cn of Bedford and Taylor from the local setting. Despite its

non nocal character this notion plays similar fundamental role as Cn does in solving

complex Monge-Ampère equations.

In [13] Guedj and Zeriahi (building on local desults due to Cegrell [5, 6]) in-

troduced the new Cegrell class E(X,ω) of ω-psh functions for which the complex
Monge-Ampère operator is well-defined. Roughly speaking, it is the largest class

of ω-psh functions where the Monge-Ampère operator behaves like it does in the
bounded functions setting. The authors obtained various basic properties of this

function class. Later on, building on their work Xing [22] studied the convergence

in capacity CX,ω (one should also mention that various results in the bounded func-

tions setting were also known (compare [14,19])). As Xing noticed, however, vari-

ous technical difficulties appear in the analysis in the whole E(X,ω) and therefore
some of his results are proven only in the smaller class E1(X,ω). This leads to the
question of what remains true in E(X,ω).

The aim of the present note is to answer this question. The main goal will be to

study the convergence in capacity CX,ω in the class E(X,ω) – Section 3. We obtain
fairly complete description of that convergence under various additional assump-

tions such as common domination of the Monge-Ampère measures of the functions

by a fixed measure or assumptions on the measures’ variation. Analogous results

in the local case (except Theorem 3.6 and Lemma 3.7 which are completely new)

were obtained by Ko!lodziej and Cegrell in [9]. We wish to point out that while
some of the results look as a straightforward generalizations of the corresponding

theorems due to Xing [22], the applied techniques are by necessity of different

nature, which allows us to deal with the formerly intractable case of functions in

E(X,ω) \ E1(X,ω). These essential new technical tools, namely the partial com-
parison principle and the uniqueness of solutions to the Monge-Ampère equation in

the class E(X,ω), are borrowed from [11].
The results obtained, in the authors’ opinion, yield better understanding of

the class E(X,ω) and the non-linear nature of the Monge-Ampère operator in this
singular setting.

ACKNOWLEDGEMENTS. The authors would like to thank an anonymous referee

of the previous draft of this manuscript whose remarks improved significantly the

exposition.

2. Preliminaries

First we recall some elements of pluripotential theory that will be used in the paper.

We refer the reader to [20] for a recent general overview of pluripotential theory

both in the local and in the Kähler setting.
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Given a domain " in Cn one associates to any compact K ⊂ " the Bedford-

Taylor relative capacity Cn introduced in [3]:

Definition 2.1. Let K be a compact subset of a relatively compact domain" inCn .

Then the relative capacity Cn(K ,") is defined by

Cn(K ,") = sup

{∫

K

(ddcu)n : u ∈ PSH("), −1 ≤ u ≤ 0

}
,

where PSH(") denotes the space of plurisubharmonic functions in ".

Throughout the note X will denote a (fixed) compact Kähler manifold of com-

plex dimension n equipped with a fundamental form ω = ωX normalized by∫
X

ωn = 1.

We shall deal with the ω-plurisubharmonic functions on X , which are defined
as follows:

Definition 2.2. An upper semicontinuous function ϕ : X → [−∞,+∞) is called
ω-plurisubharmonic (ω-psh for short) if ϕ ∈ L1(X) and ωϕ := ω + ddcϕ ≥ 0,

where the inequality is understood in the sense of currents. By PSH(X,ω) (re-
spectively PSH−(X,ω)) we denote the set of ω-psh (respectively negative ω-psh)
functions on X .

Modelling on the definition of Cn above Ko!lodziej in [18] introduced the ca-
pacity CX,ω:

Definition 2.3. Given any Borel set E ⊂ X we define its capacity CX,ω on X as

CX (E) = CX,ω(E) = sup

{∫

E

ωn
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0

}
,

where ωn
ϕ = (ω + ddcϕ)n and n = dim X .

We refer to [12,18] for more information about this capacity.

It follows from the locality of the Monge-Ampère operator that it can be de-

fined for any bounded ω-psh function [3]. As noticed by Guedj and Zeriahi this
is not so for unbounded ones and therefore one has to restrict to a subclass of

PSH(X,ω). The following class of ω-psh fuctions was introduced by Guedj and
Zeriahi in [13]:

Definition 2.4.

E(X,ω) =
{
ϕ ∈ PSH(X,ω) : lim

j→∞

∫

{ϕ>− j}
ωn
max(ϕ,− j) =

∫

X

ωn = 1

}
.

