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On plane rational curves and the splitting of the tangent bundle

ALESSANDRO GIMIGLIANO, BRIAN HARBOURNE AND MONICA IDÀ

Abstract. Given an immersion ' : P1 ! P2, we give new approaches to de-
termining the splitting of the pullback of the cotangent bundle. We also give new
bounds on the splitting type for immersions which factor as ' : P1 ⇠

= D ⇢ X !

P2, where X ! P2 is obtained by blowing up r distinct points pi 2 P2. As
applications in the case that the points pi are generic, we give a complete deter-
mination of the splitting types for such immersions when r  7. The case that
D2 = �1 is of particular interest. For r  8 generic points, it is known that
there are only finitely many inequivalent ' with D2 = �1, and all of them have
balanced splitting. However, for r = 9 generic points we show that there are
infinitely many inequivalent ' with D2 = �1 having unbalanced splitting (only
two such examples were known previously). We show that these new examples
are related to a semi-adjoint formula which we conjecture accounts for all occur-
rences of unbalanced splitting when D2 = �1 in the case of r = 9 generic points
pi . In the last section we apply such results to the study of the resolution of fat
point schemes.

Mathematics Subject Classification (2010): 14C20 (primary); 13P10, 14J26,
14J60 (secondary).

1. Introduction

We work over an algebraically closed ground field K . We are interested in alge-
braic immersions ' : P1 ! Pn , thus ' is a projective morphism which is generi-
cally injective and generically smooth over its image. The fact that ' need not be
everywhere injective or smooth means that the image '(P1)may have singularities.
It is well-known that any vector bundle on P1 splits as a direct sum of line bun-
dles [3, 18]. This applies in particular to the pullback '⇤TPn of the tangent bundle.
It turns out to be more convenient, yet equivalent, for us to study the splitting of the
pullback '⇤�Pn (1) of the first twist of the cotangent bundle. Thus we will focus on
'⇤�Pn (1); it is isomorphic toOP1(�a1)� · · ·�OP1(�an) for some integers ai . By
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reordering if necessary we may assume a1  a2  · · ·  an; we call (a1, . . . , an)
the splitting type of '⇤�Pn (1). Pulling the Euler sequence

0 ! �Pn (1) ! O�n+1
Pn ! OPn (1) ! 0

back via ', it follows that a1+· · ·+an = dC , where dC is the degree of C = '(P1).
The question arises as to what splitting types can occur. Most of the work on

this problem is moduli-theoretic: given putative splitting types, one asks if there are
any ' with those invariants and if so, what one can say about the space of all such ',
or about the generic ', etc. See for example [1,2,33]. When ' is an embedding, one
can ask for the splitting type of the normal bundle of '(P1). This question has also
attracted attention; see for example [4,8,9,13,26,32] among many others. However,
if n = 2 this latter question is not of much interest, both because the normal bundle
is itself a line bundle and because C must at most be either a line or a conic. In
contrast, there is still much that is not yet understood regarding the splitting types
of '⇤�P2(1).

When n = 2, the splitting types have the form (a1, a2) for integers 0  a1  a2
such that a1 + a2 = dC . We will denote (a1, a2) by (aC , bC) and refer to it as the
splitting type of C , and we will refer to �C = bC � aC as the splitting gap. When
the gap is at most 1 (i.e., when �C is as small as parity considerations allow), we
will say that C has balanced splitting or is balanced, and we will say that C is
unbalanced if the gap is more than 1.

The multiplicities of the singularities of C heavily influence �C . For example,
if C has a point of multiplicity m, then results of Ascenzi [1] show that

min(m, dC � m)  aC  min
⇣
dC � m,

jdC
2

k⌘
; (1.1)

see Lemma 2.1 and Proposition 2.4. These bounds are tightest when we use the
largest possible value for m; i.e., when m is the multiplicity mC of a point of C of
maximum multiplicity. If 2mC + 1 � dC , it follows from these bounds that aC =

min(mC , dC � mC) and hence bC = max(mC , dC � mC) and �C = |2mC � dC |.
This prompts us to make the following definition.
Definition 1.1. A rational projective plane curve C is Ascenzi if 2mC + 1 � dC .

Ascenzi curves exist. For example, it is easy to see that for each d � 3 there
is a rational projective plane curve C of degree dC = d with exactly one singular
point, of multiplicity mC = dC � 1. It follows that each such C is Ascenzi, and its
splitting type is (1, dC � 1).

The main problem which we study here can be stated as follows:
Problem 1.2. Given a subspace V = h'0,'1,'2i of dimension 3 in K [P1]d which
gives a linear series g2d on P1 defining a morphism which is an isomorphism on a
nonempty open subset, find the splitting type (aC , bC) for the rational curveC ⇢ P2
given by the g2d , and, when C is not Ascenzi, determine conditions on the singular-
ities of C which force the splitting to be unbalanced.
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This problem is closely related to that of determining the syzygies of the ho-
mogeneous ideal ('0,'1,'2), since, as is well-known (see Lemma 2.2), aC is the
least degree of such a syzygy. These syzygies are of independent interest; see for
example [27], which studies the loci of V ’s inside the Grassmaniann G(3, K [P1]d)
with respect to their syzygies, and determines the dimensions of the loci.

We give two additional computational solutions to the first part of Problem 1.2
by showing that bC can be computed in terms of the saturation degree of the ideal
('0,'1,'2) ⇢ K [P1] (see Theorem 2.3), and by showing how to determine �C us-
ing the computationally efficient method of moving lines (see Theorem 2.6), which
was originally developed to compute implicit equations of curves when given a
parameterization [34,35].

Note that for a general immersion �C , the singularities of C are nodes (i.e.,
mC  2) whose disposition in P2 is almost never generic. Thus if C is a general
rational curve of degree dC > 5, then C cannot be Ascenzi, and thus the splitting
gap is not completely determined by (1.1). Nonetheless, Ascenzi proved that the
general rational curve C is balanced [1].

But what can one say if it is not C which is general, but rather it is the points
at which C is singular which are general? Thus we propose to study �C for rational
curves C when the points at which C is singular are generic points of P2; i.e., given
generic points p1, . . . , pr 2 P2, we require that C be smooth away from the points
pi , and that C 0 be smooth, where C 0 is the proper transform of C on the surface
X obtained as the blow up ⇡ : X ! P2 of P2 at the points pi (so not only is C
smooth away from the points pi , but C does not have any additional infinitely near
singularities). The immersion ' in this situation factors as P1 = C 0

⇢ X ! P2, so
that '(P1) = ⇡(C 0) = C . In general, given a smooth rational curve D on X , it is
convenient to use aD , bD and �D with the obvious meanings; i.e., aD = a⇡(D) etc.
Similarly, we will say that D is Ascenzi if ⇡(D) is. To simplify statements of our
results, we will also say D is Ascenzi if ⇡(D) is a point. In these terms the problem
we propose to study, which is still open, is:
Problem 1.3. Given a blow up ⇡ : X ! P2 at r generic points pi , determine �D
for smooth rational curves D ⇢ X .

Given a curve C ⇢ P2 and distinct points pi , we will denote multpi (C) by
mi (C). Note if mi (C) = 0, then pi 62 C , and if mi (C) = 1, then pi 2 C but C is
smooth at pi . Given the blow up ⇡ : X ! P2 at distinct points p1, . . . , pr 2 P2
and a divisor D on X , it is well known that the divisor class [D] (i.e., the divisor
modulo linear equivalence) can be written uniquely as [dL �m1E1� · · · �mr Er ],
where L is the pullback via ⇡ to X of a line, and Ei = ⇡�1(pi ). If D ⇢ X is a
smooth rational curve with d > 0, then C = ⇡(D) is also a rational curve, and we
have [D] = [dC L�m1(C)E1� · · ·�mr (C)Er ]. We will refer to the integer vector
(dC ,m1(C), . . . ,mr (C)) as the numerical type of C (or, by extension, of D) with
respect to the points pi .

Thus for example, (d, d � 1) is an unbalanced Ascenzi type (i.e., the numeri-
cal type of an unbalanced Ascenzi curve) for every d � 4. Computer calculations
suggest many types also arise for unbalanced non-Ascenzi curves with generically
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situated singular points, but up to now only two have been rigorously justified (see
Example 3.4 for these two). In contrast, the following theorem is proved in Sec-
tion 3.2:

Theorem 1.4. Let X be the blow up of r generic points of P2. Among numerical
types of smooth rational curves D ⇢ X , the following holds:

(a) for r  6, (10, 4, 4, 4, 4, 4, 4) is the unique non-Ascenzi type and curves of
this type have balanced splitting;

(b) for r = 7 there are infinitely many non-Ascenzi types, and for all but finitely
many of these types the curves have unbalanced splitting.

Our results in Section 3.2 completely solve Problem 1.3 for r  7 by classifying
the numerical types for all smooth rational curves D ⇢ X for r  7 generic points,
and by determining the splitting gaps of curves of each type.

For larger values of r , a natural special case of Problem 1.3 is to consider
exceptional curves; i.e., smooth rational curves D ⇢ X with D2 = �1. This
case arises, for example, when studying graded Betti numbers for minimal free
resolutions of ideals of fat points supported at generic points pi (see [10, 11, 15]
and also Section 4), but this case is of interest in its own right, since the exceptional
curves represent an extremal case of Problem 1.3. Indeed, if char(K ) = 0, it is
known [6, 7] for every r that every smooth rational curve D ⇢ X satisfies D2 �

�1. This is only conjectural if r > 9 when char(K ) > 0, but it is true in all
characteristics if r  9. For if r < 9, then �KX is ample, hence D2 � �1 follows
from the adjunction formula, D2 = 2gD � 2� KX · D, since gD = 0 for a smooth
rational curve D. If r = 9, then �KX is merely nef, so this argument gives only
D2 � �2, but one can show that if D2 = �2, then D reduces by a Cremona
transformation centered in the points pi to L�E1�E2�E3, which contradicts the
fact that the points pi are generic. For an exposition of the conjectural status when
r > 9, see [22].

When r < 9 it is known that there are only finitely many numerical types
of exceptional curves, and they all are Ascenzi (see Section 3.3). Thus the first
interesting case of Problem 1.3 for exceptional curves is r = 9, for which we have
the following result (proved, as well as Theorem 1.6 below, in Section 3.3):

Theorem 1.5. If X is the blow up of r = 9 generic points of P2, then:

(a) X has only finitely many Ascenzi exceptional curves;
(b) up to the permutations of the multiplicities, the only numerical type of an un-

balanced Ascenzi exceptional curve is (4, 3, 1, 1, 1, 1, 1, 1, 1, 1); but
(c) X has infinitely many unbalanced non-Ascenzi exceptional curves.

Heretofore only one non-Ascenzi exceptional curve was proved to have unbal-
anced splitting (this being the one of type (8, 3, 3, 3, 3, 3, 3, 3, 1, 1) [12, Lemma
3.12(b)(ii)]; see Example 3.4) when r = 9. Computational experiments suggest
that X also has infinitely many balanced exceptional curves when r = 9. Proving
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that is still an open problem, but it would follow (see Remark 3.14) if Conjecture
1.7 which we state below is true.

Our proof of Theorem 1.5(c) applies the following sufficient numerical crite-
rion for an exceptional curve with r = 9 to have unbalanced splitting:

Theorem 1.6. Let E be an exceptional divisor on the blow up X of P2 at r = 9
generic points pi . If dE = E · L is even and each mi = E · Ei is odd, then
aE  (dE � 2)/2 and �E � 2.

The hypothesis that dE be even and each mi be odd is equivalent to the exis-
tence of a divisor class [A] on X such that 2[A] = [E + KX + L]. The proof that
aE  (dE � 2)/2 depends on showing that A has nontrivial linear syzygies and
relating these to syzygies of the trace of A on E . I.e., it depends on showing that
the kernel of µA : H0(OX (A)) ⌦ H0(OX (L)) ! H0(OX (A + L)) is nontrivial,
and relating it to the kernel of H0(OE (A)) ⌦ H0(OX (L)) ! H0(OE (A + L)).

The formula [A] = [E+KX+L]/2, which we can paraphrase by saying that A
is a semi-adjoint of L+E , is suggestive of some deeper structure that so far remains
mysterious, but extensive computational evidence suggests that the existence of A
is both necessary and sufficient for C to be unbalanced. In fact, up to permutation
of the entries, there are 1054 numerical types of exceptional curves E on the blow
up X of P2 at r = 9 generic points such that the image of E is a curve C of degree
at most 61 (the number 61 is an arbitrary choice but large enough to give us some
confidence in testing our conjectures). For all of these 1054 the splitting gap was
computed to be at most 2 (according to computations using randomly chosen points
in place of generic points), with the gap being exactly 2 in precisely the 39 cases
for which an A occurs with 2[A] = [E + KX + L]. We thus make the following
conjecture:
Conjecture 1.7. Let E be an exceptional divisor on the blow up X of P2 at r = 9
generic points pi . Then there is a divisor class [A] with 2[A] = [E + KX + L] if
and only if �E > 1, in which case �E = 2 and aE = (E · L � 2)/2.

