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A weak Harnack inequality for fractional evolution equations
with discontinuous coefficients

RICO ZACHER

Abstract. We study linear time fractional diffusion equations in divergence form
of time order less than one. It is merely assumed that the coefficients are mea-
surable and bounded, and that they satisfy a uniform parabolicity condition. As a
main result we establish for nonnegative weak supersolutions of such problems a
weak Harnack inequality with optimal critical exponent. The proof relies on new
a priori estimates for time fractional problems and uses Moser’s iteration tech-
nique and an abstract lemma of Bombieri and Giusti, the latter allowing to avoid
the rather technically involved approach via BMO . As applications of the weak
Harnack inequality we establish the strong maximum principle, the continuity of
weak solutions at t = 0, and a uniqueness theorem for global bounded weak
solutions.

Mathematics Subject Classification (2010): 35R09 (primary); 45K05 (sec-
ondary).

1. Introduction and main result

Let T > 0 and � be a bounded domain in RN . In this paper we are concerned with
linear partial integro-differential equations of the form

@↵t (u � u0) � div
�
A(t, x)Du

�
= 0, t 2 (0, T ), x 2 �. (1.1)

Here u0 = u0(x) is a given initial data for u, A = (ai j ) is RN⇥N -valued, Du
denotes the spatial gradient of u, and @↵t stands for the Riemann-Liouville fractional
derivation operator with respect to time of order ↵ 2 (0, 1); it is defined by

@↵t v(t, x) = @t

Z t

0
g1�↵(t � ⌧ )v(⌧, x) d⌧, t > 0, x 2 �,

Work partially supported by the European Community’s Human Potential Programme [Evolution
Equations for Deterministic and Stochastic Systems], contract code HPRN-CT-2002-00281, and
by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.
Received July 23, 2011; accepted December 12, 2011.



904 RICO ZACHER

where g� denotes the Riemann-Liouville kernel

g�(t) =

t��1

0(�)
, t > 0, � > 0.

As to applications, equation (1.1) is a special case of problems arising in mathe-
matical physics when describing dynamic processes in materials with memory, e.g.
in the theory of heat conduction with memory, see [24] and the references therein.
Time fractional diffusion equations are also used to model anomalous diffusion, see
e.g. [20]. In this context, equations of the type (1.1) are termed subdiffusion equa-
tions (the time order ↵ lies in (0, 1); in the case ↵ 2 (1, 2), which is not considered
here, one speaks of superdiffusion equations. Time fractional diffusion equations
of time order ↵ 2 (0, 1) are closely related to a class of Montroll-Weiss continu-
ous time random walk models where the waiting time density behaves as t�↵�1 for
t ! 1, see e.g. [14,15,20]. Problems of the type (1.1) are further used to describe
diffusion on fractals ([20, 25]), and they also appear in mathematical finance, see
e.g. [27].

Letting �T = (0, T ) ⇥� we will assume that

(H1) A 2 L1(�T ; RN⇥N ), and

NX
i, j=1

|ai j (t, x)|2  32, for a.a. (t, x) 2 �T .

(H2) There exists ⌫ > 0 such that
�
A(t, x)⇠ |⇠

�
� ⌫|⇠ |2, for a.a. (t, x) 2 �T , and all ⇠ 2 RN .

(H3) u0 2 L2(�).

We say that a function u is a weak solution (subsolution, supersolution) of (1.1) in
�T , if u belongs to the space

Z↵ := { v 2 L 2
1�↵ , w([0, T ]; L2(�)) \ L2([0, T ]; H12 (�)) such that

g1�↵ ⇤ v 2 C([0, T ]; L2(�)), and (g1�↵ ⇤ v)|t=0 = 0},

and for any nonnegative test function

⌘2

�

H 1,1
2 (�T ) :=H12 ([0,T ]; L2(�))\L2([0, T ];

�

H 1
2(�))

⇣
�

H 1
2(�) :=C1

0 (�) H
1
2 (�)

⌘

with ⌘|t=T = 0 there holds
Z T

0

Z
�

⇣
� ⌘t [g1�↵ ⇤ (u � u0)] + (ADu|D⌘)

⌘
dxdt = (, �) 0. (1.2)
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Here L p, w denotes the weak L p space and f1 ⇤ f2 the convolution on the positive
halfline with respect to time, that is ( f1 ⇤ f2)(t) =

R t
0 f1(t � ⌧ ) f2(⌧ ) d⌧ , t � 0.

Weak solutions of (1.1) in the class Z↵ have been constructed in [37]. Notice
also that the function u0 plays the role of the initial data for u, at least in a weak
sense. In case of sufficiently smooth functions u and g1�↵ ⇤ (u � u0) the condition
(g1�↵ ⇤ u)|t=0 = 0 implies u|t=0 = u0, see [37].

To formulate our main result, let B(x, r) denote the open ball with radius r > 0
centered at x 2 RN . By µN we mean the Lebesgue measure in RN . For � 2 (0, 1),
t0 � 0, ⌧ > 0, and a ball B(x0, r), define the boxes

Q�(t0, x0, r) = (t0, t0 + �⌧r2/↵) ⇥ B(x0, �r),
Q+(t0, x0, r) = (t0 + (2� �)⌧r2/↵, t0 + 2⌧r2/↵) ⇥ B(x0, �r).

Theorem 1.1. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1)-(H3) are satisfied. Let further � 2 (0, 1), ⌘ > 1, and ⌧ > 0 be
fixed. Then for any t0 � 0 and r > 0 with t0+2⌧r2/↵  T , any ball B(x0, ⌘r) ⇢ �,
any 0 < p < 2+N↵

2+N↵�2↵ , and any nonnegative weak supersolution u of (1.1) in
(0, t0 + 2⌧r2/↵) ⇥ B(x0, ⌘r) with u0 � 0 in B(x0, ⌘r), there holds

 
1

µN+1
�
Q�(t0, x0, r)

�
Z
Q�(t0,x0,r)

u p dµN+1

!1/p
 C ess inf

Q+(t0,x0,r)
u, (1.3)

where the constant C = C(⌫,3, �, ⌧, ⌘,↵, N , p).

Theorem 1.1 states that nonnegative weak supersolutions of (1.1) satisfy a
weak form of Harnack inequality in the sense that we do not have an estimate
for the supremum of u on Q�(t0, x0, r) but only an L p estimate. We also show
that the critical exponent 2+N↵

2+N↵�2↵ is optimal, i.e. the inequality fails to hold for
p �

2+N↵
2+N↵�2↵ .
Theorem 1.1 can be viewed as the time fractional analogue of the correspond-

ing result in the classical parabolic case ↵ = 1, see e.g. [19, Theorem 6.18] and [29].
Sending ↵ ! 1 in the expression for the critical exponent yields 1 + 2/N , which
is the well-known critical exponent for the heat equation. We would like to point
out that the statement of Theorem 1.1 remains valid for (appropriately defined)
weak supersolutions of (1.1) on (t0, t0 + 2⌧r2/↵) ⇥ B(x0, ⌘r) which are nonneg-
ative on (0, t0 + 2⌧r2/↵) ⇥ B(x0, ⌘r). To avoid further technicalities we have
confined ourselves to consider only weak supersolutions on the full time-interval
(0, t0+ 2⌧r2/↵). Note that the global positivity assumption cannot be replaced by a
local one, as simple examples show, cf. [36]. This significant difference to the case
↵ = 1 is due to the non-local nature of @↵t . The same phenomenon is known for
integro-differential operators like (�1)↵ with ↵ 2 (0, 1), see e.g. [16].

As a simple consequence of the weak Harnack inequality we derive the strong
maximum principle for weak subsolutions of (1.1), see Theorem 5.1 below. The
weak maximum principle has been proven in [33], even in a more general setting.
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As a further consequence of the weak Harnack inequality we obtain a unique-
ness theorem for global bounded weak solutions, see Corollary 5.3 below. It states
that any bounded weak solution of (1.1) on R+ ⇥ RN with u0 = 0 vanishes a.e. on
R+ ⇥ RN .

The proof of Theorem 1.1 relies on new a priori estimates for time fractional
problems, which are derived by means of the fundamental identity (2.6) (see below)
for the regularized fractional derivative. It further uses Moser’s iteration technique
and an elementary but subtle lemma of Bombieri and Giusti [2], which allows to
avoid the rather technically involved approach via BMO-functions. This simplifi-
cation is already of great significance in the classical parabolic case, see Moser [23]
and Saloff-Coste [26].

