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Periodically wrinkled plate model of the Foppl-von Karman type

IGOR VELCIC

Abstract. In this paper we derive, by means of I"-convergence, the periodically
wrinkled plate model starting from three dimensional nonlinear elasticity. We

assume that the thickness of the plate is h? and that the mid-surface of the plate is
given by (x1, xp) — (x1, X2, h29();l—', );l—z)), where 6 is [0, 1]2 periodic function.
We also assume that the strain energy of the plate has the order h8 = (h2)4, which

corresponds to the Foppl-von Karméan model in the case of the ordinary plate. The
obtained model mixes the bending part of the energy with the stretching part.

Mathematics Subject Classification (2010): 74K20 (primary); 74B20 (sec-
ondary).

1. Introduction

The study of thin structures is the subject of numerous works in the theory of elas-
ticity. Many authors have proposed two-dimensional shell and plate models and we
come to the problem of their justification. There is a vast literature on the subject
of plates and shells (see [9, 10]).

The justification of the model of plates and shells, by using I"-convergence is
well established. The first works in that direction are [17, 18]. The thickness of
the plate is assumed to be /, a small parameter, and the external loads are assumed
to be of the order 0. The obtained model for plate and shells differs from the one
obtained by the formal asymptotic expansion in the sense that additional relaxation
of the energy functional is done.

From the pioneering work of Friesecke, James, Miiller [13] higher order mod-
els of plates and shells are justified from three dimensional nonlinear elasticity
(see [13-16,20,21]. Here, higher order, relates that we assume that the magni-
tude of the external loads (i.e. of the strain energy) behaves like 1%, o > 0 (i.e.
hf, B > 0). Depending on different parameter « different lower-dimensional mod-
els are obtained (see [14]).

Different influence of the imperfections of the domain on the model is also
discussed in the literature. In [5,7] it is assumed that the stored energy is non-
homogeneous function and oscillates with the order /4, as the thickness of the plate,
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but the strain energy (after divided by the order of volume #) is assumed to be of the
order 0. This model thus corresponds to the one given in [17] for the ordinary plate.
Also, the influence of non oscilating imperfections of the domain on the Foppl-von
Kérmaén plate model is discussed in [22] (elastic pre-deformation is a special case
of these imperfections). The special case of shallow shell and weakly curved rod is
discussed in [28,29]. All these models do not include periodic wrinkles which we
discuss here. Here we assume that the thickness of the plate is 42 and that the mid-
surface of the plate is given by (x1, x) — (x1, X2, hZQ(%, 7)), where 6 is [0, 172
periodic function. We also assume that the strain energy of the plate (divided by the
order of volume /2) has the order #® = (h?)*, which corresponds to the Foppl-von
Karman model in the case of the ordinary plate. The obtained model mixes the
bending part of the energy with the stretching part. This model is obtained in the
procedure of simultaneous homogenization and dimensional reduction. Recently
such procedure is done to obtain bending model of rods (see [24]). Some partial re-
sults are obtained in the bending case of plates (see [23]). However, in this case we
consider the Foppl-von Karman model for plates and suppose that we have oscillat-
ing elastic pre-deformation, but not oscillating changes of the material itself. Let us
just mention that applying the same type of wrinkles in the case of von Karman rod
model would not influence the model i.e. we would obtain the usual von Karman
rod model.

We could try to generalize these periodic wrinkles to the general prestress im-
perfections of domain (like it is done in [22] for non oscillating prestress or in [23]
for the oscillating prestress in the bending case for rod). But it is important to see
that our model depends on the pre-deformation 6y (see (4.60)), thus not only on
the derivatives of #. To deal with periodic wrinkles we use the tool of two-scale
convergence. The wrinkled plates model, derived from two dimensional linear Koi-
ter shell model, are derived in [2,3]. This model (and its linearization) is different
from those ones, which is not unexpected, since we derive the model from three
dimensional nonlinear theory and the thickness of the plate is of the same order as
the amplitude of the mid-surface.

Throughout the paper A or { A}~ denotes the closure of the set. By a domain we
call a bounded open set with Lipschitz boundary. I denotes the identity matrix, by
SO(3) we denote the rotations in R3 and by so(3) the set of antisymmetric matrices

3 x 3. By Rg‘yan‘ we denote the set of symmetric matrices of the dimension n X
n. e, e, es are the vectors of the canonical base in R3. — denotes the strong
convergence and — the weak convergence. By A - B we denote tr(A”B). We
suppose that the Greek indices «, 8 take the values in the set {1, 2} while the Latin

indices i, j take the values in the set {1, 2, 3}.

2. Setting up the problem

Let w be a two-dimensional domain with Lipschitz boundary in the plane spanned
by €1, ;. The canonical cell in R? we denote by ¥ = [0, 11?; the generic point in
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Y is y = (y1, y2). By a periodically wrinkled plate we mean a shell defined in the
following way. Let 6 : R> — R be a Y-periodic function of class C?. We call 0
the shape function. We consider a three-dimensional elastic shell occupying in its
reference configuration the set {Qh}*, where

. . h2 h2
Qh=®h Qh’th — —:
(€27) X )

the mapping O (@M~ > R3is given by

- X1 X -

O (x") = <x1,x2, h?0 (;1 f)) + X" (x1, x2)

his a unit normal vector to the middle surface
h

X3

" () of the shell. By  we denote 2! and by x3 we denote ol
denote x” = (x1, x2). At each point of the surface @ the vector 7" is given by

i (x1, x2) = (" (x1, x2)) 2 (—haw (%1 %) . —hdy0 (% %) , 1) ,

for all x" = (x', x) € Q", where 7

and by x’ we

where

2 2
h 2 X1 X2 2 X1 X2

, =h010 | —, — h"9,0 | —, — 1.
n"(x1, x2) 1(h h>+ 2<h h>+

By inverse function theorem it can be easily seen that for # < h¢ small enough " is
a C! diffeomorphism (the global injectivity can be proved by adapted compactness
argument, see [10, Theorem 3.1-1] for the ordinary shell). Let us by 6 : R2 > R
denote the function:

6o=0—1(0), (0):= / Ody. 2.1)
Y
The following theorem is easy to prove.

Theorem 2.1. There exists hg = ho(6) > 0 such that the Jacobian matrix Vel (x™)
is invertible for all x" € Q" and all h < hy. Also there exists C > 0 such that for
h < hg we have

det VOI = 1 + n2s" (x"), (2.2)

and
VO (x") = 1 - hC(x1, x2) — B*D(x1, x2, x3) + FPRIGM),  (2.3)
(VO (&)™ =14 hC(x1, x2) + h?E(x1, x2, x3) + BPREGD),  (2.4)

H(VO") — Xl oo g pinsys (VO™ — || oo sy < Ch,  (2.5)
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where
0 0 a0k
C(x1,x2) = 0 0 200G, ) |, (2.6)
=103, ) —R0 (G, 37 0
D(xy,x2,x3) = (2.7)
x39110(F-, ) X33129(h, i 0
x301260 (3, F7) x30020 (3, 3 0 ,
0 0 H(M0GH )2 + 20 $7?)
E(x1, x2, x3) = C*(x1, x2) + D(x1, x2, x3)
= (E1(x1, x2, x3), E2(x1, x2, x3), E3(x1, X2, Xx3)), (2.8)
-0 Q(h s h)2+x38119(h , h
Ei(x1,x2,x3) = | —010(3, 379303, 72) + %3920 (-, 3) | (2.9)
0
Ex(x1, x2,x3) = —a 260 (3L, h)2+X3822(9(h, = , (2.10)
0
0
Ey(ri,x,03) = | 0 : @.11)
—3(M0GE P+ 020G 37?)

and 8" . Q" — R, RZ Qh S R3I3 k=12 are functions which satisfy

sup max |8h(xh)| < Cp, sup max max |R (xh)| <Cp, k=1,2,
O<h<hg xheQh O<h<hy bJ xheQh

for some constant Cy > 0.