Intuitively the space E(X,ω) consists of those functions which have mild singular-
ities (or do not have−∞ poles at all), so that no Monge-Ampère mass concentrates

near those poles. In particular it can be proven (see [13]) that any such function

must have zero Lelong numbers everywhere.
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Let us also define

E−(X,ω) = E(X,ω) ∩ PSH−(X,ω).

We refer to [13], where the reader can find the basic properties of these function

classes.

The convergence in capacity is defined as follows:

Definition 2.5. Let u j , u ∈ PSH(X,ω). We say that {u j } converges to u in CX if

CX ({|u j − u| > δ}) → 0

as j → ∞, for every (fixed) δ > 0.

For our later reference we shall need the notion of uniform absolute continuity

with respect to capacity. It is modelled on the uniform continuity with respect to a

measure.

Definition 2.6. A family of positive measures {µα} on X is said to be uniformly
absolutely continuous with respect to CX -capacity if for every ε > 0 there exists

δ > 0 such that for each Borel subset E ⊂ X satisfying CX (E) < δ the inequality
µα(E) < ε holds for all α. We denote this by µα ) CX uniformly for α.

Note that by [12, Theorem 6.2] we know that the sets satisfying CX (E) = 0

are precisely the ω-pluripolar sets. In particular all measures that are continuous
with respect to capacity must vanish on pluripolar sets.

The next two propositions are well-known:

Proposition 2.7 (cf. [13, Theorem 1.5]). Let u ∈ E(X,ω), v ∈ PSH(X,ω). Then
∫

{u≤v}
ωk
max(u,v) ∧ T =

∫

{u≤v}
ωk
u ∧ T,

for all 1 ≤ k ≤ n and T = ωϕ1 ∧ . . . ∧ ωϕn−k with ϕ1, . . . ,ϕn−k ∈ E(X,ω).

Proposition 2.8 (cf. Proposition 3.6 in [12]). Let u ∈ PSH−(X,ω). Then for t≥0

CX ({u < −t}) ≤

∣∣∣∣sup
X

u

∣∣∣∣ + c

t
,

where the positive constant c does not depend on u.

Next we state a simple criterion for uniform continuity in terms of capacity.

Proposition 2.9. Let u j ∈ E−(X,ω). Then the following two statements are equiv-
alent:
i) inf j≥1 supX u j > −∞ and ωn

u j
) CX uniformly for j ≥ 1;

ii) limt→+∞ lim j→∞
∫
{u j≤−t} ωn

u j
= 0.
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Proof. i)⇒ ii) This is a direct application of Proposition 2.8.

ii)⇒ i) We claim that inf j≥1 supX u j > −∞.

Suppose on contrary that inf j≥1 supX u j = −∞. Hence

lim
j→∞

∫

{u j≤−t}
ωn
u j

= lim
j→∞

∫

X

ωn
u j

= 1,

but this contradicts the assumption that

lim
t→+∞

lim
j→∞

∫

{u j≤−t}
ωn
u j

= 0.

Let us fix ε > 0. We choose t0 and then j0 = j0(t0) > 1 such that

∫

{u j≤−t0}
ωn
u j

< ε,

for all j ≥ j0. For each Borel set E ⊂ X can estimate

∫

E

ωn
u j

=
∫

E∩{u j≤−t0}
ωn
u j

+
∫

E∩{u j>−t0}
ωn
u j

≤
∫

{u j≤−t0}
ωn
u j

+
∫

E∩{u j>−t0}
ωn
max(u j ,−t0)

≤
∫

{u j≤−t0}
ωn
u j

+ tn0CX (E) ≤ ε + tn0CX (E)

for all j ≥ j0. On the other hand, since
∑ j0

k=1 ωn
uk

) CX we can choose δ1 > 0

such that
∑ j0

k=1 ωn
uk

(E) < ε for all Borel sets E ⊂ X with CX (E) < δ1. Hence
ωn
u j

(E) < 2ε for all j ≥ 1 and all Borel sets E ⊂ X , such that CX (E) < δ =
min(δ1,

ε
tn0

).

The next proposition is a modified version of [22, Lemma 2]:

Proposition 2.10. Let u j , v j ∈ E−(X,ω) be such that u j ≥ v j for j ≥ 1. Assume

that ωn
v j

) CX uniformly for j ≥ 1. Let also inf j≥1 supX v j > −∞. Then

ωn
u j

) CX uniformly for j ≥ 1.