Proving the conjecture would give a complete solution to Problem 1.3 for ex-
ceptional curves with r = 9. It would also allow one to determine the number of
generators in every degree but one in any minimal set of homogeneous generators
for any fat point ideal with support at up to 9 generic points of P2; see Section 4.

Computational evidence suggests more is true. Conjecture 1.7 is a special case
of the following more general conjecture which relates the occurrence of unbal-
anced splittings to the existence of a certain divisor A, but whereas Conjecture 1.7
specifies the divisor A precisely, it is not yet clear how to find A in the context of our
more general conjecture. To state the conjecture, we need the following definition:
Definition 1.8. The linear excess of a divisor A, written le(A), is the dimension of
the kernel of µA.

Note that if le(A) = 1 then h0(OX (A)) � 2, and in particular |A| is not empty.
Conjecture 1.9. Let E be an exceptional divisor on the blow up X of P2 at r
generic points. Then aE = min{a | A · E = a}, where the minimum is taken
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over all divisors A such that �KX · A = 2, h1(OX (A)) = 0 and le(A) = 1. In
particular, E has unbalanced splitting if and only if A · E < b

E ·L
2 c for some such

divisor A.
In Section 2 we describe explicit computational methods for determining split-

ting invariants. All of the computational methods, however, involve first having a
parameterization '. In case C is the image in P2 of a smooth rational curve on
a blow up X of P2 at generic points pi , we recall in Section 2.5 an efficient way
to obtain a parameterization by reducing C to a line via quadratic transformations
(see also [15, Section A.2.1]). In Section 2.2 and Section 2.3 we study the problem
from a P1-centered point of view. We show how the splitting type is related to the
saturation index of the homogeneous ideal ('0,'1,'2) and we recover Ascenzi’s
result, Lemma 2.1.

In Section 3 we obtain our new bounds on the splitting invariants of smooth
rational curves D on surfaces X obtained by blowing up distinct points pi of P2,
which we apply to Problem 1.3 to obtain our results for the case of r  9 generic
points.

Finally, in Section 4 we explain how our results can be applied to the study of
the graded Betti numbers of fat point subschemes of P2. In particular, we describe
an infinite family of fat point schemes having generic Hilbert function and “bad
resolution”.

2. Computing the splitting gap

2.1. Ascenzi’s bounds

The cotangent bundle �P2 of the plane will be denoted simply by �.
Let C ⇢ P2 be a rational curve of degree d, with singularities at p1, . . . , pr ,

and multiplicity mpi (C) = mi at pi . Consider the normalization p : C 0
! C . In

the following we writeOC 0(k) for the line bundleOP1(k) of degree k on C 0 ⇠
= P1.

The Euler sequence on P2

0 ! �(1) ! OP2 ⌦ H0(OP2(1)) ! OP2(1) ! 0

is a sequence of vector bundles, hence the pullback through p of its restriction to C
is still exact and gives a short exact sequence of vector bundles on P1:

0 ! p⇤�(1) ! OC 0 ⌦ H0(OP2(1)) ! OC 0(d) ! 0. (2.1)

We have
p⇤�(1) ⇠

= OC 0(�aC) �OC 0(�bC)

with 0  aC  bC and aC + bC = d. Setting V = H0(OP2(1)) we can rewrite
(2.1) as

0 ! OC 0(�aC) �OC 0(�bC) ! OC 0 ⌦ V ! OC 0(d) ! 0. (2.2)
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From here to the end of Section 2.1, we focus on the case that the singularities of
the curve are resolved after just one blow up.

If ⇡ : X ! P2 is the morphism obtained by blowing up distinct points pi , then
as noted above a basis for the divisor class group Cl(X) (of divisors modulo linear
equivalence) is given by the classes [Ei ] of the exceptional divisors Ei = ⇡�1(pi )
and the class [L] of the pull back L of a line in P2. Given a curve C ⇢ P2 of degree
d, with singularities at p1, . . . , pr , and multiplicity mpi (C) = mi at pi , the class
[C 0

] of the strict transform C 0 of C is [dL �

P
mi Ei ].

So in our assumptions C = ⇡(C 0) is the image of a smooth rational curve
C 0

⇢ X whose class is [C 0
] = [dL �

P
i mi Ei ].

We recall that C 0 is an exceptional curve in X if it is smooth and rational
with �1 = (C 0)2 = d2 �

P
m2i , which by the adjunction formula implies �1 =

KX · C 0
= �3d +

P
mi , since [KX ] = [�3L + E1 + · · · + Er ].

Given a divisor F on X , we will use F to denote its divisor class and sometimes
even the sheafOX (F), and we will for convenience write H0(F) for H0(OX (F)).

Since we can identify V = H0(OP2(1)) with H0(L), we can rewrite (2.2) as

0 ! OC 0(�aC) �OC 0(�bC) ! OC 0 ⌦ H0(L) ! OC 0(d) ! 0. (2.3)

In analogy with the Euler sequence, for each i there is a bundleMi giving a short
exact sequence of bundles

0 !Mi ! OX ⌦ H0(L � Ei ) ! OX (L � Ei ) ! 0.

Restricting to C 0 gives

0 !Mi |C 0 ! OC 0 ⌦ H0(L � Ei ) ! OC 0(L � Ei ) ! 0.

Using the injection of bundles OX (L � Ei ) ! OX (L) one can show thatMi is a
subbundle of ⇡⇤�(1)|C 0 isomorphic to OC 0(mi � d), and the sheaf quotient turns
out to be isomorphic to the bundleOC 0(�mi ). Here the normalization morphism p :

C 0
! C is ⇡ |C 0 , so, given the isomorphism ⇡⇤�(1)|C 0

⇠
= OC 0(�aC)�OC 0(�bC),

we have an exact sequence

0 ! OC 0(mi � d) ! OC 0(�aC) �OC 0(�bC) ! OC 0(�mi ) ! 0

from which the following result of Ascenzi [1] is a direct consequence if we add
the assumption that the singularities of the curve are resolved after just one blow up
(see [10, proof of Theorem 3.1] for details; also see [11]).

Lemma 2.1. Let C be a rational plane curve of degree d = dC and assume that
C has a multiple point of multiplicity m; let a = aC , b = bC . Then we have
min(m, d � m)  a  min(d � m, bd2 c). Thus if d > 2m + 1, then m  a 

b
d
2 c, while if d  2m + 1 (i.e., C is Ascenzi), then the splitting type is completely
determined: if d  2m it is (d � m,m), and if d = 2m + 1 it is (m, d � m).
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2.2. Splitting type, syzygies and the parameterization ideal

We denote the homogeneous coordinate ring of P1 by S = K [s, t] = K [P1] and
that of P2 by R = K [x0, x1, x2] = K [P2].

Every rational curve C ⇢ P2 can be defined parametrically by homogeneous
polynomials '0,'1,'2 2 S with no common factor and which give a g2d series on
P1. They therefore define a morphism ' : P1 ! P2 corresponding to the ring map

e' : R = K [x0, x1, x2] ! S = K [s, t]
xi 7! 'i = 'i (s, t).

(2.4)

The kernel of this homomorphism is a principal ideal, generated by the implicit
equation of the curve C .

Assume as before thatC ⇢ P2 is a rational curve of degree d, with singularities
at p1, . . . , pr , multiplicity mpi (C) = mi at pi , and normalization p : C 0

! C . For
notational simplicity, we set a = aC , b = bC . Consider the sequence (2.2) twisted
by k � d for various k 2 Z:

0!OC 0(�a�d+k)�OC 0(�b�d+k)!OC 0(�d+k)⌦V ! OC 0(k) ! 0 (?)k

and search for the minimum k � 0 such that (?)k is exact on global sections. But

H1(OC 0(�a � d + k) �OC 0(�b � d + k)) = 0

if and only if k � b + d � 1, so we have the following exact sequences

0 ! H0(OC 0(�a � d + k)) � H0(OC 0(�b � d + k))
! H0(OC 0(�d + k)) ⌦ V

 k
�! H0(OC 0(k))

(??)k

with k surjective for k � b+d�1. Note that we can identify
L

k H0(OC 0(k))with
S. Thus by taking the direct sum over all k, we obtain an exact sequence of graded
S-modules. With this in mind, we will write S(`)k in place of H0(OC 0(`+ k)).

Now choose three linear forms f0, f1, f2 which give a basis of V . Then an
arbitrary element

X
i=1,...,q

 
hi ⌦

X
j=0,1,2

ci j f j

!
2 S(�d)k ⌦ V

(where the ci j are constants) can be written as
P

j=0,1,2
eh j ⌦ f j with eh j =P

i=1,...,q ci j hi , and the map  k becomes

 k : S(�d)k ⌦ V ! Sk
X

j=0,1,2

eh j ⌦ f j 7!

X
j=0,1,2

(eh j )( f j |C 0)
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or, applying the natural identification of S(�d)k ⌦ V with S(�d)�3k ,

 k : S(�d)�3k ! Sk

(eh0,eh1,eh2) 7!

X
j=0,1,2

(eh j )( f j |C 0).

Notice that in the identification of C 0 with P1, |L| gives divisors of degree d when
restricted to C 0, hence the f j |C 0 are forms of degree d in the coordinate ring of P1.
We usually choose f j = x j , j = 0, 1, 2.

Taking direct sums of (??)k for k � b+d�1 gives the following exact sequence
of graded S-modules

0 ! (�k�b+d�1S(�a � d)k) � (�k�b+d�1S(�b � d)k)

! �k�b+d�1S(�d)�3k
� k
��! �k�b+d�1Sk ! 0

and by sheafifying we get back the exact sequence (?)0:

0 ! OC 0(�a � d) �OC 0(�b � d) ! OC 0(�d)�3 ! OC 0 ! 0.

Now assume the curve C ⇢ P2 is given by parametric equations (2.4), and that the
basis f0, f1, f2 of V we chose above is x0, x1, x2. Since the restriction of x j to C
is ' j , we have f j |C 0 = ' j for j = 0, 1, 2.

Notice that C is a line if and only if there is a degree zero relation
P
c j' j = 0

among '0,'1,'2, with c j 2 K ; that is, if and only if '0,'1,'2 is not a minimal
system of generators for the ideal J := ('0,'1,'2). For the rest of Section 2.2 we
assume C is not a line, i.e. that d � 2. Also notice that if we change the basis
f0, f1, f2 of V their restrictions to C 0 still generate the same ideal J .

Regarding J as a graded S-module, consider its minimal graded free resolution

0 ! S(�c � d) � S(�e � d)

0
@↵0 �0
↵1 �1
↵2 �2

1
A

����! S(�d)�3
('0 '1 '2)
����! J ! 0, (2.5)

so we have 1  c  e, deg↵ j = c and deg� j = e. If we sheafify the sequence
(2.5), we get the following exact sequence ofOC 0 = OP1-modules:

0 ! OC 0(�c � d) �OC 0(�e � d) ! OC 0(�d)�3 ! OC 0 ! 0. (2.6)

Since the zero scheme of the ideal J is the empty set, hence by the homogeneous
Nullstellensatz the associated sheaf is OC 0 . Comparing this with (?)0, we see that
(c, e) = (a, b), i.e.:

Lemma 2.2 ([2, Lemma 1.1]). Let C be a rational plane curve of degree d � 2
and consider the pair (a, b) with 1  a  b and a + b = d. Then (a, b) is the
splitting type of C if and only if a is the minimal degree of a sygyzy of J .
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Alternatively, recall that the saturation of a homogeneous ideal J ✓ (s, t) ⇢ S
is the largest homogeneous ideal sat(J ) ✓ (s, t) such that for some i � 1, sat(J ) \

(s, t)i = J \ (s, t)i . We call the least such i the saturation degree of J . If i = 1,
we say J is saturated. For example, if J ✓ (s, t) has homogeneous generators with
no non-constant common factor, such as J = (s3, t2), then (s, t) = sat(J ) by the
homogeneous Nullstellensatz, and the saturation degree of J is the least degree i
such that Ji = Si . Thus the saturation degree in such a case can be computed from
the Hilbert function of J (i.e., from the function giving the dimension of Ji as a
function of i). We now have:

Theorem 2.3. Assume C ⇢ P2 is a rational curve of degree d � 2 with splitting
type (a, b), a  b, which is given by parametric equations (2.4). If � (') denotes
the saturation degree of the ideal ('0,'1,'2), then

b + d � 1 = � (')  2d � 2.

