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Quantitative uniqueness estimates for the shallow shell system
and their application to an inverse problem

MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

Abstract. In this paper we derive some quantitative uniqueness estimates for the
shallow shell equations. Our proof relies on appropriate Carleman estimates. For
applications, we consider the size estimate inverse problem.

Mathematics Subject Classification (2010): 53J58 (primary); 35R30 (sec-
ondary).

1. Introduction

In this work we study a quantitative uniqueness for the shallow shell system and its
application to the inverse problem of estimating the size of an embedded inclusion
by boundary measurements. To begin, we let € be a bounded domain in R?. With-
out loss of generality, we assume 0 € Q. Let § : @ — R satisfy an appropriate
regularity assumption which will be specified later. For a shallow shell, its middle
surface is described by {(x1, x7, e,ooe_(xl, x2)) : (x1,x2) € Q) for ¢ > 0, where
po > 0 is the characteristic length of Q2 (see Section 3.1). From now on, we set
0 = pof. Letu = (uy,uz,u3) = (', u3) : @ - R3 represent the displacement
vector of the middle surface. Then u satisfies the following equations:

—9;nf.(u) =0 in ,
2 0 . (1.1)
37mij(u3) — 9;(nj;(u)9;0) =0 in Q,
where
4 4
m;j(u3z) = ;03 {M(Aw)&j + Tal?jw} ,
4 u
ng; () = T3 2. +2M€§k(u)5ij +4uef;(u), (1.2)

1
efj(u) = 5(8l~uj + dju; + (0;0)0u3 + (3;0)0;u3),
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and A, u are Lamé coefficients. Hereafter, the Roman indices (except n) belong to
{1, 2} and the Einstein summation convention is used for repeated indices.

Assume that D is a measurable subdomain of Q with D C Q. We consider
Lamé parameters

= A+ xpro and [ =+ xpHos

where yp is the characteristic function of D. The domain D represents the inclusion
inside of Q. With such parameters A, ft, we denote the displacement field # =
(@', u3)! satisfying (1.1) and the Neumann boundary conditions on 9:

v =py T,
m;jviv; = M,, (1.3)
(81%,-,- — ﬁ?ial'@)vj‘ + 8s(%-jvl~rj) = —0oy M,

where n1;; = m;;(u3) and ﬁ?j = ﬁ‘?j (&) are defined in (1.2) with A, u, u replaced
by X i, u. Hereafter, v = (v1, n2), T = (11, T0) are, respectively, the normal and
the tangent vectors along 90€2, and s is the arclength parameter of 0. Precisely,
the tangent vector t is obtained by rotating v counterclockwise of angle 7 /2. The
boundary field M = M.y + Myt,i.e, M; = M -vand M, = M - T. We remark
that in the plate theory, M. and M, are the twisting and bending moments applied
on 0€2. The field T satisfies the compatibility condition which will be specified in
the following section. An 1nterest1ng inverse problem is to determine geometric in-
formation on D from a pair {T, M; u'|yq, (3]0, dyU3|sq)}, i.e., from the Cauchy
data of the solution u. Despite its practical value, the fundamental global unique-
ness, even for the scalar equation, is yet to be proved. For the development of the
uniqueness issue for this kind of inverse problems, we refer to [13] and references
therein for details.

In this paper we are interested in estimating the size of the area of D in terms of
the Cauchy data of . This type of problem has been studied for the scalar equation
and for systems of equations such as the isotropic elasticity and plate. We refer to
the survey article [3] for the early developments and [20, 21] for the latest results
on the plate equations. Specifically, the size of D is estimated by the following two
quantities:

~

W= / o 'T - + My dyils + 3, M- ii3
Q2

and

W= palf-u/+ﬁvavu3+8_yﬂfu3,
Q2
where u = (u', u3)" is the displacement vector satisfing (1.1) and (1.3) with D = {,
i.e., . = A and i1 = . Here we assume that A, p are given a priori , thus, both W
and W are known. To be more precise, in this paper, we will show that under some
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a priori assumptions, there exist positive constants C1, C» such that

~

w-w

~

- W
W

Ci <area(D) < (Cp , (1.4)

where C1, C» depend on the a priori data.
The derivation of the volume bounds on D relies on the following integral
inequalities

1 ~
EAE]%MV+%%MV§W—W|
ij

(1.5)
5KA§J%@F+@%MK
ij

where the constant K depends on the a priori data. The lower bound for area(D)
is a consequence of the second inequality of (1.5) and the elliptic regularity es-
timate for u. To derive the upper bound for area(D), we shall use the first in-
equality of (1.5). As indicated in all previous related results, we need to estimate
f D Y j |e?j w)|? + p§|8i2ju3 |2 from below. This can be achieved by the quantitative
uniqueness estimates of solutions u solving (1.1), which is one of the themes of the
paper.

For the second order elliptic operator, using the Carleman or the frequency
functions methods, quantitative estimates for the strong unique continuation under
different assumptions on coefficients were derived in [8-11, 14, 16, 18]. For the
isotropic elasticity, similar estimates can be found in [1,4, 19]. Further, for the
elastic plate, quantitative uniqueness estimates were derived in [20,21]. Note that
global versions of quantitative uniqueness estimates, in the form of doubling in-
equality, were given in [4] and [21], where their arguments rely on a local version
for the power of Laplacian derived in [17].

In this paper, we will derive three-ball inequalities and doubling inequalities
for the shallow shell system (1.1) with A, u € C L1(Q). Since the first and the
second equations in (1.1) have different orders, it seems that the Carleman method
is the most efficient way to derive those quantitative uniqueness estimates for (1.1).
We will give detailed derivations of quantitative uniqueness estimates based on the
Carleman estimates in Section 4. The investigation of the inverse problem is given
in Section 5. Since the Neumann boundary value problem for (1.1) is not standard,
we will first study this forward problem in Section 3.

2. Notation

Definition 2.1. Let Q be a bounded domain in R” with n > 2. Given k € Z1, we
say that d€2 is of class C k-1 with constants 0o, Ao, if, for any point z € 9€2, there
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exists a rigid coordinate transformation under which z = 0 and
QN Bp(0) = {x = (x1, -+, Xn—1, Xp) = (X', Xp) € By (0) 1 x> (x)},

where ¢(x’) is a C*! function on B;)O (0) = By, (0) N {x, = 0} satisfying ¢(0) = 0
and Vp(0) =0if k£ > 1 and

||<P||Ck$1(3;)0(o)) < Aopo.

Throughout the paper, we will normalize all norms such that they are dimension-
ally homogeneous and coincide with the standard definitions when the dimensional
parameter is one. With this in mind, we define

k
o) k1
lellcrresy o) = ZP6||V"€0||L°°(B;,O(0)) + 5" IIVHI(ﬂllLOO(B;,O(o»-

Jj=0

Similarly, when  with 92 defined above and w : 2 — R, we define

k
j i k+1 1
lwlicrigy =D o3IVl + o5 IV wl o),

Jj=0

2 — 2
0l 0y = 0" [ 07,

k
_ 2j i
”w”%qk(g) = /O()n E p()J /S‘_Z |ij|27 k 2 1.
Jj=0

In particular, if Q2 = B, (0), then 2 satisfies Definition 2.1 with pg = p.

Let A be an open connected component of d€2. For any given point zg € A,
we define the positive orientation of .4 associated with an arclength parametrization
Z(s) = (x1(s), x2(s)), s € [0, length(.A)] such that ¢ (0) = zg and ¢'(s) = (¢ (s)).
Finally, we define for any 4 > 0

Qp = {x € Q| dist(x, 0Q2) > h}.

3. The forward problem

3.1. The Neumann boundary value problem for the shallow shell equation

At this moment, we assume 92 € C*! with constants Ag, po- Also, let Q satisfy
Q| < Aipg 3.1

throughout the article, and

VOl ooy = poll VOl Loy < Az (3.2)
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for some positive constants A; and A;. We will investigate the Neumann boundary
value problem, the forward problem, for the shallow shell system. To begin, let us
assume that Lamé coefficients A, u € L% (L) satisfying

0<8) <ux), d=<ix), VxeQ. (3.3)

We aim to find u = (u1, uz, u3) = (u', uz) satisfying

—8jn?.(u):0 in £,
92 mi (% w)d;0) =0 in ©H

imij(u3) — 0;(n7;(u)d;0) =0 in €2,
with boundary conditions

5
”?j(“)"j = Py ,Ti
mij(u3)viv; = M,, R (3.5)
(0;m;j(u3) — n?j(u)aiG)vj + 05 (m;j(u3)vitj) = —0; M.

Now assume that u = (/, u3) satisfies (3.4)-(3.5). Let v = (v, v3) € (H'(£2))? x

H?(R), then multiplying the first and second equations of (3.4) by v’ and v3, re-
spectively, and using the standard integration by parts, we can obtain that

/Z(n?j(u)e?j(v)+mij(u3)8l~2jv3)=/ pg ' T v + 3 Myvs + My d,v3. (3.6)
Q% El9)

The boundary field M = ﬁfv + I\Zﬂ: in the cartesian coordinates is written as
M = Mlez + A?zel.
In view of the relation
0y My vs = 35 (Myv3) — M ,v3,

one can see that the right-hand side of (3.6) becomes
/ ,oo_l’T\- v — M, 3503 + M,d,v3.
Q2

Recall that d;v3 = dsv37; + dyv3v; for j = 1, 2. Using the relation T = (—v2, vy)
if v = (v1, v2), we get that

My01v3 — Madovy = My (050371 + 9,0301) — Ma (350372 + 0,0312)
= (Mit1 — Ma12)05v3 + (M1vy — M2v7)0,v3
= —M;05v3 + M,0,v3
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In view of the above computations, we deduce that
/ Z(n?j(u)e?j(v) +mij(u3)3,'2jv3) = / P&lf' v + Midyvs — Madhvs (3.7)
Q5 IQ

(see the similar derivation for the plate equation in [20]). Let v/ =a + W - x + b0
and v3 =c¢ — b - x, where a = (a1, a2), b = (b1, by) are two- dimensional vectors,
W is a2 x 2 skew-symmetric matrix, and c is a scalar. Then el i v) = 82 v3 = 0 for

all i, j. Thus, to solve (3.4) and (3.5), the pair (T M ) must satisfy the compatlblhty
condition

pg T - (@+ W -x+b8) —bi My +byMy =0. (3.8)
Q

Note that taking b = 0, we have the usual compatibility condition for the traction
of the elasticity equation, i.e.,

/ T -(a+W-x)=0.
0

On the other hand, to guarantee uniqueness for the forward problem, we impose the
following normalization conditions

[u =0, /Vu3 =0, f(81u2—82u1)+(81982u3—82081u3) =0. (3.9)
Q Q Q

To solve the forward problem, the following Poincaré-Korn inequality is very im-
portant.