Proof. By [13, Theorem 1.5] we have

∫

{u j<−2t}
ωn
u j

≤ 2n
∫

{v j<
u j
2 −t}

ωn
u j
2

≤ 2n
∫

{v j<
u j
2 −t}

ωn
v j

≤ 2n
∫

{v j<−t}
ωn

v j
,

for every t > 0. By Proposition 2.9 we obtain ωn
u j

) CX uniformly for j ≥ 1.
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We remark that the proof shows that the result still holds for any family of

functions uα and vα, α ∈ ' instead of just sequences.

Proposition 2.11. Let u j ∈ E(X,ω), u ∈ PSH(X,ω) be such that u j → u in CX .

Then the following two statements are equivalent:
i) u ∈ E(X,ω);
ii) ωn

u j
) CX uniformly for j ≥ 1.

Proof. i)⇒ ii) By Proposition 2.7 we have
∫

{u j≤−t}
ωn
u j

=
∫

{u j≤−t}
ωn
max(u j ,−t) ≤

∫

{u≤−t+1}
ωn
max(u j ,−t) +

∫

{|u j−u|>1}
ωn
max(u j ,−t)

≤
∫

{u≤−t+1}
ωn
max(u j ,−t) + tnCX ({|u j − u| > 1}).

By coupling the quasi-continuity of u (in [3, Theorem 3.5]) and the facts that

ωn
max(u j ,−t) ) CX uniformly for j ≥ 1 and ωn

max(u,−t) ) CX uniformly for t > 0

(see Proposition 2.10), we get

lim
t→+∞

lim
j→∞

∫

{u j≤−t}
ωn
u j

≤ lim
t→+∞

∫

{u≤−t+1}
ωn
max(u,−t) = 0.

By Proposition 2.9 we obtain ωn
u j

) CX uniformly for j ≥ 1.

ii)⇒ i) This is a part in [22, Theorem 3].

Finally we would like to mention that recently Benelkourchi, Guedj and Zeri-

ahi [1] have developed analogous theory for compact complex manifolds equipped

with big forms (i.e. smooth semi-positive forms ω satisfying
∫
X

ωn > 0). We leave

to the reader as an exercise to check that our results still hold in this more general

setting.

3. Convergence in capacity

Below we prove various results regarding convergence in capacity in the class

E(X,ω). We begin with a technical theorem which will be used later on. This

result is a generalization of similar ideas in [14, Lemma 2.3] (where the case of

bounded functions is considered) and in [22, Theorem 2], where the author works

in the smaller function class E1(X,ω).

Theorem 3.1. Let u j , v j ∈ E(X,ω) be such that

i) ωn
u j

) CX uniformly for j ≥ 1;
ii) lim j→∞

∫
{u j<v j−δ} ωn

u j
= 0 for all δ > 0.

Then lim j→∞ CX ({u j < v j − δ}) = 0 for all δ > 0.
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Proof. We can assume, by adding constants to both u j and v j if necessary, that
supX u j = 0 for all j ≥ 1. Set u jt := max(u j ,−t). For each k = 0, . . . , n we will
prove inductively that for every δ > 0

lim
j→∞

sup

{∫

{u j<v j−δ}
ωn−k
u j

∧ ωk
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0

}
= 0. (3.1)

Note that if k = 0 then (3.1) holds by assumption.

Assume that (3.1) holds for k − 1. We will prove that

lim
j→∞

sup

{∫

{u j<v j−3δ}
ωn−k
u j

∧ ωk
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0

}
= 0

for any δ > 0. We fix t ≥ 1 and ϕ ∈ PSH(X,ω) satisfying −1 ≤ ϕ ≤ 0. For

notational ease we denote the set {u j + δ
t
u jt < v j + δ

t
ϕ − 2δ} by U and let also

η j , β j be the ω-psh functions defined respectively by η j := v j+ δ
t
ϕ−2δ

1+ δ
t

, β j :=
u j+ δ

t
u jt

1+ δ
t

. Then we have

∫

{u j<v j−3δ}
ωn−k
u j

∧ ωk
ϕ ≤

∫

U

ωn−k
u j

∧ ωk
ϕ,

since
δϕ−δu jt

t
> −δ.

The measure on the right-hand side can be enlarged to

t + δ

δ
ωη j ∧ ωn−k

u j
∧ ωk−1

ϕ .