Proof. If k � b + d � 1 the sequence (2.5) in degree k is the same as (??)k . On
the other hand, (??)k is not exact on the right for k  d + b � 2, so Jk = Sk if and
only if k � b + d � 1, hence b + d � 1 = � ('). Since b  d � 1, we also have
� (')  2d � 2.

2.3. Parametric equations and multiple points

Assume that our rational plane curve C is given by parametric equations as in (2.4),
and has a multiple point p of multiplicitym, where p = [`0, `1, `2]. We can assume
`0 = 1; we define q(s, t) to be the greatest common factor of '1(s, t) � `1'0(s, t)
and '2(s, t) � `2'0(s, t). Hence there exist h, g 2 Sd�m such that '1 = `1'0 + qh
and '2 = `2'0 + qg.

The generic line through p, ↵(x1 � `1x0) + �(x2 � `2x0) = 0, meets C at p
with multiplicity m; i.e., the equation q(↵h + �g) = 0 has m roots counted with
multiplicity corresponding to the point p. Hence the polynomial q defines a divisor
n1w1 + · · · + nrwr on P1, with '(w1) = · · · = '(wr ) = p and n1 + · · · + nr = m.

Thismeansthatfor each point p of multiplicitym forC the ideal J=('0,'1,'2)
can be written as J = ('0, qh, qg) with deg('0) = d, deg(q) = m, deg(h) =

deg(g) = d � m for q, g, h depending on the singular point p. This allows us to
better understand Theorem 2.3 and to recover Lemma 2.1.

Proposition 2.4. Let C ⇢ P2 be a rational plane curve of degree d given para-
metrically by ' : P1 ! P2, as before. Let p 2 C be a multiple point p of multi-
plicity m � 1, and let (a, b) be the splitting type of C . Then a � min{m, d � m}

and b  max{m, d � m}, with (a, b) = (d � m,m) if d  2m, and (a, b) =

(m, d � m) = (m,m + 1) if d = 2m + 1.

Proof. As above, let J = ('0,'1,'2) = ('0, qh, qg) where '0, q, h, g 2 S =

K [s, t], deg('0) = d, deg(q) = m and deg(h) = deg(g) = d � m. Since h, g
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have no common factor, as well as '0, qh, qg, we have dimK hh, gi = 2, and Jd =

h'0i � qhh, gi. We now look at the multiplication maps

⌫k : Jd ⌦ Sk ! Sd+k .

Let k̄ be the least k such that ⌫k̄ is onto; the saturation degree � (') of J is d + k̄,
and by Theorem 2.3, b = k̄ + 1.

We first prove that ⌫m�2 is never onto, so we conclude that b � m: we
have Im(⌫)m�2 = '0Sm�2 + q(h, g)d�2 with q(h, g)d�2 ✓ qSd�2, hence
dim Im(⌫)m�2  m � 1+ d � 1 = d + m � 2 < dim Sd+m�2.

Since both (h, g) and ('0, q) are regular sequences in S, we have the minimal
free resolutions for the ideals (h, g) and ('0, q) of S:

0 ! S(�2d + 2m) ! �
2S(�d + m) ! (h, g) ! 0 (?0)

0 ! S(�d � m) ! S(�d) � S(�m) ! ('0, q) ! 0. (?00)

Assume d  2m; then (?0) gives dim(h, g)d�1 = 2 dim S(m � 1) � dim S(�d +

2m�1) = 2m�(2m�d) = d, so (h, g)d�1 = Sd�1, this implying that (h, g)k = Sk
for k � d � 1.

Let us consider ⌫m�1. We have Jd = h'0i � qhh, gi, so that Im(⌫m�1) =

'0Sm�1+q(h, g)d�1 = '0Sm�1+qSd�1 = ('0, q)d+m�1. The sequence (?00) gives
dim('0, q)d+m�1 = m+ d, so that ⌫m�1 is surjective and b = m in this case. Since
we are in the assumption d � m  m, in particular we have b  max{m, d � m},
and hence a � min{m, d � m}.

Now let d = 2m + u, with u � 1. From the resolution (?0) of (h, g) we get
that (h, g)d+u�1 = Sd+u�1 and this implies, as in the previous case, that ⌫d�m�1
is surjective, i.e. that b  d � m. Since we are in the assumption d � m > m,
we have b  max{m, d � m}. In particular, when u = 1, this trivially implies that
(a, b) = (m, d � m) = (m,m + 1).

2.4. A moving line algorithm for the splitting type

These kinds of questions are of interest also to people working in Computer Aided
Geometric Design (CAD). In fact one of the problems they are interested in is how
to compute the implicit function defining a rational plane curve which is given
by parametric equations. This is a classical problem in algebraic geometry, tra-
ditionally solved via resultants, but this gives rise to computing determinants of
rather large matrices, hence it is quite valuable to find more efficient ways to get
the implicit equation. One of the ways this is done is by the method of “moving
lines” [5, 34, 35]. We will see that this approach also offers algorithms with which
we are able to deal with the splitting problem.
Definition 2.5. A moving line of degree k for C is an equation of the form
↵0(s, t)x0 + ↵1(s, t)x1 + ↵2(s, t)x2 = 0 where ↵i (s, t) 2 K [s, t]k , such that
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↵0(s, t)'0(s, t)+↵1(s, t)'1(s, t)+↵2(s, t)'2(s, t) is identically zero; hence a mov-
ing line of degree k is nothing else than a family of lines parameterized by P1, giv-
ing a syzygy of degree k of the ideal ('0,'1,'2) in [s, t]. Hence, if Syz(') is the
sygyzy module of the parameterization ' for the curve C , (↵0,↵1,↵2) 2 Syz(')k .

Now assume d = 2n, and let us write explicitly the parameterization of C :
'i = 'i0s2n +· · ·+'i,2nt2n for i = 0, 1, 2. Consider a moving line in degree n�1
forC : �0(s, t)x0+�1(s, t)x1+�2(s, t)x2 = 0 where �i (s, t) =

Pn�1
k=0 Biks

ktn�1�k ,
satisfying the condition �0(s, t)'0(s, t) + �1(s, t)'1(s, t) + �2(s, t)'2(s, t) ⌘ 0,
that is

2X
i=0

n�1X
k=0

2nX
j=0

Bik'i j s2n+k� j tn�1�k+ j
⌘ 0. (2.7)

Note that each monomial in s and t has total degree 3n�1. Rewriting (2.7) in terms
of the powers tl , we have

3n�1X
l=0

2X
i=0

X
a,b

Bi,n�1�b'ias3n�1�l t l ⌘ 0, (2.8)

where the inner sum is over all a and b such that 0  a  2n, 0  b  n � 1 and
a+b = l. This homogeneous polynomial is identically zero if and only if all of the
coefficients are zero; i.e., if and only if for each 0  l  3n � 1 we have

2X
i=0

X
a,b

Bi,n�1�b'ia = 0.

Hence to say that there exists a moving line in degree n � 1 for C is equiva-
lent to saying that the following linear system of 3n equations in the 3n variables
B00, . . . , B2,n�1 has a non-trivial solution:

0
@'0,2n '1,2n '2,2n 0 . . . 0

. . . . . .
0 . . . 0 '0,0 '1,0 '2,0

1
A

| {z }
M

0
BBBBBBBB@

B00
B10
B20
...

B0,n�1
B1,n�1
B2,n�1

1
CCCCCCCCA

=

0
BBBBBBBB@

0
0
0
...
0
0
0

1
CCCCCCCCA

where the 3n ⇥ 3n matrix of the system M(') = M = (mu,v) is defined by mu,v
as follows: writing v = 3w + i as a multiple of 3 with remainder i (so 0  i  2),
then mu,v = 'i,2n+w�u if 0  2n + w � u  2n, and mu,v = 0 otherwise.

So, if d = 2n, we have proved that there exists a moving line in degree n � 1
for C if and only if detM = 0. M

¯
oreover, rk M = 3n � p if and only if there are

exactly p independent moving lines in degree n � 1 for C .
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In the odd degree case, d = 2n + 1, the same kind of computation gives
a condition analogous to (2.8), with an equation of degree 3n in s, t ; hence M
becomes a (3n + 1) ⇥ 3n matrix, and the analogous linear system has a non-trivial
solution if and only if rk M  3n � 1; as before we find that there are exactly p
independent moving lines in degree n � 1 for C if and only if rk M = 3n � p.

Noticethat if thereareexactly p independentmoving lines, i.e. dim Syz(')n�1=
p, then there is a unique moving line of degree n � p, or, equivalently, the splitting
type of C is (n � p, n + p).

In summary, we have the following result (see also [34, Proposition 5.3]):

Theorem 2.6. Let C ⇢ P2 be a rational curve of degree d = 2n + �, � 2 {0, 1},
parameterized by 'i = 'i0s2n + · · · + 'i,2nt2n for i = 0, 1, 2, and define the
(3n + �) ⇥ 3n matrix

M(') = M = (mu,v)0u3n�1+�,0v3n�1

as follows: writing v = 3w + i as a multiple of 3 with remainder i (so 0  i  2),
then mu,v = 'i,2n+w�u if 0  2n+w � u  2n, and mu,v = 0 otherwise. Then the
splitting type of C is (n � p, n + p) if and only if rk M = 3n � p.

Thus Theorem 2.6 gives an algorithm to compute the splitting type of every
rational plane curve once we have a parameterization for it.

2.5. Finding parameterizations

Let ⇡ : X ! P2 be the blow up of r � 3 distinct points pi 2 P2. Then, as
noted earlier, the divisor classes of L , E1, . . . , Er give an integer basis for Cl(X).
This basis is, moreover, orthogonal with respect to the intersection form. The in-
tersection form is uniquely specified by L2 = 1 and the fact that E2i = �1 for
all i .

The Weyl group W (X) is a subgroup of orthogonal transformations on Cl(X).
It is generated by the elements s0, . . . , sr�1 2 W (X) where si (D) = D+ (vi · D)vi
and where v0 = [L� E1� E2� E3] and vi = [Ei � Ei+1] for 0 < i < r . Note that
W (X) really depends only on r , not on X . The action of the elements s1, . . . , sr�1
corresponds to permuting the classes of the divisors Ei , and the action of s0 cor-
responds to a quadratic Cremona transformation T centered at p1, p2 and p3. But
whereas T is defined only when the points p1, p2 and p3 are not collinear, s0 is de-
fined formally and thus it and every other element of W (X) makes sense regardless
of the positions of the points pi . It is useful to note that sv(D) = D + (v · D)v 2

W (X) whenever v = vi j for vi j = [Ei � E j ], or v = vi jk for vi jk = [L � Ei �

E j � Ek] with i < j < k. When v = vi jk , sv corresponds to a quadratic Cremona
transformation T 0 centered at pi , p j , pk . Such a T 0 can be given explicitly. For
example, let Hi j , Hik, Hjk 2 R = K [x0, x1, x3] be linear forms where Hi j defines
the line through pi and p j , and likewise for Hik and Hjk . Then a specific such T 0

can be given by defining T 0(p) for any point p = [a, b, c] other than pi , p j and
pk by T 0(p) = [(Hi j Hik)(a, b, c), (Hi j Hjk)(a, b, c), (HikHjk)(a, b, c)], where,
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for example, (Hi j Hik)(a, b, c) means evaluation of the form Hi j Hik at (a, b, c).
Moreover, the linear system of sections of D = dL � m1E1 � · · · � mr Er can
be identified with those of svi jk D, but where we regard D as being with respect to
blowing up the points p1, · · · , pr , under the identification we must regard svi jk D
as being with respect to blowing up the points q1, . . . , qr , where ql = T 0(pl) for
l 62 {i, j, k}, and where qi = (1, 0, 0), q j = (0, 1, 0) and qk = (0, 0, 1).