One of the technical difficulties in deriving the desired estimates in the weak
setting is to find an appropriate time regularization of the problem. In the case
↵ = 1 this can be achieved by means of Steklov averages in time. In the time
fractional case this method does not work anymore, since Steklov average operators
and convolution do not commute. It turns out that instead one can use the Yosida
approximation of the fractional derivative, which leads to a regularization of the
kernel g1�↵ . This method has already been used in [12,30,37], and [33].

We point out that the results obtained in this paper can be generalized to quasi-
linear equations of the form

@↵t (u � u0) � div a(t, x, u, Du) = b(t, x, u, Du), t 2 (0, T ), x 2 �, (1.4)

with suitable structure conditions on the functions a and b. This is possible, as
also known from the elliptic and the classical parabolic case, since the test function
method used in the proof of Theorem 1.1 does not depend so much on the linearity
of the differential operator w.r.t. the spatial variables but on a certain nonlinear
structure, cf. [11, 19, 29], and [33].

In the literature there exist many papers where equations of the type (1.1),
as well as nonlinear or abstract variants of them are studied in a strong setting,
assuming more smoothness on the coefficients and nonlinearities, see e.g. [1, 4, 7,
10,12,24,34,35]. Concerning the weak setting described above one finds only a few
results. Existence of weak solutions has been shown in [37] in an abstract setting for
a more general class of kernels. Boundedness of weak solutions has been obtained
in [33] in the quasilinear case by means of the De Giorgi technique. In the very
recent work [31], it is proved that any weak solution of (1.1) is Hölder continuous
in the interior of the parabolic domain. The proof is quite involved and relies on
the De Giorgi technique and the method of non-local growth lemmata (cf. [28]).
With the weak Harnack inequality, the present paper establishes another key result
towards a De Giorgi-Nash-Moser theory for time fractional evolution equations in
divergence form of order ↵ 2 (0, 1).

In the classical parabolic case boundedness and the weak (or full) Harnack in-
equality imply an Hölder estimate for weak solutions, cf. [9, 18, 19, 22]. We also
refer to [11] and [21] for the elliptic case. In the present situation one cannot argue
anymore as in the classical parabolic case, due to the global positivity assumption
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in Theorem 1.1. The same problem arises for the fractional Laplacian, see [28].
However, in our case it is possible to establish without much effort at least continu-
ity at t = 0. This is done in Theorem 5.2 in the case u0 = 0. It is shown that in this
case any bounded weak solution u of (1.1) is continuous at (0, x0) for all x0 2 �
and lim(t,x)!(0,x0) u(t, x) = 0. Thus for such weak solutions the initial condition
u|t=0 = 0 is satisfied in the classical sense.

We further remark that in the purely time-dependent case, that is for scalar
equations of the form

@↵t (u � u0) + �u = 0, t 2 (0, T ),

with � � 0, a weak Harnack inequality with optimal exponent 1/(1� ↵) has been
proven in [32] for nonnegative supersolutions. Recently, the full Harnack inequality
for nonnegative solutions has been established in [36]. This, together with the above
results, indicates that the full Harnack inequality should also hold for nonnegative
solutions of (1.1), which is still an open problem, even in the case A(t, x) ⌘ I d.

The paper is organized as follows. In Section 2 we collect the basic tools
needed for the proof of Theorem 1.1. These include two abstract lemmas on Moser
iterations and the lemma of Bombieri and Giusti. We further explain the approxima-
tion method for the fractional derivation operator and state the fundamental identity
(2.6), which is frequently used in Section 3, where we give the proof of the main
result. In Section 4 we show that the critical exponent in Theorem 1.1 is optimal.
Finally, Section 5 is devoted to applications of the weak Harnack inequality.

ACKNOWLEDGEMENTS. This paper was initiated while the author was visiting the
Technical University Delft (NL) in 2003/2004. The author is greatly indebted to
Philippe Clément for many fruitful discussions and valuable suggestions.

2. Preliminaries

2.1. Moser iterations and an abstract lemma of Bombieri and Giusti

Throughout this subsection U� , 0 < �  1, will denote a collection of measurable
subsets of a fixed finite measure space endowed with a measure µ, such that U� 0 ⇢

U� if � 0
 � . For p 2 (0,1) and 0 < �  1, L p(U� ) stands for the Lebesgue

space L p(U� , dµ) of all µ-measurable functions f : U� ! R with | f |L p(U� ) :=

(
R
U� | f |p dµ)1/p < 1.
The following two lemmas are basic to Moser’s iteration technique. The argu-

ments in their proofs have been repeatedly used in the literature (see e.g. [11,19,21,
22, 26, 29]), so it is worthwhile to formulate them as lemmas in abstract form, also
for future reference. We provide proofs for the sake of completeness.

The first Moser iteration result reads as follows, see also [8, Lemma 2.3].
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Lemma 2.1. Let  > 1, p̄ � 1, C � 1, and � > 0. Suppose f is a µ-measurable
function on U1 such that

| f |L� (U� 0 ) 

✓
C(1+ �)�

(� � � 0)�

◆1/�
| f |L� (U� ), 0 < � 0 < �  1, � > 0. (2.1)

Then there exist constants M = M(C, � , , p̄) and �0 = �0(� , ) such that

ess sup
U�

| f | 

✓
M

(1� �)�0

◆1/p
| f |L p(U1) for all � 2 (0, 1), p 2 (0, p̄].

Proof. For q > 0 and 0 < �  1, let

8(q, � ) =

✓Z
U�

| f |q dµ

◆1/q
.

Let 0 < p  p̄ and � 2 (0, 1). Set pi = p i , i = 0, 1, . . . and define the sequence
{�i }, i = 0, 1, . . ., by �0 = 1 and �i = 1�

Pi
j=1 2� j (1� �), i = 1, 2, . . .; observe

that 1 = �0 > �1 > . . . > �i > �i+1 > � as well as �i�1� �i = 2�i (1� �), i � 1.
Suppose now n 2 N. By using (2.1) with � = pi , i = 0, 1, . . . , n � 1, we obtain

8(pn, �)  8(pn, �n) = 8(pn�1, �n)



 
C(1+ pn�1)�

[2�n(1� �)]�

! 1
p 

�(n�1)

8(pn�1, �n�1)



 
C(2 p̄n�1)�

[2�n(1� �)]�

! 1
p 

�(n�1)

8(pn�1, �n�1)



 
C̃(C, p̄, � )n� (n�1)

(1� �)�

! 1
p 

�(n�1)

8(pn�1, �n�1)  . . .



⇣
C̃
Pn�1

j=0( j+1)
� j

�
Pn�1

j=0 j
� j

(1� �)
��

Pn�1
j=0 

� j⌘1/p
8(p0, �0)



 
M(C, p̄, � , )

(1� �)
� 
�1

!1/p
8(p, 1).

We let now n tend to1 and use the fact that
lim
n!1

8(pn, �) = ess sup
U�

| f |

to get

ess sup
U�

| f | 

 
M(C, p̄, � , )

(1� �)
� 
�1

!1/p
| f |L p(U1).

Hence the proof is complete.

The second Moser iteration result is the following, see also [8, Lemma 2.5].
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Lemma 2.2. Assume that µ(U1)  1. Let  > 1, 0 < p0 <  , and C � 1, � > 0.
Suppose f is a µ-measurable function on U1 such that

| f |L� (U� 0 ) 

✓
C

(� � � 0)�

◆1/�
| f |L� (U� ),

0 < � 0 < �  1, 0 < � 

p0


< 1.
(2.2)

Then there exist constants M = M(C, � , ) and �0 = �0(� , ) such that

| f |L p0 (U�) 

✓
M

(1� �)�0

◆1/p�1/p0
| f |L p(U1) for all � 2 (0, 1), p 2

⇣
0,

p0


i
.

Proof. Set pi = p0�i , i = 1, 2, . . . Given � 2 (0, 1) we take again the sequence
{�i }, i = 0, 1, 2, . . ., defined by �0 = 1 and �i = 1 �

Pi
j=1 2� j (1 � �), i � 1.

Suppose now n 2 N. By using (2.2) with � = pi , i = 1, . . . , n, we obtain

8(p0, �)  8(p0, �n) = 8(p1, �n) 

C/p0
[2�n(1� �)]� /p0

8(p1, �n�1)



C/p0
[2�n(1� �)]� /p0

C2/p0

[2�(n�1)(1� �)]� 
2/p0

8(p2, �n�2)  . . .