Thus, by consecutive application of [11, Theorem 2.3] and yet another set inclusion

obtained as the one above we get

t + δ

δ

∫

U

ωη j ∧ ωn−k
u j

∧ ωk−1
ϕ ≤ t + δ

δ

∫

U

ωβ j
∧ ωn−k

u j
∧ ωk−1

ϕ

≤ t

δ

∫

{u j<v j−δ}
ωn−k+1
u j

∧ ωk−1
ϕ +

∫

{u j<v j−δ}
ωu jt ∧ ωn−k

u j
∧ ωk−1

ϕ .

Using form [13, Corollary 1.7 ] this last sum can be in turn estimated by

t + δ

δ

∫

{u j<v j−δ}
ωn−k+1
u j

∧ ωk−1
ϕ +

∫

{u j≤−t}
ωu jt ∧ ωn−k

u j
∧ ωk−1

ϕ

≤ t + δ

δ

∫

{u j<v j−δ}
ωn−k+1
u j

∧ ωk−1
ϕ +

∫

{u j≤−t}
ωn−k+1
u j

∧ ωk−1
ϕ .
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By the induction hypothesis we get

lim
j→∞

sup

{∫

{u j<v j−3δ}
ωn−k
u j

∧ ωk
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0

}

≤ sup

{∫

{u j≤−t}
ωn−k+1
u j

∧ ωk−1
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0, j ≥ 1

}
,

for every t ≥ 1.

Note that
u j+ϕ

2
≥ u j − 1, thus by Proposition 2.10 we get that ωn

u j+ϕ

2

) CX

uniformly for j ≥ 1. Expanding the left-hand side we obtain

ωn−k+1
u j

∧ ωk−1
ϕ ) CX uniformly for j ≥ 1.

Now by letting t → +∞ (and using ωn−k+1
u j

∧ ωk−1
ϕ ) CX uniformly for j ≥ 1),

from Proposition 2.8 we obtain

lim
j→∞

sup

{∫

{u j<v j−3δ}
ωn−k
u j

∧ ωk
ϕ : ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0

}
= 0.

Theorem 3.1 has various consequences regarding continuity of the Monge-Ampère

operator. Below we list some of them.

As a direct corollary we obtain the following theorem:

Theorem 3.2. Let u j , v j ∈ E(X,ω) be such that

i) ωn
u j

+ ωn
v j

) CX uniformly for j ≥ 1;
ii) lim j→∞[

∫
{u j<v j−δ} ωn

u j
+

∫
{v j<u j−δ} ωn

v j
] = 0 for all δ > 0.

Then u j − v j → 0 in CX .

Recently the second named author obtained a characterization of convergence

in capacity for bounded ω-psh functions (in [14, Theorem 2.1]). Our next result

provides such a characterization in the class E(X,ω):

Theorem 3.3. Let u j ∈ E(X,ω) and u ∈ PSH(X,ω). Then the following three
statements are equivalent:

i) u ∈ E(X,ω) and u j → u in CX ;
ii) ωn

u j
) CX uniformly for j ≥ 1 and u j → u in CX ;

iii) ωn
u j

) CX uniformly for j ≥1, lim j→∞ u j ≤ u and lim j→∞
∫
{u j<u−δ} ωn

u j
=

0 for all δ > 0.
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Proof. i)⇔ ii) This equivalence is the content of Proposition 2.11.

ii)⇒ iii) This implication is trivial.

iii)⇒i) This is a direct application Theorem 3.1, coupled with Proposition 2.11.

Recall that the weak convergence of Monge-Ampère measures does not imply

the weak convergence of the corresponding functions (and vice versa). Thus these

convergence problems are considered with additional restrictions. Usually results

in this direction are called stability theorems in the literature, since they show that

suitable small modification of the Monge-Ampère measures do not lead to large

deviation of solutions (i.e. the solutions are stable). In [9] good convergence prop-

erties were obtained (in the setting of domains in Cn) under the assumption that

all the Monge-Ampère measures are dominated by a fixed measure vanishing on

pluripolar sets. In the Kähler setting the corresponding problem was studied by

Xing in [22]. He worked in the subclass E1(X,ω) ⊂ E(X,ω), however all his ar-
guments can be applied in the whole E(X,ω) provided one has uniqueness (modulo
an additive constant) for the solutions of the Monge-Ampère equation

ωn
ϕ = µ, ϕ ∈ E(X,ω),

where µ is any positive Borel measure satisfying
∫
X
dµ =

∫
X

ωn and vanishing on

pluripolar sets. This uniqueness statement was recently obtained in [11]. Thus cou-

pling Xing’s arguments with Theorem 3.2 one gets the following stability theorem:

Theorem 3.4. Let u j ∈ E(X,ω) and u ∈ PSH(X,ω). Assume that ωn
u j

≤ dµ for

some measure dµ ) CX . Let also supX u j = supX u. Then the following three

statements are equivalent:

i) u j → u in CX .

ii) u j → u in L1.

iii) ωn
u j

→ ωn
u weakly.