If C = ⇡(C 0) is a curve of positive degree, where C 0 is some an exceptional
curve on X , then as long as r � 3 and the points p1, . . . , pr are sufficiently gen-
eral, there is in fact [31] a Cremona transformation T : P2 � � ! P2 whose
locus of indeterminacy is contained in the set of points pi and such that the im-
age of C 0 is a line. One can find such a T by finding a sequence of elements
u1 = vi1 j1k1, . . . , ul = vil jl kl such that w = su1 · · · sul where w 2 W (X) is an
element such that w([C 0

]) has the form [L � Ei � E j ] for some i < j . Com-
posing the quadratic Cremona transformations corresponding to each sui gives the
desired transformation T . Pulling the parameterization of the line corresponding to
L � Ei � E j back via T gives a parameterization of ⇡(C 0).
Example 2.7. Suppose we would like to parameterize a quartic Q having double
points at p1, p2 and p3 and passing through p4, . . . , p8 for appropriately general
points pi 2 P2. The class of the proper transform of Q is F = [4L � 2E1 � 2E2 �

2E3 � E4 � · · · � E8]. We choose u1 = [L � Ei � E j � Ek] so that u1 · F is as
small as possible, hence u1 = [L � E1 � E2 � E3] and we define F1 = su1(F) =

[2L� E4� · · ·� E8]. There are several choices for u2 = [L� Ei � E j � Ek] such
that u2 · F1 is as small as possible; e.g., u2 = [L � E6 � E7 � E8], which gives
F2 = su2(F1) = [L�E4�E5]. Let T1 be a Cremona transformation corresponding
to su1 (i.e., T1 is a quadratic transformation centered at p1, p2 and p3) and let T2 be a
Cremona transformation corresponding to su2 (i.e., T2 is a quadratic transformation
centered at T1(p6), T1(p7), T1(p8)). If we take T = T2T1, then T (Q) is the line 3
through q4 = T2T1(p4) and q5 = T2T1(p5). If ' is a parameterization of this line
(given for example by the pencil of lines through any point not on the line 3), then
T�1

� ' parameterizes Q.
In general it is easier to compute the successive parameterizations T�1

l � ',
T�1
l�1 � T�1

l � ', . . ., T�1
� ' = T�1

1 � · · · � T�1
l � ', since this involves working

in the ring S = K [s, t] which has only two variables, rather than first finding T�1

(which would be in terms of elements of R = K [x0, x1, x2]) and then composing
with '. Also, one should keep in mind that at each successive parameterization,
the component functions may have a common factor which must be removed. For
example, for our parameterization of Q we can take the pencil of curves composing
the complete linear system |su1su2(L � E1)|. But su1su2(L � E1) = 3L � 2E1 �

E2 � E3 � E6 � E7 � E8, so the components of the parameterization of Q are
the restrictions to Q of a basis of the cubics singular at p1 and passing through
p2, p3, p6, p7 and p8. But at each stage, Ti is quadratic, so the composition T�1

is defined in terms of homogeneous polynomials of degree 2l, which in our case
would be 4. The difference is accounted for by the components of T�1

|3 having a
common factor, in this case a common linear factor.
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2.6. Looking for sygyzies coming from the plane

Here we explain the idea which underlies Conjecture 1.9. We continue with the
notation established earlier in this section. Let ' = ('0,'1,'2) be a parameteri-
zation of a rational plane curve of degree d, let J = ('0,'1,'2) ⇢ S be the ideal
generated by the components of ', and let e' be the associated ring map given in
(2.4). Consider a syzygy (↵0,↵1,↵2) of J ; thus ↵0'0 + ↵1'1 + ↵2'2 = 0 for some
↵i 2 Sk for some k.
Definition 2.8. We say that the sygyzy (↵0,↵1,↵2) comes from P2 if there are
A0, A1, A2 2 K [P2]q , such that A0x0 + A1x1 + A2x2 = 0, and there exists
p 2 Sdq�k , with e'(Ai ) = p↵i . Hence a sygyzy (↵0,↵1,↵2) comes from P2 if
and only if there exists q 2 N such that the following colon ideal is nonzero in
degree dq � k; i.e.,

[('0,'1,'2)
q

: (↵0,↵1,↵2)]dq�k 6= {0}.

Example 2.9. Given the blow up X of P2 at general points p1, . . . , pr , the first and
simplest example of a non-Ascenzi rational curve C with unbalanced splitting type
has class [C] = [8L � 3E1 � 3E2 � · · · � 3E7]. Indeed, the splitting type of C
is (3, 5) (see [12] and [16]). Notice that C is not exceptional, but [8L � 3E1 �

3E2� · · ·� 3E7� E8� E9] is the class of an exceptional curve, and moreover this
exceptional curve has the same splitting type as does C , and our discussion applies
equally well to this exceptional curve as it does to C .

Given that the splitting type is (3, 5), Lemma 2.2 tells us that the image C of
C in P2 has a parameterization ' with a syzygy of degree 3. This syzygy in fact
comes from P2. To see this, note that the linear system of cubics through 7 general
points has a linear syzygy. In fact, there is a relation A0x0 + A1x1 + A2x2 = 0,
where A0, A1, A2 is a basis for |3L � E1 � · · · � E7| regarded as a subspace of the
space of degree 3 forms |3L| on P2. Moreover (3L� E1� · · ·� E7) ·C = 3, hence
the relation on the Ai ’s forces a relation of degree k = 3 among the restrictions
'i of the Li ’s to C . Since C has degree d = 8, and each Ai has degree q = 3,
we see each e'(Ai ) has degree 24 = dq. The common factor p is a form on P1 of
degree 21 vanishing on the inverse images in P1 of the 7 points pi 2 C , and we
have deg(p) = 21 = dq � k. Even if we did not already know that aC = 3, we
would see by Lemma 2.2 that aC  3. Since aC � 3 by Lemma 2.1, we recover the
fact that aC = 3.

If, as is the case in the preceding example, aC is smaller than “expected” (i.e.,
smaller than b

d
2 c), then the three forms '0,'1,'2 do not give a generic g

2
d , since

for three generic forms of degree d over P1 the minimal degree of a syzygy is
b
d
2 c by [1]. All known examples lead us to conjecture that this “non-generic situ-
ation” occurs only when the presence of a syzygy of smaller than expected degree
is “forced” by something happening in P2, i.e. because the syzygy comes from P2,
and thus there is a linear relation in k[P2] among polynomials whose restriction to
C has degree a < b

d
2 c (modulo taking away common factors). Thus Conjecture
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1.9 comes from the expectation that what happened in Example 2.9 should be what
always happens when we get unbalanced splitting. The explicit statement we give
for Conjecture 1.9 includes some additional restrictions on the Ai (that they be sec-
tions of a divisor A of a particular form), since examples lead us to expect these
additional restrictions are always satisfied.
Remark 2.10. Suppose C is an Ascenzi plane curve with non-balanced splitting.
Thus C is of the form (d,m1, . . . ,mr ) where we may assume m1 > m2 � · · · �

mr , and we have d < 2m1�1. Then Conjecture 2 holds with A = L�E1: there is a
syzygy of degree aC = d�m1 on the parameterization functions 'i parameterizing
C ; this syzygy comes from P2, specifically from the linear syzygy on the pencil of
lines through p1, and we have aC = (dL � m1E1 � · · · � mr Er ) · (L � E1) as
asserted by Conjecture 1.9. See also Remark 3.3.
Remark 2.11. In Example 2.9 we have C2 = 1 and A = �K7, where �K7 =

3L � E1 � · · · � E7 is an anticanonical divisor for the blow up of P2 at 7 points.
In fact, h0(C) = 3 and |C| is a homaloidal net (i.e., [C] is in the Weyl group
orbit of [L]), so a smooth irreducible curve C2 2 |2C| is rational, and we have
C2 · A = 2aC . Thus by Conjecture 1.9 we expect aC2  2aC ; i.e., that the splitting
gap will be (at least) double for C2, and this is indeed the case, as we now show.
More generally, consider a smooth irreducible curve Cr 2 |rC � (r � 1)E8|. The
fact that the splitting types of Cr are (3r, 5r) follows by applying Lemma 2.1 to-
gether with the forthcoming Proposition 3.1, using A = 3L � E1 � · · · � E7 as
in Example 3.4. In the same way we can construct a plethora of similar examples,
such as a curve C 0

4 of type (32, 12, 12, 12, 12, 12, 12, 12, 2, 2, 2) and a curve C 0

6 of
type (48, 18, 18, 18, 18, 18, 18, 18, 18, 3, 2, 2, 2, 2, 2, 2, 2), whose splitting types
are 4(3, 5) = (12, 20) and 6(3, 5) = (18, 30), respectively.

3. Splitting type of rational plane curves with specified singularities

In this section we will consider the splitting type for rational curves of the form
⇡(D), where D ⇢ X is a smooth rational curve and ⇡ : X ! P2 is the blowing
up of P2 at r distinct points p1, . . . , pr . Note that if we write [D] = [dDL �

m1E1 � · · · � mr Er ], there is no loss of generality in assuming that mD = m1 is
the maximum of the mi .

3.1. New bounds on splitting types

By Lemma 2.1, we have the bound aD  dD � mD = A · D, where A = L � E1.
As Remark 3.3 will explain, the following proposition generalizes this bound. It
shows that we can sometimes get better bounds on aD by finding other divisors A
such that µA has nontrivial kernel.

Proposition 3.1. Let X be obtained by blowing up r distinct points of P2. Let
L , E1, . . . , Er be the corresponding basis of the divisor class group of X . Let



PLANE RATIONAL CURVES AND THE TANGENT BUNDLE 603

D ⇢ X be a smooth rational curve and let A be a divisor such that h1(A) = 0,
H0(A � D + L) = 0 and le(A) � 1. Then aD  A · D, and equality holds if,
moreover, D is exceptional such that le(A) = le(A + D) and µA is surjective.

Proof. Since le(A) � 1, we must have h0(A) > 1, hence A · L > 0, so h2(A) = 0.
Because h1(A) = 0 by hypothesis, by taking cohomology of

0 ! OX (A) ! OX (A + L) ! OL(A + L) ! 0

we see that h1(A + L) = 0. From the diagram

0 ! OX (A � D) ⌦ H0(L) ! OX (A) ⌦ H0(L) ! OD(A) ⌦ H0(L) ! 0
# # #

0 ! OX (A � D + L) ! OX (A + L) ! OD(A + L) ! 0

we get the following diagram, which has exact rows, by taking cohomology:

0 ! H0(A) ⌦ H0(L) ! H0(OD(A)) ⌦ H0(L) ! H1(A � D) ⌦ H0(L) ! 0
#

µA #
µ2 #

µ3

0 ! H0(A + L) ! H0(OD(A + L)) ! H1(A � D + L) ! 0.

Thus we get an inclusion ker(µA) ✓ ker(µ2) but by (2.2) we have ker(µ2) =

H0(OD(A · D � aD)) � H0(OD(A · D � bD)). Since aD  bD , this means
0 < h0(OD(A · D � aD)), hence aD  A · D. For the rest, a similar argument
applied to

0 !OX (A) ⌦ H0(L) !OX (A + D) ⌦ H0(L) !OD(A + D) ⌦ H0(L) ! 0
# # #

0 ! OX (A + L) ! OX (A + D + L) ! OD(A + D + L) ! 0

shows that H0(OD(A · D � aD � 1)) � H0(OD(A · D � bD � 1)) = 0 if le(A) =

le(A + D) and µA is surjective, and hence that A · D < aD + 1, which gives
A · D = aD .

The following lemma will be useful in identifying candidate divisors A.

Lemma 3.2. Let X be obtained by blowing up r distinct points of P2. Let A =

dL �

P
i mi Ei be a divisor on X such that d � 0, �KX · A = 2 and h1(A) = 0.

(a) If 3h0(A)�h0(A+ L) � 1 (in which case we know le(A) � 1), then A2+1 �

L · A.
(b) If A2 + 1 � L · A, then le(A) � 1.

Proof. From h1(A) = 0, A · L = d � 0 and

0 ! OX (A) ! OX (A + L) ! OL(A + L) ! 0
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we see that h0(A+L) = h0(A)+ A ·L+2. Since d � 0, we have h2(A) = 0. Since
also h1(A) = 0 and�A · KX = 2, we have 2h0(A) = A2� A · K + 2 = A2+ 4 by
Riemann-Roch, which says h0(A)�h1(A)+h2(A) = (A2�KX ·A)/2+1. (a) This
is just a calculation: 1  3h0(A)�h0(A+L) = 2h0(A)�A·L�2 = A2+2�A·L ,
which gives the result.

(b) This time we have le(A) � 3h0(A) � h0(A+ L) = 2h0(A) � A · L � 2 =

A2 + 2� A · L � 1.