C
1
p0

(+2+...+n)

2�
�
p0

(n+(n�1)2+...+2n�1+n)
(1� �)

�
p0

(+2+...+n)
8(pn, �0).

Since pi = p0�i , we have

1
p0

nX
j=1

 j =

(n � 1)
p0( � 1)

=



p0( � 1)

✓
p0
pn

� 1
◆

=



 � 1

✓
1
pn

�

1
p0

◆
.

Employing the formula
nX
j=1

j j�1 =

1� (n + 1)n + nn+1

( � 1)2

we have further
nX
j=1

(n + 1� j) j = (n + 1)
nX
j=1

 j �

nX
j=1

j j

= (n + 1)
n � 1
 � 1

� 
1� (n + 1)n + nn+1

( � 1)2

= 
n+1 � (n + 1) + n

( � 1)2




( � 1)2
n+1



3

( � 1)3
(n � 1) 

3

( � 1)3

✓
p0
pn

� 1
◆

,
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which yields

1
p0

nX
j=1

(n + 1� j) j 

3

( � 1)3

✓
1
pn

�

1
p0

◆
.

Therefore

8(p0, �) 

2
642

� 3

(�1)3 C

�1

(1� �)
� 
�1

3
75

1
pn �

1
p0

8(pn, �0).

Given p 2 (0, p0/] there exists n � 2 such that pn < p  pn�1. We then have

1
pn

�

1
p0

=

n � 1
p0



n + n�1 �  � 1
p0

=

(1+ )(n�1 � 1)
p0

= (1+ )

✓
1

pn�1
�

1
p0

◆
 (1+ )

✓
1
p

�

1
p0

◆
,

as well as
8(pn, �0) = 8(pn, 1)  8(p, 1),

by Hölder’s inequality and the assumption µ(U1)  1. All in all, we obtain

8(p0, �) 

2
642

� 3

(�1)3 C

�1

(1� �)
� 
�1

3
75

(1+)( 1p�
1
p0

)

8(p, 1),

which proves the lemma.

The following abstract lemma is due to Bombieri and Giusti [2]. For a proof
we also refer to [26, Lemma 2.2.6] and [8, Lemma 2.6].

Lemma 2.3. Let �, ⌘ 2 (0, 1), and let � , C be positive constants and 0 < �0  1.
Suppose f is a positive µ-measurable function on U1 which satisfies the following
two conditions:

(i) | f |L�0 (U� 0 )  [C(� � � 0)��µ(U1)�1]1/��1/�0
| f |L� (U� ),

for all �, � 0, � such that 0 < �  � 0 < �  1 and 0 < �  min{1, ⌘�0}.

(ii) µ({log f > �})  Cµ(U1)��1

for all � > 0.
Then

| f |L�0 (U�)  Mµ(U1)1/�0,

where M depends only on �, ⌘, � , C , and �0.
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2.2. The Yosida approximation of the fractional derivation operator

Let 0 < ↵ < 1, 1  p < 1, T > 0, and X be a real Banach space. Then the
fractional derivation operator B defined by

Bu =

d
dt

(g1�↵ ⇤u), D(B) = {u 2 L p([0, T ]; X) : g1�↵ ⇤u 2 0H1p([0, T ]; X)},

where the zero means vanishing at t=0, is known to bem-accretive in L p([0,T ];X),
cf. [3, 6], and [12]. Its Yosida approximations Bn , defined by Bn = nB(n +

B)�1, n 2 N, enjoy the property that for any u 2 D(B), one has Bnu ! Bu
in L p([0, T ]; X) as n ! 1. Further, one has the representation

Bnu =

d
dt

(g1�↵,n ⇤ u), u 2 L p([0, T ]; X), n 2 N, (2.3)

where g1�↵,n = ns↵,n , and s↵,n is the unique solution of the scalar-valued Volterra
equation

s↵,n(t) + n(s↵,n ⇤ g↵)(t) = 1, t > 0, n 2 N,

see e.g. [30]. Let h↵,n 2 L1, loc(R+) be the resolvent kernel associated with ng↵ ,
that is

h↵,n(t) + n(h↵,n ⇤ g↵)(t) = ng↵(t), t > 0, n 2 N. (2.4)
Convolving (2.4) with g1�↵ and using g↵ ⇤ g1�↵ = 1, we obtain

(g1�↵ ⇤ h↵,n)(t) + n([g1�↵ ⇤ h↵,n] ⇤ g↵)(t) = n, t > 0, n 2 N.

Hence
g1�↵,n = ns↵,n = g1�↵ ⇤ h↵,n, n 2 N. (2.5)

The kernels g1�↵,n are nonnegative and nonincreasing for all n 2 N, and they be-
long to H11 ([0, T ]), cf. [24] and [30]. Note that for any function f 2 L p([0, T ]; X),
1  p < 1, there holds h↵,n ⇤ f ! f in L p([0, T ]; X) as n ! 1. In fact, setting
u = g↵ ⇤ f , we have u 2 D(B), and

Bnu =

d
dt

(g1�↵,n ⇤ u) =

d
dt

(g1�↵ ⇤ g↵ ⇤ h↵,n ⇤ f ) = h↵,n ⇤ f ! Bu

= f in L p([0, T ]; X)

as n ! 1. In particular, g1�↵,n ! g1�↵ in L1([0, T ]) as n ! 1.
We next state a fundamental identity for integro-differential operators of the

form d
dt (k ⇤ u), cf. also [33]. Suppose k 2 H11 ([0, T ]) and H 2 C1(R). Then it fol-

lows from a straightforward computation that for any sufficiently smooth function
u on (0, T ) one has for a.a. t 2 (0, T ),

H 0(u(t))
d
dt

(k ⇤ u)(t)=
d
dt

(k ⇤ H(u))(t)+
�
�H(u(t))+H 0(u(t))u(t)

�
k(t)

+

Z t

0

�
H(u(t � s)) � H(u(t)) � H 0(u(t))[u(t � s) � u(t)]

�
[�k̇(s)] ds,

(2.6)
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where k̇ denotes the derivative of k. In particular this identity applies to the Yosida
approximations of the fractional derivation operator. We remark that an integrated
version of (2.6) can be found in [13, Lemma 18.4.1].

Observe that the last term in (2.6) is nonnegative in case H is convex and k
is nonincreasing. This fact is frequently used in the estimates below. However we
would like to point out that for the delicate logarithmic estimates in Section 3.3 one
really needs the full identity (2.6), even though we work all the time with convex or
concave functions. In particular, the crucial fractional differential inequality (3.40)
cannot be obtained by using merely convexity inequalities.

The subsequent two lemmas are also obtained by simple algebra.

Lemma 2.4. Let T > 0 and ↵ 2 (0, 1). Suppose that v 2 0H11 ([0, T ]) and ' 2

C1([0, T ]). Then

�
g↵ ⇤ ('v̇))(t) = '(t)(g↵ ⇤ v̇)(t) +

Z t

0
v(� )@�

�
g↵(t � � )['(t) � '(� )]

�
d�,

a.a. t 2 (0, T ).

If in addition v is nonnegative and ' is nondecreasing there holds

�
g↵ ⇤ ('v̇))(t) � '(t)(g↵ ⇤ v̇)(t) �

Z t

0
g↵(t � � )'̇(� )v(� ) d�, a.a. t 2 (0, T ).

Lemma 2.5. Let T > 0, k 2 H11 ([0, T ]), v 2 L1([0, T ]), and ' 2 C1([0, T ]).
Then

'(t)
d
dt

(k⇤v)(t)=
d
dt
�
k⇤['v]

�
(t)+

Z t

0
k̇(t�⌧ )

�
'(t)�'(⌧ )

�
v(⌧ ) d⌧, a.a. t 2(0, T ).

2.3. An embedding result and a weighted Poincaré inequality

Let T > 0 and� be a bounded domain inRN . For 1 < p  1 we define the space

Vp := Vp([0, T ] ⇥�) = L2p([0, T ]; L2(�)) \ L2([0, T ]; H12 (�)), (2.7)

endowed with the norm

|u|Vp([0,T ]⇥�) := |u|L2p([0,T ];L2(�)) + |Du|L2([0,T ];L2(�)).