Proposition 3.1. There exists an absolute constant C >0, depending on Ag, A1, Aa,
such that for allu = (u', u3) € (HY(Q))? x H*(Q) satisfying (3.9) we have

11571,y + 31132 g < / Zleu@t)l + pgl07usl. (3.10)

Proof. The inequality (3.10) is a combination of Poincaré’s and Korn’s inequalities.
By abuse of notation, the variable x in our proof stands for (x, x2, x3) = (x’ ; x3).
Now let I' = Q x (—p0, 09) C R3 and introduce new variables ¥’ = x’ and
X3 = x3 +6 (x/ ). Denote by I' the domain of €2 under the coordinate transformation
X — X, ie., F Q X (—pog + 0, po + 60). Both domains I' and T are clearly
Lipschitz. On T, we have the standard Korn s inequality: there exists a constant
Ko > 0 such that for any 3 vector v € H' (F) satisfying

/~ vd¥ =0, /N <V3;v — (V;U)T) d7 =0, G.11)
I r

we have
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where §;v = (ng + (V;v)’) /2 and K¢ depends on Ap, A1, Ay. Let w(x) =
w(x, x2, x3) € HY(T), then v(¥) 1= w(%), %2, 3 —0 (")) € H(T). By observing
that the Jacobian of the coordinate transformation x — X is 1, we can write (3.11),
(3.12) in terms of x and get that for all w € H ) satisfying

frwdx =0,
fr(81w2—81933w2—82w1 + 0,003w1)dx =0, (3.13)
Jr@rws — 81003w3 — Bwy)dx =0,
fr(82w3 — 0p003w3 — A3wy)dx =0,
we have
P0 Il 2y + IVEWIT 2 ) < Kol VWl gy, (3.14)
where

(01 — 01093)wy (91 — 01093)wy (31 — 01033)w3
Viw = | (32 — 32003)w; (32 — 32083 )wr (9 — 083)ws3
R w 3wy 3w3

and the symmetric part /V\fw of Vfw is defined similarly. In fact, by the form of
Vfw, (3.14) can be improved to

0 2wl + 1Vewl 7oy < KillViwlis (3.15)

for some constant K1, also depending on Ag, Aj, A;. Now let u = (v, u3)' €
(H'(Q))? x H*(2), we apply (3.13) and (3.15) to

wx) = (u1(x") — x301u3(x"), ua(x") — x30u3(x"), u3(x"),
where (x/, x3) € Q x (—po, po). It is easy to check that the constraints (3.13) are

reduced to the normalization conditions (3.9). On the other hand, easy computations
show that (3.15) becomes

po/Q <p02|u|2+|w|2+p§Z|a,-2,u3|2)sc/QZ(po|e?,-(u>|2+p3|a?,-u3|2)
ij ij

with C only depending on Ag, Ay, Aj. O

3.2. Existence and uniqueness

We will use the variational method to solve the forward problem. This seems to be
standard. But we could not find any literature discussing the Neumann boundary
value problem for the shallow shell. For the sake of completeness, we give a proof
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of this forward problem. The arguments used here are adapted from [20]. To begin,
let us introduce

Hu,v) = / Znu(u)a vi + mij(u3)d7v3 4 nf; (u)0;00,v3

- / > el (v) +mij(u3)dv
and
L) = / ,oo_lf- v+ 3 Mpvs + My dyvs.
Q2

We now give a weak formulation of the Neumann boundary value problem (3.4)-
(3.5).

Definition 3.2. A vector valued function u = (1, u3)' € (H'(Q))? x H*(Q) is a
weak solution to (3.4)-(3.5) if and only if

H@u,v) = L(v) forallv= ', v3) € H(Q) x HX(Q). (3.16)

From the above computations, we know that
L(v) = / ,OO_IT- v+ ﬁ181v3 — 1\//;282U3 = Z(v)
30

In other words, (3.16) is equivalent to
H(u,v) = L) forallv= ') € (H(Q)?x HA(RQ). (3.17)

Theorem 3.3. Assume that 6 satisfies (3.2) and A, u € L% () satisfy (3.3). Given
any boundary field (T M) e H Y23Q) and the compatibility condition (3.8)
holds. Then (3.4)-(3.5) admits a unique weak solution u = (u’, u3)" satisfying the
conditions (3.9) and

1l 71 + 1163 2y < CICT, MO 11200605+ (3.18)
where C depends on Ag, A1, Az, do-
Proof. Let V be the subspace of (H 1(Q))? x H*(Q) characterized by

={w= W, w3) e (H(Q)>x HX(Q) : w satisfies (3.9)}.

In view of (3.10), we have that

/QZ lef; > + pgl87usl® < w131 gy + 43132 g,
ij

(3.19)
<C[ D + il
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for all u € V. We now define a functional J : V — R by
1 -
J(u) = EH(M’ u) — L(u).

We first want to prove that J has a unique minimizer on V. To this end, it suffices
to show that J is coercive and strictly convex on V. It is easy to see that

H(u,u) = / i el (u) + myj (u3)o7us
Q

4 2
:/QH2M|Ze,€k(u)| Ay lef )

k ij

4rppg 2, 4uog 2.2
+—0 | Aus| +T;|aiju3|

3(h+2u)

450
= /Q > lel; ) * + o3 197 us ).
ij

Thus, (3.19) implies
Hu,u) = C(Iu'lI31 ) + lu3ll20) (3.20)

with C depending only on Ag, A, Az, §o. On the other hand, the trace inequality
leads to

L(u) < C|(T, M)||(H71/2(agz))3(||u/||H1(gz) + ||143||H2(Q))~
Consequently, we obtain that
@) = (113 gy + N3l g
T WDl =125 W g1 gy + 312

which shows that J is coercive and bounded from below on V.
Now fort € [0, 1] and u, v € V, we have that

Hitu+ A —-tv,tu+ 1 —-t)v) —tHw,u) — (1 —t)H (v, v)
=—t(l—-tHu—v,u—v) <0

and forr € (0, 1)
Htu+ (-0, tu+ (1 —t)v) =tHu,u)+ (1 —t)H(v, v)

if and only if
Hu—v,u—v)=0.
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Since u,v € V, we see that Hu — v,u —v) = O if and only if ¥ = v in
(HY(2))? x H2(S2). In other words, we have shown that H (u, u) is strictly convex
on V. Taking into account that L (u) is linear, we have that J (u) is strictly convex
on V. Therefore, J (1) has a unique minimizer, denoted by w, on V. In other words,
J'(w)[v]=0forallveV,i.e.,

H(w, v) = L(v) (3.21)

for all v € V. Now we need to show that (3.21) is valid for all v € (H'(R))? x
H?(S), that is, w indeed a weak solution. Given any z = (z/,z3) € H(Q) x
H?%(), one can easily check that 7 satisfies (3.9), where

~ 1 ’ 1 (VZ/_(VZ/)I)
ST el QZ_[@/Qf](x_x e QQ)@ Ve

1 i 0,v=)
=z3—— [ 3—|—= | Vz3) (x —xq),
€2 (IQI Q

and
o 1/9 1/
Q= — , _X,'Q:— X
12| Jo 1€2] Jo

Since (f, M ) satisfies the compatibility condition (3.8), we conclude that
Hw,z) = Hw,2) =L() =L(z) Yze (H(Q)?x HX(Q).

The estimate (3.18) is an easy consequence of (3.20) and the trace inequality.  [J

3.3. Global regularity

To study the inverse problem, we also need a global regularity theorem for the
shallow shell equations. To simplify our presentation, we impose a technical as-
sumption on 6 (or 0) in this section. Assume that 6 satisfies

§=VG=0 on 9%. (3.22)

We shall prove the following theorem.

Theorem 3.4. Assume that Q is a bounded domain in R?* satisfying (3.1) whose
boundary 92 is of class C 41 with constants Ao and po. Let A, u € CH1(Q) satisfy
(3.3) and 6 € C*>1(Q) satisfy (3.22) and

IAllcriqy + lellerr g + ||9_||c2-1(§z) < As. (3.23)

Let u € (HY())* x HZ(Q) be the weak solution of (3.4), (3.5) with Neumann
boundary condition (T M) e (H2(0))* x H32(3%) satisfying (3.8). Assume
that u satisfies the normalization conditions (3.9). Then there exists a constant
C > 0, depending on Ay, Ay, Az, 8 such that

'l g2y + Nl oy < CICT M) 12592 #3209 - (3.24)
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Proof. To prove this theorem, it suffices to consider (3.4) with homogeneous Neu-
mann boundary conditions. In view of (3.22), the boundary conditions (3.5) are
simplified to

nij(uv; = ,OO_III',
mij(uz)viv; = M,, (3.25)

im;j(uz)vj + 85 (mij(u3)vit;) = —ds My,

where

4ru , , RPN
exk(u ) +4peij(u vy =p, T; on IR

. / —
nij(u) P

with e;; (u') = %(aiu j + dju;). It is clear that boundary conditions (3.25) are
decoupled. Using the result in [20, Proposition 8.1], one can find w3 satisfying

m;j(W3)viv; = M,, R
dim;j(w3)vj + ds(m;j(W3)v;Tj) = —ds My

on 0S2 and the estimate

1931l 4y < CIM I 32o0)- (3.26)
Similarly, we can choose @’ such that

nij(WHv; = po_l/T\i on 9

and R
||'LT)/||H2(Q) S C”T”(HI/Z(BQ))Z. (327)

The constant C in (3.26) and (3.27) depend on Ay, Aj, Az, §p. By setting

/ ~/ 1 ~ / |: 1 / (V]I)/—(Vﬁ}/)t):|( )—l—(@ 0 ) 1 Vi
w=w —— w — | — — = | X —XQ —0Q)— w3
2] Ja 1©2] Jo 2 121 Jo

and

1 1
3 — — | ws—(— | Vas)-(x —xq).
WIEW T o™ <|9|/g w3) (x ~xa)

we can see that (w’, w3) satisfies the boundary condition (3.25), the normalization
conditions (3.9), and the estimate

lw'll g2y + w3l gay < CIT, M)l 12pa)2xm32060), (3.28)

where C depends on Ag, Ay, Az, 8.



54 MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

So now by letting u = w + v, we obtain that v satisfies

-9l (v)y=f in Q,
Sy =i . (3.29)
d7mij(v3) — 0;(n7;(v)9;0) = f3 in €,

with homogeneous Neumann boundary conditions on 92

nij(w)v; =0,
m;ij(v3)viv; =0, (3.30)
dimij(v3)v; + 9s(m;j(v3)vitj) =0,

where f = (f1, f2, f3) = (f', f3) is given by

fi =0l (w),i=1,2,
f3= _aizjmij(wi%) + 8‘j(n?j(w)3i9)~

Using the integration by parts, it is not hard to check that f satisfies the following
compatibility conditions

/f=0, /(flxz—f2x1)=0, /<f19+f3x1>=0, /(f29+f3Xz)=0.
Q Q Q Q

(3.31)
Now to obtain a global estimate for v, we decouple (3.29) as follows
—jn;j (V) = fi + 53;(3,00,v3 + 3;08;v3) := f; in L, 532
8,'2j’71ij(U3) = f3+ 8j(n?j(v)8,~9) =f3 in Q. .

