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A Carleson-type estimate in Lipschitz type domains
for non-negative solutions to Kolmogorov operators

CHIARA CINTI, KAJ NYSTROM AND SERGIO POLIDORO

Abstract. We prove a Carleson type estimate, in Lipschitz type domains, for
non-negative solutions to a class of second order degenerate differential operators
of Kolmogorov type of the form

m m N
L= Y a4 j@gy; + Y@@y + Y bijxide; — by,
ij=1 i=1 i,j=1

where z = (x,1) € RN+I , 1 < m < N. Our estimate is scale-invariant and
generalizes previous results valid for second order uniformly parabolic equations
to the class of operators considered.

Mathematics Subject Classification (2010): 35K65 (primary); 35K70, 35H20,
35R03 (secondary).

1. Introduction

In this paper we prove a Carleson type estimate for non-negative solutions to a gen-
eral class of hypoelliptic ultraparabolic operators. Specifically, we consider Kol-
mogorov operators of the form

m m N
L= a @by + Y 4@+ Y bijxidy; — 0, (LD

i,j=1 i=1 i,j=1

where z = (x,1) € RN xR, 1 <m < N, the coefficients a;, j and a; are bounded
continuous functions and B = (b; j); j=1,..,n is a matrix of real constants. The
main motivation for our research is our long-term goal to establish a regularity
theory for the free boundaries occurring in the obstacle problem

max {Lu, ¢ —u} =0, inR¥x]10, T,
u(x,0) = @(x,0), for any x € RV,
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considered by Di Francesco, Pascucci and Polidoro in [10]. In [21] and [32] Frentz,
Nystrém, Pascucci and Polidoro proved optimal regularity properties of the solu-
tion to the obstacle problem, for smooth as well as non-smooth obstacles. Up to
date, the only known results about boundary regularity for non-negative solutions
to Kolmogorov operators have been proved by the authors in [6], see also [7].

Our long-term goal is to establish a boundary regularity theory for Kolmogorov
operators. Estimates concerning boundary behaviour are of obvious independent
interest from the theoretical point of view. Furthermore, the regularity properties
of the Kolmogorov equations on RV+! depend strongly on a geometric Lie group
structure. The extension of the methods used in the Euclidean setting to the Lie
group geometry related to Kolmogorov equations is far from trivial. For results con-
cerning the boundary behaviour of non-negative solutions and obstacle problems in
different, but still subelliptic settings, we refer to the works by Frentz, Garofalo,
Gotmark, Munive and Nystrom [20], Capogna, Garofalo and Nhieu [4, 5], Franchi
and Ferrari [18, 19], Danielli, Garofalo and Salsa [9], Danielli, Garofalo and Pet-
rosyan [8].

We next list our structural assumptions on the operator .% defined in (1.1).

[H.1] The matrix Ag(z) = (a;,j(2))i, j=1,...m is symmetric and uniformly positive
definite in R™: there exists a positive constant A such that

m
WNER = Y ai (&8 < MEP, VEER™, zeRVYL
ij=1
The matrix B = (b;,j);, j=1,..,n has real constant entries.
[H.2] The constant coefficients operator

m N
H =" a0, + Y bijxidg, — Oy (1.2)

i,j=1 i,j=1

is hypoelliptic, i.e. every distributional solution of JZu = f is a smooth classical
solution, whenever f is smooth. Here Ay = (a; ;)i j=1,..,m 1S any constant,
symmetric and strictly positive matrix.

[H.3] The coefficients a; j(z) and g;(z) are bounded functions belonging to the

Holder space C(I){’a (RN+1) & €10, 1], defined in (2.6) below.
Note that we can choose Ag in [H.2] as the m x m identity matrix. In our setting,

J plays the same role as the heat operator does in the framework of uniformly
parabolic pdes. We also note that the operator J# can be written as
m
A=) X} +7,
i=1
where

m
Xi=)Y ai o, i=1,...m, Y=(x BV)—d, (1.3)
j=l1
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and where g; ;’s are the entries of the unique positive matrix Ao such that Ay = A(z).
Recall that the hypothesis [H.2] is equivalent to the Hérmander condition [24],

rank Lie (X1,..., Xm, Y) (2) = N + 1, vz e RNTL (1.4)

It is well-known that the natural framework to study operators satisfying a Hérman-
der condition is the analysis on Lie groups. The relevant Lie group related to the
operator % in (1.2) is defined using the group law

(x,t) o (&,7) = (€ +exp(—tB)x, t + 1), (x,0), & 1) e RV (1.5

In particular, the vector fields X1, ..., X;, and Y are left-invariant, with respect to
the group law (1.5), in the sense that

Xjw@o-)=Xju)(o-), j=1....m, Yo -))=Tu)o-),

(1.6)
for every ¢ € RV*! (hence # (u(¢c o -)) = (Jf/u) (¢ o -)). It is also known that
[H.2] is equivalent to the following structural assumption on B [28]: there exists a
basis for RN such that the matrix B has the form

* By 0 --- 0
* % By .- 0
SRR . (1.7)
* ok k By
* ok k *
where Bj isamj_1 X m; mamxofrankm]for] ef{l,....¢}, 1 <m < ... <

m <mog=mandm-+mi+...+m, = N, while x represents arbitrary matrices
with constant entries. Based on (1 7), we introduce the family of dilations (5;),~0
on RV*! defined by

= (D, r?) = diag(r I, 3Ly, ..., 7y 1), (1.8)

where Iy, k € N, is the k-dimensional unit matrix. To simplify our presentation, we
will also assume the following technical condition.

[H.4] The operator % in (1.2) is §,-homogeneous of degree two, i.e.
H 08, =180 H), Vr > 0.

We explicitly remark that [H.4] is satisfied if (and only if) all the blocks denoted by
% in (1.7) are null (see [28]). Moreover we set

q=m+3m;+ ...+ 2k + 1)m,,

and we say that q + 2 is the homogeneous dimension of RN*! with respect to the
dilations group (8, );>0-
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Consider the boundary value problem

1.9
u=g in 0€2, (19)

{Df u=0 1in <,
where 2 is any open subset of RV*! and ¢ € C(9R2). Using the Perron-Wiener-
Brelot method, the existence of a solution to this problem can be established. How-
ever, it is well known that the boundary value ¢ is not necessarily attained at every
point of d€2. In the sequel, u, will denote the solution to (1.9), and we set

Q= {z € 09| Jim uy(w) = ¢(2) forany ¢ € C(asz)} . (1.10)

We refer to dg 2 as the regular boundary of Q with respect to the operator .. We
recall that Manfredini in [30, Proposition 6.1] gives sufficient conditions for the
regularity of the boundary points. Recall that a vector v € R¥*! is an outer normal
to Q at 7 € 9 if there exists a positive r such that B(z +rv,r) N Q2 = (. Here
B(z + rv, r) denotes the Euclidean ball in RV ! with center at z + rv and radius
r. Then, in consistency with Fichera’s classification, sufficient conditions for the
regularity are expressed in geometric terms, and read as follows. If z € 92 and
v = (v, ..., Yy+1) is an outer normal to 2 at z, then the following holds.