Set
 := p :=

2p + N (p � 1)
2+ N (p � 1)

(2.8)

with 1 = 1+ 2/N . Then Vp ,! L2([0, T ] ⇥�), and

|u|L2 ([0,T ]⇥�)  C(N , p)|u|Vp([0,T ]⇥�), (2.9)
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for all u 2 Vp \ L2([0, T ];

�H 1
2(�)). This is a consequence of the Gagliardo-

Nirenberg and Hölder’s inequality. The case p = 1 is contained, e.g., in [18, page
74 and 75]. The proof given there easily extends to the general case. For a more
general embedding result (without proof) we also refer to [33, Section 2].

The following result can be found in [22, Lemma 3], see also [19, Lemma
6.12].

Proposition 2.6. Let ' 2 C(RN ) with non-empty compact support of diameter d
and assume that 0  '  1. Suppose that the domains {x 2 RN

: '(x) � a} are
convex for all a  1. Then for any function u 2 H12 (RN ),

Z
RN

�
u(x) � u'

�2
'(x) dx 

2d2µN (supp')

|'|L1(RN )

Z
RN

|Du(x)|2'(x) dx,

where
u' =

R
RN u(x)'(x) dxR

RN '(x) dx
.

3. Proof of the main result

3.1. The regularized weak formulation, time shifts, and scalings

The following lemma is basic to deriving a priori estimates for weak (sub-/super-)
solutions of (1.1). It provides an equivalent weak formulation of (1.1) where the
singular kernel g1�↵ is replaced by the more regular kernel g1�↵,n (n 2 N) given in
(2.5). In what follows the kernels hn := h↵,n , n 2 N, are defined as in Section 2.2.
Lemma 3.1. Let ↵ 2 (0, 1), T > 0, and � ⇢ RN be a bounded domain. Sup-
pose the assumptions (H1)-(H3) are satisfied. Then u 2 Z↵ is a weak solution
(subsolution, supersolution) of (1.1) in �T if and only if for any nonnegative func-
tion  2

�H 1
2(�) one hasZ

�

⇣
 @t [g1�↵,n ⇤ (u � u0)] + (hn ⇤ [ADu]|D )

⌘
dx = (, �) 0,

a.a. t 2 (0, T ), n 2 N.

For a proof we refer to [33, Lemma 3.1], where a more general situation is con-
sidered with a slightly different function space for the solution. The proof of
Lemma 3.1 is analogous.

Let u 2 Z↵ be a weak supersolution of (1.1) in �T and assume that u0 � 0 in
�. Then Lemma 3.1 and positivity of g1�↵,n imply thatZ
�

⇣
 @t (g1�↵,n⇤u)+(hn⇤[ADu]|D )

⌘
dx � 0, a.a. t 2 (0, T ), n 2 N, (3.1)

for any nonnegative function  2

�H 1
2(�).
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Let now t1 2 (0, T ) be fixed. For t 2 (t1, T ) we introduce the shifted time
s = t � t1 and set f̃ (s) = f (s + t1), s 2 (0, T � t1), for functions f defined on
(t1, T ). From the decomposition

(g1�↵,n ⇤ u)(t, x) =

Z t

t1
g1�↵,n(t � ⌧ )u(⌧, x) d⌧ +

Z t1

0
g1�↵,n(t � ⌧ )u(⌧, x) d⌧,

t 2 (t1, T ),

we then deduce that

@t (g1�↵,n⇤u)(t, x) = @s(g1�↵,n⇤ũ)(s, x)+
Z t1

0
ġ1�↵,n(s+t1�⌧ )u(⌧, x) d⌧. (3.2)

Assuming in addition that u � 0 on (0, t1) ⇥� it follows from (3.1), (3.2), and the
positivity of  and of �ġ1�↵,n thatZ

�

⇣
 @s(g1�↵,n ⇤ ũ) +

�
(hn ⇤ [ADu])˜ |D 

�⌘
dx � 0,

a.a. s 2 (0, T � t1), n 2 N,

(3.3)

for any nonnegative function  2

�H 1
2(�). This relation will be the starting point

for all of the estimates below.
We conclude this section with a remark on the scaling properties of equation

(1.1). Let t0, r > 0 and x0 2 RN . Suppose u 2 Z↵ is a weak solution (subsolution,
supersolution) of (1.1) in (0, t0r2/↵)⇥B(x0, r). Changing the coordinates according
to s = t/r2/↵ and y = (x� x0)/r and setting v(s, y) = u(sr2/↵, x0+ yr), v0(y) =

u0(x0 + yr), and Ã(s, y) = A(sr2/↵, x0 + yr), the problem for u is transformed to
a problem for v in (0, t0) ⇥ B(0, 1), namely there holds with D = Dy (also in the
weak sense)

@↵s (v � v0) � div
�
Ã(s, y)Dv

�
= (, �) 0, s 2 (0, t0), y 2 B(0, 1). (3.4)

3.2. Mean value inequalities

For � > 0 we put � B(x, r) := B(x, �r). Recall that µN denotes the Lebesgue
measure in RN .
Theorem 3.2. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1)-(H3) are satisfied. Let ⌘ > 0 and � 2 (0, 1) be fixed. Then
for any t0 2 (0, T ] and r > 0 with t0 � ⌘r2/↵ � 0, any ball B = B(x0, r) ⇢ �,
and any weak supersolution u � " > 0 of (1.1) in (0, t0) ⇥ B with u0 � 0 in B ,
there holds

ess sup
U� 0

u�1


 
CµN+1(U1)�1

(� � � 0)⌧0

!1/�
|u�1

|L� (U� ), �  � 0 < �  1, � 2 (0, 1].

Here U� = (t0 � �⌘r2/↵, t0) ⇥ � B, 0 < �  1, C = C(⌫,3, �, ⌘,↵, N ) and
⌧0 = ⌧0(↵, N ).
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Proof. We may assume that r = 1 and x0 = 0. In fact, in the general case we
change coordinates as t ! t/r2/↵ and x ! (x � x0)/r , thereby transforming the
equation to a problem of the same type on (0, t0/r2/↵) ⇥ B(0, 1), cf. Section 3.1.

Fix � 0 and � such that �  � 0 < �  1 and put B1 = � B. For ⇢ 2 (0, 1] we
set V⇢ = U⇢� . Given 0 < ⇢0 < ⇢  1, let t1 = t0 � ⇢�⌘ and t2 = t0 � ⇢0�⌘.
Then 0  t1 < t2 < t0. We introduce further the shifted time s = t � t1 and set
f̃ (s) = f (s + t1), s 2 (0, t0 � t1), for functions f defined on (t1, t0). Since u0 � 0
in B and u is a positive weak supersolution of (1.1) in (0, t0) ⇥ B, we have (cf.
(3.3)) Z

B

⇣
v@s(g1�↵,n ⇤ ũ) +

�
(hn ⇤ [ADu])˜ |Dv

�⌘
dx � 0,

a.a. s 2 (0, t0 � t1), n 2 N,

(3.5)

for any nonnegative function v 2

�H 1
2(B). For s 2 (0, t0 � t1) we choose the test

function v =  2ũ� with � < �1 and  2 C10(B1) so that 0    1,  = 1
in ⇢0B1, supp ⇢ ⇢B1, and |D |  2/[� (⇢ � ⇢0)]. By the fundamental identity
(2.6) applied to k = g1�↵,n and the convex function H(y) = �(1 + �)�1y1+� ,
y > 0, there holds for a.a. (s, x) 2 (0, t0 � t1) ⇥ B

�ũ�@s(g1�↵,n ⇤ ũ)��

1
1+ �

@s(g1�↵,n ⇤ ũ1+�) +

⇣ ũ1+�
1+ �

� ũ1+�
⌘
g1�↵,n

= �

1
1+ �

@s(g1�↵,n ⇤ ũ1+�) �

�

1+ �
ũ1+�g1�↵,n.

(3.6)

We further have
Dv = 2 D ũ� + � 2ũ��1Dũ.

Using this and (3.6) it follows from (3.5) that for a.a. s 2 (0, t0 � t1)

�

1
1+ �

Z
B1
 2@s(g1�↵,n ⇤ ũ1+�) dx+|�|

Z
B1

�
(hn⇤[ADu])˜ | 2ũ��1Dũ

�
dx

 2
Z
B1

�
(hn ⇤ [ADu])˜ | D ũ�

�
dx +

�

1+ �

Z
B1
 2ũ1+�g1�↵,n dx .