Remark 3.3. Assume X is obtained by blowing up r � 1 distinct points pi of P2,
and consider a smooth rational curve D ⇢ X with [D] = [dDL � m1E1 � · · · �

mr Er ]. Assume thatmD = m1 is the maximum of themi . Now let A = L�E1. By
Lemma 3.2(b), we have le(A) � 1, although it is of course obvious in this case that
A has a nontrivial linear syzygy and it is not hard to check that in fact le(A) = 1.
If dD > 2 we have (A � D + L) · L < 0 and hence h0(A � D + L) = 0 so by
Proposition 3.1 we obtain aD  (L � E1) · D = dD �mD , which is just the upper
bound given in Lemma 2.1.
Example 3.4. Here we assume X is obtained by blowing up r = 9 generic points
pi of P2. (We pick r = 9 to have a single value of r big enough to accommodate the
discussion in this example.) Two non-Ascenzi types of plane rational curves with
generically situated singularities were previously known to have unbalanced split-
ting (both with gap 2), namely (8, 3, 3, 3, 3, 3, 3, 3, 0, 0) [12, Lemma 3.12(b)(ii)]
and (12, 5, 5, 5, 4, 4, 4, 4, 2, 0) [15, Section A2.1]. We show how our results re-
cover the splittings in these cases. We focus on the first case (the second case can
be done exactly the same way). First consider A = 3L � E1 � · · · � E7. Since the
points pi are not special, it’s clear that h1(A) = 0, so Lemma 3.2(b) implies that
le(A) � 1, but by [21, Theorem IV.1] we know µA is surjective. Since h0(A) = 3
and h0(A + L) = 8, we see in fact le(A) = 1. Since [8L � 3(E1 + · · · + E7)]
is in the W (X)-orbit of [L], we know (see [31]) that there is a smooth rational
curve whose class is [8L � 3(E1 + · · · + E7)]; let C be any such curve. We have
h0(A � C + L) = 0 since (A � C + L) · L < 0. Thus aC  A · C = 3 by Propo-
sition 3.1. From Ascenzi’s lower bound aC � mC = 3 we see that we actually
have aC = 3 here. (If we instead consider the exceptional curve E whose class is
[8L � 3(E1 + · · · + E7) � E8 � E9], then the same argument shows that aE = 3,
but moreover it is also true that le(A+ E) = 1, and thus aE = 3 would follow from
Proposition 3.1 alone, but the simplest argument to show le(A + E) = 1 involves
using the fact that aE = 3.)
Example 3.5. Again let X be the blow up of P2 at r generic points. Here we
determine the splitting for several non-Ascenzi exceptional curves E using the same
method as in the previous example but with different choices for A. First assume
[E] = [12L � 5(E1 + · · · + E4) � 3(E5 + · · · + E9)] but this time take A =

5L�2(E1+· · ·+E4)�(E5+· · ·+E9). It’s clear that A is effective and nef (since
A = D � KX for D = 2L � E1 � · · · � E4 and both D and �KX are effective
and nef), and since �KX · A = 2 it follows from [20] that h1(A) = 0. Thus
Lemma 3.2(b) implies that le(A) � 1. As before, we have (A� E + L) · L < 0 so
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h0(A� E + L) = 0. Thus aE  A · E = 5 by Proposition 3.1 and using Ascenzi’s
lower bound we again have equality, aE = 5.

Here are a few additional pairs which work the same way. For simplicity we
give only the numerical types corresponding to A and E . In each case we obtain
aE = mE :

A : (7, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1) E : (18, 8, 8, 8, 6, 6, 5, 3, 3, 3, 3)
A : (9, 4, 3, 3, 3, 3, 3, 2, 2, 2) E : (20, 9, 7, 7, 7, 7, 7, 5, 5, 5)
A : (7, 3, 3, 2, 2, 2, 2, 2, 2, 1) E : (20, 9, 9, 7, 6, 6, 6, 6, 6, 3, 1)
A : (7, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1) E : (20, 9, 9, 9, 9, 4, 4, 3, 3, 3, 3, 3).

It is not always so easy to determine aE exactly. For example, if E is an exceptional
curve of type (40, 15, 15, 15, 13, 13, 13, 13, 13, 9), then A = (E + KX + L)/2
has type (19, 7, 7, 7, 6, 6, 6, 6, 6, 4), and h1(A) = 0 by the methods of [20], while
h0(A � E + L) = 0 since (A � E + L) · L < 0. Applying Lemma 3.2(b) we
have le(A) � 1, but Proposition 3.1 and Ascenzi’s bounds give only 15  aE 

A · E = 19. Computer calculations indicate that in fact aE = 19, as predicted by
Conjecture 1.7.

Each A in Example 3.5 has �KX · A = 2. For reasons that so far remain
mysterious, when an exceptional curve E has unbalanced splitting it always seems
possible to find an A such that not only do we have le(A) = 1 and E · A = aE , but
in addition such that �KX · A = 2.

3.2. Smooth rational curves on 7 point blow ups

Here we classify all classes [C] = [dL�m1E1� · · ·�mr Er ] where C is a smooth
rational curve on the blow up X of P2 at r  7 generic points. Since the case r = 7
subsumes r < 7, we will assume r = 7. As we will see, r = 7 is the least r
such that there are infinitely many non-Ascenzi C ; moreover, all but finitely many
of these are unbalanced. The method we use here can be used to find all Ascenzi
and all non-Ascenzi C when r = 8, but there will be many more cases to analyze if
one wants also to determine the splitting types. For r  8, the Weyl group W (X)
is finite. The case r > 8 will be more difficult, at least partly due to the fact that
W (X) is then infinite.

In the next result, we show that the class of every smooth rational curve C
on the blow up X of P2 at 7 generic points is in the Weyl group orbit either of
E7, H0 + kH1, H2 + kH1, 2H0 or of H1, where H0 = L , H1 = L � E1 and
H2 = 2L � E1 � E2, and k 2 N.

Theorem 3.6. Let X be the blow up of P2 at r  7 generic points. The numerical
types (d,m1, . . . ,m7) of all smooth rational C ⇢ X , up to permutations of the
mi ’s, are given in the following lists, where the corresponding splitting gap �C in
each case which is not Ascenzi is given.

The types for the orbit of E7 are (0, 0, 0, 0, 0, 0, 0, �1), (1, 1, 1, 0, 0, 0, 0, 0),
(2, 1, 1, 1, 1, 1, 0, 0) and (3, 2, 1, 1, 1, 1, 1, 1), all of which are Ascenzi.
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The types for the orbit of H0 + kH1 are (here k 2 N):
(1, 0, 0, 0, 0, 0, 0, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(2, 1, 1, 1, 0, 0, 0, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(2, 1, 1, 1, 0, 0, 0, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 1, 0, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 1, 0, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 1, 0, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(4, 2, 2, 2, 1, 1, 1, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(4, 2, 2, 2, 1, 1, 1, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(4, 2, 2, 2, 1, 1, 1, 0) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(4, 3, 1, 1, 1, 1, 1, 1) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(5, 2, 2, 2, 2, 2, 2, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(5, 2, 2, 2, 2, 2, 2, 0) + k(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi if and only if

k = 0; �C = |k � 1|
(5, 3, 2, 2, 2, 1, 1, 1) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(6, 3, 3, 2, 2, 2, 2, 1) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(6, 3, 3, 2, 2, 2, 2, 1) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(6, 3, 3, 2, 2, 2, 2, 1) + k(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi if and only if

k < 2; �C = k
(7, 3, 3, 3, 3, 2, 2, 2) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(7, 3, 3, 3, 3, 2, 2, 2) + k(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi if and only if

k = 0; �C = k + 1
(8, 3, 3, 3, 3, 3, 3, 3) + k(5, 2, 2, 2, 2, 2, 2, 1), which is never Ascenzi; �C =

k + 2.
The types for the orbit of H2 + kH1 are:

(2, 1, 1, 0, 0, 0, 0, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 0, 0, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 0, 0, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(4, 2, 2, 2, 1, 1, 0, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(4, 3, 1, 1, 1, 1, 1, 0) + k(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(4, 3, 1, 1, 1, 1, 1, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(5, 3, 2, 2, 2, 1, 1, 0) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(5, 3, 2, 2, 2, 1, 1, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(6, 3, 3, 3, 2, 1, 1, 1) + k(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(6, 3, 3, 3, 2, 1, 1, 1) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(6, 4, 2, 2, 2, 2, 1, 1) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(6, 3, 3, 2, 2, 2, 2, 0) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(7, 4, 3, 3, 2, 2, 2, 1) + k(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(7, 4, 3, 3, 2, 2, 2, 1) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(8, 4, 4, 3, 3, 2, 2, 2) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(8, 4, 3, 3, 3, 3, 3, 1) + k(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi if and only if

k < 2; �C = k
(9, 4, 4, 4, 3, 3, 3, 2) + k(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
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(9, 4, 4, 4, 3, 3, 3, 2) + k(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi if and only if
k = 0; �C = k + 1

(10, 4, 4, 4, 4, 4, 3, 3)+k(5, 2, 2, 2, 2, 2, 2, 1), which is never Ascenzi; �C =

k + 2.
The types for the orbit of 2H0 are:

(2, 0, 0, 0, 0, 0, 0, 0), which is Ascenzi
(4, 2, 2, 2, 0, 0, 0, 0), which is Ascenzi
(6, 4, 2, 2, 2, 2, 0, 0), which is Ascenzi
(8, 4, 4, 4, 2, 2, 2, 0), which is Ascenzi
(8, 6, 2, 2, 2, 2, 2, 2), which is Ascenzi
(10, 6, 4, 4, 4, 2, 2, 2), which is Ascenzi
(10, 4, 4, 4, 4, 4, 4, 0), which is not Ascenzi; �C = 0
(12, 6, 6, 4, 4, 4, 4, 2), which is Ascenzi
(14, 6, 6, 6, 6, 4, 4, 4), which is not Ascenzi; �C = 2
(16, 6, 6, 6, 6, 6, 6, 6), which is not Ascenzi; �C = 4

The types for the orbit of H1 are:
(1, 1, 0, 0, 0, 0, 0, 0), which is Ascenzi
(2, 1, 1, 1, 1, 0, 0, 0), which is Ascenzi
(3, 2, 1, 1, 1, 1, 1, 0), which is Ascenzi
(4, 2, 2, 2, 1, 1, 1, 1), which is Ascenzi
(5, 2, 2, 2, 2, 2, 2, 1), which is Ascenzi.

Proof. Let C be a smooth rational curve on X . Because r = 7, X is a Del Pezzo
surface, and hence�KX is ample. Thus by adjunction we haveC2 = �2�C ·KX �

�1. In addition, W (X) is finite (of order 21034517; see [30, 26.6]), and so is the set
of classes [C] of rational curves C with C2 = �1 (i.e., the classes of exceptional
curves). In fact, there are 56 of them (giving the 4 classes listed up to permutations
in the statement of the theorem), and their classes are precisely the orbit of E7
(see [30, Proposition 26.1, Theorem 26.2(iii)]). We note that these all are Ascenzi.

Now say C2 > �1; then C is nef, hence there is an element w 2 W (X)
such that D = w[C] is a non-negative integer linear combination of the classes of
H0 = L , H1 = L � E1, H2 = 2L � E1 � E2, and Hi = 3L � E1 � · · · � Ei for
3  i  7 [20, Lemma 1.4, Corollary 3.2]. Note that H7 = �KX .

Write D = [

P
i ai Hi ]. If a j > 0 for some j � 3, then we have �D · KX 

D · Hj  D ·

P
i ai Hi = D2, which violates D2 = �2 � D · KX . Thus D =

[a0H0+a1H1+a2H2]. If a0 and a2 are both positive, then we get another violation,
�D · KX  D · (H0 + H2)  D2, so either a0 = 0 or a2 = 0. If a0 = 0, we cannot
have a2 � 2, since then D2 = a1a2 + a2(2a2 + a1) � 2(2a2 + a1) = �D · KX .
Likewise, if a2 = 0, we cannot have a0 > 2 nor can we have a0 � 2 if a1 � 1. All
that is left are the classes of H0 + kH1, 2H0, H1 and H2 + kH1 for k � 0, all of
which it is easy to see are classes of smooth rational curves. For example, H0+kH1
corresponds to a plane curve of degree k + 1 with a singular point of multiplicity
k. To find the numerical types (dC ,m1, . . . ,m7) of all smooth rational C , it is now
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enough to compute the orbit of each D under W (X), as we have done to produce
the lists in the statement of the theorem.

We now determine the splitting gaps for the non-Asscenzi cases. First consider
the curve C of type (10, 4, 4, 4, 4, 4, 4). Since aC  dC/2 = 5, it suffices to show
that aC > 4 to prove that the gap is 0. By twisting (2.2) by OC(C), we obtain an
exact sequence

0 ! OC(4� aC) �OC(4� bC) ! OC(C) ⌦ H0(L) ! OC(C + L) ! 0.

To show aC > 4 it now suffices to show this is exact on global sections, since
h0(OC(C) ⌦ H0(L)) = 15 = h0(OC(C + L)). But exactness follows from the
fact that H0(C) ⌦ H0(L) ! H0(C + L) is surjective (see [21]) by taking global
sections of the following diagram

0 ! OX ⌦ H0(L) ! OX (C) ⌦ H0(L) ! OC(C) ⌦ H0(L) ! 0
# # #

0 ! OX (L) ! OX (C + L) ! OC(C + L) ! 0

and applying the snake lemma.
We now find aC for the remaining non-Ascenzi cases. By applying Lemma 2.1,

and Proposition 3.1 with A = 3L � E1 � · · · � E7, we have mC  aC  C · A,
and except for (5, 2, 2, 2, 2, 2, 2, 0) + k(5, 2, 2, 2, 2, 2, 2, 1), in each case we have
mC = C · A, so aC = mC .