By (3;31) and straightforward computations, we can deduce that f = ( fl, fz, ];3) =
(f', f3) satisfy

f f=0, / (fixa — frx1) =0, / fax1 = / frx2 =0, (3.33)
Q Q Q Q

which are the compatibility conditions for the existence of the boundary value prob-
lem (3.32) and (3.30). Recall the global estimate for the isotropic elasticity with
homogeneous Neumann boundary condition, we have
1Vl 2@y < COgllf 2@y + 1V 1 q)
< CEI g + sl + 1V lm@). (B34

where C depend on Ag, A, Az, 8p. For v3, we use [20, Proposition 8.2] to obtain
that

||U3||H4(Q) = C(:O(%”]%”LZ(Q) + ||U3||H2(Q))
= COjl sl + vl + W lm@)- (3:39)
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The dependence of C is the same as above. Putting (3.34) and (3.35) together yields

1Vl 2@y + V3l gag) < C(Pg”f”m(gz) + sl g2y + 1V 1 g1gy)- (3.36)

Now using the weak formulation of the boundary value problem (3.32), (3.30), the
Poincaré-Korn inequality (3.10), (3.28), we get from (3.36) that

1Vl 2y + V3l o) < C(p(%”f”LZ(Q) + sl g2y + 1V 1 g1 @)
< Collf 2
= C”(T, M)”(HI/Z(EJQ))szS/Q(aSZ)' (337)

Finally, combining (3.28) and (3.37) gives (3.24). ]

4. Quantitative uniqueness estimates

4.1. Main theorems

In this section, we would like to derive the three-ball inequalities for (1.1), which
is a form of quantitative uniqueness estimate. The regularity of d€2 is irrelevant
for the estimates derived here. But to make the paper consistent, we assume that
Q2 is at least a Lipschitz domain with constant Ag and pg. Let A(x), n(x) satisfy
(3.3)and A, u, 0 satisfy estimate (3.23). We now first state the main results of this
section. Assume that B Ry C Q with Rg < 1. Let us denote U, = (ru’, u3) =
(ruy, rup, uz). Then the following local estimates hold.

Theorem 4.1. There exists a positive number Ry, depending on 8o, K1, K>, such
thatif 0 <ry <rp <rz3 < poRoandri/r3 <ry/r3 < Ry, then

T 1—-7
/ \Uy, |%dx < C; (/ Uy, |2dx> </ |Ur3|2dx> 4.1)
lx|<ra lxl<ry Ix|<r3

Jor (', uz) € (H' (B, ) x H*(B,
and0 < t < 1depend onry/r3, ra/r3, 8, Az.

) satisfying (1.1) in BPORO’ where C1 > 0

Remark 4.2. The estimate (4.1) is the three-ball inequality. Constants C; and t
appeared above can be explicitly written as T = B/(E + B) and

C1 = max{Col(log(r1/r3))*/(log(r2/r3)*1(r2/r1)*, exp(BBo)}(r3/r1)*",

where Cop > 1 and Sy are constants depending on &y, Az and

E = E(r1/r3,r2/r3) = (log(r1/r3) — 1)* — (log(r2/r3))*,
B = B(ry/r3) = —1 —2log(ry/r3).
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Remark 4.3. If r3 < 1, then (4.1) is reduced to

Cl T 11—t
/ UPdx < = (/ |U|2dx> (/ |U|2dx> %))
[x|<ry ry lx|<ry lx|<r3

By abuse of notation, we denote U = (u’, u3).

Using the three-ball inequality, we can prove

Theorem 4.4. If (u',u3) € (Hl(BpORO))2 X H3(BPOR0) is a nontrivial solution
to (1.1), then we can find a constant Ry depending on &y, Ay and a constant m

depending on &y, Ay and ||UR§ ||L2(|x|<p0R§)/||UR§ ||L2(\X\<poR‘2') such that

/ |U|>dx > KR™, (4.3)
|x|<R

where R is sufficiently small and the constant K depends on Ry and U.

In view of the standard unique continuation property for (1.1) in a connected
domain containing the origin, if # vanishes in a neighborhood of the origin then it
vanishes identically in €. Theorem 4.4 provides an upper bound on the vanishing
order of a nontrivial solution to (1.1). The following doubling inequality is another
quantitative estimate of the strong unique continuation for (1.1).

Theorem 4.5. Let (u,u3) € (Hl(BpORO))ZxH3(Bp01§0) be a nonzero solution to (1.1).
Then there exist positive constants'Rg, depending on &y, Az, ||l.] R%H L2(x|<p0R2) /
”UR§||L2(|x|<p0R§)’ and Cj, depending on &y, Az, my, such that if 0 < r < poR3,
then

/H X |U [>dx 5@/ |U *dx, 4.4)
x|<2r

lx|<r

where Ry and m| are the constants obtained in Theorem 4.4.

The rest of this section is devoted to the proofs of Theorem 4.1, 4.4, and 4.5.

4.2. Preliminaries

From now on, it suffices to take pop = 1. The first step is to transform the system
(1.1) into a new system with uncoupled principal parts. To simplify the notation
in the following proofs, we denote u = u’ = (uy, uz) (suppress the prime), w =
u3, and v = dive’ = divu. Putting (1.1) and the equation obtained by taking
the divergence of the first system of (1.1) together, we come to the following new
system

Au = P;(Du, Dv) + P,(D*w, Dw),

Av = P3(Du, Dv) + P4(D3w, D*w, Dw), 4.5)

A2w = Ps(D3w, D*w, Dw) + Ps(Du),
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where Py — Pg are zeroth order operators with at least L> coefficients which are
bounded by a constant depending on &g, A;.

To prove Theorem 4.1, the following interior estimate is useful. From now on,
the notation X < Y or X 2 Y means that X < CY or X > CY with some constant
C which could only depend on §p, A».

Lemma 4.6. Let (u, w) € (H\ (B )* x H} (Bg ) be a solution of (1.1). Then

forany 0 < az < a; < ay < aa, there exists a constant ro with asrg < Ro(< 1)
such that if r < rg

Z/ 2 Dy Pl + Z/ |29 DY 2dx
o] <2 ayr<|x|<apr la|<4 ayr<|x|<apr

< e / (ul? + |wP)dx, 4.6)
azr<|x|<aqr

where C3 is independent of r and (u, w).

Proof. The proof here is motivated by the ideas used in [12, Corollary 17.1.4]. Let
X = By,r\Bqy;r and d(x) be the distant from x € X to ]RZ\X. We obtain from (1.1)

that u € (H (B, \{0D)? and w € H}! (B \{0}. Denote

loc

4rm
L(x, D)u =
(e D= 525

" V(divu) + 4udiv(Sym(Vu)).

Since L(x, D) and A? are uniformly elliptic, it is obvious that

4.7

1 ey S ILGL DY il o + 112
gl s cen S 18280 2@ + gl L2

for all f € H>(R"), g € H*(R") and any fixed y in . Note that the absolute
constant appearing in the first estimate of (4.7) can be chosen to be uniformly in
y € Q. By changing variables x — B~ 'x in (4.7), we will have

{ Z\alsl BZ_I“‘Hf”HZ(Rn) 5 ||£(y’ D)f”LZ(Rn) + Bz”f”LZ(Rn) (4.8)

Z\a|§3 Bl 1D*gll2mey S ||A28||L2(Rn) + B4||g||L2(Rn)

forall f € H>(R") and g € H*(R"). To apply (4.8) on (u, w), we need to cut-off
(u, w). Solet&(x) € Cg°(R") satisfy 0 < &(x) < 1 and

I, |x|<1/4,

D=0 =12
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Let us denote &, (x) = §((x — y)/d(y)). For y C X, we apply (4.8) to &, (x)u(x)
and use the first equation of (1.1) to get that

>t f |D%u|dx
=yl <d(y)/4

lo|<2
< d(y)~ 2 peyPdx +/ |L(x, D)u|*dx

=1 /x—y|<d<y>/2 vyl <d(y)/2

+ / L(x, DYu — L(y, Dyul? dx + B* / udx
[x—y|<d(y)/2 [x—yl<d(y)/2

+ / |D%w|?dx
2 l—yl<d(y)/2

loe|<2

< d(y)" 2 DouPdx +r ) |D%u|?dx

<1 /XYISd(y)/Z l]=2 /IXYSd(y)/2

+B4/ uldx + ) / |D*w|?dx. (4.9)
lx—yl<d(y)/2 la|<2 ¥ Xx=yl=d(»)/2

Now taking B = Md(y)~" for some positive constant M and multiplying d(y)* on
both sides of (4.9), we have

Z M4—2|Ol|/ d(y)2|ol||DO!u|2dx
[x—yl=d(y)/4

| <2

< / d(y)? D% > dx +r
lx—y|<d(y)/2

le|=<1
+M4/ lu>dx + Z/ d(y)* D%w|?dx. (4.10)
Ix—yl=d(y)/2 la|<2 Y 1x=yl=d(y)/2

Integrating d(y) ~2dy over X on both sides of (4.10) and using Fubini’s Theorem,
we get that

Z M4—2|a|// d(y)z""|_2|D°‘u|2dydx
X J|x—y|=d(y)/4

la|<2

S // d(»)?=2 D*u|*dydx
laj<1 Y X Jlx—y|=d(y)/2

+M4/X/| d(y)—2|u|2dydx+rZ/X/ d(y)*|D%u|>dydx
X X

—y|=<d(y)/2 l|=2 —yl=d(y)/2

+> /f d(y)*| D*w|*dydx. @.11)
la|<2 Y X JIx—yl=d(y)/2

/ d(y)*| D%u|*dx
la|]=2 7 1x=y|=d(y)/2
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Note that |d(x) —d(y)| < |x — y|. If |x — y| < d(x)/3, then

2d(x)/3 < d(y) <4d(x)/3. 4.12)
On the other hand, if |x — y| < d(y)/2, then
d(x)/2 <d(y) <3d(x)/2. (4.13)

By (4.12) and (4.13), we have

{ﬂx—ylsd<y>/4d(y)2dy > 9/16 [y <aye 4 2y = 1/64 [\ dy,

JieyizapdO 7Y 4 fio ) caaa 40O T2y S9/4 [y dy
(4.14)
Combining (4.11)—(4.14), we obtain

Z M4—2|a|f d ()2 | DY 2dx

loe| <2 X

<Y / d(x)?*| Duldx +r Y | d(x)*|D*ul*dx

laj<1 VX la]=2 X
—|—M4/ ulPdx + Y | d(x)*|D*w|*dx. (4.15)
X laj<2 /X

We can take M large enough and r small enough to absorb the first two terms on
the right-hand side of (4.15). Thus we conclude that

Z M4—2|a|/ d ()2 DY 2dx
X

loe|<2
< M4/ lul>dx + Z f d(x)*|D*w|*dx. (4.16)
X laj<2 /X

Similarly, we can apply (4.8) to &, (x)w(x) and use the second equation of (1.1) to
get that

Z M8—2|Ot|/ d(x)z‘l)l||D(Xw|2dx

lor| <4 X
< MS/ wl’dx + ) / d(x)¥| D%u|?dx. (4.17)
X o<1 /X

Combining (4.16), (4.17) and letting M be sufficiently large, we can eliminate the
last terms of (4.16) and (4.17). After that we fix M and obtain

> / d(x)? | DuPdx + / d ()2 ¥y 2dx
X X

lo|<2 lor| <4

5/|u|2dx+/ lw|*dx. (4.18)
X X
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We recall that X = B\ B4, and note that d(x) > Crifxe Ba,r\Bg,r, where c
is independent of r. Hence, (4.6) is an easy consequence of (4.18). O

The next result follows from Lemma 4.6:

Corollary 4.7. Let (u, w) € (H}\ (B ))* x Hj (B ) be a solution of (1.1) and

v = divu. Then for any 0 < a3 < a1 < a < ay, there exists a constant r
satisfying asrg < Rg such that if r < rg, we have

Z f |x|2‘a|+2|DaU|2dx
le|<1 ajr<|x|<apr

<o (> + wPydx, (4.19)
azr<|x|<aqr
where the constant C3 is independent of r and (u, w).