(3.7)

Next, choose ' 2 C1([0, t0 � t1]) such that 0  '  1, ' = 0 in [0, (t2 � t1)/2],
' = 1 in [t2�t1, t0�t1], and 0  '̇  4/(t2�t1). Multiplying (3.7) by�(1+�) > 0
and by '(s), and convolving the resulting inequality with g↵ yieldsZ

B1
g↵ ⇤

�
'@s(g1�↵,n ⇤ [ 2ũ1+�])

�
dx

+ �(1+ �) g↵ ⇤

Z
B1

�
(hn ⇤ [ADu])˜ | 2ũ��1Dũ

�
' dx

 2|1+ �| g↵ ⇤

Z
B1

�
(hn ⇤ [ADu])˜ | D ũ�

�
' dx

+ |�| g↵ ⇤

Z
B1
 2ũ1+�g1�↵,n' dx,

(3.8)
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for a.a. s 2 (0, t0 � t1). By Lemma 2.4,
Z
B1
g↵⇤

�
'@s(g1�↵,n ⇤ [ 2ũ1+�])

�
dx�

Z
B1
'g↵⇤

�
@s(g1�↵,n ⇤ [ 2ũ1+�])

�
dx

�

Z s

0
g↵(s � � )'̇(� )

�
g1�↵,n ⇤

Z
B1
 2ũ1+� dx

�
(� ) d�.

(3.9)

Furthermore, by virtue of

g1�↵,n ⇤ [ 2ũ1+�] 2 0H11 ([0, t0 � t1]; L1(B1))

and g1�↵,n = g1�↵ ⇤ hn as well as g↵ ⇤ g1�↵ = 1 we have

g↵⇤@s(g1�↵,n⇤[ 2ũ1+�]) = @s(g↵⇤g1�↵,n⇤[ 2ũ1+�]) = hn⇤( 2ũ1+�). (3.10)

Combining (3.8), (3.9), and (3.10), sending n ! 1, and selecting an appropriate
subsequence, if necessary, we thus obtain
Z
B1
' 2ũ1+� dx+�(1+�) g↵⇤

Z
B1

�
ÃDũ| 2ũ��1Dũ

�
' dx

2|1+�| g↵⇤

Z
B1

�
ÃDũ| D ũ�

�
' dx+ |�| g↵⇤

Z
B1
 2ũ1+�g1�↵' dx

+

Z s

0
g↵(s�� )'̇(� )

�
g1�↵⇤

Z
B1
 2ũ1+� dx

�
(� ) d�, a.a. s 2 (0, t0 � t1).

(3.11)

Put w = ũ
�+1
2 . Then Dw =

�+1
2 ũ

��1
2 Dũ. By assumption (H2), we have

�(1+ �) g↵ ⇤

Z
B1

�
ÃDũ| 2ũ��1Dũ

�
' dx

� ⌫�(1+ �) g↵ ⇤

Z
B1
' 2ũ��1

|Dũ|2 dx

=

4⌫�
1+ �

g↵ ⇤

Z
B1
' 2|Dw|

2 dx .

(3.12)

Using (H1) and Young’s inequality we may estimate

2
��� ÃDũ| D ũ�

�
'
��
23 |D ||Dũ|ũ�'=23 |D | |Dũ|ũ

��1
2 ũ

�+1
2 '



⌫|�|

2
 2'|Dũ|2ũ��1

+

2
⌫|�|

32|D |
2'ũ�+1 (3.13)

=

2⌫|�|

(1+ �)2
 2'|Dw|

2
+

2
⌫|�|

32|D |
2'w2.
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From (3.11), (3.12), and (3.13) we conclude that
Z
B1
' 2w2 dx+

2⌫|�|

|1+ �|

g↵⇤
Z
B1
' 2|Dw|

2 dxg↵⇤F, a.a. s 2 (0, t0�t1), (3.14)

where

F(s) =

232|1+ �|

⌫|�|

Z
B1

|D |
2'w2 dx + |�|'(s)g1�↵(s)

Z
B1
 2w2 dx

+ '̇(s)
✓
g1�↵ ⇤

Z
B1
 2w2 dx

◆
(s) � 0, a.a. s 2 (0, t0 � t1).

We may drop the second term in (3.14), which is nonnegative. By Young’s in-
equality for convolutions and the properties of ' we then infer that for all p 2

(1, 1/(1� ↵))

✓Z t0�t1

t2�t1

✓Z
B1

[ (x)w(s, x)]2 dx
◆p
ds
◆1/p

 |g↵|L p([0,t0�t1])
Z t0�t1

0
F(s) ds, (3.15)

where

|g↵|L p([0,t0�t1]) =

(t0 � t1)↵�1+1/p

0(↵)[(↵ � 1)p + 1]1/p



⌘↵�1+1/p

0(↵)[(↵ � 1)p + 1]1/p
=: C1(↵, p, ⌘).

(3.16)

We choose any of these p and fix it.
Returning to (3.14), we may also drop the first term, convolve the resulting

inequality with g1�↵ and evaluate at s = t0 � t1, thereby obtaining
Z t0�t1

t2�t1

Z
B1
 2|Dw|

2 dx ds 

|1+ �|

2⌫|�|

Z t0�t1

0
F(s) ds. (3.17)

Using
Z t0�t1

t2�t1

Z
B1

|D( w)|2 dx ds  2
Z t0�t1

t2�t1

Z
B1

�
 2|Dw|

2
+ |D |

2w2
�
dx ds

we infer from (3.15)-(3.17) that

| w|
2
Vp([t2�t1,t0�t1]⇥B1)  2

✓
C1(↵, p, ⌘) +

|1+ �|

⌫|�|

◆Z t0�t1

0
F(s) ds

+ 4
Z t0�t1

0

Z
B1

|D |
2w2 dx ds.

(3.18)
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We will next estimate the right-hand side of (3.18). By the assumptions on  and
', and since |�| > 1, we haveZ t0�t1

0

Z
B1

|D |
2w2 dx ds 

4
� 2(⇢ � ⇢0)2

Z t0�t1

0

Z
⇢B1

w2 dx ds

and

F(s) 

 
832|1+ �|

⌫� 2(⇢ � ⇢0)2
+ |�|g1�↵((t2 � t1)/2)

!Z
⇢B1

w2 dx

+

4
t2 � t1

✓
g1�↵ ⇤

Z
⇢B1

w2 dx
◆

(s), a.a. s 2 (0, t0 � t1).

Recall that � � � > 0. So we have
Z t0�t1

0
F(s) ds

 
832|1+ �|

⌫� 2(⇢ � ⇢0)2
+

2↵|�|

0(1� ↵)(⇢ � ⇢0)↵(�⌘)↵

!Z t0�t1

0

Z
⇢B1

w2 dx ds

+

4
(⇢ � ⇢0)�⌘

Z t0�t1

0
g2�↵(t0 � t1 � ⌧ )

Z
⇢B1

w(⌧, x)2 dx d⌧

 C(⌫,3, �, ⌘,↵)
1+ |1+ �|

(⇢ � ⇢0)2

Z t0�t1

0

Z
⇢B1

w2 dx ds.

Combining these estimates and (3.18) yields

| w|Vp([t2�t1,t0�t1]⇥B1)  C(⌫,3, �, ⌘,↵, p)
1+ |1+ �|

⇢ � ⇢0

|w|L2([0,t0�t1]⇥⇢B1).

We apply next the interpolation inequality (2.9) to the function  w and make use
of  = 1 in ⇢0B1 to deduce that

|w|L2 ([t2�t1,t0�t1]⇥⇢0B1)

 C(⌫,3, �, ⌘,↵, p, N )
1+ |1+ �|

⇢ � ⇢0

|w|L2([0,t0�t1]⇥⇢B1),
(3.19)

where the number  > 1 is given in (2.8). Since w = ũ
�+1
2 and by transforming

back to the time t , we see that (3.19) is equivalent to
 Z

V⇢0

u�|1+�| dµN+1

! 1
2



C̃(1+ |1+ �|)

⇢ � ⇢0

 Z
V⇢
u�|1+�| dµN+1

! 1
2

with C̃ = C̃(⌫,3, �, ⌘,↵, p, N ). Hence, with � = |1+ �|,

|u�1
|L�  (V⇢0 ) 

 
C̃2(1+ � )2

(⇢ � ⇢0)2

!1/�
|u�1

|L� (V⇢), 0 < ⇢0 < ⇢  1, � > 0.
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Employing the first Moser iteration, Lemma 2.1 (with p̄ = 1), it follows that there
exist constants M0 = M0(⌫,3, �, ⌘,↵, p, N ) and ⌧0 = ⌧0() such that

ess sup
V✓

u�1


✓
M0

(1� ✓)⌧0

◆1/�
|u�1

|L� (V1) for all ✓ 2 (0, 1), � 2 (0, 1].