Proof. 1t is easy to see

W (x1. x0) = & — h,6 2% — hano 21z,
h h h "

h a160 o2 —|—39 ez + h’o; (x ){2.12)
3o X .
2 : hh z h h 3 P A2

where

C
sup max |01(x1 x2)| <C, sup max |80,01(x1 )| < —
0<h<ho x" Q" 0<h<ho x" Q" h
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for some C > 0 and o = 1, 2. From the definition " we conclude that

- X X N N X X = N
VO (', xl) = 1+ hdi0 <;1 f) 3® &1 + hiao (f f) 308

-p [ X1 X2 -p [ X1 X2 -
+ (xg“alnh (7, 7) , X2 " (? 7) ,nh> . (213)

The relation (2.3) is the direct consequence of the relations (2.12) and (2.13). The
relations (2.2), (2.4), (2.5) are the direct consequences of the relation (2.3). ]

The starting point of our analysis is the minimization problem for the wrinkled
plate. The strain energy of the wrinkled plate is given by

K"(3) = / W (Vy(x))dx,
Qh

where W : M>*3 — [0, +o0] is the stored energy density function. W is Borel
measurable and, as in [13-15], is supposed to satisfy

i) Wisofclass C?ina neighborhood of SO(3);
ii) W is frame-indifferent, i.e., W(F) = W(RF) for every F € R¥3 and R ¢
SO(3);
iii) W(F) > Cw dist>(F, SO(3)), for some Cy > 0 and all F € R33, W(F) =0
if F € SO(3).

By Q3 : R¥*3 — R we denote the quadratic form Q3(F) = D>W (I)(F, F) and by
05 : R?*? — R the quadratic form,

Qz(G)=1nIiRIg 03(G+a®es+e3®a), (2.14)
aEIR”

obtained by minimizing over the stretches in the x3 directions. Using ii) and iii)
we conclude that both forms are positive semi-definite (and hence convex), equal
to zero on antisymmetric matrices and depend only on the symmetric part of the
variable matrix, i.e. we have

Q3(F) = Q3(symF),  02(G) = Q2(symG). (2.15)

Also, from ii) and iii), we can conclude that both forms are positive definite (and
hence strictly convex) on symmetric matrices. For the special case of isotropic
elasticity we have

F +FT

03(F) = 2y ?+ At F)?,
G+GT, 2ux )
G) =2 trG)~. 2.16
02(G) = 2pl———F 4 7 == G) (2.16)
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Here 1, A are Lamé constants (see e.g. [8]). Since the strain energy is the most
difficult part to deal with (see Theorem 4.15) we shall look for the I'-limit of the
functional
Bz L
I"(y) = ﬁﬁK ).

The reason why we divide by /8 is because we are interested in the Foppl-von
Kéarman type model of the wrinkled plate (the thickness of the plate is #%). The
reason why we additionally divide K" by h? is because the volume of QM s de-
creasing with the order 42. In the third section we prove some technical results
about two scale convergence which we need later, in the forth section we prove the
['-convergence result. To prove it we firstly need the compactness result which tells
us how the displacements of the energy order 43 look like and secondly we have to
prove lower and upper bound which is standard in I"-analysis.

3. Two-scale convergence

For the notion of two scale convergence see [4,25]. Here @ C R” is a bounded
Lipschitz domain and Y = [0, 1]". For k = (k;)i=1..... € Z" we denote by |k| =
(1 kD2

We denote by C§(Y) the space of k-differentiable functions with continuous
k-th derivative in R” which are periodic of period Y. Then Li(Y) (respectively
H}'(Y) is the completion for the norm of L3(Y) (respectively H™ (Y) of C2°(Y)).
Remark that Lf},(Y ) actually coincides with the space of functions in L?(Y) ex-
tended by Y-periodicity to the whole of R”. H; (Y) coincides with the space of

functions in H'(Y) which are Y-periodic at the boundary in the sense of traces and
Hf(Y) coincides with the space of functions in H?(Y) which are with their first
derivatives Y -periodic at the boundary in the sense of traces etc. Using the Fourier
transform on torus it can be seen that (see e.g. [27])

.....

Hy'(Y) = {u u(y) =y e e =cp, Y kPl < oo}, 3.1)

kez" kez"

and the norm ||u||H;n(y) is equivalent to the norm {> ; ;> (1 + 1k|2™)|ck|23/2. We
also set

H\(Y) = {u of type (3.1), ¢o = 0} = {u, u € H}(Y), / u= o}.
Y

The restricted norm ||u|| AP (V) is equivalent to the norm {} ", ., k|2 |ck|2}1/2. The

space L?(w; Cy(Y)) denotes the space of measurable and square integrable func-
tions in x € w with values in the Banach space of continuous functions, Y -periodic
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in y. In the analogous way one can define L2 (w; H}'(Y)). Using the representation
(3.1) it can be seen that

L*(w; H'(Y)) = {u, u(x,y) = Z k()P R o € L2 (w; R™), ¢ = ¢y,
kezn

2
> kP lekl3 g, < } (3.2)

kez"

where we have by ¢ denoted the conjugate of cx. The norm |lu||2(,. H'(Y)) is
equivalent to the norm

1/2
{XM+MWWM&@}.

keZ?

The space D(w; C7°(Y)) denotes the space of infinitely differentiable functions
which take values in CZ°(Y) with compact support in w. It is easily seen that this

space is dense in L*(w; H'(Y)). In fact it can be seen that the space of finite linear
combinations

FL(w; C3°(Y)) = {M,Eln eNu(x,y)= Y e,
keznr, |k|<n

ck € Cy°(w; R?), ¢ = c_k}

is dense in L%(w; HJ"(Y)).

Definition 3.1. A sequence (u);~0 of functions in L*(w) converges two-scale to
a function uq belonging to L*(w x Y) if for every V¥ € L?(w; Cy(Y)),

/w@W( ) (//wun@y)%h+0

By —— we denote the two-scale convergence. The following theorems are given
in [4].

Theorem 3.2. Let f € L' (w; C4(Y)). Then f(x, ;Z—C) is a measurable function on
w for which it is valid:

||f( ) 21w = / sup | f O, WIdy =2 1l Lt w:cpry) (3.3)

w yeY

}}ig})/éf(x,%) dx:/w/Yf(x,y)dydx. 3.4

and
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Theorem 3.3. From each bounded sequence (up)p=o in L*(w) one can extract a
subsequence, and there exists a limit up(x, y) € L*(w x Y) such that this subse-
quence two-scale converges to uy.

The following theorem tells us about the form of oscillations of order 4 of
weakly convergent sequences in H'!(w).

Theorem 3.4. Let (up)p~o0 be a bounded sequence in H L(w) which converges
weakly to a limit u € H Yw). Then uy, two-scale converges to u(x), and there
exists a unique function uy(x,y) € L*(w; H#} (Y)) such that, up to a subsequence,
(Vup)n>o two-scale converges to Vyu + Vyuy(x, y).

Remark 3.5. In the definition of two-scale convergence we have taken the test
functions to be in the space L?(w; C4(Y)). When we are dealing with the sequence
of the functions which are bounded in L%(w) it is enough to take the test function
to be in the space D(w; Cz°(Y)).
The following lemmas will be needed later.