@If (vi,...,vy) #0, then z € I 2,
() if (v, ..., vy) =0and (Y(z), v) > 0, then z € g2, (L.11)
(c)if (vi,...,vy) =0and (Y (z),v) <0, thenz & dx <2,

where Y is the vector field defined in (1.3). As an example, we consider the simplest
Kolmogorov operator Bfl +x10xp —0;intheset Q =] —1, 1[x]—1, 1[x]—1,0[C
R3. Then Y (x, t) = (0, x1, —1), and it is easy to see that

(a) is satisfied by all the points of the set {—1, 1}x] — 1, 1[x] — 1, 0[,
(b) is satisfied by all the points of the set ] — 1, 1[x] — 1, 1[x{—1} U
U0, I[x{1}x]—=1,0[U]—1,0[x{—-1}x]—1,0[,
(c) is satisfied by all the points of the set ] — 1, 1[x] — 1, 1[x{0} U
U0, I[x{—1}x]—1,0[U]—1,0[x{1}x]—1,0[.

Condition (a) can be equivalently expressed in terms of the vector fields X ;’s as
follows: (X;(z),v) # O for some j = 1,...,m. If this condition holds, in the
literature z is often referred to as a non characteristic point for the operator £. A
more refined sufficient condition for the regularity of the boundary points of 9€2 is
given in [30, Theorem 6.3] in terms of an exterior cone condition and that condition
will be used here (see Definition 4.1 below).

In [6, Theorem 1.2] we proved a Carleson type estimate for non-negative solu-
tions u to Zu = 0 assuming that u vanishes continuously on some open subset ¥
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of 9Q2. Furthermore, in [6, Proposition 1.4] we gave an application of [6, Theorem
1.2], assuming that ¥ is a N-dimensional C!-manifold satisfying either condition
(a) or condition (b) in (1.11). The purpose of this paper is to improve on these
results by relaxing the regularity assumptions on X. Specifically, in this paper we
assume that ¥ is locally a Lipg surface, where Lipg is a notion of Lipschitz reg-
ularity suitably defined in terms of the dilations (1.8) and introduced in the bulk
of the paper. We also improve on [6, Theorem 1.2] since our main result, which
is stated below, is scale invariant in the sense that (¥,7), C and ¢ do not depend
onr €]0,rp]. In the following we refer to Definition 2.1 for the meaning of Lipg
surfaces, and to (2.9), (2.10) for the definition of the cube Qs ,(xo, fo).
The main result proved in this paper reads as follows.

Theorem 1.1. Let Q be an open subset of RNT!, and let ¥ C 9Q be a compact
Lipg surface with constants M and ro. Then there exist two positive constants C, c,
depending only on £ and M, such that

sup u(x, 1) < Cu(Af(xo, 10)), At (x0,10) = (x0, t0) 0 8- (X, 1),
O M ,cr (x0,00)N2

Jor any (xg, y) € X, for every non-negative solution u to Lu = 0 in 2 vanishing
continuously on Q ., (xo, t0) N K2, and for every r €10, ro]. Here (X, 1) € RN+1
is such that

X, Dllx <C, dg (A (x0, 10), 9R) > cr,

for everyr €10, rol.

To put Theorem 1.1 in the context of the existing literature devoted to boundary
estimates for second order elliptic and parabolic operators, we here briefly discuss
previous results valid for uniformly parabolic operators of the form

N
L= aij(x, 0 =3, (.0 RV, (1.12)
i,j=1

where the matrix (a; ;(x, t)) satisfies [H.1] with m = N. The study of the bound-
ary behavior of non-negative solutions to non-divergence form uniformly parabolic
equations Lu = 0, as well as the associated L-parabolic measure, has a long his-
tory. We quote the papers by Fabes and Kenig [14], Fabes and Stroock [17], Garo-
falo [22], Krylov and Safonov [27], leading up to the results of Fabes, Safonov and
Yuan in [16] and [33]. The corresponding developments for second order parabolic
operators in divergence form are treated by Fabes, Garofalo and Salsa [13], Fabes
and Safonov [15], Nystrom [31]. We refer to Bauman [1], Caffarelli, Fabes, Mor-
tola and Salsa [2], Fabes, Garofalo, Marin-Malave and Salsa [12], and Jerison and
Kenig [25] for both divergence and non-divergence form elliptic operators. Finally,
we also note that second order elliptic and parabolic operators in divergence form
with singular lower order terms have been studied by Kenig and Pipher [26] and by
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Hofmann and Lewis [23]. Today the boundary regularity theory in the setting of
uniformly elliptic and parabolic operators has reached a quite advanced level.

A natural geometrical setting for the uniformly parabolic operators in (1.12) is
that of Lip(1, 1/2) domains which we next introduce. We fixa j € {1, - }, we
let x' = x; and we let x” denote the remaining N — 1 coordinates of any x € RY.
We also let ¢’ be the j-th vector of the canonical basis of RY, and we say that a
function f : R¥~!x R — Ris Lip(1, 1/2), with respect to x, if

If&" ) = fE Dl < M(Ix" = &7+ 11 — TI%), (1.13)

for any (x”, 1), (§”,7) € RVN~! x R, and for some positive constant M. For any
(x,1) e RV andr > O weset Cp(x,1) = B(x,r)x |t —r2, t +r?[. Let T be a
positive number, let @ € RV¥*! be a bounded domain. Let Q7 = QNRYx [0, T)),
St = 0QNMRNx 10, T[), and A(x, t,7) = StNCr(x,1). Letz = (x/, x", 1) € St,
with x" = x; for some j € {1,..., N}. If there exist r; > 0 and a Lip(1,1/2)
function f with constant M, such that

QrNC.()={¢E1eR%[0,T]|& > fE", D}NC(2),

N / , (1.14)
STNCr(2)={¢ ) eRY %[0, T & = fE", D} NCL(),

then we say that S7NC;, () is Lip(1,1/2) surface, with constant M. If St is covered
by a finite set of cylinders {C,Zi(zl-)}, with z; € S7,r;, >0, we set M =max; M;, and
ro =min; r;, and we say that Q27 is a Lip(1,1/2) domain with constants M and ry.

Let Q27 be a Lip(1,1/2) domain with constants M and rg, let (xg, fp) be any
point on St. For every r €]0, ro[ with 79 + r2 < T, let A:r(xo, to) = (xo +
2Mreé', tg +r?) € Q. Then

M~'r < dp(Af (x0.10), St), and dp (A} (xo, 1), (x0, 10)) <,
where dp denotes the standard parabolic distance function, dp((x, 1), (y,s)) =
lx —y|+ |t — s|% for any (x, 1), (y,s) € RN*1L,
The following theorem is essentially due to Salsa, see [34, Theorem 3.1].