Thus if we take ✓ = � 0/� and notice that

1
1� ✓

=

�

� � � 0



1
� � � 0

,

we obtain

ess sup
U� 0

u�1


✓
M0

(� � � 0)⌧0

◆1/�
|u�1

|L� (U� ), � 2 (0, 1].

Hence the proof is complete.

We put

̃ := 1/(1�↵) =

2+ N↵
2+ N↵ � 2↵

.

Theorem 3.3. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1)-(H3) are satisfied. Let ⌘ > 0 and � 2 (0, 1) be fixed. Then
for any t0 2 [0, T ) and r > 0 with t0+⌘r2/↵  T , any ball B = B(x0, r) ⇢ �, any
p0 2 (0, ̃), and any nonnegative weak supersolution u of (1.1) in (0, t0+⌘r2/↵)⇥B
with u0 � 0 in B, there holds

|u|L p0 (U 0

� 0
) 

 
CµN+1(U 0

1)
�1

(� � � 0)⌧0

!1/��1/p0

|u|L� (U 0

� ),

�  � 0 < �  1, 0 < �  p0/̃.

Here U 0

� = (t0, t0 + �⌘r2/↵) ⇥ � B, C = C(⌫,3, �, ⌘,↵, N , p0), and ⌧0 =

⌧0(↵, N ).

Proof. We proceed similarly as in the previous proof. Without restriction of gener-
ality we may assume that p0 > 1 and r = 1. By replacing u with u+ " and u0 with
u0 + " and eventually letting " ! 0+ we may further assume that u is bounded
away from zero.

Fix � 0, � such that �  � 0 < �  1 and put B1 = � B. For ⇢ 2 (0, 1] we
set V 0

⇢ = U 0

⇢� . Given 0 < ⇢0 < ⇢  1, let t1 = t0 + ⇢0�⌘ and t2 = t0 + ⇢�⌘, so
0  t0 < t1 < t2. We shift the time by means of s = t�t0 and set f̃ (s) = f (s+t0),
s 2 (0, t2 � t0), for functions f defined on (t0, t2).
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We then repeat the first steps of the preceding proof, the only difference being
that now we take � 2 (�1, 0). Note that, as a consequence of this, (3.6) simplifies
to

�ũ�@s(g1�↵,n ⇤ ũ) � �

1
1+ �

@s(g1�↵,n ⇤ ũ1+�), a.a. (s, x) 2 (0, t2 � t0) ⇥ B,

hence we obtain with  2 C10(B1) as above

�

1
1+ �

Z
B1
 2@s(g1�↵,n ⇤ ũ1+�) dx

+ |�|

Z
B1

�
(hn ⇤ [ADu])˜ | 2ũ��1Dũ

�
dx

 2
Z
B1

�
(hn ⇤ [ADu])˜ | D ũ�

�
dx, a.a. s 2 (0, t2 � t0).

(3.20)

Next, choose ' 2 C1([0, t2 � t0]) such that 0  '  1, ' = 1 in [0, t1 � t0], ' = 0
in [t1 � t0 + (t2 � t1)/2, t2 � t0], and 0  �'̇  4/(t2 � t1). Multiplying (3.20) by
1+ � > 0 and by '(s), and applying Lemma 2.5 to the first term gives

�

Z
B1
@s(g1�↵,n ⇤ [' 2ũ1+�]

�
dx+|�|(1+�)

Z
B1

�
ÃDũ| 2ũ��1Dũ

�
' dx



Z s

0
ġ1�↵,n(s � � )

�
'(s) � '(� )

� ✓Z
B1
 2ũ1+� dx

◆
(� ) d�

+ 2(1+ �)

Z
B1

�
ÃDũ| D ũ�

�
' dx +Rn(s), a.a. s 2 (0, t2 � t0),

(3.21)

where

Rn(s) = �|�|(1+ �)

Z
B1

�
(hn ⇤ [ADu])˜ � ÃDũ| 2ũ��1Dũ

�
' dx

+2(1+�)

Z
B1

�
(hn ⇤ [ADu])˜� ÃDũ| D ũ�

�
' dx, a.a. s2(0, t2�t0).

We set again w = ũ
�+1
2 and estimate exactly as in the preceding proof, using (H1),

(H3) and (3.13), to the result

�

Z
B1
@s(g1�↵,n ⇤ [' 2w2]

�
dx +

2⌫|�|

1+ �

Z
B1
' 2|Dw|

2 dx



Z s

0
ġ1�↵,n(s � � )

�
'(s) � '(� )

�� Z
B1
 2w2 dx

�
(� ) d�

+

232(1+ �)

⌫|�|

Z
B1

|D |
2'w2 dx +Rn(s), a.a. s 2 (0, t2 � t0).

(3.22)
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Recall that g1�↵,n = g1�↵ ⇤ hn . Putting

W (s) =

Z
B1
'(s) (x)2w(s, x)2 dx

and denoting the right-hand side of (3.22) by Fn(s), it follows from (3.22) that

Gn(s) := @↵s (hn ⇤ W )(s) + Fn(s) � 0, a.a. s 2 (0, t2 � t0).

By (3.10) and positivity of hn , we have

0  hn ⇤ W = g↵ ⇤ @↵s (hn ⇤ W )  g↵ ⇤ Gn + g↵ ⇤ [�Fn(s)]+

a.e. in (0, t2 � t0), where [y]+ stands for the positive part of y 2 R. For any
p 2 (1, 1/(1 � ↵)) and any t⇤ 2 [t2 � t0 � (t2 � t1)/4, t2 � t0] we thus obtain by
Young’s inequality

|hn ⇤ W |L p([0,t⇤])  |g↵|L p([0,t⇤])
�
|Gn|L1([0,t⇤]) + |[�Fn]+|L1([0,t⇤])

�
. (3.23)

Since t⇤  t2 � t0  ⌘, we have |g↵|L p([0,t⇤])  C1(↵, p, ⌘) with the same constant
as in (3.16). By positivity of Gn ,

|Gn|L1([0,t⇤]) = (g1�↵,n ⇤ W )(t⇤) +

Z t⇤

0
Fn(s) ds.

Observe thatRn ! 0 in L1([0, t2 � t0]) as n ! 1. Hence |[�Fn]+|L1([0,t⇤]) ! 0
as n ! 1. Further,Z t⇤

0

Z s

0
ġ1�↵,n(s � � )

�
'(s) � '(� )

� ✓Z
B1
 2w2 dx

◆
(� ) d� ds

=

Z t⇤

0
g1�↵,n(t⇤ � � )

�
'(t⇤) � '(� )

� ✓Z
B1
 2w2 dx

◆
(� ) d�

�

Z t⇤

0
'̇(s)

Z s

0
g1�↵,n(s � � )

✓Z
B1
 2w2 dx

◆
(� ) d� ds

 �

Z t⇤

0
'̇(s)

Z s

0
g1�↵,n(s � � )

✓Z
B1
 2w2 dx

◆
(� ) d� ds,

since ' is nonincreasing. We also know that g1�↵,n ⇤W ! g1�↵ ⇤W in L1([0, t2�
t0]). Hence we can fix some t⇤ 2 [t2 � t0 � (t2 � t1)/4, t2 � t0] such that for some
subsequence (g1�↵,nk ⇤ W )(t⇤) ! (g1�↵ ⇤ W )(t⇤) as k ! 1. Sending k ! 1

it follows then from (3.23), the preceding estimates, and from ' = 1 in [0, t1 � t0]
that ✓Z t1�t0

0

✓Z
B1

[ (x)w(s, x)]2 dx
◆p

ds
◆1/p

 C1(↵, p, ⌘)
✓

(g1�↵ ⇤ W )(t⇤) + |F |L1([0,t2�t0])

◆
,

(3.24)
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with

F(s) =

232(1+ �)

⌫|�|

Z
B1

|D |
2'w2 dx � '̇(s)

�
g1�↵ ⇤

Z
B1
 2w2 dx

�
(s).