4.3. Proof of Theorem 4.1

To begin, we recall a Carleman estimate with weight g5 =¢g(x) = exp(g (log |x D?)
given in [15].

Lemma 4.8. [15, Corollary 3.2] Given 0| € Z and oy € Z there exist a sufficiently
large number By > 0 and a sufficiently small number ro > 0 depending on n, [, o1
and o such that for all u € Uy, with0 <1y < el B > Bo, we have that

Z ’831—2|a|/¢§|x|201+2|a|—n(log |x|)202+21—2|a\|Dau|2dx
<& / Q324 (g [x])22 | Alu dx, (4.20)

where Uy, = {u € C°(R" \ {0}) : supp(u) C By} and 50 is a positive constant
depending on n and l. Here e = exp(1).

Remark 4.9. The estimate (4.20) in Lemma 4.8 remains valid if we assume u €
HI%)ZC (R™\ {0}) with compact support. This can be easily seen by cutting off u for
small |x| and regularizing.

We first consider the case where 0 < r; <r, < R < 1/e and Bg C Q2. The
constant R will be chosen later. To use the estimate (4.20), we need to cut-off u. So

let £(x) € C5°(R") satisfy 0 < &(x) < 1 and

0, I[x]=<ri/e,
Ex)=11, r/2<|x|<er,
0, |x|=3r.
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It is easy to check that for all multi-index o

o _ —le|
{|D £l = 0G; ™) forall r /e < x| < r1/2 @21

|D*E| = O(rz_‘al) for all er, < |x| < 3rs.

Noting that the commutator [A/, £] is a 2/ — 1 order differential operator and using
the estimate (4.20) on £u with parameters o1y = 0,00 =0,/ = 1, n = 2, we can
derive from the first equations of (4.5) and (4.21) that

> / @172 log |x)* 2 D Pdx
ri/2<|x|<er;

lee] <1

<Y / plx 1172 (log [x[)* 2| D* (£u) Pdx

o] <2

S /¢§|x|2|A(5u>|2dx

< f g lx|* (|Au|2+ > |[A,s]u|2> dx (4.22)

lr] <1
Sf eplx* | D" (D%u* +|D*v*) + Y |Dw|? | dx
r1/2<|x|<ery la|<1 la|<2
+/ eplx* | Y (x P Dou + D) + > (D% wl* | dx
ri/e<lx|<ri/2 la|<1 lo|<2
+/ eplx* | Y (x P DUl + D) + ) 1D%w|* | dx.
ery<|x|<3ry la|<1 la|<2

Similarity, applying (4.20) to £v with parameters o) = 1,00 =0,/ =1, n = 2, we
can derive from the second equation of (4.5) and (4.21) that

Il | 3112 log Lx[)221| Do
r1/2<|x|<ery

loe|<1

S / gl [Z(|D°‘u|2 +1D% V) + > |D°‘w|2} dx
ri/2<|x|<ery

lo|<1 || <3

+f plxl* [Z(|x|2'“'4|D%|2+ ID*u®) + > |D“w|2} dx
ri/e<|x|<ry/2

la|=<1 la|<3

+/ g lx[* [Z(|x|2'“|—4|0%|2+ ID“ul®)+ ) |D°‘w|2:| dx.
erp<|x|<3r;

le|<1 || <3

(4.23)
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Finally, applying (4.20) to £w with parameters o1 = 0,072 = 1,/ =2,n = 2, we
obtain from the third equation of (4.5) and (4.21) that

> B / @il log |x )| DYw Pdx
ri/2<|x|<er

|a|<3

S / @51x|°(log |x)? [Z 1D ul? + ) |D“w|2} dx
ri/2<|x|<ery

le|<1 Joe|<3

+f @ 1x1°(log |x])? [Z ID*ul* + ) |x|2'“'8|D“w|2} dx
ri/e<|x|<ri/2

la|<1 | <3

+/ @plx|®(log |x])? [Z ID“ul® + ) |x|2'“'—8|D°‘w|2} dx.
erp<|x|<3rp

la|<1 la|<3
(4.24)

Putting (4.22), (4.23), (4.24) together, we can take § > ,Eo > land R < ﬁo <1
such that the terms fn J2<|x|<ers (- - - )dx on the right-hand side are absorbed by the

corresponding terms on the left-hand side. In other words, for 8 > By and R < Ro,
we have that

> f @il log [x )71 D *dx
r1/2<|x|<erp

lo|<1

+ Y g / @5l P! (log |x|)*~*| DYv 2 dx
r1/2<|x|<ery

loe| <1

+ / @il log x| DYw Pdx
r1/2<|x|<ery

a|<3

S / w§|x|2<2 |x|2'“'|D“u|2+|x|2'“'+2|D“v|2> dx  (4.25)
ri/e<|x|<ri/2

lee] <1

+ / g (log [x))*[x|7> Y x| D*w *dx
ri/e<|x|<ry/2

| <3

+/ g0§|x|—2 (Z |x|2|ot||Dotu|2+|x|2|(¥|+2|Dav|2> dx
ery<|x|<3r

lor|<1

+f P3dlogx)?xI 2 3 [P Do .
erp<|x|<3r;

| <3
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Now using (4.6) and (4.19) in (4.25) leads to

(logr2)*r5 @5 (r2) U 2dx

r1/2<|x|<ry

< (ogr)ri 2pp(ri/e) U 2dx (4.26)

ri/4<|x|<ry
+(logr2)’r; 25 (er) UPdx.

2rp<|x|<dry

Here U = (uy, u>, w) = (uy, un, u3). Note that we have used the restriction r; <
r» < 1/e in the above computations. Dividing by (log r2)2r2_ 2(pé (r2) on both sides
of (4.26) implies

/ |U|dx
ri/2<|x|<ry

< [ogr)?/(logr)?1(ra/r1) [9f(r1/€) /95 (r2)] o U Pdx
+pg(er2) /@ (r2)] U Pdx (4.27)
2ry<|x|<4ry
< [dogr1)*/(logr)1(ra/r1)*[95(r1/e) /95 (r2)] 8 U 2dx
+[(ogr1)?/(ogr2)*(ra/r1) (@ (er2) /95 (r2)] . 1|U|2dx.
Adding f|x|<r1/2 |U|%dx to both sides of (4.27), we get for B > By that
/ \U|?dx
lx|<r2
< [ogr)?/(logr)1(ra/r1) [@f(r1/€) /95 (r2)] g UPdx  (4.28)
+(ogr1)?/(logr2)*1(r2/r1) (@ (er2) 95 (r2)] . 1|U|2dx.
By denoting

E = B loglej(r1/e)/9f(r)] = (logry — 1)* — (logry)* > 0,
B =—p~" loglgj(ers) /¢f(r2)] = —1 —2logry > 0,
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(4.28) becomes
/ \U|?dx
|x|<rp
< [(ogr)?/(logra)*1(ra/r)* x (4.29)
<eXp(E/3) Uy, [Pdx + exp(—BB) |U|2dx) :
lx|<ry |x|<1
To further simplify the terms on the right-hand side of (4.29), we consider two
cases. If
/ |U|?dx #0
lx|<ry
and
exp (Efo) |UIPdx < exp (—Bpo) U|%dx,
|x|<ry |x|<1

then we can pick a 8 > By such that

exp (EB) |U|?dx = exp (—BpB) |U *dx.

[x|<rq lx]<1

Using such g, we obtain from (4.29) that

/ |U>dx
|x|<r2

< [(ogr)?/(logra)?1(r2/r1)* exp (EB) |U*dx (4.30)

lx|<r

< ldogr1)?/(ogr)*1(r2/r1)® (/ |U|2dX>E+B (/ IU|2dx)E+B.
bel<r lx]<1

If
/ |U|?dx =0,
lx|<ry

then it follows from (4.29) that

/ |U|?dx =0
x| <r2

since we can take B arbitrarily large. The three-sphere inequality obviously holds.
On the other hand, if

exp (—Bpo) \U|*dx < exp (Efo) |U dx,

|x]<1 [x]<ry
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then we have

/ \U|?dx
lx|<ra
_B_ _E_
2 E+B 2 E+B
(/ |U | dx) (/ |U| dx) (4.31)
lx[<1 lx|<1
_B_ _E
2 E+B 2 E+B
exp (BBo) </ |U]| dx> (/ |U | dx) .
[x|<ry |x|<1

Putting together (4.30), (4.31), we arrive at

. N\ L\
/ |U|“dx < C3 (/ |U| dx) (/ |U| dx) , 4.32)
|x|<rp |x|<ry |x|<1

where C;3 = max{éz[(logrl)z/(logrz)z](rz/rl)z,exp (BBp)} for some positive
constant C 2, depending on &g, Aj. N

_ Now for the general case, we take R; = Ro and consider 0 <r; <r; <r3 <
poRo < 1 with ri/r3 < ra/r3 < Ry. By defining uy) = rzu(ryy), w(y) =
w(r3y), AMy) = A(r3y), ©(y) := pu(r3y), 6(y) = 6(r3y), we can see that the
system (1.1) is invariant under this scaling. On the other hand, A(y), (y) and 6(y)
satisfy (3.23), respectively, with the same constants. Therefore, from (4.32), we get

that
R B R T R 1-1
/ OPdy < G ( / |U|2dy) ( / |U|2dy) (4.33)
lyl<ra/r3 lyl<ri/r3 lyl<1

where |U? = [@]? + |@|2, © = B/(E + B) with

E = E(r1/r3,12/r3) = (log(r1/r3) — 1)* — (log(r2/r3))?,
B = B(ry/r3) = —1 —2log(r2/r3),

IA

IA

and C; =max{Cs[(logr1/r3)?/(logra/r3)?(r2/r1)%, exp(BBo)}. Rewriting (4.33)
with the original variables yields

T 1—1
/ Uy, [*dx < C, ( f Uy, |2dx) ( / |Ur3|2dx)
x| <ra [x]<r [x|<r3

with C; = C(r3/r1)*". O

4.4. Proof of Theorems 4.4 and 4.5

In this section we prove Theorem 4.4 and 4.5. We begin with another Carleman
estimate derived in [15, Lemma 2.1]: for any f € C3°(R"\{0}) and for any m €
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{j+%,jeN}wehave

Z /m21—2“||x|—2’"+2|“—”|D°‘f|2dx < C/ x| 2mH = AL F2dx, (4.34)
lor| <21

where C depends only on the dimension » and the power /.