Let Qr ¢ RN+ pe a Lip(1,1/2) domain with constants M and ro, let (xg, tg) € ST
and assume that r < min{ro/2, /(T — t0)/4, J/to/4}. Let u be a non-negative
solution to Lu = 0 in Q7 N Cayr (X0, to) and assume that u vanishes continuously on
A(x0, to, 2r). Then there exists a constant ¢ = c¢(L, M, rg), 1 < ¢ < o0, such that

u(x,t) < cu(Atf(xo, 1))

whenever (x,1) € Qr N Cyjc(xo, o).

While Salsa proved this theorem in the setting of time-independent Lipschitz
cylinders, the proof goes through essentially unchanged in the more general set-
ting of Lip(1,1/2) domains. This estimate is often referred to as a Carleson-type
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estimate, since this type of estimate first occurs in a paper by Carleson [3] on
Fatou-type theorems for harmonic functions. Note that Theorem 1.1 is a gener-
alization of this theorem. Indeed, in the Euclidean case we have (xo, 79) 08, (X, 1) =
(xo + rX, to + 1), and we can choose (¥, 7) = (2M¢’, 1) to recover the statement
above. Furthermore, in the Euclidean case the notion of Lipg surfaces introduced
in Definition 2.1 below coincides with the notion of Lip(1, 1/2) surfaces.

Returning to operators of Kolmogorov type .Z, we note that if X is a smooth
subset of 32 which is non-characteristic with respect to . according to (a) in
Fichera’s classification (1.11), then X is Lipg. If we require less regularity on X,
we may consider a surface ¥ C 9£2 which locally agrees with the graph {x; =
f(x”, 1)} for some Lip(1, 1/2) function f. In Proposition 2.2 below we prove that
in this case X is also a Lipx surface. Hence Proposition 2.2 provides us with a
simple sufficient condition for the Lipg regularity. We also note that since .’ may
be strongly degenerate, it is possible that a wide part X of the boundary of a given
open set €2 is characteristic and in this case (b) in (1.11) is of interest. Indeed, when
(b) is satisfied in some neighborhood W N'Y of a point zg € 9€2, then WN X can be
characterized as t = g(x), where g does not depend on (x, ..., x;;). In this case,
we in Proposition 2.4 below give a statement analogous to Theorem 1.1. Note that,
in the case of uniformly parabolic operators, it turns out that () is satisfied only by
the lower basis of a cylinder.

The rest of the paper is organized as follows. Section 2 contains the definitions
of Lipg functions and Lipg surfaces, and the statement of the key propositions es-
tablished in order to prove our main result, Theorem 1.1. Section 3 is of preliminary
nature and we here collect some notions and we state a few results concerning the
interior Harnack inequality. In Section 4 we prove a few basic boundary estimates
for non-negative solutions to .Z’u = 0 near Lipg surfaces. Section 5 is devoted to
the proof of Theorem 1.1, and to the proof of the propositions stated in Section 2.

ACKNOWLEDGEMENTS. We thank E. Lanconelli, F. Ferrari and S. Salsa for their
interest in our work.

2. Lipg surfaces and statement of key propositions

In the sequel we will write the dilation (1.8) in the following form

8 = diag(r®', ..., r*v, r?) 2.1)
where we seta; =...=a,, =1, and oty 4eetmj 1= oo = Oy o j+1 =
2j+1for j=1,...,«. According to (1.8), we split the coordinate x € RV as

x:(x(o),x(l),...,x(K)), xODeRrm,  xDeRrRM, je{l,....k}, (22)
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and we define

K

) 1

xlg =Y D7, ik = Ixlx+ 112,
Jj=0

Note that ||8,z||x = r|z|lx forevery r > 0 and z € R¥*!. We recall the following
pseudo-triangular inequality: there exists a positive constant ¢ such that

Iz~ ik < elzllk. lzotllx < cllzlixk +11¢1x), ¢ e RV (23)
We also define the quasi-distance dg by setting
dg(z.¢) =t ozllk, 2.6 e RV (2.4)

and the ball
Bk (z0,7) := {z € RN | dk(z,20) < r}. (2.5)

Note that from (2.3) it directly follows
dg(z,¢) < eldg (@ w) +dgw,¢),  z.¢weRVF
For any z € RV*! and H ¢ RN *!, we define
dig(z, H) == inf{dg (z,¢) | ¢ € H}.

We say that a function f : @ — R is Holder continuous of exponent « €]0, 1], in
short f € C(,)g“ (£2), if there exists a positive constant C such that

If(2) = f©O)] < Cdk(z, )", for every z,¢ € Q. (2.6)

We next define Lipg functions and Lipx surfaces. For any given x € RV we set

xX'=x; and x" = (x2,...,xN). 2.7)
Moreover, using the notation in (2.2) we also let x,(o) = x; = x’, and we let x,(,o) =
(x2, ..., Xm). Using this notation, we define the norm
" " 0) - () - 1
" Ol = e [+ D D7 + ez (2.8)
j=1

in RV=1x R. Recalling (1.8), we let

D) = diag(ry—1,7 Iy, ..., r* "' 1,,),
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so that D)x" = (D,x)", while (D,x)' = rx’. Note that |[(D/x",r*)|} =
rll(x”, t)|I'x for every r > 0 and (x”, 1) € RN~1x R. Using the notation in (2.1)
we set, for any positive rq, r2, 13,

N+1 i . 2
Orirars = (e, ) e RYFH X/ <y, [xi <73 foranyi =2,..., N, 1] <r3},
Q) ., ={". ) e RV R |x;] <ry" foranyi =2,..., N, |t| <rj},
(2.9)

and, for any positive M and r and any arbitrary point zo € RV*!, we define

4 4

Omr = Quptrr/ors r =0, 5 Omr(z0) =200 Om,r. (2.10)

Note that Qp, = 8,Qm,1 and Q) = D, Q! for every r > 0. Moreover, the
continuity of the group law (1.5) implies that there exists ¢ = (&, M) €10, 1]
such that

(x,0)0@E. 1) € Omr V(. 1) €0Mer, Y(x,1)€Opyz. 2.11)

Furthermore, for every positive M, there exist two positive constants ¢}, ¢j, such

that
Bk (2o, i) € Om,r(z0) € Bk (zo0, ciyr), (2.12)
for every zo € RV *! and r > 0.