Lemma 3.6. Let (uy,)n~0 be a bounded sequence in H' (w) and let there exists a
constant C > 0 such that ||up| 2, =< Ch2. Then we have that (up)po and
(Vup)p=o two-scale converge to 0.

Proof. That (u);~0 two-scale converges to zero is the direct consequence of the
fact that strong convergence implies two-scale convergence to the same limit (not
depending on y € Y). Let us now take ¥ € D(w; C°(Y)). Then we have

Jowen(:3) = oo 3)
1 5 X J
- E/wuh(x) N4 (X, E) X.

Since the both terms on the right hand side converge to 0, due to the fact that
lunllp2 ) < Ch? we have the claim. O

The following characterization of the potentials is needed
Lemma 3.7. Let ii € L*(w x Y; R") be such that for each 1:& € D(w; CFX)"

-

which satisfies divy ¥ = 0, Vx, y we have that

/ /Yﬁ(x, y)t}(x, y)dydx = 0.

Then there exists a unique function v € L*(w; I-'I;; (Y)) such that Vyv = u. In the
same way, let U € L*(w x Y; R"™™) be such that for each V € D(w; Cgo(Y))yn
which satisfies szzl iy, Wi =0, Vx, y we have that

//ﬁ(x,y)-\i(x,y)dydx:o. (3.5)
wJY

Then there exists a unique function v € L*(w; I-'I#} (Y)) such that V}z,v =U.
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Proof. We shall only prove the second claim since the first goes in the analogous
way. Let us define the operator V§ : L (w; Hif(Y)) — L*(w x Y; R™™) by

v — ng. Let us identify the space L*(w; I-'I#f(Y )) with the sequences of
functions

L*(w; H}(Y)) = {(cmezn, cx € L*(w; R?), & = ¢y,

| 3 wittentnax < oo},

keZ

with the norm

()il :/ Z k|*|cx (X)) ?dx

kez"

and the space L%(w x Y; R"*") with

.....

/Z > |c;f(x)|2dx<oo},

kezZri,j=1,..n

with the norm

||(C;(j)k||2:/2 > il (oPdx.

O keZr i, j=1,...n

The operator V? operates in the following way

It is easily seen that V§ is continuous and one to one. We shall prove that it is

enough to demand the condition (3.5) for U e FL(w; Cg°(Y))™". Using the
properties of the Fourier transform the condition (3.5) can be interpreted in the

following way: For given ((l_]',ij),-,jzlw,,,)kezn € L%(w x Y; (R?)™ ") and every

.....

Y kikjd! =0, vk e Z", (3.6)

i,j=1,..., n
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we have that

/Z Z U,Qf(x)dk(x)dx_o

@ kel i, j=

By fixing k° € Z" and taking d’

o € Co(w; R2), which satisfies

0,0 ij _
i,j=1,..., n

and defining d” , = &5, d =0, Vk # k%, —k%,i, j = 1,....n we conclude that
/ Re(U”(x)dko(x))dx =0.
w

From this it can be easily seen that there exists vo € L?(w; R?) such that U ]i{) =
k?k?vko, foralli,j = 1,...,n. This is valid for an arbitrary kg € Z" and we

can easily conclude from the fact ((l_]',ij),-’jzl ,,,,, Wiezn € L*(@ x Y; (R?)<m)
that fw Y ke |k|*|vg (x)|*dx < oo. Now we have the claim by taking v(x, y) =
Ok Nk = Ygegn Ve (X)ePTHY O

Lemma 3.8. Let (up)n-0 be a sequence which converges strongly to u in H L(w).
Let (V) n0 be a sequence which is bounded in H' (w; R™) and for which is valid

IVt — Onll 2y < A, (3.7)

for some C > 0. Then there exists a unique v € L*(w; I-.Ij(Y)) such that Vv, ——
VZu(x) + Vyz,v(x, y).

Proof. 1t is easily seen that v, — Vu weakly in H! (w; R") and thus u € H%().
By using Theorem 3.3 we conclude that there exists ®'/ € L2%(w x Y) such that

Vil == @ux) + O (x, y), ..., dipu(x) + D" (x, ).

To show the existence of v we shall use Lemma 3.7. Let us take W € D(w;
Cp°(Y))"™*" which satisfies

Z iy, U =0, Va,y (3.8)
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and let us calculate

/{;/Y&)'(fjdydx Z}}E)% ( Z (8 vh(x) 0jju(x)) - Qi (X E)) dx

=—1lim [ Y (@) — ux)d;, ¥ (x, %) dx

h=0Jw; i 570 0

—;}ig})% Z ( () — u(x))dy, B (x,;l_c>dx

.....

h—0 h

using (3.7) = — lim — / Z (8 ul(x) — 9; u(x))dy \I/” <x E) dx

,,,,,

——dme [ @) - uCd,,, B (x, g)dx

h=0h @i j=1,.., n
Sim = [ @) — u )y, B (.2 ) dx
h—0 h? @i j=1,..,n e ’ h
using 3.8) = lim @l () = 3ju(x))dy, B (x, %) dx
-0 @i j=1,..,n
+ lim / > ) - u(x))dy,, U (x, f) dx = 0.
h—0 O i - h

O

Remark 3.9. In the special case C = 0 Lemma 3.8 is just the generalization of
Theorem 3.4. In fact what lemma tells us is that the claim is also valid if we are
closer to the gradient than the order of the oscillations.

Lemma 3.10. Let Q : R" — R be a convex function which satisfies
QW) < C+x»), VxeR", (3.9)

for some C > 0. Let (UMp-0 C L*(w; R") be a sequence which two-scale con-
verges to g € L%*(w x Y; R™). Then we have that

//Q(ﬁo(x,y))dydx flizni(r)lf/ 0" (x))dx . (3.10)
wJY - 9}

Proof. Let us take an arbitrary J € (L%*(w; C4(Y)))". Tt is well known that if a
convex function is finite on an open set than it is continuous. Thus Q is continuous.
Also an arbitrary convex function is a pointwise limit of an increasing family of
smooth convex Lipschitz functions Q,. To see this first we use the fact that there
exists an increasing family Q, of piecewise affine functions (with finitely many
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cuts) which pointwise converge to Q. Then we define én = én - % Finally we

smooth every 0 » by an appropriate mollifier to preserve the fact that the sequence
should be increasing. We obtain foreachn € N, & > 0

/ 0" (0))dx = / On (& (x, %))dx
e () ot

By letting # — 0 and using the definition of two-scale convergence and Theo-
rem 3.2 and the fact that the convexity of Q, and |Q,(x)] < C(1 + 1x|%) implies
|IDQ,(x)] <C(1+ |x|) we obtain for eachn € N

@3.11)

liminf | Q. (" (x))dx > / / 00 (Y (x, y))dydx
h=0 Jo wJY (3.12)

+/ /YDQnoZ(x,y»(ﬁo(x,y) —Jx, ).

By using an arbitrariness of 1} and the density of L*(w; Cy(Y)) in L*(w x Y) we
conclude that for each n € N

liminf/ Qn(ﬁh(x))dx > / / On(o(x, v))dydx. (3.13)
h—0 J, wJY
Since O, < Q we conclude
lim inf/ Q(ﬁh(x))dx > / / On(o(x, v))dydx. (3.14)
h—0 Jg, wJY
Letting n — oo and using (3.9) we conclude (3.10). ]

Lemma 3.11. Let (u)>0 be a bounded sequence in L?(w) which two-scale con-
verges to uo(x,y) € L%*(w x Y). Let (vp)p=0 be a sequence bounded in L*°(w)
which converges in measure to vy € L>(w). Then vyup, —— vo(x)ug(x, y).