Proof. The implications ii) ⇔ iii) are essentially due to Xing. In particular in [22,

Corollary 1] (and Proposition 2.11) yields ii) ⇒ iii). For the other implication one

can proceed exactly as in [22, Theorem 8]: below we sketch the details from [22]

for the reader’s convenience.

Due to the normalization assumption one can extract a subsequence from u j

convergent in L1 to some function v ∈ PSH(X,ω). Note that one also has supX v =
supX u. The result follows if one can show that v actually coincides with u, since
the chosen convergent subsequence is arbitrary. But the Monge-Ampère measures

of the functions in the subsequence are again dominated by µ, hence from [22,

Theorem 4] one concludes that v belongs to E(X,ω) and moreover the Monge-
Ampère measures tend weakly to ωn

v . Thus one gets ωn
u = ωn

v , so by uniqueness

(now in E(X,ω)) and normalization u = v. Thus, since any subsequence has
subsequence convergent in L1 to u one concludes that u j → u in L1.
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Since implication i) ⇒ ii) is trivial, we only have to show that ii) implies i).

But we know that ωn
u j

) CX (since all the measures are dominated by µ). By [7]

(see also in [9, Lemma 1.4]) we know that

∀M ∈ R lim
j→∞

∫

X

max(u j ,M) −max(u,M)dµ = 0.

(Indeed, the results in [7] and [9] are proven in the local case, but this convergence

statement is of purely local nature and hence can be easily transplanted to the Kähler

setting).

Thus we obtain

∫

{u j<u−δ}
ωn
u j

+
∫

{u<u j−δ}
ωn
u ≤

∫

{u j<M}∪{u<M}
dµ+1

δ

∫

X

|max(u j ,M)−max(u,M)|dµ.

If M is sufficiently negative by the assumption µ ) CX and Proposition 2.8 we

obtain that the first term on the right-hand side can be made arbitrarily small (inde-

pendently of j). Finally we obtain

lim
j→∞

[∫

{u j<u−δ}
ωn
u j

+
∫

{u<u j−δ}
ωn
u

]
= 0.

Thus by Theorem 3.2 u j → u in CX .

Before we proceed further we recall the notion of variation of a measure. Given

any Borel measure µ (non-necessarily positive) one defines its variation ||µ|| on a
Borel set A by

||µ||(A) := sup

{ ∞∑

k=1
|µ(Rk)|

}
,

where Rk, k ∈ N is any disjoint at most countable partition of the set A by Borel

sets. The classical Hahn decomposition theorem states that in fact that it is enough

to consider only the special partition given by the two Hahn sets – intutively – the

pieces where µ is positive and negative.

Remark 3.5. It would be interesting to know whether the above result still holds

if instead of domination by a fixed measure one assumes merely that ωn
u j

) CX .

Indeed large parts of Xing’s proof can be dealt verbatim, yet some details remain

unclear to us.

Our next result concerns a new type of stability. Instead of controlling the

deviation of u j from v j we impose an assumption on the variation of their Monge-
Ampère measures. Since in concrete situations the Monge-Ampère measures of

functions in concern are given (while the information on the functions themselves

is very limited) this result seems more suitable for applications than Theorem 3.2.

Such a theorem is new even for bounded ω-psh functions.
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Theorem 3.6. Let u j , v j ∈ E(X,ω) be such that

i) lim j→∞ | supX u j − supX v j | = 0;
ii) ωn

u j
+ ωn

v j
) CX uniformly for j ≥ 1;

iii) lim j→∞
∫
X

||ωn
u j

− ωn
v j

|| = 0.

Then u j − v j → 0 in CX .

Note that the first assumption is an obvious normalization which can always

be assumed after adding suitable constants to the functions in concern. Before we

start the proof we state an auxiliary lemma which might be of independent interest.

Lemma 3.7. Let u, v ∈ E(X,ω). Then for any k ∈ {0, · · · , n}we have the estimate
∫

X

||ωk
u ∧ ωn−k

v − ωn
u || ≤ 2

[∫

X

||ωn
u − ωn

v ||
] n−k

n

.

Proof. Set

µ = 1

2
[ωn

u + ωn
v ].