Let ¢/ € R™ be such that ||¢/|| = 1. Since the form of the matrix B in (1.7)
remains invariant under rotation in the first m variables it is not restrictive to assume
¢ =e; =(1,0,...,0). Given any open set 2" C RV "IxR, we say that f : Q" —
R is a Lipg function with respect to ¢, if x’ = x; and

| F((x +exp(=tBTxo)", 1 4+ 1) — F(x§, 10)| < MG, DI, (2.13)

forevery (x//, o) € Q”,and (x”, ) € R¥N~!1xR such that ((x—i—exp(—tBT)xo)N, t+
to) € Q", x; = f(xy,1). Note that we can assume, without loss of generality,
that (xg, 7o) = (0,0) and f(0,0) = 0. Indeed, if necessary, it is enough to set
gx”, p) = f((x —|—exp(—tBT)xo)”,t—|—to) — f(x{, o). Equivalently, f : Q" — R
is Lipg if
1 1
|FO6" 0 = fE D] < M|[((x —exp(c =0BE) 1 =) [, (2.14)

for every (x", 1), ", 1) € Q", x' = f(x",1), & = f(§", 7). Given f as above
with £(0,0) =0and M, r > 0, we define

Qpr={(x,1) € Qm,r | fF(X",0) <X}, Apr={(x,1) € Opr | f(x", 1) =X}
(2.15)
Note that, according to the dilations 8, and D}, we have

Qpr =6 1, Arr =6A% 1,
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where f,(x", 1) = r=! f(D/x",r*t). We point out that if f is a Lipg function,
then so is f;. Indeed, as the norm || - ||’ is (D/, r?)-homogeneous, we have

| £O"5) = fr(xg . 10)| < M| (v — exp((to — )BT )x0)", s — 10) || .-
for every (v, 5), (x, to) € (D/,r*)~'Q" and r > 0. Finally, we let
Qprr(zo) =200Rf,, Afrr(z0) =200Ay,, z0 € RVTL,

Definition 2.1. Let @ ¢ R¥*! be a bounded domain. We say that & C 92 is a
Lipx surface with constants M = max{My, ..., My} and ro = min{ry, ..., ri} if,
forany j =1,..., k, there exists a point z; € X, and a Lipg function f; : Q’z’ri —
R defined with respect to a suitable e;- € R™ and with Lipschitz constant M, such

that
k

j=1
N QM_;,Zr_,'(Zj) = Af,'lrj(z.i)’
QN Om; (7)) = Qp; 20 (2))-

Recall the definition of Lip(1, 1/2) functions given in (1.13). For the proof of the
following proposition we refer to Section 5.

Proposition 2.2. Let Q@ C R+ be a bounded domain. If & C 32 locally agrees
with the graph {x; = f(x", 1)} of some Lip(1, 1/2) function f, j € {1,...,m},
then X is a Lipg surface.

The following proposition plays a key role in the proof of Theorem 1.1 and
will be proved in Section 5.

Proposition 2.3. Let Q) be as in (2.10) withr €]0,1]. Let f : Q) — R be a
Lipk function such that f(0,0) = 0. Then there exist a point (X, 7) € RVt and
two positive constants C, c, depending only on & and M, such that

sup  u(x,t) < Cu(A;f(xo0,1)), A (x0, t0) = (x0, t0) 0 8, (X, 1),
Qf,cr (x0,10)

or every positive solution u to Lu = 0in Q - (x0, to) vanishing continuously on
yp 7/ 8 y
Af,r (x0, t0)-

We next formulate two versions of Proposition 2.3 which apply to characteris-
tic boundary points with respect to .. In particular, Proposition 2.4 below applies
to a cylinder 2, (z0) = zo o g, obtained by using the operation “o”, while in
Proposition 2.5 the operation “o” does not appear. Note that, in the latter case, the
Lipschitz constant M of the function g depends on the cylinder. To proceed, let

~

. 1
0, =[(x®,...x®) e RV D) <77, j=1, k). @16)
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Let g : é, — R be a Lipschitz function in the classical sense, with Lipschitz
constant M, i.e.

lg (x(l), e x(")) —g (y(l), ,y(")> | < M(Ix®D — yD )4 4 x@ =y

2.17)
whenever (x(l), ...,x(K)) , (y(l), ,y(")) € ér. Furthermore, assume g(0) = 0.
Then, for positive r and zg € R¥*!, we define

N

g, r = {(X,l) € Qr,r,Mr | r>g (x(l)’ 7x(K))} s
Zg,r = {(X,t) € Qr,r,Mr | r=g (X(l), ax(K)>} s (218)

Qg,r(ZO) =200 Qg,r, Ag,r (z0) =200 Ag,r‘

Proposition 2.4. Let O, be as in (2.16) with r €10,1]. Letg : O, — R bea
Lipschitz function with Lipschitz constant M such that g(0) = 0. Then there exist
three positive constants C, ¢ and t, depending only on £ and M, such that

_supulx, 1) = Cu(A (xo. 10)), A (x0, t0) = (x0, t0) © (0, r71),
Qg,cr(XOJO)

for every positive solution u to Zu = 0 in Q4 (X0, to) vanishing continuously on
Ag,r (x0, 70).

Let Q be a bounded set of RY, and let g : O — R be a Lipschitz function,
which does not depend on x1, ..., X;,, with constant M, i.e. g(x) = g (x(l), x(")).
Letting g(xp) = fo for some xg € Q, and cp = SUpyeq [X — xol, we define

fzg: {(x,t)e]R’\“rl |x € Q, gx) <t§to+MCQ},
Re={x.neR" 1 xe 0 1=}
Proposition 2.5. Let xo € RY, let Q be a bounded neighborhood of xo, and let
M be a positive constant such that M sup, .., IBTx|| < 1. Letg: Q — Rbea
Lipschitz function, which does not depend on x1, . .., Xy, with constant M and let

to = g(xo). Then there exist three positive constants C, r and t, only depending on
% and Q, such that

. sup u(x, 1) < Cu(Af(xo, 1)), A (x0, 10) = (x0, t0) © (0, 7?7,
QgNBk ((x0,10),7)

for every positive solution u to Zu = 0 in Qg vanishing continuously on Ag.

The proofs of Proposition 2.4 and Proposition 2.5 are given in Section 5.
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3. Interior Harnack inequalities

We say that a path y : [0, T] — RN*!is Z-admissible if it is absolutely continu-
ous and satisfies
m
V() =) wj)X;j(y(s) +rs)Y(y(s)), forae. sel0,T], (3.1
j=l1

where w = (w1, . .., wm) € L*([0, T], R™), and A is a strictly positive measurable
function. We say that y steers zo to z if y(0) = zo and y(T') = z. Concerning
the problem of the existence of admissible paths, we recall that it is a controllability
problem, and that [H.2] is equivalent to the following Kalman condition:

rank(A BTA ... (BT)N_1A> =N. (3.2)

Here A is the N x N matrix defined by

(59)

and Ao is the m x m constant matrix introduced in (1.3). We recall that (3.2) is a
sufficient condition for the global controllability of (3.1), i.e. the property that any
point zg = (xo0, ) € RV¥*! can be connected to any z = (x, 1) € RVt witht < 19
by an Z-admissible path (see [29], Theorem 5, page 81). In the sequel we let

A, (Q)= {z € Q | there exists an .Z-admissible y : [0, T]— 2 connecting zg to z},
(3.3)
and we define o7, = o7, (Q) = A, (Q) as the closure (in RVT!) of A, (Q). We
will refer to the set .7, as the attainable set.
We next recall a Harnack type inequality which is stated in terms of .Z’-admis-
sible paths and attainable sets.