On the other hand, we can integrate (3.22) over (0, t⇤) and take the limit as k ! 1

for the same subsequence as before, thereby getting
Z t1�t0

0

Z
B1
 2|Dw|

2 dx ds 

1+ �

2⌫|�|

⇣
(g1�↵ ⇤ W )(t⇤) + |F |L1([0,t2�t0])

⌘
. (3.25)

Arguing as above (cf. the lines before (3.18)), we conclude from (3.24) and (3.25)
that

| w|
2
Vp([0,t1�t0]⇥B1)  4

Z t2�t0

0

Z
B1

|D |
2w2 dx ds

+ 2
✓
C1(↵, p, ⌘) +

1+ �

⌫|�|

◆⇣
(g1�↵ ⇤ W )(t⇤) + |F |L1([0,t2�t0])

⌘
.

(3.26)

Since ' = 0 in [t1� t0+ (t2� t1)/2, t2� t0] and t⇤ 2 [t2� t0� (t2� t1)/4, t2� t0],
we have

(g1�↵ ⇤ W )(t⇤)  g1�↵
�
(t2 � t1)/4

� Z t2�t0

0

Z
B1
 2w2 dx ds

=

4↵

0(1� ↵)(⇢ � ⇢0)↵(�⌘)↵

Z t2�t0

0

Z
⇢B1

w2 dx ds.

Further,
Z t2�t0

0

Z
B1

|D |
2w2 dx ds 

4
� 2(⇢ � ⇢0)2

Z t2�t0

0

Z
⇢B1

w2 dx ds.

The term |F |L1([0,t2�t0]) is estimated similarly as in the proof of Theorem 3.2 (cf.
the lines that follow (3.18)). We obtain

|F |L1([0,t2�t0])  C(⌫,3, �, ⌘,↵)
1+ (1+ �)

|�|(⇢ � ⇢0)2

Z t2�t0

0

Z
⇢B1

w2 dx ds.

Notice the additional factor |�| in the denominator. Combining these estimates we
deduce from (3.26) that

| w|Vp([0,t1�t0]⇥B1)  C(⌫,3, �, ⌘,↵, p)
1+ (1+ �)

|�|(⇢ � ⇢0)
|w|L2([0,t2�t0]⇥⇢B1).
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By the interpolation inequality (2.9) and since  = 1 in ⇢0B1, this implies for all
� 2 (�1, 0)

|w|L2 ([0,t1�t0]⇥⇢0B1)

 C(⌫,3, �, ⌘,↵, p, N )
1+ |1+ �|

|�|(⇢ � ⇢0)
|w|L2([0,t2�t0]⇥⇢B1),

(3.27)

where
 = p =

2p + N (p � 1)
2+ N (p � 1)

2 (1, ̃).

We now fix 1 < p < 1/(1�↵) such that p = (p0+ ̃)/2. This is possible because
p % ̃ as p % 1/(1� ↵).

Next, we set � = 1+ � 2 (0, 1) and transform back to u to get

|u|L�  (V 0

⇢0
,dµ) 

 
C̃

(⇢ � ⇢0)2

!1/�
|u|L� (V 0

⇢ ,dµ),

0 < ⇢0 < ⇢  1, 0 < �  p0/.

(3.28)

Here, µ = (⌘!N )�1µN+1, !N the volume of the unit ball in RN , and C̃ =

C̃(⌫,3, �, ⌘,↵, N , p0) is independent of � 2 (0, p0/], since |�| is bounded away
from zero. Note that µ(V 0

1)  1.
Finally, we employ the second Moser iteration scheme, Lemma 2.2, to con-

clude from (3.28) that there are constants M0 = M0(⌫,3, �, ⌘,↵, N , p0) and ⌧0 =

⌧0() such that

|u|L p0 (V 0

✓ ,dµ) 

✓
M0

(1� ✓)⌧0

◆1/��1/p0
|u|L� (V 0

1,dµ),

0 < ✓ < 1, 0 < �  p0/.
(3.29)

If we take ✓ = � 0/� and translate (3.29) back to the measure µN+1, we obtain

|u|L p0 (U 0

� 0
) 

 
M0(⌘!N )�1

(� � � 0)⌧0

!1/��1/p0

|u|L� (U 0

� ), 0 < �  p0/. (3.30)

Since  < ̃ , (3.30) holds in particular for all � 2 (0, p0/̃]. This finishes the
proof.

3.3. Logarithmic estimates

Theorem 3.4. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1)–(H3) are satisfied. Let ⌧ > 0 and �, ⌘ 2 (0, 1) be fixed. Then
for any t0 � 0 and r > 0 with t0 + ⌧r2/↵  T , any ball B = B(x0, r) ⇢ �, and
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any weak supersolution u � " > 0 of (1.1) in (0, t0 + ⌧r2/↵) ⇥ B with u0 � 0 in
B, there is a constant c = c(u) such that

µN+1
�
{(t, x) 2 K� : log u(t, x) > c + �}

�
 Cr2/↵µN (B)��1, � > 0, (3.31)

and

µN+1
�
{(t, x) 2 K+ : log u(t, x) < c � �}

�
 Cr2/↵µN (B)��1, � > 0, (3.32)

where K� = (t0, t0 + ⌘⌧r2/↵) ⇥ �B and K+ = (t0 + ⌘⌧r2/↵, t0 + ⌧r2/↵) ⇥ �B.
Here the constant C depends only on �, ⌘, ⌧, N ,↵, ⌫, and 3.

Proof. Since u0 � 0 in B and u is a positive weak supersolution we may assume
without loss of generality that u0 = 0 and t0 = 0. In fact, in the case t0 > 0 we
shift the time as t ! t � t0, thereby obtaining an inequality of the same type on
the time-interval J := [0, ⌧r2/↵]. Observe that the property g1�↵ ⇤ u 2 C([0, t0 +

⌧r2/↵]; L2(B)) implies g1�↵ ⇤ ũ 2 C(J ; L2(B)) for the shifted function ũ(s, x) =

u(s + t0, x). So we haveZ
B

⇣
v@t (g1�↵,n ⇤ u) + (hn ⇤ [ADu]|Dv)

⌘
dx � 0, a.a. t 2 J, n 2 N, (3.33)

for any nonnegative test function v 2

�H 1
2(B).

For t 2 J we choose the test function v =  2u�1 with  2 C10(B) such that
supp ⇢ B,  = 1 in �B, 0    1, |D |  2/[(1 � �)r] and the domains
{x 2 B :  (x)2 � b} are convex for all b  1. We have

Dv = 2 D u�1
�  2u�2Du,

so that by substitution into (3.33) we obtain for a.a. t 2 J

�

Z
B
 2u�1@t (g1�↵,n ⇤ u) dx +

Z
B

�
ADu|u�2Du

�
 2 dx

 2
Z
B

�
ADu|u�1 D 

�
dx +Rn(t),

(3.34)

where
Rn(t) =

Z
B

�
hn ⇤ [ADu] � ADu|Dv

�
dx .

By (H1) and Young’s inequality,
��2�ADu|u�1 D 

���
 23 |D | |Du|u�1



⌫

2
 2|Du|2u�2

+

2
⌫
32|D |

2.

Using this, (H2) and |D |  2/[(1� �)r], we infer from (3.34) that for a.a. t 2 J

�

Z
B
 2u�1@t (g1�↵,n ⇤ u) dx

+

⌫

2

Z
B

|Du|2u�2 2 dx 

832µN (B)

⌫(1� �)2r2
+Rn(t).

(3.35)
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Setting w = log u we have Dw = u�1Du. The weighted Poincaré inequality of
Proposition 2.6 with weight  2 yields

Z
B
(w � W )2 2dx 

8r2µN (B)R
B  

2dx

Z
B

|Dw|
2 2dx, a.a. t 2 J, (3.36)

where

W (t) =

R
B w(t, x) (x)2dxR

B  (x)2dx
, a.a. t 2 J.

From (3.35) and (3.36) we deduce that

�

Z
B
 2u�1@t (g1�↵,n⇤u) dx+

⌫
R
B  

2dx
16r2µN (B)

Z
B
(w�W )2 2dx

832µN (B)

⌫(1��)2r2
+Rn(t),

which in turn implies

�

R
B  

2u�1@t (g1�↵,n ⇤ u) dxR
B  

2dx

+

⌫

16r2µN (B)

Z
�B

(w � W )2dx 

C1
r2

+ Sn(t),
(3.37)

for a.a. t 2 J , with some constant C1=C1(�,N ,⌫,3) and Sn(t)=Rn(t)/
R
B  

2dx .
The fundamental identity (2.6) with H(y) = � log y reads (with the spatial

variable x being suppressed)

� u�1@t (g1�↵,n ⇤ u) = �@t (g1�↵,n ⇤ log u) + (log u � 1)g1�↵,n(t)

+

Z t

0

✓
� log u(t � s) + log u(t) +

u(t � s) � u(t)
u(t)

◆
[�ġ1�↵,n(s)] ds.