Finally, we consider the case (5, 2, 2, 2, 2, 2, 2, 0) + k(5, 2, 2, 2, 2, 2, 2, 1) for
k > 0. The preceding argument shows only that 2+ 2k  aC  3+ 2k, but in fact,
aC = 3 + 2k for k > 0 and aC = 2 for k = 0 (hence the splitting gap is |k � 1|).
Certainly aC = 5 if k = 1, since a curve of type (10, 4, 4, 4, 4, 4, 4, 1) is a proper
transform of, but isomorphic to, a curve of type (10, 4, 4, 4, 4, 4, 4, 0) and thus has
the same splitting type.

To see aC = 3+ 2k when k > 1, let F and G be smooth rational curves with
[F] = [5L � 2(E1 + · · · + E6)] and let [G] = [5L � 2(E1 + · · · + E6) � E7].
Thus [C] = [F + kG]; note also that 2F � C = F � kG. Taking cohomology of
the diagram

0!OX (2F�C) ⌦ H0(L) !OX (2F) ⌦ H0(L) !OC(2k+2) ⌦ H0(L) ! 0
# # #

0! OX (L+2F � C) ! OX (2F + L) ! OC(7k + 7) ! 0

gives the following commutative diagram:

0!H0(2F)⌦H0(L) !H0(OC(2k+2))⌦H0(L) ! H1(2F�C)⌦H0(L) ! 0

# µ2 # µ3 # µ1

0! H0(2F + L) ! H0(OC(7k + 7)) ! H1(L + 2F � C) ! 0.
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For each i , let Vi = ker(µi ). The results of [21] show that V2 = 0. If we also show
that V1 = 0, then the snake lemma shows that H0(OC(2k+2�aC))�H0(OC(2k+
2� bC)) = V3 = 0, and thus that aC > 2k + 2, so aC = 2k + 3.

To justify that V1 = 0, consider

0!OX (F�(d+1)G)⌦H0(L) !OX (F�dG)⌦H0(L) !OG(1)⌦H0(L) !0
# # #

0! OX (L + F � (k + 1)G) ! OX (L + F � kG) ! OG(6) !0.

We know h0(F�kG) = h0(L+F�kG) = 0 for all k � 2 since (F�kG) ·L < 0
and (L+ F� kG) · L < 0. Also, h2(F� kG) = h2(L+ F� kG) = 0 for all k � 2
by duality, since G is nef and G · (KX � (F � kG))) < 0 and G · (KX � (L + F �

kG)) < 0. Thus we can use Riemann-Roch to obtain h1(F � kG) = 2k � 3 and
h1(L + F � kG) = 7k � 10 when k � 2.

When k = 1, h1(F�kG) = h1(E7) = 0 and h1(L+F�kG) = h1(L+E7) =

0. Taking cohomology when k = 1 now gives a commutative diagram with exact
rows:

0 ! H0(F�G) ⌦ H0(L) ! H0(OG(1))⌦H0(L) ! H1(F�2G)⌦H0(L) !0
# # #

0 ! H0(L + F � G) ! H0(OG(6)) ! H1(L + F � 2G) ! 0.

The left vertical map is an isomorphism and the middle vertical map is injective
(since the splitting type of G is (2, 3)), so the snake lemma tells us that the right
vertical map is injective.

Now take cohomology again but with some k � 2. We obtain another commu-
tative diagram with exact rows:

0 ! H0(OG(1))⌦H0(L) ! H1(F�(k+1)G)⌦H0(L) ! H1(F � kG) ⌦ H0(L) ! 0
# # #

0 ! H0(OG(6)) ! H1(L + F � (k + 1)G) ! H1(L + F � kG) ! 0.

By induction the right vertical map is injective and we saw above that the left one
is also injective, hence so is the middle one; i.e., V1 = 0 for all k � 0.

Proof of Theorem 1.4. (a) By inspection of the statement of Theorem 3.6, we see
that in order for C to fail to be Ascenzi, its image in the plane must have at least
6 singular points, and we see that there is a unique numerical type with exactly 6,
namely (10, 4, 4, 4, 4, 4, 4), and its splitting gap is 0.

(b) This follows from inspection of the statement of Theorem 3.6.

3.3. Exceptional curves on 9 point blow ups

We would like to apply our results to the case of blow ups X of P2 at r = 9 generic
points. To do so it will be helpful to collect some facts about the exceptional divisors
on such an X .

As mentioned in the introduction, the case r = 9 is the first interesting case for
the problem of splitting types of exceptional curves on blow ups of P2 at r generic
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points, since the exceptional curves have only finitely many numerical types when
r < 9. The numerical types for r < 8 are obtained by deleting 0 entries from those
for r = 8 so it’s enough to list the types for r = 8. Up to permutations of the entries
mi , the types for r = 8 are as follows [30]: (0, 0, . . . , 0,�1), (1, 1, 1, 0, . . . , 0),
(2, 1, 1, 1, 1, 1, 0, . . . , 0), (3, 2, 1, 1, 1, 1, 1, 1, 0, . . . , 0), (4, 2, 2, 2, 1, 1, 1, 1, 1),
(5, 2, 2, 2, 2, 2, 2, 1, 1), and (6, 3, 2, 2, 2, 2, 2, 2, 2). As is evident, these all are
Ascenzi.

For r = 9 it is well known that there are infinitely many numerical types
of exceptional curves [31]. The recognition that only finitely many of them are
Ascenzi seems to be new. To proceed to justify both of these facts, we begin by
recalling how to write down the numerical types of exceptional curves for r = 9.
The result is old enough to be hard to attribute, especially in the form we will need,
so for the convenience of the reader we include a proof.

Proposition 3.7. Let X ! P2 be obtained by blowing up r = 9 distinct points pi ,
with L , E1, . . . , E9 the usual basis of the divisor class group Cl(X) with respect to
this blow up.

(a) A class [E] 2 Cl(X) satisfies E2 = E · KX = �1 if and only if [E] =

v + (v2/2)[KX ] + [E9] for an element v 2 Cl(X) with v · KX = v · E9 = 0.
Moreover, the element v is unique.

(b) Assume the points pi are generic. Then a class [E] 2 Cl(X) satisfies E2 =

E · KX = �1 if and only if [E] is the class of an exceptional curve. Thus the
classes of exceptional curves are exactly the classes of the form v+v2[KX ]/2+
[E9] for v 2 K?

X \ E?

9 .

Proof. (a) If [E] = v+(v2/2)[KX ]+[E9]where v ·KX = v ·E9 = 0, then it is just
a calculation to check that E2 = E · KX = �1. Conversely, if E2 = E · KX = �1,
then (E � E9) · KX = 0. But K?

X is negative semi-definite and even (i.e., v 2 K?

X
implies 2|v2  0) with the only elements v 2 K?

X having v2 = 0 being multiples
of [KX ] = [�3L + E1 + · · · + E9]. If r = (E � E9) · E9, then [(E � E9) + r KX ]

is in K?

X \ E?

9 , which is known to be negative definite, spanned by the classes of
the elements r0 = L � E1 � E2 � E3, r1 = E1 � E2, . . . , r7 = E7 � E8. If we set
v = [(E � E9) + r KX ], we obtain [E] = v � r[KX ] + [E9] and now using the fact
that E2 = E ·KX = �1, we find that v2 = �2r , hence [E] = v+v2[KX ]/2+[E9].
To see uniqueness, assume v + (v2/2)[KX ] + [E9] = w + (w2/2)[KX ] + [E9].
Then v + (v2/2)[KX ] = w + (w2/2)[KX ], so v2/2 = �E9 · (v + (v2/2)KX ) =

�E9 · (w + (w2/2)KX ) = w2/2, so (v2/2)[KX ] = (w2/2)[KX ] and hence v = w.
(b) To prove the backward implication, note that, by adjunction, if E is an

exceptional curve, then E2 = E · KX = �1. Conversely, assume E2 = E · KX =

�1. Since X is obtained by blowing up generic points, [�KX ] is the class of a
reduced and irreducible curve 0 with�K 2X = 0, and moreover there are no smooth
rational curves C with �KX · C = 0; such a curve C must have C2 = 0, but there
are no such (�2)-curves, since [C] would reduce by a Cremona transformation
centered in the points pi to [L � E1 � E2 � E3] (see [23, Section 0], [28]), but
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the images p0

i of the points pi under the transformation are generic [31, proof of
Lemma 2.5] so no three of the points p0

i can lie on a line. Since 0 · E = 1 and there
are no (�2)-curves, it follows by [29, Proposition 3.3] that E is an exceptional
curve.

Remark 3.8. A class E with E2 = E · KX = �1 need not be the class of an
exceptional curve when r > 9; for example, [KX ] is such a class when r = 10, but
since L is nef and L · KX = �3, [KX ] is not the class of an effective divisor.

We now show for r = 9 that there are only finitely many exceptional curves
E satisfying the condition dE  2mE + 1 and hence there are only finitely many
Ascenzi exceptional curves when r = 9. In fact, we show more:

Proposition 3.9. Let X ! P2 be obtained by blowing up r = 9 distinct points pi .
Then for each integer j there are only finitely many classes E of exceptional curves
such that dE � 2mE  j .

Proof. Let L , E1, . . . , E9 be the basis of the divisor class group Cl(X) with respect
to the blow up X ! P2. Since E is effective and L is nef, we have dE = E · L � 0.
Moreover, since dE � 2mE = E · (L � 2Ei ) for some i , it is enough to show for
each i that there are only finitely many E such that E · (L � 2Ei )  j . The proof
is the same for each i ; we will thus consider the case i = 1. Since any exceptional
curve C satisfies C2 = C · KX = �1, it is enough to show that there are only
finitely many classes E (whether or not they are classes of exceptional curves) with
E2 = E · KX = �1 such that E · (L � 2E1)  j and such that dE � 0. If we find
an upper bound on dE , depending only on j , we will be done. To obtain it, note by
Proposition 3.7(a) that we have E = v + v2[KX ]/2 + [E9] for some v = [a0r0 +

a1r1+· · ·+a7r7] = [a0L� (a0�a1)E1�b2E2� · · ·�b8E8] 2 K?

X \ E?

9 . Hence
E ·(L�2E1) = �a0+2a1�v2/2, and, since v ·KX = 0, 2a0+a1 = b2+· · ·+b8.
Thus the average b̄ = (b2 + · · · + b8)/7 is (2a0 + a1)/7. Working formally over
the rationals, let w = [a0L � (a0 � a1)E1 � b̄(E2 + · · · + E8)], so w 2 K?

X \ E?

9
and w2/2 = (5a0a1 � 4a21 � 2a20)/7. Due to the fact that the intersection form is
negative semi-definite on K?

X and the general fact for averages that the square of an
average is at most the average of the squares and hence 7b̄2  b22+· · ·+b28, we have
0  �w2/2  �v2/2. Thus E · (L � 2E1) = �a0 + 2a1 � v2/2 � �a0 + 2a1 �

w2/2 = (2a20+4a21�5a0a1�7a0+14a1)/7. The substitution a0 = x+5y�2 and
a1 = 4y � 3 gives (2a20 + 4a21 � 5a0a1 � 7a0 + 14a1)/7 = (2x2 + 14y2 � 14)/7.

Since dE = E · L = a0 � 3v2/2, we have j � E · (L � 2E1) = �a0 +

2a1 � v2/2 = dE/3 � 4a0/3 + 2a1. Using the substitution a0 = x + 5y � 2
and a1 = 4y � 3 and simplifying gives dE  3 j + 4(x � y) + 10, where j �

(2x2 + 14y2 � 14)/7. Using Lagrange multipliers, we see that the maximum value
of x � y given j � (2x2+ 14y2� 14)/7 occurs for x = �/4 and y = ��/28 when
j = (2x2 + 14y2 � 14)/7, hence

dE  3 j +

j
4
p
4 j + 8

k
+ 10. (�)
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Clearly there are only finitely many classes E = dE L � m1E1 � · · · � m9E9 with
dE � 0 and E2 = �1 satisfying (�).

Corollary 3.10. Let X be the blow up of P2 at 9 distinct points. Then every Ascenzi
exceptional curve E ⇢ X has dE  26 and the only one with unbalanced splitting
is E = 4L � 3E1 � E2 � · · · � E9 (up to indexation of the Ei ).

Proof. The Ascenzi exceptional curves E satisfy dE �2mE  1. If we set j = 1 in
(�), then dE  26; i.e., on a blow up X of P2 at 9 points every Ascenzi exceptional
curve E must have dE  26. In order for an Ascenzi exceptional curve E to be
unbalanced, we must have mE � (dE � mE ) � 2; i.e., we must have dE � 2mE 

�2. But in the notation of the proof of Proposition 3.9, dE � 2mE  �2 implies
�2 � E · (L � 2E1) � (2x2 + 14y2 � 14)/7, which forces x = y = 0, hence
�2 = E · (L � 2E1) = (2x2 + 14y2 � 14)/7 and thus |b̄| = |b2| = · · · = |b8|. But
x = y = 0 gives a0 = �2, a1 = �3 and b̄ = �1, so E = 4L�3E1±E2±· · ·±E9,
and now E · KX = �1 forces E = 4L � 3E1 � E2 � · · · � E9.