Theorem 3.1. (THEOREM 2.4 IN [6]) Let .& be an operator in the form (1.1),
satisfying assumptions [H.1-3]. Let Q be an open subset of RN T and let zo € Q.
For every compact set H C Int(;afzo), there exists a positive constant Cy, only
dependent on Q, zo, H and on the operator £, such that

supu < Cy u(zo),
H

for every non-negative solution u of Lu = 0 in Q.

The following Proposition 3.2 is a consequence of [11, Theorem 1.2] and [11,
Lemma 6.2]. We give here a simple proof based on our Theorem 3.1. For any
positive r, f and (xp, fp) € RN+ according to notation (2.9) we set

0y = Qrrr N{x. 1) eRV* |1 <0}, Q; (x0.t0) = (x0, 1) © Oy,

Kpr = Oprprr N (x, 1) e RN |1 = —12/2), Kp,(x0, 10) = (X0, 10) © Kpr.
(3.4)
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Proposition 3.2. Let y be an £ -admissible path satisfying y (0) = (xq, to). There
exist two positive constants h and C such that

/S w@Pdr <h = u(y(s) < Culxo. o),
0

for every non-negative solution u of £u =0 in 0, (xo, 1) and s €10, 1/2].

Proof. We first claim that there exists 8 € |0, 1[ such that K g, (xo, fy) is contained in
Int(,fzf(xO,to)(Qr_ (x0, to))). To check the above statement, it is sufficient to consider
the case (xg, 7o) = (0, 0) and r = 1. We first note that, as w; =0, ..., w,;, =0, we
have y (s) = (0, —s), then (0, —1/2) € A(0,0(Q;). To prove that (0, —1/2) is an
interior point of .70 ) (Q)), we recall that the system

y'(s) = ij(S)Xj()/(S)) +Y(y (), y(0) =(0,0), (3.5
j=1

is globally controllable, by (3.2). Then, as w varies in a neighborhood of the vector
0 € L%([0, T], R™), the image of the map @ — y(T) covers a neighborhood of
(0, —1/2),and y(s) € Q, forevery s € [0, T]. This proves the claim.
Let B be as above. By Theorem 3.1, there exists a positive constant Cg such
that
sup u < Cﬁ u(xg, ty), (3.6)
Kpr(x0,10)

for every non-negative solution u of Zu = 0 in 0, (xo, to) and for any r €]0, 1].
Finally, a plain application of the Holder inequality shows that

S
y(s) € Kgr(x0,%)) whenever s €]0,1/2] satisfies / |a)(‘L’)|2d‘C <h,
0

3.7
for a suitable constant 2. We refer to [11, Lemma 6.2] for more details. The con-
clusion of the proof easily follows from (3.7) and (3.6). O

4. Basic boundary estimates

We first introduce a family of cones defined in terms of the dilation §; and the
translation “o”. For any given zg € RN+l ¥ € RN, 7 € R, we consider an
open neighborhood U  R¥ of %, and we denote by Z; ;(zo) and Z;“ ;v (0) the

following tusk-shaped sets

Z::y@) ={zod(x,~|xeU,0<s <1},

- 4.1)
Z1y@o) ={z2008(x, D) |x €U, 0<s <1},
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In the sequel, aiming to simplify the notations, we will often write Z *(z0) instead
of Z - U(Z()) if the choice of x, £, U is clear from the context. Note that Z~ (z¢) and

Z +(z()) are cones with the same vertex at zo = (xo, fo), while the basis of Z~ (zp) is
at the time level 1y — f < tg, and the basis of Z 7 (z¢) is at the time level #g + 7 > to.

Definition 4.1. Let Q be an open subset of R¥*! and let ¥  9<2.

(1) We say that X satisfies an uniform exterior cone condition if there exist x €
R¥, 7 > 0 and an open neighborhood U € R" of X such that

Z (zo) N =10 forevery zp € X,

where Z7(z0) = Z ; ,(20)-
(i) We say that X satisfies an uniform interior cone condition if there exist x €
RY, 7 > 0 and an open neighborhood U < R" of X such that

ZY(z0) C Q forevery z9 € X,

where Z1(z¢) = Z;_,t_,U(ZO)'

(iii) Assume that X satisfies an uniform interior cone condition in the sense stated
above. We then say that the cones {Z T (z)} = {Z;z_,U(ZO)}’ 70 € X, satisfy a
strong Harnack connectivity condition if the function s — (xg, fo) 0 81— (X, f)
is an Z-admissible path.

We point out that the strong Harnack connectivity condition is more restrictive than
the Harnack connectivity condition used in our previous work [6]. Nevertheless, we
are able to prove the validity of this condition near Lipx surfaces.

We next show how to find a point x, € R” such that the paths — §1_s(xp, 1)
is Z-admissible. To this aim, we recall notations (1.7) and (2.2).

Lemma 4.2. For any positive A we define the point xp € RN as follows:

©) ) 2 7 _G=1) ,
xy =Ae,xg =18 i=1.. K 4.2)

Here ¢’ is the unit vector of R™ pointing towards the x'-direction. Then, the path
[0,1] 35 = y(s) = 81—5(xp, 1) is L-admissible.

Proof. We show that y satisfies (3.1), namely
y'(s) = Agw(s) + A(s)(BTy (s) — 9) a.e. in [0, 1], 4.3)

for aw € L2([0, 1], R™) and a positive measurable function A. By a direct compu-
tation,

2
y(s) = ((1 —s)x = S =B

—2)¥
(21‘ -l-)l)”(l ~ 9Bl B () )
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so that we find
y'(s)=(—=x0,0,...,0)+200 —)(BTy(s) — ),  selo,1].

This proves (4.3) with w = — A5 'x(? and A(s) = 2(1 — s). O

Our next result improves on the analogous one in [6, Proposition 3.2]. Indeed,
as noticed in [6, Remark 4.2], it fails under the weaker Harnack connectivity con-
dition assumed in [6].

Lemma 4.3. Let Z+ iU (0, 0) be a cone satisfying the strong Harnack connectivity

condition (iii) in Deﬁnmon 4.1. Then there exist two positive constants C1 and B,
which only depend on Z™* and on the operator £, such that

u(Ss(x,1)) < u(x,7) 0<s <1,

185, DI

for every non-negative solution u of Lu =0in Z*.

Proof. We first show that there exist a positive constant C and so €]0, 1[ such that
U, (%,7) < Cu(x,7),  foreveryo e[l —so, 1[. (4.4)

To this aim, we note that there exists p € ]0, 1] such that Qg(i, N cC Z;’t- U(O, 0).
Moreover, the path v (s) = §;_4(X, 1) is -£-admissible by the strong Harnack con-
nectivity condition. Since wy, ..., ®, € L2([O, 1]), there exists so €]0, 1[ such
that

50
f lw()Pde < h,
0
where £ is the positive constant appearing in Proposition 3.2. Then (4.4) directly
follows from Proposition 3.2.