We choose f, g ∈ L1(dµ), f, g ≥ 0 such that

ωn
u = f dµ, ωn

v = gdµ.

By the inequality for mixed Monge-Ampère measures ( [10], see also in [11, Theo-

rem 2.1]) and the Hölder inequality we get

∫

E

ωk
u ∧ ωn−k

v −
∫

E

ωn
u ≥

∫

E

f
k
n g

n−k
n dµ −

∫

E

f dµ

=
∫

E

f
k
n

[
g
n−k
n − f

n−k
n

]
dµ ≥ −

∫

E

f
k
n

∣∣∣g
n−k
n − f

n−k
n

∣∣∣ dµ

≥ −
∫

E

f
k
n |g − f | n−kn dµ ≥ −

[∫

E

f dµ

] k
n
[∫

E

|g − f |dµ

] n−k
n

≥ −
[∫

E

|g − f | dµ

] n−k
n

≥ −
[∫

X

||ωn
u − ωn

v ||
] n−k

n

for any Borel set E ⊂ X . Similarly we get

∫

X\E
ωk
u ∧ ωn−k

v −
∫

X\E
ωn
u ≥ −

[∫

X

||ωn
u − ωn

v ||
] n−k

n

.

Hence ∫

E

ωk
u ∧ ωn−k

v −
∫

E

ωn
u ≤

[∫

X

||ωn
u − ωn

v ||
] n−k

n
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for all Borel sets E ⊂ X . A combination of these inequalities yields

∣∣∣∣

∫

E

ωk
u ∧ ωn−k

v −
∫

E

ωn
u

∣∣∣∣ ≤
[∫

X

||ωn
u − ωn

v ||
] n−k

n

,

for all Borel E ⊂ X . This implies that

∫

X

||ωk
u ∧ ωn−k

v − ωn
u || ≤ 2

[∫

X

||ωn
u − ωn

v ||
] n−k

n

.

Proof of Theorem 3.6. Our strategy will be to start with the bounded functions case.
It will turn out that the general case follows in a rather simple manner from this one.

Case I: u j , v j ∈ PSH(X,ω) ∩ L∞(X). Set

a j :=
[
sup

{∫

X

||ωk
u j

∧ ωn−k
v j

− ωm
u j

∧ ωn−m
v j

|| : 1 ≤ k,m ≤ n

}] 1
4

.

Note that our assumptions coupled with Lemma 3.7 yield lim j→∞ a j = 0. From

now on we assume that a j ’s are small.

The crucial point in the proof will be the following equality

lim
j→∞

sup
t∈R

{∫

{|u j−v j−t |≤a j }
ωn
u j

}
= 1. (3.2)

Indeed, suppose (3.2) is already proved. Then we can choose k j ∈ R such that

lim
j→∞

∫

{|u j−v j−k j |>a j }
ωn
u j

= 0.

Moreover from iii) we get

lim
j→∞

∫

{|u j−v j−k j |>a j }
ωn

v j
= 0.

By Theorem 3.2 we obtain u j − v j − k j → 0 in CX . Also from i) we get

lim j→∞ k j = 0. Hence u j − v j → 0 in CX .

Thus we have to prove (3.2). Suppose on contrary that there exists ε0 > 0 such

that ∫

{|u j−v j−t |≤a j }
ωn
u j

≤ 1− 2ε0

for all t ∈ R, j ≥ 1. Set

t j := sup

{
t ∈ R :

∫

{u j<v j+t+a j }
ωn
u j

≤ 1− ε0

}
.
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Replacing v j + t j by v j we can assume that t j = 0. Then
∫
{u j<v j+a j } ωn

u j
≤ 1− ε0

and
∫
{u j≤v j+a j } ωn

u j
≥ 1− ε0. Hence

∫

{v j<u j+a j }
ωn
u j

= 1−
∫

{u j+a j≤v j }
ωn
u j

= 1−
∫

{u j≤v j+a j }
ωn
u j

+
∫

{v j−a j<u j≤v j+a j }
ωn
u j

≤ 1− ε0.

Consider now the interval [−a j + a2j , a j − a2j ]. It contains
[
1/a j

]
− 2 disjoint

closed intervals each with length 2a2j , (
[
x
]
denotes the integral part of x). Observe

that the sets {|u j − v j − p| < a2j } are pairwise disjoint when p varies among

the centers of those intervals. Since
∫
{|u j−v j |≤a j } ωn

u j
≤ 1 we can thus choose

s j ∈ [−a j + a2j , a j − a2j ] satisfying
∫

{|u j−v j−s j |<a2j }
ωn
u j

≤ 2a j .