Remark 4.10. Using the cut-off function and regularization, estimate (4.34) re-
mains valid for any fixed m if f € H, 2 (R™\{0}) with compact support.

loc

In view of Remark 4.10, we define x (x) € C{° (R2\{0}) such that

0 if |x| <8/3.
x(x)=11 in §/2<|x|] <(Ro+ 1RoR/4=r4R,
0 if 2r4R < |x]|,

where § < R(%R /4, Ry > 0 is a small number which will be chosen later and R is

given by R = (ym)~!, where y > 0 is a large constant which will be chosen later.
In view of the definition of x, it is easy to see that for all multi-index o«

(4.35)

|ID%x| = O(8~1%l) forall §/3 < |x| < 8/2,
|IDYx| = O((r4R)™1¥!) for all 4R < |x| < 2r4R.

Using the estimate (4.34) to yu with parameters [ = 1, n = 2 and the equations
(4.5), (4.35), the same arguments as (4.22) arrive that

Z m2—2(x|/ x| 2mH21el=2) pay 2
8/2<lx|<r4R

|oe| <2

S f |22 [ZUDW +ID) + Y |D“w|2} dx
8/2<|x|<r4R

la|<1 lo|=<2

8/3<|x|<8/2

lo|<1 la|<2

+/ 722 Y (P D U P+ D% P + Y D% w]?| dx.
raR<|x|<2r4R

la|<1 lo|<2

(4.36)
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Similarity, applying (4.34) to x v with parametersm =m — 1,/ = 1,n = 2, we can
derive from (4.5) and (4.35) that

Z (m _ l)272|0{| / |x|*2m+2|(¥\|DO{v|2dx
8/2<|x|<r4R

lor|<2
§f 72 (D + ID*vP) + Y IDw | dx
8/2<|x|<r4R lae|<1 loe|<3
4.37)
8/3<|x|<8/2 la|<1 la|<3

+/ |72 (P D P+ D) + ) [Dwl | dx.
raR<|x|<2r4R

| <1 la|<3
Next applying (4.34) to y w with parameters [ = 2, n = 2, we get from (4.5) and
(4.35) that

m4—2|a|/ |2 H21el=2) payy 2
8/2<|x|<r4R

ler] <3

5 / |x|—2m+6 {Z |Dau|2+ Z |de|2} dx
3/2<|x|<r4R

lo|<1 || <3

(4.38)

+/ |x|—2m+6 Z |D06u|2+ Z |x|2|a\—8|DO{w|2 dx
8/3<|x|<8/2

la|<1 lo|<3

+[ |x|—2m+6 [Z |Dau|2+ Z |x|2|a|—8|Daw|2} dx.
raR<|x|<2r4R

lee] <1 o] <3



68 MICHELE DI CRISTO, CHING-LUNG LIN AND JENN-NAN WANG

Adding (4.36), K1 x(4.37) and Kom?x(4.38) together, we obtain that

m272\0{| / |x|72m+2|0(|72|D(¥u|2dx
3/2<|x|<r4R

lor|<2

+K1 Z (m _ 1)2—2|0[|/ |x|—2m+2|0{‘|DO{v|2dx
8/2=|x|=r4R

| <2

1K, Z m4—2a|/ |22l =2 peyy 2
3/2<|x|<r4R

| <3

5/ ] 242 [Z(ID"‘ul%L D) + 3 ID“wlz] dx (4.39)
8/2=Ix|=raR

la|<1 la|<2

+K1/ |x|72m+4 |:Z(|D°‘u|2+ ID*v]%) + Y |D°‘w|2i| dx
8/2<|x|<r4R

la|<1 || <3
+K2/ 72O S T D U + Y D% w|* | dx
8/2=Ix|=reR lel<1 || <3

+f ¢ [ ()
8/3<|x|<8/2 raR<|x|<2r4R

Now we choose K sufficiently large such that the terms

/ |x|72m+2 Z |D“v|2dx
3/2<|x|<r4R

l|=1

on the right-hand side of (4.39) are absorbed by its left-hand side. After that the
constant K is fixed. We continue to choose K, large enough such that

Kl/ |x|—2m+4 Z |Dolw|2dx
8/2=<|x|<r4R la|=3

on the right-hand side of (4.39) are absorbed by its left-hand side. Then we fix K».
To eliminate other terms inside the integral f; /2<|x|<reR ON the right-hand side of

(4.39), we recall that R = (ym)~!. So by choosing y > yy and m > my, with large
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Yo and m, we have that

Z m2—2\a| / |x|—2m+2|0l|—2|Dolu|2dx
8/2<|x|<raR

la|<2

+ Z (m _ 1)2—2|0{|/ |x|—2m+2|0l||Dolv|2dx
8/2<|x|<raR

lor] <2

4 Z m6—2|0[/ |x|—2m+2\a|—2|Daw|2dx
8/2<|x|<r4R

loe|<3

5/ |x|2’"2<z |x|2|°‘||D°’u|2+|x|2|“|+2|D°‘v|2) dx (4.40)
8/3<|x|<8/2

lee] <1

+/ |x|—2m—2m2 Z |x|2|0t||DOtw|2dx
§/3<|x]<8/2

la|<3

+/ |x|—2m—2 Z |x|2‘(x||DO{u|2+|x|2|a‘+2|DOl,U|2 dx
raR<|x|<2r4R

o] <1

+f |72 2m? > P D w P dx.
raR<|x|<2r4R

|| <3

Note that Ré < rq provided Ry < 1/3. Also, if Ry < 1/3, it is obvious that
2r4 < Rop. Dividing m? on both sides of (4.40) and using (4.19) and (4.6) in (4.40),
it obtains that

(28)72m—2 / \U|*dx 4 (R3R) "2 / \U|?dx
8/2<|x|<28 28<|x|<R3R
5/ x| 72" 21U Pdx (4.41)
8/2<|x|<r4R
< C'@/3)7m? / U PPdx + C"(raR) ™" 2 / U Pdx,
NE) X|<RoR

where C’ and C” absolute constants. From now on, we need to trace the constants
to make the estimates more clearly. Adding (28) 22 fl x| <5/2 |U |2dx to both sides
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of (4.41), we have that

1
—(25)—2'"—2/ |U|2dx+(R§R)—2m—2/ \U *dx
2 x| <26 x|<RZR
1
= —(25)—2’"—2/ |U|2dx+(R§R)—2’"—2/ |U|>dx
2 ME x| <28
+(R3R)2m2f \U|?dx
28<|x|<R3R
1 1
< —(28)7m2 / \U|2dx + = (28)72" 2 / |U|?dx (4.42)
2 ME 2 x| <28
+(R§R)—2m—2/ \U 2dx
28<|x|<R3R
< (C'+ 1)(5/3)—2’"—2f |U|2dx+C”(r4R)_2m_2/ \U|?dx
BED lX|<RoR
= (C'+ 1)(3/3)2'"2[ \U|?dx
x| <
2 —2m—=2 1 R(% 2m+2 2
+HRFR) "2 (Z2) |U|Pdx.
T4 |x|<RoR
‘We now observe that
2 2, 2
C//(&)Zm—ﬂ el 4Ro mE
r4 Ro+1

< C"(4Rp)*" % < exp(—2m)

forall Ry < e™! /4 and m > mg, where mo depends on C” and Ry. Thus, we obtain
that

1
—(28)7m2 / |U*dx + (R3R) "2 / \U|*dx
2 x|<26 X|<R2R
< (C'+1)(8/3)~2m2 / \U|?dx (4.43)
NE
-I—(R%R)_z’"_2 exp(—2m) |U%dx.
[x|<RoR

It should be noted that (4.43) is valid for all m = j + % with j € Nand j > jo,
where jo depends on Ry. Setting R; = (y(j + %))_1 and using the relation m =
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(yR)!, we get from (4.43) that

1
—(25)—2'"—2/ |U|2dx+(R§Rj)—2m—2/ U Pdx
2 IxI<25

|x|<RZR;

< (C' +1)(8/3)~ 22 / \U>dx (4.44)

[x]<d

+(RGR) ™" 2 exp(—2¢R; ) U *dx

[x|<RoR;
forall j > joand ¢ = y~!. We now observe that
Rj+1<Rj<2Rj+1 for all ]GN

Thus, if Rj;1 <r < Rj, we can conclude that

/ U Pdx 5/ U 2dx,
Ix|<R3r IX|<R2R;

exp(—2cR; ") |U|?dx < exp(—cr™1) |U|%dx,

[x|<RoR; [x|=<r

(4.45)

where we have used the inequality RoR; < 2RoRj11 < Rj11/(2e) < Rj; to
derive the second inequality above. Namely, we have from (4.44) and (4.45) that

1
—(23)—2'"—2/ |U|2dx+(R§R,-)—2m—2/ \U*dx
2 x| <26 x| <R3r
< (C'+1)(8/3)~ 22 / \U|?dx (4.46)
x| <8
+(R3R;) "2 exp(—cr ™) |U|dx.
[x|<r

If there exists s € N such that
Rj41 < R¥ <R; forsome j > jo, (4.47)

then replacing r by Rgs in (4.46) leads to

1
—(25)2'"2/ |U|2dx+(R§Rj)2m2/ U *dx
2 x| <28 x| <R¥+2
= =R
< (C'+1)(8/3)72m 2 / \U|dx (4.48)
[x]<é
+(RER;) ™2 exp(—cRy ™) |UPdx.

2s
lefRO
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Here s and Ry are yet to be determined. The trick now is to find suitable s and Ry
satisfying (4.47) and the inequality

1
exp(—cRy>) \UPdx < = / |U*dx (4.49)
x| <RZ 2 Jix| <R

holds with such choices of s and Ry.