We next conclude the proof by applying several times (4.4). For a given s €
10, 1 — sp[, we set Z+(O 0) =4dq SO)/S(Z (0, 0)) Note that the function

Ug 2+(0, 0) —> R, Us = M(SS/U*SO)('))

is a non-negative solution to .2 u; = 0, where

m
L= (85150 (D), 0 _SSO) i (85/(1—50)(2)) 3,
j:

N
+ Z b,-,jx,-ax_, — 0.
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Since .7, satisfies assumptions [H.1-3], then (4.4) also applies to us. As a conse-
quence,

u(B (%, 1) = us (8150 (F. 1)) = C s (&, 1) = C u(By/(1-59) (X, D). (4.5)

Now let n be the unique positive integer such that (1 — so)tl<s < (1 —s0). By
applying n times (4.5) we find

u@s(%,0) < C"u(%,0),  r=s5/(1-s0)".
On the other hand, the §,-homogeneity of the norm || - || ¢ yields

o 815y . D)|| o = In[I(X, DIk

In(1 — s9) ’
so that - i
C" =C1||8a—spy®. D] " (4.6)
with C| = exp( - %ln IICx, t_)||K), and 8 = —% > 0. Finally, since

s < (1—sp)"and f > 0, (4.6) yields C" < Cy |[8,(%, D) ", so that

(350 ) = =6, 5,7,
8@ DIk

The proof is then accomplished by using (4.4). O

We next show that if the boundary of €2 is a Lipg surface, then it satisfies a
strong Harnack connectivity condition.

Lemma 4.4. Let Q) be as in (2.10) withr €10, 1]. Let f : QO — R be a Lipg
function such that f(0,0) = 0. Then there exists a positive Ao, only depending
on the operator £ and on M, such that the following statement is true. For any
A > Ag, let xp be as in (4.2), and set 7+ = (xp, 1), 2= = (—xn, 1). There exist
b €10, 1[, and two neighborhoods U™, U~ of x5 and —x  respectively, such that:

(i) Z5, o+ p,u+ @D S Qs
(ii) Z(;?rz_,Der_(x, HDNQy, =0,
for every (x,t) € Af,%. Here UY, U™ and b only depend on £, A and M.
Proof. We first prove (i) for (x, t) = (0, 0). In that order, we consider the cone
K, = {00 et(Qur) | MIG". 0% < 1},
and we show that

Z;;prm(o, 0)={p@. DIxeU", 0<s<1}CKy,. p=br. 47)
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Here A > Ao(Z, M), b =b(ZL, M, A) €]0,1[ and U™ is a neighborhood of x4,
depending on .Z, M, and A. As a first step, we choose Aq such that

xh > M||(x}, Dl forany A > Ao. 4.8)
A direct computation shows that (x A),(,O ) — 0, and

) 2)/A

X —_ BT/(]) i=1,...,k.
A (2]+ )”( ) J

Hence )
| <ACHB). j=1.....k,

with the constants C;(B)’s have an obvious meaning. Hence, in order to prove
(4.8), it is sufficient to prove the following inequality

K 1
A > M(Z (A C;(B))TF + 1). (4.9)
j=1
However, this inequality which is trivially satisfied whenever A is sufficiently large.
Next, if we choose b sufficiently small, then we have

Sp(xn, 1) € Ky o p=br. (4.10)

As K 1\+/I » s an open set, there exists a neighborhood U * of xa such that (D,x, p?) e
, forevery x € U™. By the (D], r?)-homogeneity of the norm || - |’%, we also
have Ss(Dpx, p %) ¢ KJr for every x € UT and s €10, 1]. This proves (4.7) and
then (i), recalling that f 1s a Lipg function, and the definition of Q.
We next prove (i) for every (x, 1) € Af’% Lete = (%, M) €10, 1[ be as in
(2.11). From (4.7) it follows that

Z+

8epz T, Dep U+(O O)CKME',, p = br.

As a consequence, setting KM X 1) =(x,1)0 Kﬁar, we have

y o pyur @D S K (r) forevery (v, e RV @.11)

‘We next show that

Ky, Sr(x 1) C Qs for every (x,t) € Af,%, 4.12)

and then (i) will directly follow from (4.11). Consider any (§, 1) € K
(2.11), we have

M, er- By

x,t)o(&, 1) € QM for every (x,1) € Aﬁ%.
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Hence, to prove (4.12) it is sufficient to show that

f((E +exp(=tBNx)" t +1) <& +x/, (4.13)

for every (x, 1) € Af,%. Note that, as x" = f(x”, t), (4.13) is equivalent to

F((E+ exp(—tBT)x)//, t+1)— fx", 1) <&,

which is trivially satisfied, since f is Lipg, and (§,7) € K A‘; ¢ Lhis proves (4.13)
and then (4.12).

We next prove (ii). Consider the constant b as in (4.10). Arguing as in the
proof of (4.11), it is easy to see that

5o Dyu- @) € Ky (x1) forevery  (x,1) e RV (4.14)

Here KA_/I,sr(x’ t) = (x’ t) ° K]l_Ler and

Kipor = {00.0) € It(Qurer) |6 < =MIG". DI} }.
Note that
K;,I’sr(x, HNQy, =0, forevery (x,t) € Af,%,

and hence the proof is complete. U

Recall the definition of the ball Bk (zo, 7) in (2.5). As a plain consequence of
Lemma 3.1 in [6] and of Lemma 4.4 -(ii), we have the following lemma.

Lemma 4.5. Let Q) be as in (2.10) for r €10, 1]. Let f : Q) — R be a Lipg
function such that f(0,0) = 0. For every 0 €10, 1 there exists pg €10, 1] such
that
sup u<@o sup u (4.15)
Qy.NBk (20,509) Q. NBk (20,5)
for every non-negative solution u to £u = 0 in Qy,, such thatu = 0 on A £5 and
for every zp € Af’% and s > 0 such that Bk (zg, s) N 0Qy, C Af’%.

We end this section by proving the following lemma.