Proof. We know that (vyup)p=o is bounded in L?(w) and that there exists a subse-
quence of (v,)n-0 such that v, — v a.e. in w. Let us take ¥ € D(w; C#(Y)) and
write,

/ () (Y (., Z)dx = / (WA (x) — V) up(X)Y (x, ;—‘) dx

+/ v()up(x)y (x, %) dx .

/ /yv(x)uo(x,y)llf(x,y)dydx,

(3.15)

The second converges to
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by the definition of two-scale convergence. We have to prove that the first term in
(3.15) converges to 0. By Egoroff’s theorem for an arbitrary ¢ > 0 there exists
E C w such that meas(E) < ¢ and v, — v uniformly on E¢. We write

/ (0 (0) = V(@) () <x%) dx = /E (0 () —v(@))up () (x%) dx

+ / (0 () — V(X)) up (X) (x;li) dx
E¢

The second term in (3.16) converges to 0 and can be made arbitrary small. For the
first term by the Cauchy inequality we have that there exists C > 0 such that

(3.16)

f (WA (x) — VO ()Y (x, %) dx < C/esup llunl 12y (3.17)
E h>0

By the arbitrariness of ¢ we have the claim. O

4. T-convergence

We shall need the following theorem which can be found in [13].

Theorem 4.1 (on geometric rigidity). Let U C R™ be a bounded Lipschitz do-
main, m > 2. Then there exists a constant C(U) with the following property: for
everyv € H YU R™) there is associated rotation R € SO(m) such that

IV3 =Rl 2y < CU)| dist(V, SO0m) | 121 4.1)

The constant C(U) can be chosen uniformly for a family of domains which are
Bilipschitz equivalent with controlled Lipschitz constants. The constant C(U) is
invariant under dilatations.

In the sequel we suppose hg > % (see Theorem 2.1). If this was not the case,

what follows could be easily adapted. Let us by P : Q@ — " denote the map
P (x', x3) = (x', h®x3). By V}, we denote

1
vV, = v(?l,ez + hzv
By 7" : R?> — R? we denote the mapping 7 (x1, x2) = (3, 7). In the same
way as in [14, Theorem 10, Remark 11] (see also [20, Lemma 8.1]) we can prove
the following theorem. For the adaption we only need Theorem 4.1 and the facts
that C(U) can be chosen uniformly for Bilipschitz equivalent domalns and that the
norms ||V®h Il ||(V®h) 1| are uniformly bounded on Q" forh < 1
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Theorem 4.2. Let  C R? be a domain. Let ®" be as above and let h < % Let
¥ e HY(Q"; R?) be such that

1 ‘2o oh 8
— dist“*(Vy", SO(3))dx < Ch°®,
h= Jan

for some C > 0. Then there exists map R" € H'(w, SO(3)) such that

1(V3") 0 ©" 0 PP —RM|| 2y < ChH*, 4.2)
IVR" | 2y < Ch?. (4.3)

Moreover there exist a constant rotation Qh € SO@3) such that
1(V5") 0 ©" 0 P! — Q" 12y < CH?, (4.4)
IR" = Q"llLrw) < Cph*, V¥p < 0. (4.5)
Here all constants depend only on w (and on p where indicated).

Remark 4.3. Since " is Bilipschitz map, it can easily be seen that the map y —
y o ®" is an isomorphism between the spaces H'!(Q"; R™) and H'(Q"; R™) (see
e.g. [1]).

To prove I'-convergence result we need to prove the compactness result, the
lower and the upper bound.

4.1. Compactness result

We need the following version of Korn’s inequality which is proved in a standard
way by contradiction.

Lemma 4.4. Let  C R? be a Lipschitz domain. Then there exists C(w) > 0 such
that for an arbitrary i € H'(Q2; R?) we have

||ﬁ||H1(w;R2)§C(a))(|| SymVﬁlle(w;Rz)+|f ﬁdX‘ﬂ—‘/(Bziil—alﬁz)de, (4.6)
[©] 0]
Lemma 4.5. Let y" € H'(Q"; R®) be such that
1 -
%) /@, dist*(Vy", SO@3))dx < Ch®. @.7)

Then there exists maps R" € H'(w, SO(3)) and constants R" € SO(3), ¢" € R?
such that "
v =R -
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and the corrected in-plane and the out-of-plane displacements

~h -
B, 1 (' (y 00"oph
i"(x1, x2) = — Zl °T° (x1, x2, x3)dx3 — [ !
4 ~h > X
h\J-172\ 35 0 & o Ph 2

—112 13(x1ax2)90( I h
23(.X1 x2)90(h > h ,

A 1 1/2 ~h X2
v (X1, x2) 1= 5 (Y3°@ o P")(x1, x2, x3)dx3 — 6 h 7 (4.8)

h2
satisfy
Sh -
1(Vy)o®" o PP —R"|| 12, < Ch*, (4.9)
IR" = Tl|zr@) < Cph® ¥p <00, [[VR'[ 24, < Ch%. (4.10)

Moreover every subsequence (not relabeled) has its subsequence (also not rela-
beled) such that

V' > v inHY(w), ve H*(w) (4.11)
" = i in H' (w; R?), (4.12)

R" — 1
el A in H'(0; R, (4.13)

~h -

Vy )o®"o Pt —1
Vy)e o - A in LAQ R (4.14)
BA=0, AeH"' (w;R¥, (4.15)
A =20 Vu—Vi®es, (4.16)

R" — 1 A?

Sym(h% — 5 in L@ RY), (4.17)

Proof. We shall follow the proof in [14, Lemma 13] (see also in [28, Lemma 2]).
Estimates (4.9) and (4.10) follow immediately from Theorem 4.2 since one can
choose R” so that (4.4) holds with Q" = I. By applying additional constant in-

~h . ..
plane rotation of order 4% to y and R we may assume in addition to (4.9) and
(4.10) that

sh = Shy =
/ ((8257) 0 O 0 PP — (81y5) 0 ®" 0 PM)dx = 0. (4.18)
Q
By choosing ¢’ suitably we may also assume that

/ G 0® o P" —&" o PYdx = 0. (4.19)

Let us define A" = ! From (4.10) we get for a subsequence

h2
A" < A in H (0; R¥3)
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Thus we deduce (4.13). Using (2.5), (4.9) we deduce (4.14). Since (R")TR" = I we
have A" + (AMT = —h2(A")T A”. Hence A + AT = 0 and after multiplication by
1/ h? we obtain (4.17) from the strong convergence of A”. Using (4.9) we conclude
that

I sym((VF") 0 ©" o P! — )|l 2y < Ch*. (4.20)

The following is useful

(Vi) oo P! = (VvF" 0 &) 0 PY(VOH ! o PH)

= V(" 0 ® 0 PIY(VEH T o PPy, 4.21)
From (4.21) it follows
(V") 0 & 0 PHY(VOM) 0 P1) = V, (5 0 & 0 P). (4.22)
Using (2.5), (4.14), (4.22) we conclude that
1 o~ = - .
ﬁvh(yh 0®" o P —®" 6 P") > Ain L2(Q; R**). (4.23)

From (4.19), (4.23) and the Poincaré inequality we conclude the convergence in
(4.11). Moreover we have d;v = As; fori = 1,2. Hence v € H? since A € H'.
Since A is skew-symmetric we immediately have A3 = —0d v, Ayz = —dv.