It is time to use the three-ball inequality (4.1). To this end, we choose r| =
R§k+2, ry = ng and r3 = ng—z for k > 1 and require R% < min{(1/4e)?, R1}.
Thus (4.1) implies

2 2
U oot |2dx/ U yoes22dx
/|;: | <R§k Ry |x|< R3k+2 Ry

a (4.50)
<cl/r / |U 2k—2|2d)C/ |U 2k|2dx ,
( x| <R32 Ry x| <R2K Ro
where
C = max{4CoR;*, exp(Bo(—1 — 4log Ro))} Ry **
and
u— l—t A (log(ri/r3) = 1)* = (log(r2/r3))*
¢t B —1—2log(r/r3)
_ (4log Ry — 1)? — (2log Ro)?
B —1—4log Ry ’
It is not hard to see that 5
—P1
1 <C<CRy"™, “51)

2 <a < —4log Ry,

where 81 = 32 max{1, By} (note T < 1). Combining (4.51) and using (4.50) recur-
sively, we have that

/ U s *dx/ |U pas2|dx
2s 0
|x|<Rg

0 ‘X‘SR&WZ

<l U

25—
lx|<Rg

L [*dx/ NUgasPdx) (4.52)

R2s
0 |x|<R,

2
A | b
< C @D ( |Ug2|"dx/
0

-1

U s 2dx)®
|X|<R2 4 0
0

[x| <Ry

for all s > 1. Now from the definition of a, we have T = 1/(a + 1) and thus

a'—1 a+l
ta—1 a-—1

@' =1) <3N
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Then it follows from (4.52) that

f U gas [Pdx/ U gass2 [Pdx
BB MR A

s—1

a
< C3(-4log Ry f U 2 1?dx/ |U a|*dx (4.53)
x|<RZ 0 l<Rg
s—1
< (CJ(Ry) 1) Alog ko™t / Ug2|?dx/ |Usl*dx
lx|<rRZ 0 lx|<ry °

Note that

f |U|Pdx < R04Sf U gos I2dx,
lx|I<R3® Ix|<RZ 0

(4.54)
/ U a2 2dx < / \U|dx.
|X|§R3S+2 0 ‘X‘SR§S+2
Thus, by (4.53) and (4.54), we can get that
exp(—cRO_2S) \U|?dx
x| <R3
_ _ _ _ s—1
axfl
|U o2 |?dx/ |U pa|?dx / |U|?dx.
(~/|x|<R5 Ro \x|<Rg Ro I)clfRSsJr2
Let 1 = —log Ry, then if Ry is sufficiently small, i.e., u is sufficiently large, we

can see that c
7 EXPQ2u) > 4tp+ 4y~ (og Cf +3p110)

for all + € N. In other words, we have that for Ry small

Ry¥(CIRy 4102 R _ oxp(cRTY /4) < (1/2)exp(cR;Y /2)  (4.56)
for all t € N. We now fix a Rg < min{l/4e, »/R;} so that (4.56) holds. The
constants mqg(Rg) and jo(Ro) are then fixed as well. It is a key step in our proof that

we can find a universal constant Rg. After fixing Ry, we then define a number #g,
depending on Rg and U, by

to = inf{t eR:t> <log2—log(ac)

+ loglog (/ |U g2 |?dx/ |UR4|2dx))(—210g Ro — loga)™! }
|XL<R2 0 4 0

0 lx|<Rg
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By (4.51), one can easily check that —2log Ry —loga > 0 for all Ry < 1/16. With
the choice of 7y, we can see that

1—1

a
/ U 2 *dx/ U ga|*dx < exp(cRy % /2) (4.57)
Ix|<r? ° Ix|<rf O

forall t > 1.
Let s; be the smallest positive integer such that s; > #g. If

RY' < Rjy = (r(io+1/2) 7", (4.58)
then we can find a j; € N with j; > jo such that (4.47) holds, i.e.,
Rj+1 < Ry <Rj,.

On the other hand, if
2
ROS1 > Rjy, (4.59)

then we pick the smallest positive integer s, > s such that Rész < Rj, and thus we
can also find a j; € N with j; > jy for which (4.47) holds. We now define

_ s if (458) holds,
" ]sy if (4.59) holds.

It is important to note that with such an s, (4.47) is satisfied for some j; and (4.56),
(4.57) hold. Now we set m; =2 + 2(j; + 1/2) and m = (m; — 2)/2. Combining
(4.55), (4.56) and (4.57) yields that

exp(—cR; ) U Pdx
x| <R3
< exp(—cRo_zs)Ro_“S (CS(RO)*3/31)(*310g Ro)*~!

6=

|U 2 %dx/ |U pa|?dx / |U|%dx.
(/x<R§ Ry Ix|<R* Ry lx|<RZT?

0
1 2

<z |U|"dx
2 ‘X‘ER?H

which is (4.49). Using (4.49) in (4.48), we have that

1 1
—(23)—2'"—2/ \U|?dx + =(R3R; )—2'"—2/ |U|>dx
2 1x[<25 20 x| <R+

(4.60)
<([C'+ 1)(5/3)—2'"—2/ \U|%dx.

[x]<d
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It follows from (4.60) that

1 - —
20 + )(3R§Rn) ’"‘/H RMIUlzdxs(S ’"‘/ UPPdx  (4.61)
X[=R;

[x|<é

and

1
—(28)72m~2 / \Udx < (C' 4 1)(8/3)72"2 / \U*dx
2 x| <26

[x[<é

which implies

1
f UPdx < ———— o ml/ \U|Pdx. (4.62)
Ix|<28 2C'+ 1 Ix|<é

The estimates (4.61) and (4.62) are valid for all § < RSHZ /4. Now we choose R, =
Rp in Theorem 4.4 and R3 = R§S+2 /4 in Theorem 4.5. The proof is complete. []

4.5. Lipschitz propagation of smallness

To study our inverse problem, we need to obtain three-ball inequalities in terms
of Zij |el(?j(u)|2 + /00|82 uz|? instead of |u/|> + |uz|®. To this end, the following
Caccioppoli-type 1nequahty is useful.

Lemma 4.11. Assume that A(x), u(x) € L°°(B)) satisfying (3.3) and there exists
K3 > 0 such that

Az (B,) + leelliLoe(B,) 4 1VOIllLo(B,) < K3.

Let (u',u3) € (H! (Bp))2 X H2(Bp) be a solution of (1.1) in B,. Then there exists
a constant C > 0, depending on &g, K3 such that

C 1 1
[ Cidwrs it = [ wiee (e ) [l @
p= JB, p p B,

Bpj2 ij

Proof. The proof of this lemma is adopted from [21]. Let n € Cg (Bp) with 0 <
n < 1and n =1on B, satisfying

> po“nl<C in B, (4.64)

| <3

for some positive constant C;. Multiplying the first equation of (1.1) by n*x’ and
the second equation of (1.1) by n*u3 and performing integration by parts, we can
get that

[ nf; )3 (n'u) + f mij(u3)97; (n'us) + / nf;(w)3;09;(n*uz) = 0. (4.65)
B, B

B, »
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It is easy to see that (4.65) is equivalent to

/ nf; ) n*dju; + 4@m)n’u;]
By

4.66
- mij )03 us + 80 dius + By yus] (4.66)

+nf; ) 300" djuz + 4(mn’uz] = 0.

It follows from (4.66) that

[ S e+ mianigao)
ij

BP
= _4/ n?j(u)(ajn)n3ui —8/ mi‘/(u3)(3jn)r)38iu3
b b (4.67)
- / mij(u3) (97 us
Bﬂ
—4 / ng; ) (@0)(@;m)n’us3.
Bﬂ

Observe that

‘/ nl, ) @y

I3
< —f T / WP @68)
By
for some C, > 0, depending on C;. Likewise, we can obtain that

<f/ 4Z|mu<u3>| +—/ s (469)

'/ mz](u3)(3,j77 yu3

for some C3 > 0, and

| @)@ mme;
By

<f/ 4Z|n”(u)| +—/ lus|>  (4.70)

for some C4 > 0, also depending on K3. Finally, we have

< —f Yo
+ 5/3 nzgj(ajnaiug)?

'/ mij(u3)(9m)m u3

@71
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Using the same computations on page 10-11 of [21], we get that

Cs 1 &2

2 2 2 4 2 2

n E (0jndiuz)” < — (1 + —)/ luz|” + —/ n E |05 us3|” (4.72)
./Bp o o e2) Js, 2Js, Y

ij
for some Cs > 0. Putting (4.67)-(4.72) together and taking ¢ sufficiently small, we

immediately arrive at the desired estimate (4.63). O

Remark 4.12. If p < 1, then (4.63) can be written as

C
[ D e + pgl97usl* < F/ /> + fus . (4.73)
B

/2 ij By

Our aim here is to derive another version of the three sphere inequality. We will
make use of arguments introduced in [5]. For any scalar or vector valued function
f, we denote (f), = ﬁ fBr f. Then we define an operator T : (H'(Bg))? x
H?(Br) — (H'(Br))* x H*(Br) by Tu = T(u',u3) = (v'(x;r), v3(xir)),
where

V() = W)y + %(W (VY )

1
+ E[(V@)r ® (Vusz) — ((VO), ® (Vu3)r)t]x 4.74)
— (0 — (0)r)(Vuz),
and
v (x;r) = W3), + (Vuz), - x. 4.75)

Here the tensor product of two vectors £ and 7 is defined as

_ (&5im &im
s®n= (Ezm Eznz) '

Note that (x), = 0.
We now denote the space

R={w=wW,w3)|w =a+Wx —0c, w3=>b+c-x},

where a, ¢ are two-dimensional vectors, b is a scalar, and W is a 2 x 2 skew-
symmetric matrix. It is readily seen that Tu = u for all u € R. Denote Lu =
((efj(u))liifg,lfjfz, (8i2ju3)15i52,1§j52). It is also easy to check that ‘R is the

null space of L. We need to compute the norm of 7. Recall that

2 2
”U ||HI(BR) + ||v3||H2(BR)

1 1
= — |v’|2+/ |W|2+_2/ |v3|2+/ |Vv3|2+R2/ V23],
R Br Bgr R Bgr Br Bgr
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In view of (4.74), (4.75) and the assumption on 6, we obtain that

) 1/2
R 1
1T <C 1+r—2—|rr—2

with an absolute constant C > 0. Assume that Bg C 2 and so (3.2) holds on Bp.
Now if we take r = R, then (u’ —v'(+; R), uz —v3(-; R)) satisfies the normalization
conditions (3.9) with €2 be replaced by Bg and therefore (3.10) becomes

" =" R,y + s = 0365 R < C/BR D lelj @) + R0,
ij
where C depends on A,. Using Lemma 2.1 in [5], we conclude that

" =o' g,y F 103 = 0365 35,

<ca+ ||T||>2/ 16l )P + R233us

R ij
< C(1+ —)/ D el + R197us .
Br l]

In particular, we have that

f ' = 'GP+ Jus — v3(s )
Bp
) R 1 R2 (4.76)
SCR 1+ + 5 ) |1+ | [ D lefj) P+ pgld5usl.
Lo Bg ij
We now prove the following three-ball inequalities.

Theorem 4.13. Assume that Ro and R, are given in Theorem 4.1. If 0 < r; <
rp < 2rp < r3 <min{pgRy, 1} and ri/r3 < 2ry/r3 < Ry, then

| i + o

B,2 ij
2-271
( ) (/ > el @) + pgl9;; u3|) (4.77)
rl l]
(/ > el @)* + pg19; u3|)
)’5 lJ

Jor W, u3) € (H'(B, z)* x H?(B, ) satisfying (1.1), where C > 0 and 0 <
T < ldepend onry/rs3, r/r3, 8, As.
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Proof. Letu' =u' —v'(x;r1), 13 = u3 — v3(x; r1). Note that (it', it3) satisfies the
normalization condition (3.9) on B;,. Recall that Ry < 1. Now combining (4.73),
(4.76), (4.2), and (3.10) implies that

/ > el + pglo7usl?

)2 lj
2 2
=/ > el @ + pgl07; i3
B,2 ij
~/2 ~ 12
<< | @)+ las]
Ty J By,

IA

C/ T 1—t
S weeme) ([ e
ry \Js, By

i(

Y (asd s ;
1+ 1 1+=4+ =)0+ =
(/ > el + pg19; M3|) (/ > el + pg19; u3|>

r] ij r3 ij

C///% (r—3)2—21’
ry \r'i
1-1
(/ > el @) + pgl9; u3|> (/ > e + o510, u3|> :

’1 ij r% ij

IA

C//
6
2

IA

O

A key ingredient in solving our inverse problem is a continuation estimate from the
interior for the solution u of (3.4), (3.5). To do this, we need some assumptions the
coupled field (T M ). We assume that (T M ) satisfies

supp (T, M) C T, (4.78)
where I'g is an open subarc of €2 with

IPol < (1 — y0)[9€2] (4.79)
for some yy > 0. We first prove the following lemma.