Lemma 4.6. Let Q) be as in (2.10) withr €]0,1]. Let f : QO — R be a Lipg
function such that f(0,0) = 0. Then there exist three constants C; > 1, A1 > Ag
and po €10, 1] only depending on the operator £ and on M, such that Cypg < 1
and the following statement is true. If z5 = (xa, 1) is as in Lemma 4.4 for some
A > Ay, then, for every p €10, po] and every (§,t) € Qy ,p, there exist (x,t) €
Af.corp and’s €10, rp[ such that

(€, 7)=(x,1) o8z .
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Proof. Let pg €10, 1] be a positive constant that will be chosen later. Consider the
path y(s) = (£, 1) o & ((x,\, l)_l) for s > 0, where (&, 7) is any point of Q4.
By a direct computation we find

A d —2)TIA
(xa, D7'= (- A€, —=Ble, ..., - §¥ BI'...Ble, —1),
3 il — 20+ D!

so that
A
y(s) = (— she' + £, —S3§BIT€/+ szBlTS(O)—I- e

K K—I
_J2k+1 (=2)'A BT...gTo
S ;i!(ZK—Zi—kl)!! kL

(2 y
+y B Bl g ’)+"3(K)”_S2>’
i=1

forany A > Ag. We claim that it is possible to determine a pg = po(-Z, M) €10, 1]
and to choose A1 = A1(Z, M) > Ay, in order to have

y(s) € Qu., forevery s €]0,rpol, and y(rpo) ¢ Q2. (4.16)

for any A > Aj. We next choose pp = po(-Z, M) €]0, 1] satisfying the first
statement of (4.16). With this aim, it is sufficient to show that

| —sA+&|<4Mr, |t—s*<2? |G| =r%, i=m+1,...,N,
4.17)
for every s €10, rpol. Since (§, T) € Qum,rpy> WE have

| —sA+&| <rpo(A+4M), [t =57 <30, (4.18)

for every s € ]0, rpp]. Moreover,

J
YD) < Acjis 4 3 Gs? 00|+ 6]
=1 ; (4.19)
< (Vﬂo)2j+l(1\cj+1 + ch +mj>,
=1

forany j =1, ..., «, and for every s € ]0, rpo]. Here the ¢;’s are positive constants
only dependent on M and on the matrix B. Hence, condition (4.17) is satisfied by
choosing

0o < C5 L, (4.20)
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where
C, = max {1 + A, é, _max (ch—i-l + ijcl —|-m1>"’fl+l}
AM NV 2 j=1,..« =
This proves that
Y (s) € Om,Corpy forevery s €10, rpol. 4.21)

Note that C2 00 < 1 yields Oy cyrpy C Qm.r, hence the first statement of (4.16) is
proved.

It remains to prove the last part of (4.16). We will show that it is possible to
choose of A such that

y(rpo) < f(v(rpo)”, T — (rpo)?),
for every A > Aj. To this aim, as f is Lipg, it is enough to show that
M| (yrp0). T = (rp0)*) | ¢ <rooA — &', (4.22)
As in the first estimate of (4.18) we have
rooA — & > rpo(A —4M), (4.23)

and since we want the right handside in (4.22) to be positive we require that A| >
4M. From (4.18) and (4.19), it follows that

K J 1
|| (J/(T,OO)//’ T— (rpo)z) ||/I;' <rpo (m -1+ Z (ACJ'+1 —f—ZCl +mj)2/+l _}_\/g)
j=1 =1

(4.24)
Now, choosing A so large that

K J 1
A > M(m +3+Z(Alcj+1 —I—ch +mj>2/+l +\/§),
= I=1

we see that (4.22) follows from (4.23) and (4.24). This completes the proof of
(4.16).

From the second statement of (4.16), and from (4.21), it follows that we can
finds €10, rpo[ such that

V(E) = (x7 t) E Af,C2rp07

and the proof of the lemma is accomplished. Indeed, by (4.20), the result holds true
also for every p €10, po]. Il
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5. Proof of the main result

Proof of Proposition 2.2.  As in (2.7), we set x’ = x;, for some j = 1,...,m.
Consider z € ¥ and r > 0 such that

TNGER={¢EeC@I fE" 1)=¢]

where f is Lip(1, 1/2). Since C,(z) is an open set, there exist some positive M,
and r; satisfying Q. 2. (z) € Cr(z). To prove Proposition 2.2 it is enough to show
that f |Q~ is a Lipx function. To accomplish this we let (y”,s), (§”,7) € QF

and we prove that there exists a positive constant C = C (Q ) satisfying

1
' —&"+ls—112 <C|((y —exp((z = )BNE) s — 1) |- (5.1
Recall the notation in (2.2) and (2.7) and note that
0
(v —exp((z —)BT)g) = 3 — &

Moreover,

|y(1)_€(1)| < |y(1) (1)_ ( —S)BITS(O)| +s — ‘L’HBITS(O)’

2 i |
< C13,1 |y(1)_ é_—(l)_ ('E _ S)BlTé(O)|3 + C]’2|S _ 'L’|2,
for two positive constants Cy,1 and C» 5, depending only on the set Q7 . Analo-

gously, for any I = 2, ..., «, there exist C;; = Cl,i(Q’z’n) >0,i = i, 2, such
that )

YO £0] < |y _ g0 _ Z (t le)l BT .BIT_H_l%.(Z—i)‘

i=1 :
+ s —||Bf &1~ 1)+Z ﬂ Bl ... BlT—i+15(l_i)'
A (= s) T

< Cl,l (l) 5(1) Z]l—vB Bl i1 5(1 i)
i=
+Crols — 12
Recalling (2.8) we see that this proves (5.1). O

Proof of Proposition 2.3. 1t is not restrictive to assume (xg, fo) = (0,0) and r =
1. Let (X,7) = 8pzT and U = DpU™, where b, zt and U™ are as in Lemma
4.4. Consider any § €]0, 1[. By Lemma 4.2, the point §7(X,7) belongs to an
#-admissible path starting from (X, 7). Actually, the same argument used at the
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beginning of the proof of Proposition 3.2 shows that 87(X, 7) is an interior point of
D5 (Z)%F = O, 0)). Hence there exists a positive o such that

K := Bk (5. D. p) C Int (%7;;) (Zi7, (0. 0))) : (5.2)

By Theorem 3.1 there exists a positive constant C g such that supz u < Cgu(X, 1.
By the linearity of ., it is not restrictive to assume C Eu(f ,t) = 1, and hence that

supg u < 1. (5.3)

Moreover, by the continuity of the function (£, 7) — (£, T) o &(X, 7), there exists
&1 €10, 1] such that

(6, 7) 085X, 7) € K forevery (£,7) € Ay, (5.4)

We next follow a classical argument also used in our previous work [6]. We fix a
suitably large constant A and we assume, by contradiction, that there exists z; €
Qy c satisfying u(z1) > A. To this aim, we choose 6 € ]0, ¢ P[, where ¢ is the
constant in (2.3), and 8 is as in Lemma 4.3. Then we set

C/ C/ C//
80<min{,00,81,b3,f1‘/’[}, o<min{1,—M,—M},
acl ¢ 20¢’ G,
4 £ ¢ 1 20, & 8 (5.5
. max{l’Q( ¢ > ’_1<M2(c0%)j) }
09C), 0 €80 =

where C?w CX4 are the constants in (2.12), C; is as in Lemma 4.3, b is as in Lemma
4.4, pg €10, 1] is as in Lemma 4.5, pg and C, are as in Lemma 4.6, and &7 is as in
(5.4). Note that the series in (5.5) is convergent since 6 € ]0, Pl
Let
&0

c=—F (5.6)

N
M

and let z; € Q7 be such that u(z;) > A. Note that (2.12) and the choice of o in
(5.5) imply that

71 € Bk (0,080) N Qf & . (5.7
Ty
We next show that there exists a sequence {z;}; such that
ZjE€Qn,  ulz)>1r60'", (5.8)
T

forevery j € N. We will see that the properties of z; in (5.8) enable us to determine
apointw; € Ag, andas; €10, 1] satisfying

~ ~ Lo -t
zj =wjo (55X, 1),  pji=dk(zj,w)) <C{LFOF, (5.9)



A CARLESON-TYPE ESTIMATE FOR KOLMOGOROV OPERATORS 461

forevery j € N. As a consequence of the inequality in (5.9), we get dg (2, A f,g)) <
dg(zj,w;) — 0as j — oo, then u(z;) vanishes as j — oo. This will then
contradict the inequality in (5.8) and hence

supu < ACg ux, 1.
Q.