By the chain rule the following identities are valid fori = 1,2,3,a =1, 2,

0a (51 0O 0 P = (85)) 0 @ 0 P - (3,01 o PP
Sh = 2 Sh = =t
+(325;) 0 0" 0 P! (3,0%) 0 P! + (835;) 0 ©" 0 P" - (3,0%) 0 P! (4.24)

h—1233(§? 0 ®" o Py = (9;31) 0 @ 0 P . (960" o PP
+H(325)) 0 ® 0 PI . (3300) 0 P+ (853,) 0 @ 0 P - (3301 0 PI . (4.25)
From (2.3), (4.14), (4.20) we conclude for o, 8 = 1,2
13Ty 0 O 0 P (9501 0 PP — (9500 0 PPl 12y < Ch*,  (4.26)
and
1(855) 0 ® 0 P . (8:0%) 0 P" — hRu3(840) 07" 12y < Ch*,  (4.27)
for some C > 0. Using (4.9), (4.10), (4.14), (4.18), (4.25) we conclude that

| / (@i — dyi"ydx| < Ch?. (4.28)
w

In the same way using (4.9), (4.10), (4.14), (4.18), (4.25) we conclude that
||hi4 sym Vi ||L2(w) is bounded. Using Lemma 4.4, (4.19) and (4.28) we have the

convergence (4.12). It remains to conclude Aj> = 0. But this is easy, from (4.12),
(4.13) and (4.23). O
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Lemma 4.6. If we additionally assume the following

12 (Sh@h o ph
” / 0ot (xl,x2,x3)dx3—<xl> < Ch*, (4.29)
~12\ 5, 0 ©h o Ph Y2/ 2w
12
(Gr 0 ®" o PM)(x1, x2, x3)dx3 < Ch?, (4.30)
—-1/2 L2(w)

we can take R" =1, ¢" = 0 in Lemma 4.5.

Proof. First we shall prove that we can take Q" = Iin Theorem 4.2. By multiplying
(4.4) with V(0" o P") and using Poincaré inequality on 2 we have that there exists
b" € R3 such that

15" 0 " 0 P" — Q"(®" 0 Py —b" 12, < Ch?. (4.31)
From (4.29), (4.30) and by integrating (4.31) with respect to x3 we conclude
B X1 X1
Q' x| =[x |-p < Ch>. (4.32)
0 0

L%(w)

From this, using the fact that Q" € SO(3), we can conclude that ||b"|| < Ch? and
Q" —I|| < Ch?. Thus we can take Q" = I in Theorem 4.2. Now we conclude that
we can repeat the proof of Lemma 4.5 with assumptions (4.29) and (4.30) instead
of assumptions (4.18) (i.e. (4.28)) and (4.19). ]

>h -5 - . . .
Lemma 4.7. _Let vy, Rh, uh, u, vh, v b_e as in Lemma 4.5. Then there exist unique
i1 € L?(w; HN(Y))? and vi € L*(w; H}(Y)) such that

Vi —— Viii(x) + Vyiii(x, y) in L*(0 x Y; RP?), (4.33)
1 h
V— R); —— —VZu(x) = V2u(x, y) in L} (0 x Y; RP?). (4.34)
h* \ Ry Y
Proof. The relation (4.33) is the direct consequence of the relation (4.12) and The-
orem 3.4. To prove (4.34) we shall use Lemma 3.7. From the relation (4.9) using

the boundedness of VO and (4.22) we conclude

1 r12 .
”ﬁ/ Vi3 0 ®" o PP — &" o PM)dxs

1/2
_ﬁ(Rh ) /_1/2 Vi(©" o PMYdx3| 2, < Ch*.  (4.35)
From (4.35) using (2.3) and (4.17) we conclude

1 1
110" = SRl 2 = O, 11020" = SRl 2 < CH, (4.36)
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for some C > 0. From that we have, by using (4.17),
1
h2

The claim is now the direct consequence of Lemma 3.8 and (4.13). O

1
191" + SRl 2y < Ch?, [l820" + ﬁRgan(Q,) < Ch?. (4.37)

4.2. Lower bound

Remark 4.8. In the next lemma we shall characterize the limiting strain and ex-
press it in terms of u, i1, v, v1, 0 (see Lemma 4.7). Since the strain is an element of
L?(Q) and we want to obtain its two-scale limit which characterizes only oscilla-
tions of the first two variables of the order / the following modification of Definition
3.1 is needed: A sequence (uy);-0 of functions in L?() converges two-scale to a
function ug belonging to L2(Q x Y) if for every ¢ € L2(2; Cy(Y)),

X1 x2
/uh(x1,xz,X3)W(X1,Xz,X3,—,—)—>//uo(X1,Xz,X3,y)W(X1,Xz,X3,y)-
Q h h Qly

Here Y = [0, 1]%. It can be also seen that the analogous statements of Theorem 3.2,
Theorem 3.3, Theorem 3.4 and Remark 3.5 are valid (see [26] for time dependent
problems). Also the analogous conclusions of Lemma 3.6, Lemma 3.7, Lemma 3.8,
Lemma 3.10 and Lemma 3.11 are valid (V, should be replaced by the gradient in
the first two variables).

Lemma 4.9. Consider 3" : Q" — R3, R" € H'(w; SO(3)) and define i", v by
(4.8) Suppose that we have a subsequence of }h such that (4.9)-(4.17) are valid.
Additionally we suppose

Vil —— V,ii(x) + Vyii1 (x, y) in L} x Y1 R>?), (4.38)

1 /R" .
Vﬁ (R]g) TGN —va(x) - ngl(x, y) in L2(a) xY; szz)’ (4.39)

for iy € L*(w; I-.I# (V)2 and vy € L*(w; H#z(Y)). Then
RHT (Vi) 0 ©F 0 Py —1T
and the 2 x 2 sub-matrix G” given by Ggﬁ = Gyp for 1 < a, B < 2 satisfies

G- —~=G inL*(QxY;R?),  (4.40)

G (x1,x2,x3,y) = Go(x1, x2, ) + x3G1(x1, x2, y), (4.41)
where
sym Go(x1, X2, y) = sym V,ii(x) + sym Vyii1 (x, y)
—Viu(x)6(y) — Vavi(x, y)6o(y) + %vxvm ® Viv(x) (4.42)
Gi(x1.x2,y) = =Viv(x) — Vsvi(x, ). (4.43)
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Proof. We follow the proof of Lemma 15 in [14] (see also Lemma 4 in [28]). By
the assumption G” is bounded in L2, thus a subsequence converges weakly.

To show that the limit matrix G” is affine in x3 we consider the difference
quotients

H' (x', x3) = s [G"(x1, x2, x3 + 5) — G (x1, x2, x3)]. (4.44)

By multiplying the definition of G” with R” and using (4.22) we obtain for a, 8 €
{1,2}

1 oy =
R'H"Yop = <[ Va(" 0 6" 0 P33 +9)

Vi o & o P )]
67

1 - >
5[ (V3" 0 8 0 P, x3 +5)
sh*

. (1 — (V&M o PMY(x', x5+ S)) Lﬁ

1 - pd /
—Sﬁ[«wh) 0 @ o PM)(x', x3)

: (I — (VO o P, x3)> ]aﬂ
= %[(vh(yh 0 ®" o P! — B 0 P, x5 +5)
V(7" 0 ®" o PF — & o P, m)]aﬂ
o[ 0@ o P x4 5) -

—R"(x")) (I — (V") 0 PH(x' x5 + s)) ]aﬁ

1 - pd /
— [ (V5 0 8 0 Py x3)

_Rh(x/)) (I — ((Véh) ° Ph)(x/’ x3)> ]aﬂ

1 .
—— | R )~ DVE") 0 P x5 +5)

—(VOM) o P (', X3):| (4.45)

Olﬂ'

By using (2.3), (4.9) we conclude that the second and third term converges to O
strongly in L*(w x (—%, % — 5). The forth term also converges to 0 by (2.3) and
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(4.13). Thus we have that the first term in (4.45) is bounded in L?(£2) and thus two
scale converges to some G| € L*(Q2 x Y). We conclude