(For otherwise we would get 1 ≥ 2a j ([1/a j ] − 2) ≥ 2a j (1/a j − 3) > 1 for all a j
small enough).

Replacing v j + s j by v j we can assume that s j = 0. One easily obtains the

following inequalities
∫

{u j<v j+a2j }
ωn
u j

≤ 1−ε0,

∫

{v j<u j+a2j }
ωn
u j

≤ 1−ε0,

∫

{|u j−v j |<a2j }
ωn
u j

≤ 2a j . (3.3)

In [13, Theorem 4.6] we can find ρ j ∈ E(X,ω), such that supX ρ j = 0 and ωn
ρ j

=
1

1−ε0
1{u j<v j }ω

n
u j

+c j1{u j≥v j }ω
n
u j
(the constant c j ≥ 0 is chosen so that the measure

has total mass 1, while 1A denotes the characteristic function of the set A). Set

Uj = {(1− a3j )u j < (1− a3j )v j + a3jρ j } ⊂ {u j < v j }.
By the inequality for mixed Monge-Ampère measures [10] we get

ωn−1
u j

∧ ω(1−a3j )v j+a3jρ j ≥ (1− a3j )ω
n−1
u j

∧ ωv j +
a3j

(1− ε0)
1
n

ωn
u j

on Uj . In [11, Theorem 2.3], our assumptions and the definition of a j we obtain

(1− a3j )

∫

Uj

ωn−1
u j

∧ ωv j +
a3j

(1− ε0)
1
n

∫

Uj

ωn
u j

≤
∫

Uj

ω(1−a3j )v j+a3jρ j ∧ ωn−1
u j

≤
∫

Uj

ω(1−a3j )u j ∧ ωn−1
u j

= (1− a3j )

∫

Uj

ωn
u j

+ a3j

∫

Uj

ω ∧ ωn−1
u j

≤ (1− a3j )

(∫

Uj

ωn−1
u j

∧ ωv j + a4j

)
+ a3j

∫

Uj

ω ∧ ωn−1
u j

.
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Hence

1

(1− ε0)
1
n




∫

{u j≤v j−a2j }
ωn
u j

−
∫
{
ρ j≤−

1−a3
j

a j

} ωn
u j



 ≤ 1

(1− ε0)
1
n

∫

Uj

ωn
u j

≤ a j +
∫

Uj

ω ∧ ωn−1
u j

≤ a j +
∫

{u j<v j }
ω ∧ ωn−1

u j
.

(3.4)

Similarly to ρ j we define ϑ j ∈ E(X,ω), such that supX ϑ j = 0 and ωn
ϑ j

=
1

1−ε0
1{v j<u j }ω

n
u j

+ d j1{v j≥u j }ω
n
u j
(d j plays the same role as c j above). Set

Vj = {(1− a3j )v j < (1− a3j )u j + a3jϑ j } ⊂ {v j < u j }.

Similarly we get

1

(1− ε0)
1
n




∫

{v j≤u j−a2j }
ωn
u j

−
∫
{
ϑ j≤−

1−a3
j

a j

} ωn
u j



 ≤ 1

(1− ε0)
1
n

∫

Vj

ωn
u j

≤ a j +
∫

Vj

ω ∧ ωn−1
u j

≤ a j +
∫

{v j<u j }
ω ∧ ωn−1

u j
.

(3.5)

Note that coupling (3.3), (3.4) and (3.5) one obtains

1

(1− ε0)
1
n



1− 2a j − 2

∫
{
ρ j≤−

1−a3
j

a j

} ωn
u j





≤ 1

(1− ε0)
1
n




∫

{|u j−v j |≥a2j }
ωn
u j

− 2

∫
{
ρ j≤−

1−a3
j

a j

} ωn
u j





≤ 2a j + 1.

Now, by Proposition 2.8 and assumption ii), if we let j → ∞ we would obtain

1

(1− ε0)
1
n

≤ 1,

a contradiction.

Thus (3.2) and the whole proof in the bounded functions case is finished.

Below we consider the general case.