Remark 3.11. Given fixed integers d > 0 and r > 0, it is not hard using the action
of W (X) to find all classes [E] = [dE L � m1E1 � · · · � mr Er ] of exceptional
curves satisfying dE  d, where for efficiency it is best to require m1 � · · · � mr .
The method uses the fact that one can reduce any exceptional class [E] to some
[Ei ] by successively applying quadratic transforms si jk , centered at Ei , E j and Ek ,
choosing i, j and k so that dE drops as much as possible each time (just choose
i, j, k to maximize the sum mi + m j + mk). Applying this in reverse, one starts
with [E1] and applies si jk for various choices of i, j, k. One continues doing this
to the new classes one obtains; eventually one will have a list of classes [E] with
dE  d such that whenever one applies si jk for any choice of i, j, k to any [E] on
the list one always obtains (up to permutations of the mi ) another [E] on the list or
an E with d > dE . The list then is complete.

By using such an exhaustive procedure, we have found all [E] with dE  61
for a blow up of P2 at 9 generic points. There are all together 1054 exceptional
classes [E] = [dE L � m1E1 � · · · � m9E9] with dE  61 and m1 � · · · � m9.
Of these, 42 are Ascenzi, as follows. By Corollary 3.10, there are no other Ascenzi
exceptional curves for r = 9.

There is only one Ascenzi E with dE � 2mE  �2. It’s numerical type is:
4 3 1 1 1 1 1 1 1 1.

Those Ascenzi E with dE � 2mE = �1 are:
1 1 1 7 4 3 2 2 2 2 2 2 1 11 6 4 4 3 3 3 3 3 3
3 2 1 1 1 1 1 1 9 5 3 3 3 3 3 2 2 2 13 7 4 4 4 4 4 4 4 3
5 3 2 2 2 1 1 1 1 1.

Those Ascenzi E with dE � 2mE = 0 are:
0 0 0 0 0 0 0 0 0 -1 8 4 3 3 3 3 2 2 2 1 14 7 5 5 5 4 4 4 4 3
2 1 1 1 1 1 8 4 4 3 2 2 2 2 2 2 14 7 6 4 4 4 4 4 4 4
4 2 2 2 1 1 1 1 1 10 5 4 4 3 3 3 3 2 2 16 8 6 5 5 5 5 5 4 4
6 3 2 2 2 2 2 2 2 12 6 4 4 4 4 4 4 3 2 18 9 6 6 6 6 5 5 5 5
6 3 3 2 2 2 2 1 1 1 12 6 5 4 4 4 3 3 3 3 20 10 7 6 6 6 6 6 6 6.
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And those Ascenzi E with dE � 2mE = 1 are:

5 2 2 2 2 2 2 1 1 13 6 5 5 5 4 4 3 3 3 19 9 7 6 6 6 6 6 6 4
7 3 3 3 3 2 2 2 1 1 13 6 6 4 4 4 4 4 3 3 19 9 7 7 6 6 6 5 5 5
9 4 4 3 3 3 3 3 2 1 15 7 6 5 5 5 5 4 4 3 21 10 7 7 7 7 7 6 6 5
9 4 4 4 3 3 2 2 2 2 15 7 6 6 5 4 4 4 4 4 21 10 8 7 7 6 6 6 6 6
11 5 4 4 4 4 4 3 2 2 17 8 6 6 6 6 5 5 4 4 23 11 8 8 7 7 7 7 7 6
11 5 5 4 4 3 3 3 3 2 17 8 7 6 5 5 5 5 5 4 25 12 8 8 8 8 8 8 7 7
13 6 5 5 4 4 4 4 4 2.

In order to demonstrate that there are infinitely many non-Ascenzi exceptional
curves on a blow up of P2 at r = 9 generic points, it will be useful first to prove
two lemmas.

Lemma 3.12. Let X be the blow up of P2 at r = 9 generic points. Let E be an
exceptional curve for which there is a divisor A such that [2A] = [E + KX + L].
Then E has unbalanced splitting.

Proof. We easily check that�KX ·A = 2. If E ·L = 0, then E = Ei for some i and
there is no A such that [2A] = [E+KX + L]. Thus we may assume that E · L > 0,
and we now have 1 + A2 = A · L = L · E/2 � 1 � 0 since L · E is even and
positive. Since A · L � 0 we know h2(A) = 0. Now from Riemann-Roch we have
h0(A) � (A2�KX ·A)/2+1 = (1/2)(L ·E/2�2�KX ·A)+1 = (L ·E)/4+1 > 0.

By [29, Lemma 4.1], the class of every effective divisor is a non-negative sum
of [�KX ] and prime divisors of negative self-intersection. Since X is a generic
blow up, the only prime divisors of negative self-intersection are the exceptional
curves [20]. But E · L � 2 so 2A · E = �2 + L · E � 0, and for any exceptional
curve C 6= E we have 2A · C = (E + KX + L) · C � C · KX = �1. Since
2A · C is even we must have 2A · C � 0. Since A is effective and meets �KX and
every exceptional curve non-negatively, A is nef, but now �KX · A > 0 implies
h1(A) = 0 by [20].

We now have le(A) � 1 by Lemma 3.2, and since (A � E + L) · L < 0, we
have h0(A�CA+ L) = 0, so aE  A · E Proposition 3.1, hence �E = dE �2aE �

dE � 2A · E = 2. Thus E has unbalanced splitting.

Corollary 3.13. Let X be the blow up of P2 at r = 9 generic points. Let [E] =

[dL � m1E1 � · · · � m9E9] be the class of an exceptional curve with m1 � · · · �

m9 � 0 and d � 2m1 � 1. Let A = E + E1 � sKX for s = d � 2m1 + 1 and let
CA = 2A�KX�L . Then [CA] is the class of an exceptional curve with unbalanced
splitting.

Proof. Direct calculation shows C2A = KX · A = �1, hence [CA] is the class
of an exceptional curve by Proposition 3.7, and it has unbalanced splitting by
Lemma 3.12.

Proof of Theorem 1.5. Parts (a) and (b) follow from Corollary 3.10. Consider part
(c). By Proposition 3.7(b), there are infinitely many exceptional curves on X . For
any fixed d, there can be at most finitely many classes E = dL�m1E1�· · ·�m9E9



614 ALESSANDRO GIMIGLIANO, BRIAN HARBOURNE AND MONICA IDÀ

with E2 = �1. Thus for any d, there are infinitely many exceptional curves E
with E · L � d. By Corollary 3.10, for d > 26 none of these infinitely many
exceptional curves is Ascenzi, and hence for each such exceptional curve E we have
dE > 2mE + 1. For each such E we thus have by Corollary 3.13 an unbalanced
exceptional CA with CA · L > E · L � d, and hence there are infinitely many
non-Ascenzi unbalanced exceptional curves.

Proof of Theorem 1.6. By Lemma 3.12, E has unbalanced splitting since there is
a divisor A with 2A = E + KX + L , hence �E � 2 and aE = (dE � �E )/2 

(dE � 2)/2.

Remark 3.14. Let X be the blow up of r = 9 generic points of P2. Here we
explain why there are infinitely many non-Ascenzi exceptional curves E ⇢ X for
which there is no divisor A satisfying 2A = E + KX + L . (Note if Conjecture 1.7
is true, each such E must have balanced splitting.) We know X has infinitely many
classes [E 0

] = [dE 0L�m1E1� · · ·�m9E9] of exceptional curves E 0, and we may
assume m1 � m2 � · · · � m9 � 0. We have seen that only finitely many of them
are Ascenzi. As in the proof of Theorem 1.5, there are infinitely many E 0 such that
2A = E 0

+KX + L for some A. For each such E 0, we thus see dE 0 is even and each
mi is odd. Note that E 0

·(L�E7�E8�E9) > 0, becausem1 � m2 � · · · � m9 � 0
implies E 0

·(L�E1�E2�E3)  E 0
·(L�E4�E5�E6)  E 0

·(L�E7�E8�E9),
so if we had E 0

·(L�E7�E8�E9)  0, we would have 1 = E 0
·(�KX ) = E 0

·((L�

E1�E2�E3)+(L�E4�E5�E6)+(L�E7�E8�E9))  0. But [E] = s789([E 0
])

is the class of an exceptional curve E , and E 0
· (L � E7 � E8 � E9) > 0 implies

that dE > dE 0 where dE is odd.
Remark 3.15. Let X be the blow up of P2 at r = 9 generic points. By Conjec-
ture 1.7, an exceptional curve E on X has unbalanced splitting if and only if there
is a certain divisor A with �KX · A = 2. In the conjecture, [A] has the form
[E + KX + L]/2, but in Corollary 3.13, [A] has the form [E 0

+ E 00
� sKX ] where

E 0
6= E 00 are exceptional curves and s � 0. However, as noted in the proof of

Lemma 3.12, the class of every effective divisor on X is a non-negative sum of
[�KX ] and classes of prime divisors of negative self-intersection. Thus if D is an
effective divisor with �KX · D = d, then we can write [D] as a sum of classes of
d exceptional curves plus some non-negative multiple of [�KX ]. In particular, if
[A] = [E + KX + L]/2, then we also have [A] = [E 0

+ E 00
� sKX ] as above.

4. Application to graded Betti numbers for fat points

Let p1, . . . , pr 2 P2 be points. A 0-dimensional subscheme Z ⇢ P2 with support
contained in the set of points pi is called a fat point subscheme if it is defined
by a homogeneous ideal I ⇢ R = K [P2] of the form I = \i (I (pi )mi ) where
each mi is a non-negative integer. In this case we will write I = IZ , and Z =

m1 p1 + · · · + mr pr . The least degree t such that the homogeneous component It
of I of degree t is non-zero is denoted ↵(Z), or just ↵ if Z is understood.
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We are interested in determining the minimal free graded resolution for the
ideal I of a scheme of fat points in P2; our aim, following the work in [10,12,15,16]
and [17], is to study the graded Betti numbers of I when the support of Z is given
by generic points in P2.

Notice that the values of the Hilbert function of Z , hZ (k) = dim Rk � dim Ik ,
are described, under the genericity assumption, by a well known conjecture by
means of which one can explicitly write down the function hZ given the multi-
plicities mi . Various equivalent versions of this conjecture have been given (see
[14, 24, 25, 36]). We will refer to them collectively as the SHGH Conjecture.
Roughly, the SHGH conjecture says that hZ (k) does not assume the expected value
if and only if the linear system |Ik | presents a multiple fixed rational component.

When trying to state a conjecture for the graded Betti numbers of I , the sit-
uation turns out to be much more complicated. For general simple points, it is
known that the minimal resolution is “as simple as it can be”, i.e. for each k,
µk : Ik ⌦ R1 ! Ik+1 has maximal rank. So, the first problem that comes to
mind is to understand in which cases the resolution of IZ can be different from the
resolution of l(Z) = length(Z) general simple points, which amounts to finding
the values k for which µk does not have maximal rank.

Of course there are trivial cases with “bad resolution”, namely those for which
Z has “bad postulation”. Hence we are interested first in finding cases where Z
is supported on generic points and has generic Hilbert function (assuming SHGH),
but it has a “bad resolution”. In those cases (e.g., see [16, Remark 2.3]) it is easy to
check that the only value of k for which µk might not have maximal rank is k = ↵.

Our idea, consistent with the known examples, is that the “troubles” are al-
ways given by the existence of rational curves whose intersection with the fat point
scheme Z is too high with respect to the behavior of the cotangent bundle on the
curve, or, to be more precise, to the splitting of the pull back of the cotangent bundle
on the normalization of the curve. In other words, the scheme Z has a “too high
secant” rational curve. This is the analogue of what happens with curves in P3,
where, for example, the generic rational quintic curve postulates well but has a bad
resolution, and this is due to the fact that the quintic has a 4-secant line (see [19]).

For example, Z = 3p1+ 3p2+ p3+ p4+ p5 should be generated by quintics,
but it is not since the line L through p1 and p2 is a fixed component for the quintics.
Another way to look at this is that the intersection of Z with L is a scheme of length
6, while �(6)|L ⇠

= OL(4) �OL(5), so that its sections vanishing on Z also vanish
along L; i.e., Z \ L imposes independent conditions on one direct summand, but
not on OL(4), with the result that the cokernel of H0(�(6)|L) ! H0(�(6)|Z ) is
non-zero. But this cokernel is the surjective image of the cokernel of µ5(Z), and
hence µ5(Z) cannot be surjective (for a detailed explanation, see [16], especially
the commutative diagram in the proof of [16, Proposition 4.2], analogous to (4.2)
below).