1 - 5 .
W[(vh(yh 0 ®" o P — & o PPY(x', x3 4 5)
s
V(" 0 ®" o PP — & o P, x3))] ,
o,
- iaﬂ(1 /s L 95708 0 P — & o PM).  (@46)
/’12 s Jo h2
By using (4.20) (which is a consequence of (4.9) and (4.17)) and (4.25) we conclude
that there exists C > O such thatfora = 1,2, =3 —«

VU [P Lo o an ph_ Gh. ph Y

” (W‘/‘O ﬁ83(y O@ OP —® OP )Ol _ﬁRO{:ﬁ‘
Ch?. 4.47
P(ox(-b =) @47

By using Lemma 3.6, the fact that forae = 1,2, 8 =3 — «

1 -
+ERgﬁ(a,39) orh

1 . .
ERZﬂ(aﬂO) of" = 0in H'(w) (4.48)
(this follows from (4.13)), we conclude from (4.45) that
11
R'H" ~— G|, inL?*w x (—5, - s> R, (4.49)

where G is given by (4.43). Since R" — I boundedly a.e. we conclude H* ——~
G from Lemma 3.11. From this we have also (4.41). In order to prove formula for
Gy it suffices to study

1
i) = f G s,

[}

We have for o, 8 € {1, 2}
(Vi o®"o P —T)yg  (R" —T)gp
n4 O pd

V"h éh Ph _ Rh
+|:(Rh—I)T( y)e h4° . (4.50)
o

(GMep(x', x3) =

The third term in (4.50) converges strongly to 0 in L?(2). From (4.25) we conclude,
after a little calculation by using (2.3), (4.9) and (4.13),that

1/2 v"h éh Ph_I
S I TLILTER ¥
-1/2 h

X3

- 1 h
+(o orh)Vﬁ (E);) — 0in L}(Q; R¥*?). (4.51)
23
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From (4.51) we conclude

fl/z (V3" 0 © o P! — D,
—1/2 h4

—(V)2u(x)60(y) — (Vy)?v1(x, y)6o(y) in L* (0 x Y; R¥?). (4.52)

x3 —— Vyi(x) + Vyﬁl(xa y)

From (4.51) and (4.52) we have (4.42). ]

By It . H'(w; R?) x L% (w; H} (Y))? x H*(w) x L*(w; H}(Y)) — R} we
denote the functional

L—>—>
1=, uy,v,vp) 2/

w

1 b d -
/Y (5 Qz(sym Vi (x) + sym Vyii1 (x, y) — VZu(x)80 ()
V201 0) + 5 Ver ® va)) dydx
1 1
+ﬁ /w/y Qz(ngl(x, y)dydx + 2 /w 0>(VZv(x))dx. (4.53)

Corollary 4.10. Let 3", R" " i, iy, v", v, v1,G", G, G”, Gy, G| be as in Lem-
ma 4.9. Then we have the following semi-continuity results.

li}rlni(r)lflh@h) > I, iy, v, v1). (4.54)

Proof. We shall use the truncation, the Taylor expansion and the weak semi-conti-
nuity argument as in the proof of Corollary 16 in [14]. Let m : [0, c0) — [0, c0)
denote a modulus of continuity of D>W near the identity and consider the good set
Qn = {x € Q: |G"(x)| < h~ ). Its characteristic function Xn 1s bounded and
satisfies x;, — 1 a.e. in €. Thus we have x;,G" —— G in L?>(Q x Y; R¥%3) by
Lemma 3.11. By Taylor expansion

1 1
X W A+ h*G"y > §Q3(XhGh) — m(h®)| xnG"%. (4.55)

Using i), ii), the nonnegativity of W, (4.55), the fact that )(hGh —~— G in
L2(2; R3*3), the convexity of O3, Lemma 3.10 and the definition of Q, we con-
clude

- o] - >
li;?l)i(r)lflh(yh) = 11;1111)1(r)lfﬁ /Q W((Rh)T((Vyh) 0O o Ph))dx

A%

.1 1 - =
11}131)1(1)1f[5/QQ3(XhGh)dx+ﬁ/Q(l — xn)W (V") o ©" oPh))dx]

1 1
> 1 / / 03(G(x, y))dydx > ~ / / 02(G' (x, y))dydx. (4.56)
2 Jaly 2 Jaly
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1
Now by (4.41), the fact that f2, x3dx3 = 0 we have
-2

1/2
/ /YQz(G”(xl,xz,xs,y))dde3 = /YQZ(GO(XI,XZay))dy

1/2
1
+—f 02(G1(x1, x2, y))dy. (4.57)
12 )y

By using (4.43) and the fact that fy 0;0jv = 0, for i, j = 1,2 and an arbitrary
v E H,f(Y) we conclude

/ /Y 02(G(x1, x2, y)dydx = / 02(Viv(x))dx + / /Y Q2(V;vi(x, y))dydx.

This implies the claim of the corollary. O
Let us by Q4 : R%YXH% X ngxn% — Rar denote the functional
0 (G,F) = min  1{y, (4.58)
i € Hy(Y),
v € H} (Y)

where we have by Ié" P (H#} (Y))? x [-'If(Y) — R(J)r denoted the functional
I (i, vy) = / <Q2(G + Foo(y) + sym Vii1 (y) — Vv (3)60(y))
Y

L 0y(v? d 4.59
+5502(V2u1 () )dy (4.59)

By IOL - HY(w; R?) x H*(w) — Rar we denote the functional

L 1 H -] 2 1 2
Iy (u,v) = 3 0, (symVu + EVU ® Vv, —=V-v)dx + 2 0>(V-v)dx.
w w

(4.60)
In the sequel we shall analyze the property of Q? .

Lemma 4.11. For every G, F € R?>*? there exists a unique i1 (G, F) € (I-.I#} (Y))?,
v1(G,F) € H#2(Y ) which minimizes the functional Ig p- This minimizer satisfies
the estimate
= 2 2 2 2
1 (G . 101G Pl < CAGI +FIP). (46D)
for some C > 0. The functional Qf is a nonnegative quadratic form. Let us by V

denote the subspace of Rzyxn%

v ={A= (Z; Z;) ¥y € Y, andnd(y) + aninb(y) - 2a120126(v) = 0} ,
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and by V- its orthogonal complement in ]Rfyxnf Then there exists C > 0 such that

04(G,F) > C(IG|* + IIF?), VG, F € R (4.62)

sym
where F+ € V* is the unique matrix such that F —FL e V.

Proof. The existence of the minimum of the functional / é" r in the space (H; (Y))*x
I-'Ig(Y) is guaranteed by the following facts:

1. for each G, F the functional Ig r 18 sequentially weakly lower semi continuous
by the convexity of the form Q».
2. for each G, F the functional Ié’ F 18 coercive in the sense

1@ g3 (yyy2 = F00 01 107 1l 2y = +00 = I p (i}, v])) — +oo.

To prove this let us note that the boundedness of Ié" F(z_i'f, v}) directly implies
the boundedness of ||v} || H2(r)" This, on the other hand, implies the boundedness
of || sym Vﬁ'l’ l 2(y)- From Korn’s inequality we have the claim.

The uniqueness of the minimum is the consequence of the strict convexity of the
form Q> on symmetric matrices.