Lemma 4.14. Let Q be a bounded domain in R? with C*>' boundary 92 charac-
terized by constants Ao and po. Assume that ., u € L°°(R2) satisfy (3.3), VO €
L®°(Q), and

IAllLo(@) + ulliLe@) + IVOlLe@) < A2
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for some Ay > 0. Let (u',u3) € (H (Q})\)2 x H?(R2) be the unique weak solution
of (3.4), (3.5) satisfying (3.9), with (T, M) € H~'/2(3Q) x H~'/2(dQ) satisfying
(4.78), (4.79), and (3.8). Then we have

1/2
||(T M)”(H 12903 = C (/ Z|€U(M)| +Po|a U3l ) ) (4.80)

where C depends on 8y, Ag, A1, A2, V0.

Proof. We follow the arguments used in the proof of [20, Lemma 7.1]. For any
(f. ) € (H'/2(38))3, one can find (v/, v3) € (H'(Q))>x H?(R2) such that v'|5q =
fivslag =0, 9yv3lpe = g and

O v)ll a2 xa2@ = CIUL ol H1200))3 (4.81)

where C depends on Ag and Aj. In view of the weak formulation of the solution,
we can compute

1/\ Lo 1 ~ —~
/ —T-f+Mg=— | T-v'+Mpog
a2 PO L0 Ja

1 ~ —~
p— T v+ poM,0,v3 + pods M7 V3
0

- _2/ Z(pgn?j(u)efi(v) +P§mij(u3)3i2jv3)
Py /2 ij ’ :
<C

1/2
f D el + e u3|2)
0

1/2
( Zpowu(v)ﬁ + 0019, v3|2)

C

IA

1/2
/ Zpo|e,,<u>| + pg1; u3|) 1", v3) @2 2@

| /\

1/2
( / Zpo|el,<u>| + pi1d3 u3|) 1CF 208l 1202y

where C depends on &g, Ag, A1, A2. Consequently, we obtain

1/2
1T, M)l 1205 < € < / Z|el,(u>|2+p0|a u3|2) . (482
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On the other hand, for any given g € HY2QQ), leth € H3/2(1"0) satisfy dgh =
g on Tg and ||kl 32y < Cllpogllpiizae, = Clirogllgirzge). where C here
depends on Ag and A;. Now let i € H3/2(3Q) be such that h = h on Ty and
||h||H*/2(aQ) < C||h||Hz/z(r)), where C depends on Ag, A1, 0. Moreover, let v3 €
H2(Q) satisfy v3 = h, d,v3 = 0 on 92 and lvsll g2y < CIIhIIHs/z((,Q), where C
depends on Ap and A;. Let f € (H 172(3€2))? be the same function given above.
Now we can derive that

1 ~ ~ 1 ~ —~
| S Tepitg = [ T+ it
aQ PO L0 JTy

1 ~ ~ -
- T-f+ podsMch

Lo 'y

1 —~ ~ —_~
- T - f 4 podsMv3 + poM,0,v3

PO JIQ

1/2
( f Zp0|e,j(u>|2+po|a u3|2) 1, o)l 11120093

I/\

with C depending on 8y, Ag, A1, A2, y0, which implies

1/2
I, M)l 1200y §C< f Z|e,,(u>| + 0310 u3|) L @8

Finally, combining (4.82) and (4.83) leads to (4.80). O
We are now ready to prove the following theorem.

Theorem 4.15 (Lipschitz propagation of smallness). Assume that 2 is a bounded
domain having boundary 3Q € C*! with constants Ao, po. Let ., u € CH1(Q)
satisfy (3.3) and 0 € C*Y(Q) satisfy (3.22) and (3.23) hold. Letu € (H'(Q))* x
H2(Q) be the weak solution of (3.4), (3.5) satisfying (3.9) with Neumann boundary
condition (T, M) € (HY2(3R2))2 x H¥2(3Q) satisfying (3.8), (4.78), (4.79). Then
for every p > 0 and every x € Q%ppo we have

/B > lef;@)* + o319 u3|2ch/2|el,(u>| + g l05usl?, (4.84)

) (€9 ij

where C depends on AOs Al, AZv 807 J/O IO: and ”(T M)||(L2(BQ))2 H1/2(3Q)/
||(T M)II(H 12(3))3- Here 0 = Ry and R\ is the constant given in Theorem 4.1.

Proof. There is no restriction to take pp = 1. The general case can be proved by a

simple scaling argument. Note that €27, is connected for all 0 < p < ¢, where ¢
P
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depends on dg, Ag, Az. It suffices to prove the result for small p. We now choose
a p such that 70/ < Ry. Let y € Q7, and y(¢) be an arc in Q7, joining y and
x. We now define {x;},i = 1,--- ,Lﬂ, as follows: x; = x, xi+§1 = y(t;) with
t; = max{t| |y (t) — x;| = 2p} if |[x; — y| > 2p, otherwise, let i = L and stop the
process. By construction, we can see that the spheres B, (x;) are pairwise disjoint
and |xj+; —xj| =2pfori=1,--- L — 1, |xp — y| <2p.

Since x; € Q2 To. we use the three-sphere inequality (4.77) with x = x;,r; = p,

r2=3p,r3=7?p51§0<1f0ri=1,---,L—1toobtain

T
S50y 2 165 @O + 19732 —c (1)6 S, Lij 1€l @0 + 197u3]
Jo Yo 1€l )2 + 187 u3]? p Jo X 1€l )2 + 197 us]?

where C > 0 depends on &g, Az. Induction on i implies

L
0 2,192, 12 6 0 2,192, 12\F
pr(y) Zij|€ij(”)| +|8iju3| <Cl+r (l)lf <f3p(x) Zij'eij(”)l +|8iju3| )

Jo X7 1€l P+ (07 us]? p Jo X 18 a2 + 1923
‘ ‘ ©(4.85)
Note that L < |Q|/(wp?) < Ay/7.
Let us now cover Q2s, with internally nonoverlapping closed cubes of side

b2
¢ = +/2p/9. It is clear that any such cube is contained in a sphere of radius p with
center in 27, and the number of such cube is controlled by N = 2|92 / (4,02). It

P
follows from (4.85) that
L
S,y 2ij 1€l 0P +187%us]? . ( 1 >— o, 2ij 16,1 + 105 u3”\

Jo X 1€l 2 + 197 us]? p Jo X ledi @) + 103 us)?
(4.86)

Here C depends on §g, Az, |€2].
Now we want to estimate the left-hand side of (4.86) from below by a positive
constant. Obviously, we have

Jag, s Zij el + 185us? Janas, s Lij el @ + 185us)? s
Jo Xij 1€l + 193 us 2 Jo X 1ed @12 + (0332 '
It suffices to show that there exists o > 0 such that
> lel ) * + 107 us|?
fsz\ﬂgp/ﬁ ij1ij ij < % (4.88)

Jo Xij 1€l + 193 us 2

for every p, 0 < p < p. The proposition, then, follows from (4.86) and (4.88).
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By Holder’s inequality and Sobolev’s inequality

2 2
lwll; 4 < Cllwlli
L4(Q) HY2(Q)

with C depending on Ag, A1, we have

/ > el @)l + 197usl?
Q\$28,,

AT

< |Q\98p/z9|1/22 (/
ij \’¢
2

1/ 1/2
< V2IQ\ Q8,5 ) / lef;al* | + / |al~2ju3|4>
ij \Qgp/9 Q\ Qg9

=< C‘|S-2 \ QSp/l?ll/ZH(u/a u3)”?H3/2(Q))2><H5/2(Q)'

2\ 172
(1ef @ +10%usP) )
\S2sp/9 (4.89)

Interpolating the global estimates (3.18) and (3.24) yields
', w3l 322 x 5720
< 16, un) 3@y x H3 @) (4.90)
<CI|(T, M) ||(L2(aQ))2XH1/2(aQ)

where C depends on Ag, Ay, Az, 8.
Following the argument of [6] (see [6, A.3] for details), there exists a positive
constant C, depending on Ag, A, A3, 8o, such that

[€2\ Q859 < Cp. 4.91)
It follows from (4.89), (4.90), and (4.91) that
[ Yl 4183 = o T D a9
\Qos0
From (4.80), we can obtain that
0 2 2,12 T a2
-/Q\Qgp/ﬂ Zij |€ij(”)| + |al'ju3| - Cpl/z (T, M)“(L2(BQ))2><H1/2(?)Q)
Jo i el a2+ 195us2 T 1T, M)l -12002))3

where C depends on Ao, Ay, Ay, o, yo. Finally, we can choose p, depending

on AO? Al’ A27 607 VO’ and ||(T9 M)”%LZ(BQ))ZXHI/Z(BQ)/”(T’ M)||(H*]/2(8§2))3’ SUCh
that

fg\ggpm Zij |el.9j(u)|2 + |8i2j”3|2
Jo X 18 @ P + 19232

forall 0 < p < p. The proof now is complete. O

=

N =
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5. The inverse problem

In this section, we would like to study the problem of estimating the size of inclu-
sion embedded in a shallow shell by one boundary measurement. Let Q C R? be
an open bounded domain with boundary €2, which is of class C*! with constants
A, po. Assume that (3.1) holds. Now let D be a possibly disconnected measurable
subdomain of €2 satisfying

dist(D, 9€2) > dopo (5.1)

for some given constant dy. Let A, u € cl(Q) satisfy (3.3) and 0 e C>1(Q)
satisfy (3.22). Besides, assume that the estimate (3.23) holds. For measurable
functions g, (o, we define

A=A+ xpro and Q= p+ xpio,

where xp is the characteristic function of D. To guarantee the well-posedness of
the forward problem, we assume

0<d<i and S<i Vxeg.
To describe the jump condition, we introduce some shorthand notations. We set

4ru 4ru 4

a=——,b=4u, c=——,d=— (5.2)
A420 3(A+2u) 3

and the corresponding a, b.¢,d replacing A, u with A, [ respectively. We assume
the following condition on the jump at the interface d D. There exists a constant
ko > 0 such that

(f—f)<kof VxedD, (5.3)

where f = a, b, ¢, d and f —=a,b,¢,d. Onthe prescribed boundary field (’T\, M),
we assume

(T, M) e (H*09Q))* x H*3Q) and supp (T, M) C Ty, (5.4)
where I'g is an open subarc of 92 with
[Tl = (I —y0)|0€2] (5.5

for some yp > 0 and satisfies the compatibility condition (3.8). We consider two
boundary value problems. Let u = (u’, u3) satisfy

jnf;(u) =0 in «,

~ (5.6)
al'zjml'j (u3) — 8./‘ (Vl?j ()9;0) =0 in £,
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with boundary conditions
n;uyv; = py ' Ti.
mij(u3)viv; = M,, (5.7)
(0imij(u3) — n?j(”)aie)vj + 0s(mij(u3)vit;) = —0sMy.