In particular, the proof will be accomplished.
We next prove (5.8) by induction. Our choice of z| proves the claim for j = 1.
Assume that (5.8) is satisfied for j = k. By Lemma 4.6, as 80C2_1 < po, there exist

€0
€ A : 3 S 07 N~
Wk J-#0 Sk ] Cobs [
such that z;x = wy o 8, (&(X, 7)). Note that the choice of g in (5.5) implies that
s €10, 1[, and that wg o (X, 1) € K, by (5.4). From Lemma 4.3 it follows that

Ci

——————— u(wg 0 55(X, 7). (5.10)
SFPIE Dl

A0F < u(z) = u(wg 08, (5%, 1)) <

Hence, (5.3) gives
L1 k=l
pr = di (zk, wg) < CJLTFOF . (5.11)

We next claim that

Bx (wy, py ') € Q.1 for every k € N. (5.12)

Indeed, consider any z € Bg (wy, ,09_1,0/(). By using (2.3), (5.11), and recalling that
A gy S Bk (0, ¢ e0) by (2.12), we have

lzllx < e(lwellx + llw; o zllx) < e(clyreo + oy 'ox)
L1 c
<ce(cheo+py'CIATF) < TM

thanks to the bounds of g9 and A in (5.5). This inequality, together with (2.12),
proves (5.12). As a consequence, we have

B (wy, pe_]Pk) NaQy C Af’%, for every k € N.
Then, by Lemma 4.5,

10K < u(zp) < sup u=<@o sup u.
2 410Bk (. o) Q4 1NBx (wi, g ox)
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Hence, there exists zx4+1 € 71 N By (w, ,og_l,ok) such that

u(zps1) > r67%.

This shows the second statement of (5.8) for j = k + 1. Aiming to conclude the
proof, it is enough to check that zz4+; € @ fe By repeatedly using the pseudo-
)

triangular inequality (2.3), we get

-1
lexetllx < e Nzl + 127" o 2l

k
in,—1
< c(nmnK +Y ¢z oz,-+1||1<).
=1

J=

(5.13)

We also have
—1 —1 -1
27 ozl < e (llz; o wjllx + w0 zjerlx)
1 —1y oy ol
<c(cpj+py pj) <cle+p, )C{ A PO P,

by (5.11). By using the above inequality in (5.13), and recalling (5.7), we find

00 . ’
2 00') <"

1 _1
lzk+1llx = C(oso +c(c+ pg‘)Cf(A 0)"F
j=1

because of our choice of o and A in (5.5). This proves that

¢ €0
Zk+1 € Bk (0, Aé—2> NQp1 € Q

8_0 9
’ C2
by (2.12). The proof is accomplished. U

Proof of Theorem 1.1. Consider any z;, for j = 1,..., k, and apply Proposition
23to Oum 2rf(2j). We only need to show that the constants ¢ and C do not depend
on the coordinate system relevant to e;.. We rely on the following elementary state-
ment. For every M > 0 there exists € > 0 such that, if A ¢, is a Lipg surface with
Lipschitz constant M and with respect to a ¢’ € R™, then Ay, is a Lipg surface
with Lipschitz constant 2M and with respect to €', for every ¢ € R™ such that
€| = 1 and |[€ — €| < e. By compactness, there exists a finite set €|, ..., ¢,
of unit vectors of R™ such that B(Z’l, €), ..., B(€,, &) cover the unit sphere of R"”.
Hence there exists 'e‘l{, with i € {1,..., n}, such that Afj,rj (z;) is a Lipg surface
with respect to ¢! and with Lipschitz constant 2M ;. To conclude the proof of The-
orem 1.1 it is sufficient to set ¢ = min{cy,...,c,} and C = max{Cy, ..., Cp},
where ¢; and C; are the constants relevant to Lipg functions of Lipschitz constant
2M, withrespectto e, i =1,...,n. O
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Proof of Proposition 2.4. As in the proof of Proposition 2.3, it is not restrictive to
assume (xq, fp) = (0, 0) and r = 1. Consider the point 7 = (0, 1) for Tpositive and
to be chosen. Arguing as in the proof of Lemma 4.4, it is easy to see that we can
choose a sufficiently small positive b, and a suitable neighborhood of the origin U,
such that

NIENR D SEN)

(5.14)
={@.noE 1 Ene0m =M (EVF ++ g9

for every (x, t) € R¥*!. By the continuity of the operation “o” and by the Lipschitz
continuity of g, it is possible to find a suitably small ¢ such that

I?;;’s(x, 1) C §g71 for every (x,t) € Zg,l/z.

This proves that ZJF~ ~(x t) C S~2g 1, for every (x,1) € Zg 12 Analogously,

we can show that Z ~(x N Q 1 = 0, for every (x,t) € Ag 1/2. Then a

conclusion similar to Lemma 4.4 and Lemma 4.5 plainly follows. To prove an
analogous statement of Lemma 4.6 is even simpler. Indeed, since we in this case
have 7 = (0, ) we can simply consider the path

y(s)=(,1)0(0, —s2t~) = (exp <s273T> & 1— s27) , §s>0.

Arguing as in the proof of Lemma 4.6, it easy to find pg = 00(Z, M) €10,1]
such that y (s) € Q1,1,m for every s €10, po] and y (po) ¢ 24,1. We omit further
details. O

Proof of Proposition 2.5. We first explain the reason we choose a small Lipschitz
constant M. We aim to find a cone Z + ~(xo, fp) contained in Qg, in order to

rely on the argument used in Proposmon 2.4. To show that (xg, fp) 0 8,7 € ﬁg, it is
sufficient to have

exp (tBT) X0 — xo‘ > ‘g (exp (tBT> xo>

by the Lipschitz continuity of g. Since exp(t BT )xo = xo+1t B xo+o(t) ast — 0,
the above requirement is satisfied for any positive ¢ small enough, provided that
the Lipschitz constant M satisfies M sup,.c IBTx|| < 1. Once this condition is

t>M

0<t<Mcg,

satisfied, we build a cone Z;? D ﬁ(xo, tp) contained in S~2g and we conclude the

proof of Proposition 2.5 exactfy as the one of Proposition 2.4. We omit further
details. O
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