Letusby A : ngxn% — ngxn% denote the positive definite linear operator which

realizes the quadratic functional Q; i.e. we have
02(G) = (AG, G), ¥G € R, (4.63)

where we have by (-, -) denoted the standard scalar multiplication on R?*2. The
minimization formulation (4.58) implies

/Y(A(Sym Vii1(y) — V201(3)00(»)), sym V@ (y))dy
+/IV(A(Sym Vi1 (y) — V2o1(3)60(»)), =V ()6 (»)dy
1
+g [ (ATP0). PPuonay
Y

= — [ 6. Voo + [ B, 5mVF0) - Vo)
V@ € (H} (Y)2, v e HX(Y). (4.64)
From (4.64) it can be easily seen that it1 (G, F), v (G, F) depends linearly on (G, F)

and thus Q? is a nonnegative quadratic form. To see the estimate (4.61) we just
take ¢ = i1, v = v;. We obtain

i — V2oiboll vy + V201l 2r) < CUIGH + IF]D. (4.65)
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From (4.65) we have (4.61). To check the positive definiteness of Qfl we have to
check
04 (G,F)=0,G,FeRY2=G=0,FeV. (4.66)

sym

Let us suppose Qg (G, F) = 0. From (4.59) we conclude that
vi(y) =0, G+F6y(y)+symViiy(y) =0, ¥y € Y. (4.67)

Integrating (4.67) in Y and using the fact u; € I'-'I#1 (Y) we conclude G = 0.
From the second equation we conclude that F6y is symmetrized gradient and
this implies
F110200 + F2201160 — 2F1201260 = 0. (4.68)

From this we have that F € V. O

Now we shall say something about the regularity of (4.64). First we will need
one technical lemma which is a variant of well known lemma (see e.g. [12]) for
torus.

Lemma 4.12. Let us take u € L*(Y) and let us extend u to R? by periodicity.
Define the i-th difference quotient of size h by

D) = & ”’e;;) —4) = 1,2) (4.69)

fory € Y and h € R and let us define

D"(u) := (D!'u, Dlu). (4.70)
We have:
i) Suppose u € H#} (Y). Then

ID"ull 2y < ClIDull 2y,

for some C > 0 and all 0 < |h| < ho.
ii) Assume u € L*(Y) and there exists a constant C such that

||Dhu||L2(Y) <C,
forall 0 < |h| < hg. Then
u € Hj(Y), with || Dul ;2yy < C.

Proof. Letus take Y’ = [—1, 2]%.
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i) From standard theorem on difference quotients we conclude that there exists
C| > such that

ID" ull 2yy < CrllDull 2y, @.71)

for all 0 < |h| < 1. Since, by periodicity, || Dull 2y = 9| Dull 2.y we have
the claim.

ii) Let us take u € L2(Y) and extend it, by periodicity to L?(Y"). To conclude that
| Dull2(yy < C is the direct consequence of the standard theorem on difference

quotient. We have to prove u € H#} (Y), i.e. it has periodic boundary conditions.
But this can be concluded from the fact that || D" ul| 2y < 9C, for every V
open Y C V C Y’. This implies | Dull2¢yy < 9C, by standard theorem on

difference quotients, and thus u € H 1(V). This, on the other hand, implies that
u has periodic boundary conditions. O

Lemma 4.13. Let 6 € CI;(Y). The solution U1, v1 of (4.64) is a linear function of
G, F and u; is in the space H;‘H(Y) and vy is in the space Hfrz(Y).

Proof. Since we are on torus, proving regularity is easier since we do not have
boundary. Let us prove the claim for k = 1. Let us take i € {1, 2} and test functions

Go = —D;"(Dliy), a=1,2; v=-D"(Dlv)
in (4.64). From standard properties on difference quotient we conclude
/Y (A(sym VD!iiy (y) — V> D}'v1 ()60(y)), sym VD'ii1)dy
+ fY (A(sym VD!iiy (y) — V2D!'vi ()60 (), —V>D'v1 ()60 (»))dy
+é fY (AV2D}'vi(y), V2D!i (v)dy
. /Y (AG. V2 Dlvr ()60 (»)dy
+/IV(AF00(y), sym VDPii1(y) — V2 Doy ()60 (»)dy
— /Y (A(sym Vii1 (y) — V201 () D!6o()), sym Vii1 (y))dy
- /Y (A(sym Vii1 (y) — V201(3)00(»)), — V201 (y) D60 (y))dy

- /Y (A(sym Vi (y) — V201 (») D60 ()), —=V2u1 (0o (0)dy .  (4.72)
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From (4.72), using the positive definiteness of .4 and transposing the different quo-
tient in the first two terms on the right hand side, we conclude that there exists
C > 0, dependent only on A such that

I sym V Dy — V2 D} v160) 135y, + V2D 011175 4,

< CUGI + IFI” + 1601l o)) i1 11 ) + 011152 ))- (473)

From this we conclude that || Dlhz_il lacyys |l Dih V1|l g2(yy are bounded, independent
of i, fori € {1,2}. Using lema 4.12 we have the claim for k = 1. For general k we
just differentiate (4.64) and repeat the arguments (see e.g. [12]). Thus we have that
the solution of (4.64) for 6 € C(Y) is given by

i (y) =A%) - G+Bi(y) -F,
a=1,2, (4.74)
v1(y) = Ay(») -G +By(y) - F,

where A%, BY € Hy"'(V; R>2), A, B, € Hy"?(V; R>*2), O

4.3. Upper bound

Theorem 4.14 (optimality of lower bound). Let v € H*(w), u € H'(w; R?) and
let 0 € Cﬁ(Y). Then for each sequence h — 0 there exists a subsequence, still

denoted by h and appropriate ih € Hl(flh; R3) and R" € H'(w; SO(3)) such
that

(V3" 0 " 0 P! — RM|| 2, < Ch*, (4.75)

h _

R" —1
IVR"|| 2,y < Ch?, —~ A in H (w; R¥3), (4.76)

hz

where A is defined by (4.16) and for i", v defined by (4.8) (where ’):) should be
replaced by y) convergence (4.11)-(4.12) are valid and

]}in}) "G = 1k, v). 4.77)

Proof. Let us assume that & € C*®(w; R?), v € C®(w). Let us take an arbitrary
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i1 € D(w; C;;O(Y))2 ,v1 € D(w; CZ°(Y)). Then we define
FHO" (x1, x2, x1)) = O" (x1, x2, x)
Wi (x1, x2) 4+ B2t (x1, x2, 5, 7
+
h*v(x1, x2) + h*vi (x1, x2, 5L, 32)
dv(x") + hdy vy (x1, x2, 3L, P
—h*x2 | Bov(x’) 4 hdy,vi (x1, x2, 5L, 22
0
x| X2 x1 %)\ -
—n* (811)()61 x2)+h8y1v1 <X1 X, — W ))6‘ <;, ;) el
4 X1 X2 x1 x2)\ .
—h <82v(x1 x2) + hoy,v; (XI»XL P ))90 <7, ;) e
i3 (rv(xr, x2)810 +orv(xy, x2)000 (21, 22
3 1 1,42)01 h h 2 1,A2)02 ]’l h 3
5 X1 X2 X1 X2
h*xld, , —h>(x1)%d , 478
+h7x3 0(x1x2h h)+ (x 1(x1x2h h> (4.78)

where 30, [il € D(w; C ;;O(Y))3 are going to be chosen later. We calculate

Vy'Ve" = VO + B2A' + h*B — h*xiC

01v016 91v020 0
—h3 | 9,000 90,0 0
0 0 01v010 + drv0,0

—0dy,v0160 —0y,v020 0
+ht | —8y,v310 —dy,v3,0 0
Oy, V1 dnpvr 0
0 0 0
—hzxé’ 0 0 0
0100110 + 0200120 01v0120 + 0rvI»0 0

+htdy ® &5 + hixidy ® &3 + O(h”), (4.79)
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where [|O (7)) < Ch’ and