Next we let u = (1, u3) satisfy

{ajﬁ?j(a)zo in Q, 59

o7 m;j(3) — 3 (A (@);0) =0 in Q,
with boundary conditions
Al vy = py ' T;,
m;j(u3)vivj = M,, (5.9)
(@i (3) — 7} (@)3;0)v; + 5 (i (A3)viT)) = —ds M.

To ensure the uniqueness of the solution, we impose the normalization conditions
(3.9). Let

~

W:/ pal?'ﬁ/+ﬂvav53+asﬂtﬁ3v
aQ

W= pi'T-u' + Mydyus + 8, Meus (5.10)
IR

= [ > " nl el ) + mij(uz)ofus,
represent the work exerted by the boundary field when the inclusion is present or
absent, respectively. For r > 0 we shall use the notation
D, ={x e D : dist(x,dD) > r}.
We can now state our main result.

Theorem 5.1. Suppose that all the hypotheses stated in this section hold. More-
over, we assume py < 1. Let D be an inclusion satisfying the following fatness
condition

1
[ Dhipo| Z 51D (5.11)
for a given positive constant h1. Then we have the estimate
W—W W—W
i <ID| = Capj | = | (5.12)

where Cy depends on Ay, Ay, Az, do, ko and 5o and C, depends on Ag, Ay, Az, o,
Y0, do, h1 and the ratio

(M, Dl r200)y2x 11200/ M Tl (g-1230))3-
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The key ingredients in the proof of Theorem 5.1 are the energy estimate for the
Neumann problems (5.6)-(5.7), (5.8)-(5.9), and the Lipschitz propagation of small-
ness.

Lemma 5.2. Let (M, T) € L2(0S) satisfy (5.4), (5.5) and (3.8). Let A, t, &, i €
L%(Q) satisfy (3.3) and (5.3). Let u,ii € (H'())* x H*(Q) solutions to (5.6)—
(5.7) and (5.8)—(5.9) respectively. Then there exist positive constants C1, Cp de-
pending on Ag, A1, Az, 8o, ko such that

C [ St wPraodunl <w- < & [ S leaf il 5.13)

With the help of Lemma 5.2 and Theorem 4.15, we first prove Theorem 5.1.

Proof of Theorem 5.1. By the interior regularity theorem and the Sobolev embed-
ding, we have that

C
HZ'%W RCIC T 7 (1l + laligy) . 514

with C depending on A3, dy, 8o. From (5.14), Proposition 3.1, (5.10), we obtain
that
3?2 ¢ W, 5.15
HZM/(“)' SRCICT TR p (5.15)
where C depends on Ag, A1, Az, do, 0. The lower bound on | D] in (5.12) follows
from the right-hand side of (5.13) and from (5.15).
Let us prove the upper bound for |D|. Let ¢ = min{2dy®/7, h1/ V/2} and let
us cover Dy, o, With internally non overlapping closed squares Q; of side gpp for

I =1,..., L. By choice of ¢ the squares Q; are contained in D. Let [ be such that
/ Z e @)* + plojus | = mm/ D leli ol + pglo7us .
] 1]

Noticing that | Dy, p,| < Leng, we have

/DZ|e?j(u)|2+p§|a 3l / D el @) + pglofusl?
ij

Ulllzl

/ Zle,,(u)l + pg |07 usl? (5.16)
Or i

|Dh |
> Z|e,](u>|2+po|a 3|’
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Let x be the center of Q7. From (5.16), estimate (4.84) with x = X and p = ¢/2,
and hypothesis (5.11), we conclude that

KIDI
fZIeU(u)I + pg 197 usl? p —W, (5.17)
0

where K is a positive constant depending on Ao, Aj, Az, do, S0, 0, h1 and
“ (M, T) || (LZ(BQ))ZXHI/Z(SQ)/“ (M, T) ” (H~1/2(3%))3- The upper bound for D follows
from the left-hand side of (5.13) and from (5.17). O

To end this section, we give a proof of Lemma 5.2.

Proof of Lemma 5.2. Let w = (w’, w3). From the first equation of (5.6), we have

that
/n?j(u)ajw;=/ oy Tiw!. (5.18)
Q 1Y

On the other hand, by the second equation of (5.6), the integration by parts leads to

/m,,(u3)8 w3+n (u)8 00 w3
Q

(5.19)
= / —0im;;(u3)vjws + m;j(u3)v;0;ws3 —I—n (u)a Ovjws.
Ele}
Replacing dw3 by v;0,w3 + 7;0;w3 in (5.19) gives
/ m,j(u3)3l]w3 +n (u)8 00;w3
Q
= / —dim;j(u3)vjws +m;ju3)v;(v;o,ws + 7;0sw3)
Q
+ 1 ()3 6vjws (5.20)
=/ —0;m;;(u3)vjws — s (mlj(u3)v,rj)w3+n (1)0;0v w3
Q
+ m;j(u3)viv;o, w3
=/ 351\211113 +Mvavw3.
Q
Thus, by combining (5.18) and (5.19), we get
/ (u)8 w +m,,(u3)8 W3 —|—n (u)8 00;ws3
@ (5.21)

=/ p()_lﬁwl{+as]th3+ﬁvavw3-
a2
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Likewise, we can deduce

/ (u)a w —i—m,](ug)a w3+n (u)8 00;ws3
Q

(5.22)
= / p()_lTiwl/‘ + oy Mrw3 + M, 0,ws3.
a0
and therefore,
/ (u)8 w +mlj(uo,)8 w3 +n (u)a 00;w3
Q
= / nl](N)a w; +mlj(u3)8uw3 + 7 (u)8 0d;ws.
Q
In turn, we obtain
/ ﬁ?j(ﬁ— u)ajw; + n~1ij(u3 u3)8 ;W3 + I’ll](l/t 1)0;00 ;w3
Q
- /Q(n?j — 7Y W)djw] + (mij — i) ()97 ws (5.23)
+ (nf; — 7)) (w)d;00ws.
Substituting w = ¥ into (5.23), we get that
f iy  — u)d;u; + m;; (U3 — u3)9% J0E —I—n (i — u)d;09;3
/ (n,j R )3T, + (mij — i) )iy (5-24)
By straightforward computations, we can see that
/ G — w) 0 + g (s — u3)d7i3 + )5 (i — u) 00903
Q
= / po TGl — u}) + 0 Mo (@3 — u3) + My, (@3 — u3)
a0
and it follows from (5.24) that
/(nu (@) u; + (mjj —m,,)(u)a U3+ (n ﬁfi)(u)aiea,ﬂg,.
(5.25)

_/ o T @ — ul)) + 9 M (i3 — u3z) + Mydy (i3 — u3).
Q2
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Now replacing w = & — u in (5.23) and using (5.25), we obtain that
fQ G — w)d (i — up) + mgj (s — uz)d;; (i — u3)
+ 7 — u) ;00 (i3 — u3)
= /Q (nf; = A7) )d (i — uj) + (mij — i) ()97 (@3 — u3)
+ (nf; — ) )30, (i3 — u3) (5.26)
= fm po TG — uf) + 0y Mo (s — uz) + M, d, (i3 — u3)
+/D(’ﬁ?j — n{)@)djuf + (i — mij) ) dus
+ (A — ) (w)d;00us3.
Exchanging the role of  and u, we can deduce that
/Q”?j(“ — )3 (u; — y) 4+ mij(uz — 53)312]-(% —u3)
+ nf; (u — )00 (us — u3)
- /a 00 T, =)+ ey =) + M =) (52)
+ /D(n?j — ) @)1
+ (mij — ) @33 + (nf; — 7)) (@)0;00 115.

Finally, plugging w = # into (5.21) and w = u into (5.22), respectively, we have
that

/ (17, — nl ) @ju; + (ij — mij)(3)07u3 + (if; — nf) @369 us3

b (5.28)

= / oo ' Ti () — ) + 3y My (u3 — i3) + My d,(uz — T03).
Q2

The following identity is useful in our further arguments. Let a, b, ¢ and d be any
functions. It is easy to compute that

(aefuw)sy; + befy w)) djwi + (c(Awn)sy; + dofws ) 97 ws
+ (aefw)sij + bef; (w)) 3,60 ws (5.29)

= a|V-w + VO - Vws[* + b lef;(w)]* + clAws[* +d Y [95ws]?
ij ij
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I:Iow leta, b, c, d be given in (5.2) and a, b, ¢, d be defined similarly. Putting w =
u — u, using (5.29), (5.26), we get that
W—W§/D(ﬁ?j—n%)(u)8ju§+(7ﬁij—mij)(u)aizju3+(ﬁ?,-—n?j)(u)aieajw
= /D(Zi— IV -1 +V0 - Vus + (B — b)Y lel; (w)]? (5.30)
ij
+ @ = olAwsl +@d—d))_ |07usl.
ij

On the other hand, for any ¢ > 0, one can easily compute that
/ @—a)|V -t/ +V0-Vus*+ (b —b) Y lef;)* + € = c)| Auz|?
D ij
+d = d) Y105l
ij

< +e—1)f G-V - @ —u)+ VO - V(s — u3)
D

- N -~ - (5.31)
+(b=b)Y ;@ —w)* + (€ — o)A — u3)?
ij
HA-Y @0 w0+ (1 +e) [ @077+ 0 VP
— . D
1
+(B—b)Y el @+ @ —o)Aus* + (d —d) Y _ |87/
ij ij
By (5.3) we can choose ¢, > 0 such that
1+e;! 1
14+ &4 N k()'
Therefore, from (5.31) and (5.29), we deduce that
/(5—a>|V-u/+ve-w3|2+(E—b)2|e?j<u>|2+(’c“—c>|Au3|2
+d—d)Y |95usl
ij
(5.32)

<(1+4e) (/ nf; (u — )3 (uj — i) + mij(uz — 43)07 (uz — 3)
D
+ (e — )00 (u3 — i3)

+f(ﬁ?j—n?j)(’i)ajﬁ;ﬂr%,j—mij)(ﬁ)al?jﬁng(’ﬁ?j—n?j)(’ﬂ)a,-eajﬂ3).
D
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Now combining (5.27) and (5.32) immediately yields

1 ~
d—a)|V-u'+V0 -Vus>? + (b —b e w))?
1+8*/D( )l 317+ ( )%] £
+@=olAus? +d —d) Y |97us)? (5.33)
ij
<W-Ww
and we obtain (5.13). O

Remark 5.3. It is tempting to estimate the size of D without the a priori fatness
condition (5.11) as in [2,7], and [21]. The important tool in these papers is a global
doubling inequality. It seems possible to derive the size estimate without the fat-
ness condition for the shallow shell system since we have derived local doubling
inequalities (4.4). Like Theorem 4.13, to investigate this inverse problem, we actu-
ally need global doubling inequalities in terms of )", ; |e?j @)+ o3| 8i2ju3 |2 instead
of |u’|? 4 |u3|%. However, attempts to derive such global doubling inequalities were
unsuccessful. The difficulty is due to the fact that u” and u3 in (3.4) have different
scalings.
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