Other plane curves C can play the role of L , but understanding �(k + 1)|C
is more difficult when C is not a smooth rational curve, because when C is not
smooth and rational, �|C need not split. One way to deal with this is to look at
(⇡⇤�(k + 1))|C 0 for smooth rational curves C 0

⇢ X , where ⇡ : X ! P2 is the
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blow up of points pi (and hence typically C 0 is the normalization of some plane
curve C). The forms in Ik will correspond to divisors in the class of Fk = kL �

m1E1 � · · · �mr Er . In order to study the maps µk , we will, equivalently, consider
the maps µFk : H0(Fk) ⌦ H0(L) ! H0(Fk + L); since we are interested in the
case k = ↵, we set F = F↵ .

So consider a rational curve C ⇢ P2 whose strict transform C 0
⇢ X is smooth

and irreducible; setting t = F · C 0, a = aC 0 , b = bC 0 , via twisting the sequence
(2.2) by F we get:

0 ! OC 0(t � a) �OC 0(t � b) ! F |C 0 ⌦ H0(L) ! (F + L)|C 0 ! 0. (4.1)

Taking cohomology, we get the map µ̄C 0,F : H0(F |C 0)⌦H0(L) ! H0((F+L)|C 0)

where ker(µ̄C 0,F ) = H0(OC 0(t � a) �OC 0(t � b)).
Assuming H1(F � C 0) = 0 and L · (F � C 0) � �1, which imply H1(F �

C 0
+ L) = 0, we have (as in [16]) the following commutative diagram:

0 0 0
# # #

0 ! H0((F � C 0) ⌦ p⇤�(1)) ! H0(F ⌦ p⇤�(1)) ! ker(µ̄C 0,F )
⌧
�!

# # #

0 ! H0(F � C 0) ⌦ H0(L) ! H0(F) ⌦ H0(L) ! H0(F |C 0) ⌦ H0(L) ! 0
#

µF�C 0
#

µF #
µ̄C 0,F

0 ! H0(F � C 0
+ L) ! H0(F + L) ! H0((F + L)|C 0) ! 0

# # #

⌧
�! cokµF�C 0 ! cokµF ! cok(µ̄C 0,F ) ! 0

# # #

0 0 0

. (4.2)

If C 0 also satisfies t = F ·C 0
� �1, then H1(F |C 0)⌦H0(L) = 0 so the last vertical

column of (4.2) gives cok(µ̄C 0,F ) = H1(OC 0(t � a) � OC 0(t � b)). In this case,
µF cannot have maximal rank if cok(µ̄C 0,F ) is “too big” (when µF is expected
to be surjective, too big means simply that cok(µ̄C 0,F ) is nonzero). We will now
see how this all works with two examples which use rational curves C ⇢ P2 with
unbalanced splitting.
Example 4.1. Let Z = 4p1 + p2 + · · · + p9. It is well known that Z has good
postulation; we have l(Z) = 18, dim(IZ )4 = 0, dim(IZ )5 = 3 so ↵(Z) = 5, and
dim(IZ )6 = 10, hence one expects that µ5 is injective and that dim cokerµ5 = 1.
We will see that this does not happen. Consider a quartic curve C ⇢ P2 passing
through the pi ’s and with a singularity of multiplicity 3 at p1. Its strict transform is
a divisor C 0

= 4L � 3E1 � E2 � · · · � E9 on X ; C 0 is Ascenzi with unbalanced
splitting (aC 0, bC 0) = (1, 3). If we consider the diagram (4.2) where F = F5 and
t = F · C 0

= 20� 20 = 0, we get dim cok(µ̄C 0,F ) = h1(OC 0(�1) �OC 0(�3)) =

2. This forces dim cokerµF � 2, and we actually have dim cokerµF = 2, since
F �C 0

= L � E1, so the column on the left column of the diagram corresponds to
the linear syzygies on the pencil of lines through the point p1, but in that case we
know cok(µF�C 0) = 0.
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Example 4.2. Let Z = 4p1 + · · · + 4p7 + p8 + p9; we know that Z has good
postulation and (IZ )11 is fixed component free (e.g. see [20]). Namely, we have
l(Z) = 72, dim(IZ )10 = 0, dim(IZ )11 = 6, dim(IZ )12 = 19, ↵(Z) = 11, hence
µ11 is expected to be injective, with dim cok(µ11) = 1, but we will see that this
does not happen (see also [12]). This is due to the existence of a curve C ⇢ P2 of
degree 8 where m(C)pi = 3 for 1  i  7, and where p8, p9 are simple points of
C , which by Example 3.4 gives C 0

= 8L�3E1� · · ·�3E7�E8�E9 on X having
unbalanced splitting (aC 0, bC 0) = (3, 5). Now from diagram (4.2), with F = F11
and t = F ·C 0

= 88�86 = 2, we get dim cok(µ̄C 0,F ) = h1(OC 0(�1)�OC 0(�3)) =

2. We have F � C 0
= �KX , so the column on the left of the diagram corresponds

to the liner syzygies among forms of degree 3 in the resolution of the ideal of seven
points in P2 for which we know cok(µF�C 0) = 0. This implies that we actually
have dim cokerµF = 2.

Examples 4.1 and 4.2 give particular instances of infinitely many fat point sub-
schemes Z ⇢ P2 with “bad resolution”, which we can obtain using the results of
Section 3:

Proposition 4.3. Consider the blow up X of P2 at 9 generic points p1, . . . , p9.
Let C 0 be an exceptional divisor on X of type (d,m1, . . . ,m9) = (2d 0, 2m0

1 +

1, . . . , 2m0

9 + 1) with d 0
� 2 and consider the fat point subscheme Z = (3m0

1 +

1)p1 + · · · + (3m0

9 + 1)p9 ⇢ P2. Then

• Z has maximal Hilbert function and ↵(Z) = 3d 0
� 1;

• µ↵ is expected to be injective with dim coker(µ↵) = 1; but in fact
• dim coker(µ↵) � 2.

Hence Z does not have generic resolution.

Proof. If A is a divisor of type (d 0
� 1,m0

1, . . . ,m
0

9), then [2A] = [C 0
+ KX + L],

so by Lemma 3.12 (and its proof) h0(A) > 0 and C 0 has unbalanced splitting; in
particular, �C 0 � 2 and the splitting type of C 0 is (aC 0, bC 0) with aC 0  d 0

� 1. Note
that F = C 0

+ A has type (3d 0
� 1, 3m0

1 + 1, . . . , 3m0

9 + 1). Since F is the sum
of two effective divisors, ↵(Z) = 3d 0

+ 1 follows if we check that h0(F � L) = 0.
Consider the exact sequence:

0 ! OX (A � L) ! OX (F � L) ! OX (F � L)|C 0 ! 0.

Since �KX is nef and �KX · (2A � 2L) = �KX · (C 0
+ KX � L) < 0, we

see that h0(OX (2A � 2L)) = 0 and hence also h0(OX (A � L)) = 0. Moreover,
(F � L) · C 0

= �d 0
� 2, so h0(OX (F � L)|C 0) = 0, hence h0(F � L) = 0 and so

↵(Z) = 3d 0
+ 1.

In order to prove that Z has maximal Hilbert function we only have to show that
hZ (3d 0

+ 1) is maximal, i.e. that h0(F) has the expected dimension (equivalently,
that h1(F) = 0). But�KX · F = 3, so by [20], h1(F) = 0 if we show that F is nef.
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But as noted in the proof of Lemma 3.12, the class of every effective divisor is a
non-negative sum of exceptional classes and non-negative multiples of �KX . Thus
F is nef if F · E � 0 for every exceptional curve E , but F = (3C 0

+ KX + L)/2,
so F ·C 0

= d 0
� 2 � 0, while F · E � d(�1+ E · L)/2e � 0 if E 6= C 0. Since F is

nef, it follows that h1(L , F + L) = 0, and since also h1(F) = 0, it follows and that
h1(F+L) = 0. A straightforward (but tedious) computation now shows that h0(F+

L)�3h0(F) = 1, hence µF is expected to be injective with dim coker(µF ) = 1, as
claimed.

Arguing as we did for F , we also see that A is nef, and since�KX · A > 0, we
have h1(F � C 0) = h1(A) = 0, so we can apply diagram (4.2) for our F and C 0.
We have that t = F · C 0

= d 0
� 2 � aC 0 � 1, so we get that dim coker(µ̄C 0,F ) =

h1(OC(d 0
� 2 � aC 0) � OC(d 0

� 2 � 2d 0
+ aC 0)), and aC 0 � d 0

� 2  �3, so
dim coker(µ̄C 0,F ) � 2.

Not all examples of fat point subschemes with good postulation and “bad reso-
lution” follow the pattern illustrated above. In fact, a more complicated geometry is
possible; for example, the curve C 0 may have many irreducible rational components
and need not even be reduced (see [16, Examples 4.7, 6.3]). Other examples can
be found in [15] or in [16], where there are also two conjectures which describe
completely what the situation could be.

Resolutions for subschemes Z not possessing a maximal hilbert function
are also of interest. Things are more complicated in this situation, but the
“unbalanced splitting” idea can still be useful. Actually, when r = 9 and the
points pi are generic, then using [15, Theorem 3.3(b)] and assuming Conjec-
ture 1.7 if need be, we can in every degree k, except possibly degree ↵(Z) + 1,
find the minimal number of generators of (IZ )k , as we demonstrate in the next ex-
ample.
Example 4.4. Let Z = 230p1 + 225p2 + · · · + 225p8 + 95p9, for generic points
pi 2 P2. The Hilbert function of the ideal IZ can be found by computing h0(Fk),
where Fk = kL � 230E1 � 225E2 � · · · � 225E8 � 95E9. We have h0(Fk) = 0
for k < 645, h0(F645) = 71, h0(F646) = 528, h0(F647) = 1176, h0(Fk) =�k+2
2
�

� deg Z =

�k+2
2
�

� 209100. We will compute the rank of each map µk ,
except for k = 645.

To find the minimal number ⌫k+1 of generators in each degree k + 1 we must
find the dimension of the cokernel of the usual maps µFk : H0(Fk) ⌦ H0(L) !

H0(Fk+1). Clearly ⌫645 = h0(F645) = 71. The same algorithm that we use to
compute h0(Fk) can be used to give a Zariski decomposition of Fk . This is useful
since if Fk = H + N where H is effective and N is effective and fixed in |Fk |,
then ⌫k+1 = dim coker(µH ) + (h0(Fk+1) � h0(H + L)), and we know h0(Fk+1)
and h0(H + L). It is known that the dimension �H of the kernel of µH has bounds
h0(H � (L � E1))  �H  h0(H � (L � E1)) + h0(H � E1). Bounds on
�H of course give bounds on dim coker(µH ). We find N = 20E , where E =

20L � 7E1� · · ·� 7E8� 3E9 is an exceptional curve which by Conjecture 1.7 has
splitting gap 2, and H = 245L�90E1�85E2 · · ·�85E8�35E9 is nef and effective.
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We find 0 = h0(H � (L � E1))  �k  h0(Fk � (L � E1)) + h0(Fk � E1) = 1,
h0(Fk+1) = 528, h0(H + L) = 318 and h0(H) = h0(Fk) = 71 for k = 645, and
hence 315  ⌫646  316.

For t = 646 we have N = 0 and H = Fk . Doing the same calculation
with this new Zariski decomposition gives 0  ⌫647  99. But in fact, using the
splitting gap of 2 from above and [15, Theorem 3.3(b)] we have dim coker(µF646) =

dim coker(µL+20E ) =

�11
2
�

+

�9
2
�

= 91. From the Hilbert function we see that
the regularity of IZ is 647, so ⌫k = 0 for t > 647. Given the Hilbert function
and numbers of generators of IZ we compute all but one of the remaining graded
Betti numbers: there are 286 syzygies in degree 647 and 190 in degree 648, but
since we do not know the number of minimal generators in degree 646 we also do
not know the number of syzygies. This example and others like it can be run at:
http://www.math.unl.edu/ bharbourne1/GHM/ResForFatPts.html.

Remark 4.5. Notice that if dim(IZ )↵  2, then we can find the minimal number
of generators of IZ also in degree ↵(Z) + 1. If dim(IZ )↵ = 1, then (IZ )↵ ⌦

R1 ! (IZ )↵+1 is injective so the number of generators in degree ↵(Z) + 1 is
just dim(IZ )↵+1 � 3, while if dim(IZ )↵ = 2 we can determine the dimension of
the kernel of (IZ )↵ ⌦ R1 ! (IZ )↵+1 since (IZ )↵ is a pencil; indeed, assuming
Z =

P
i mi pi with m1 � · · · � mr , the dimension of the kernel, which is either 0

or 1, is dim(IZ�p1)t�1.
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