0 0 —01v — hdy vy
A = 0 0 —0ov — hdy,vy |, (4.80)
81v+h8y1v1 32U+hay21}1 0
' + 0y, i} dpu' + dy,] 0
B' = | 814>+ 9,,u? i’ + dy,ii7 0
0 0 0
(011v + 3y, 3, v1)00 (B12V + 3y,y,v1)00 O
— | @12V + 3y, v1)00 (822V + 3y,y,v1)00 O |, 4.81)
0 0 0
o11v + aylyl vy 012V + 3y1y2v1 0
C = | 9ppv+ Oy y, V1 022V + Oy,y,v1 0 | . (4.82)
0 0 0

From (4.79), by using (2.4), we conclude
V" = 1+ h*A’ + h*B’ — h?x!C
+h*0 + WP + hidy @ é3 + h2xlidy @ &+ O(h°),  (4.83)

where
0 0 ol 0 00
O=|0 0oy, P=| 0 00 (4.84)
h h
0y 0%, o P31 P30

o, ol € D(w; CF X)), 0% 1o (@)s 105 1L (@), 1P l22o@) < C, C inde-
pendent of 4.

Let us define
R" = /A

The claims (4.75), (4.76) are easily checked to be valid as well as the convergence
(4.11), (4.12).
Using the identities (I + A)" (I + A) = I +2symA + ATA and (¢; ® a’ —
ad®e3)(30d —d' Qe3)=a ®@a + |d'|*e3 ® e; fora’ € R? we obtain
(VT (V") = 1+ h*2symB 4+ Vv ® Vv + |Vv|%é3 ® &3]

—212x4 (V20 + Vo)) + 2k sym(dy ® &3)

+2h2x§’ sym([il ® &3) + 2h* symO

+2h%x! symP + O (h°). (4.85)
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For a symmetric 2 x 2 matrix A” let ¢ = LA” € R? denote the (unique) vector
which realizes the minimum in the definition of Q5. i.e.

02(A") = 03(A"+cQ®é3+ €3 ®0).

Since Q3 is positive definite on symmetric matrices, ¢ is uniquely determined and
the map L is linear. We choose now

N 1 1 1 i
dy = _§|VU|23i3 - E(OB +03;) + (5 (SymB TV VU)) ;
o 1 )

dj = =5 (Pi3 + P3j) — (L(Vv + Viv))',

where 6 is Kronecker symbol, and we can see that all the calculations are still valid.
Taking the square root in (4.85) and using the frame indifference of W and the
Taylor expansion we get

5 . W(Vy") = iS/ W (VYT VYMY2) — 15, v, iy, v1), (4.86)
Qh h Qh

In the case § € C2°(Y) we could use Lemma 4.13. Since we supposed only 6 €

C g(Y ) we continue as follows. Let us now take an arbitrary # € H Hw),v € H:(w).

Let ity (Vii, —V*v) € L*(w; H} (Y))?, vi(Vii, —=V?v) € L*(w; HZ(Y)) be from

Lemma 4.11. We know take u"*, v", ﬁ'l’ v} smooth such that

14" =l g1 o2y < % (4.87)

V" = vllg2g) < % (4.88)

147 = a1l (2 (e = % (4.89)

o7 = vill 2w 20y < % (4.90)
[E@", v, an, o — IE G, v)| < % (4.91)

Now, we choose }h" e H! (flh"; R3 ), from the proof, such that
)
- - 1
1(V5") 0 & 0 P — T 12q) <

|—

i) for v defined by (4.8) we have [[v"" — v"|| 1, <

ne
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iii) for u"n defined by

) L (50 @ ph ;
' (xy, x2) o= —4</ ﬁ}l - (x1, x2, x3)dx3 — <x1 ))
hn —1/2 yzn o @hn o Phn 2

(81v”(X1 . x2)60 (3. 3 )

" (x1, x2)60 (3,
we have || — i, 2.,. 0 < +
) LX(@:R?) = 5
iv)
R B} 1
|1 3y — 1R @, o, i, o)) < -

By using ii) and iii) and compactness Lemma 4.5 and Lemma 4.6 we conclude that
there exists R such that (4.9), (4.10) is valid and for v and e defined by (4.8)

the assumptlons 4. 87) and (4.88) that the limits of #"» and v"» are & and v). By
using (4.91) and iv) we conclude that

lim 173"y = 1F G, v).
n—oo
This finishes the proof of theorem. O

Lemma 4.5, Lemma 4.9 and Theorem 4.14 enable us to standard theorem on
convergence of minimizers. We shall state it without proof (since it is standard),
assuming the external loads in é3 direction. For a more detailed discussion on
external loads in the standard Foppl-von Kdrmén case see [19].

Let ]?3” € Lz(ﬁh; R) be given with the property

1= = .
Vh, ﬁf;’ 00"o P" = f3 € L*(w; R), (4.92)
/@ ) fhdx = 0. (4.93)

It is not necessary to demand the equality in (4.92) neither that ]?3 depends only on
X1, x2. For a more detailed discussion see the proof of Theorem 2.5 in [20] (see
also the proof of Theorem 6 in [28]). Let us additionally assume

f x1 fadx =0, / X2 fadx = 0. (4.94)
w w

This can be assumed by rotating the coordinate axis (the energy density W in rota-
tional invariant). From (2.2) it can be concluded that

|/§2h x1fidx| < Ch®, |/@h xa fhdx| < Ch*. (4.95)
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The total energy functional J" (divided by /?), defined on the space H' (" R3),
is given by
- - 1 Zh =
G =GN - /Q s (4.96)
The following theorem is the main result and its proof follows the proof of Theorem
2 in [14].

Theorem 4.15 (I'-convergence). Let us suppose that 9 C;(Y) and ﬂhe L2($":R)
is given and satisfies (4.92), (4.93) and (4.94). Then:

1. There exists C1, Cy > 0 such that for every h > 0 we have
1 e 4 A
Cih* > inf!ﬁJh(yh); e HY(Q"; R3)} > —C,. (4.97)

In the case (0) # 0 we can take C1 = 0.
2. Ify" € H! Q"R isa minimizing sequence ofhith, that is

A PR A
lim <ﬁj (") —inf —5J ):o, (4.98)

then we have that there exists R" € SOQ3), ¢ e R such that the sequence
(R", ") has its subsequence (also not relabeled) with the following property:

~h = - > -
i) For the sequence y := RMTY" — " and u", v" defined by (4.8) the fol-
lowing is valid
i" — i weakly in H' (w; R?),
V" > v in HY(w), v e H(w).

Any accumulation point (ii, v, R) of the sequence (", v", R") minimizes the
functional

Jo (i, v, R) = I (ii, v) — Ra3 / Fxn, ) (v(xn, x2) + (0))dxidxa, (4.99)

vlzhere IOL is defined in (4.60). Moreover, for ]?3 # 0 we have R3z = 1 or
Ri3z = —1.

3. The minimum of the functional JOL exists in the space H'(w; R?) x H*(w) x
SO@®). Ify" € H! (Qh; R3) is a minimizing sequence (not relabeled) of thJh
then we have that

ey - Liw W
lim 5 JTO" = min B Jo (u, v, R). (4.100)
h—0 h iicH!(w;R?), ve H2(w), ReSO(3)

Remark 4.16. When we compare this model with the ordinary plate model of the
Foppl-von Kdrman type we see that in the energy expression we mix the term V2v
which measures the bending of the plate with the term sym Vi + %Vv ® Vv which
measures the stretching of the plate. Thus the imperfect plate (periodically wrin-
kled) can cause this kind of behavior.
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