Case II: u j , v j ∈ E(X,ω). We can assume, adding constants if necessary, that
supX u j = supX v j = 0. Choose t j → +∞ such that lim j→∞

∫
{u j≤−t j } ωn

u j
+∫

{v j≤−t j } ωn
v j

= 0. Using Case I for max(u j ,−t j ) and max(v j ,−t j ) we obtain
max(u j ,−t j ) −max(v j ,−t j ) → 0 in CX . Therefore u j − v j → 0 in CX .
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Our last result is a generalization from [22, Theorem 5] and from [19, Theorem

3.4]. Ko!lodziej proved the statement for bounded functions, while Xing needed the
additional assumption that ∀ j ≥ 1, v j ≥ v0 for some fixed function v0 ∈ E(X,ω).
Note that such an assumption is quite hard to be checked especially if we know

a priori only the Monge-Ampère measures of each u j . In fact we show that this

condition is superflous.

Theorem 3.8. Let u j , v j , v ∈ E(X,ω), u ∈ PSH(X,ω) and A > 1 be such that

u j → u in L1(X) and ωn
u j

≤ Aωn
v j
for j ≥ 1. Assume that v j → v in CX . Then

u ∈ E(X,ω) and u j → u in CX .

Proof. For each t > 0 we set

u jt := max(u j ,−t), ut := max(u,−t), v j t := max(v j ,−t), vt := max(v,−t),

Tjt :=
n−1∑

k=0
ωk

v j t
∧ ωn−1−k

vt
.

We have ∫

{u j<u−δ}
ωn
u j

≤ A

∫

{u j<u−δ}
ωn

v j
.

The latter integral can be estimated by
∫

{u j<u−δ}
ωn

v j
≤

∫

{u j≤−t}∪{u≤−t}∪{v j≤−t}
ωn

v j
+

∫

{u jt<ut−δ}
ωn

v j t

≤
∫

{u j≤−t}∪{u≤−t}∪{v j≤−t}
ωn

v j
+ 1

δ

∫

X

|ut − u jt |ωn
v j t

≤
∫

{u j≤−t}∪{u≤−t}∪{v j≤−t}
ωn

v j
+ 1

δ

∫

X

|ut + ε − u jt |ωn
v j t

+ ε

δ
,

where we have used from [13, Corollary 1.7] in the first inequality and Chebychev’s

inequality in the second one.

Note that the middle term can be estimated by

1

δ

∫

X

(ut − u jt )ω
n
v j t

+ t + ε

δ

∫

{u jt>ut+ε}
ωn

v j t
+ ε

δ

≤ 1

δ

∫

X

(ut − u jt )(ω
n
v j t

− ωn
vt

) + 1

δ

∫

X

(ut − u jt )ω
n
vt

+ t + ε

δ

∫

{u jt>ut+ε}
ωn

v j t
+ ε

δ
.

(3.6)

Integration by parts in the first term yields (recall the definition of Tjt )

∫

X

(ut − u jt )(ω
n
v j t

− ωn
vt

) =
∫

X

(vt − v j t )(ωu jt − ωut ) ∧ Tjt . (3.7)
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Now coupling (3.6) and (3.7) one can estimate
∫
{u j<u−δ} ωn

v j
by

∫

{u j≤−t}∪{u≤−t}∪{v j≤−t}
ωn

v j
+ 1

δ

∫

X

|vt − v j t |(ωu jt + ωut ) ∧ Tjt

+ 1

δ

∫

X

(ut − u jt )ω
n
vt

+ t + ε

δ

∫

{u jt>ut+ε}
ωn

v j t
+ 2ε

δ

for all t > 0 and all ε > 0.

Observe that the second term goes to 0 as j → ∞, since the integrated function

converges to 0 in capacity and all the measures are uniformly absolutely continuous

with respect to CX for j ≥ 1 (and fixed t). By [7] (recall the argument used in the

proof of Theorem 3.4) we also get

lim
j→∞

∫

X

(ut − u jt )ω
n
vt

= 0.

Note that Hartogs’ lemma (see [16, Theorem 3.2.13 ]) yieldsCX ({u jt > ut+ε}) →
0 as j → ∞. Moreover, since ωn

v j t
) CX uniformly for j ≥ 1 we obtain

lim
j→∞

∫

{u jt>ut+ε}
ωn

v j t
= 0.

Coupling all these and letting j → ∞ we get

lim
j→∞

∫

{u j<u−δ}
ωn
u j

≤ sup
j≥1

∫

{u j≤−t}∪{u≤−t}∪{v j≤−t}
ωn

v j
+ 2ε

δ
,

for all t > 0, ε > 0. Letting ε → 0 and t → +∞ we obtain

lim
j→∞

∫

{u j<u−δ}
ωn
u j

= 0.

By Theorem 3.3 we obtain that u j → u in CX .
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