In terms of w = log u this means that

�u�1@t (g1�↵,n ⇤ u) = �@t (g1�↵,n ⇤ w) + (w � 1)g1�↵,n(t)

+

Z t

0
9
�
w(t � s) � w(t)

�
[�ġ1�↵,n(s)] ds,

(3.38)

where 9(y) = ey � 1� y. Since 9 is convex, it follows from Jensen’s inequality
that
R
B  

29
�
w(t � s, x) � w(t, x)

�
dxR

B  
2dx

� 9

 R
B  

2�w(t � s, x) � w(t, x)
�
dxR

B  
2dx

!
.
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Using this and (3.38) we obtain

�

R
B  

2u�1@t (g1�↵,n ⇤ u) dxR
B  

2dx
��@t (g1�↵,n ⇤ W )+(W�1)g1�↵,n(t)

+

Z t

0
9
�
W (t�s) � W (t)

�
[�ġ1�↵,n(s)] ds

= �e�W @t (g1�↵,n ⇤ eW ),

(3.39)

where the last equals sign holds again by (3.38) with u replaced by eW . From (3.37)
and (3.39) we conclude that

⌫

16 r2µN (B)

Z
�B

(w�W )2dxe�W @t (g1�↵,n⇤eW )+
C1
r2

+Sn(t), a.a. t 2 J. (3.40)

We choose

c(u) = log

 
(g1�↵ ⇤ eW )(⌘⌧r2/↵)

g2�↵(⌘⌧r2/↵)

!
. (3.41)

This definition makes sense, since g1�↵ ⇤ eW 2 C(J ). The latter is a consequence
of g1�↵ ⇤ u 2 C(J ; L2(B)) and

eW (t)


R
B u(t, x) (x)2dxR

B  (x)2dx
, a.a. t 2 J,

where we apply again Jensen’s inequality.
To prove (3.31) and (3.32), one of the key ideas is to use the inequalities

µN+1({(t, x) 2 K� : w(t, x) > c(u) + �})

 µN+1({(t, x) 2 K� : w(t, x) > c(u) + � and W (t)  c(u) + �/2})
+ µN+1({(t, x) 2 K� : W (t) > c(u) + �/2}) =: I1 + I2, � > 0,

(3.42)

µN+1({(t, x) 2 K+ : w(t, x) < c(u) � �})

 µN+1({(t, x) 2 K+ : w(t, x) < c(u) � � and W (t) � c(u) � �/2})
+ µN+1({(t, x) 2 K+ : W (t) < c(u) � �/2}) =: I3 + I4, � > 0,

(3.43)

and to estimate each of the four terms I j separately.
We begin with the estimates for W . To estimate I2 and I4 we adopt some of

the ideas developed in [32]. We set J� := (0, ⌘⌧r2/↵), J+ := (⌘⌧r2/↵, ⌧r2/↵),
and introduce for � > 0 the sets J�(�) := {t 2 J� : W (t) > c(u) + �} and
J+(�) := {t 2 J+ : W (t) < c(u) � �}.

Interestingly, positivity and integrability of the function eW are sufficient to
derive the desired estimate for I2, cf. also [32, Theorem 2.3]. In fact, with ⇢ =
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⌧r2/↵ we have

e�µ1
�
J�(�)

�
= e�µ1

�
{t 2 J� : eW (t) > ec(u)e�}

�
=

Z
J�(�)

e� dt



Z
J�(�)

eW (t)�c(u) dt 

Z
J�
eW (t)�c(u) dt

=

g2�↵(⌘⇢)

(g1�↵ ⇤ eW )(⌘⇢)

Z ⌘⇢

0
eW (t) dt



g2�↵(⌘⇢)

(g1�↵ ⇤ eW )(⌘⇢)
·

1
g1�↵(⌘⇢)

Z ⌘⇢

0
g1�↵(⌘⇢ � t)eW (t) dt

=

0(1� ↵)

0(2� ↵)
⌘⇢ =

⌘⌧r2/↵

1� ↵
,

and therefore

I2 = µ1
�
J�(�/2)

�
µN (�B) 

2⌘⌧�N

(1� ↵)�
r2/↵µN (B), � > 0. (3.44)

We come now to I4. For m > 0 define the function Hm on R by Hm(y) = y,
y  m, and Hm(y) = m + (y � m)/(y � m + 1), y � m. Then Hm is increasing,
concave, and bounded above by m + 1. Further, we have Hm 2 C1(R), and so by
concavity

0  yH 0

m(y)  Hm(y)  m + 1, y � 0. (3.45)

Multiplying (3.40) by eW H 0

m
�
eW
�
and employing (3.45) as well as the fundamental

identity (2.6), we infer that

@t
⇣
g1�↵,n ⇤ Hm

�
eW
�⌘

+

C1
r2

Hm
�
eW
�

� �SneW H 0

m
�
eW
�
, a.a. t 2 J. (3.46)

For t 2 J+ we shift the time by setting s = t � ⌘⌧r2/↵ = t � ⌘⇢ and put f̃ (s) =

f (s + ⌘⇢), s 2 (0, (1 � ⌘)⇢), for functions f defined on J+. By the time-shifting
identity (3.2), (3.46) implies that for a.a. s 2 (0, (1� ⌘)⇢)

@s
⇣
g1�↵,n ⇤ Hm

�
eW̃
�⌘

+

C1
r2

Hm
�
eW̃
�

� 7n,m(s) � S̃neW̃ H 0

m
�
eW̃
�
, (3.47)

with the history term

7n,m(s) =

Z ⌘⇢

0

⇥
� ġ1�↵,n(s + ⌘⇢ � � )

⇤
Hm
�
eW (� )

�
d�.

For ✓ � 0 define the kernel r↵,✓ 2 L1,loc(R+) by means of

r↵, ✓ (t) + ✓(r↵, ✓ ⇤ g↵)(t) = g↵(t), t > 0.
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Observe that r↵, 0 = g↵ . Since g↵ is completely monotone, r↵, ✓ enjoys the same
property (cf. [13, Chapter 5]), in particular r↵, ✓ (s) > 0 for all s > 0. Moreover, we
have (see e.g. [32])

r↵, ✓ (s) = 0(↵)g↵(s) E↵,↵(�✓s↵), s > 0,

where E↵,� denotes the generalized Mittag-Leffler-function defined by

E↵,�(z) =

1X
n=0

zn

0(n↵ + �)
, z 2 C.

We put ✓ = C1/r2 and convolve (3.47) with r↵, ✓ . We have a.e. in (0, (1� ⌘)⇢)

r↵, ✓ ⇤ @s
⇣
g1�↵,n ⇤ Hm

�
eW̃
�⌘

= @s
⇣
r↵, ✓ ⇤ g1�↵,n ⇤ Hm

�
eW̃
�⌘

= @s
⇣
[g↵ � ✓(r↵, ✓ ⇤ g↵)] ⇤ g1�↵,n ⇤ Hm

�
eW̃
�⌘

= hn ⇤ Hm
�
eW̃
�
� ✓r↵, ✓ ⇤ hn ⇤ Hm

�
eW̃
�
,

and so we obtain a.e. in (0, (1� ⌘)⇢)

hn ⇤ Hm
�
eW̃
�

� r↵, ✓ ⇤7n,m � r↵, ✓ ⇤

⇥
S̃neW̃ H 0

m
�
eW̃
�⇤

+ ✓hn ⇤ r↵, ✓ ⇤ Hm
�
eW̃
�
� ✓r↵, ✓ ⇤ Hm

�
eW̃
�
.

(3.48)

Sending n ! 1 and selecting an appropriate subsequence, if necessary, it follows
that

Hm
�
eW̃
�

� r↵, ✓ ⇤7m, a.a. s 2 (0, (1� ⌘)⇢), (3.49)

where
7m(s) =

Z ⌘⇢

0

⇥
� ġ1�↵(s + ⌘⇢ � � )

⇤
Hm
�
eW (� )

�
d�.

Observe that for s 2 (0, (1� ⌘)⇢) we have

0  ✓s↵ 

C1
r2

(1� ⌘)↵
�
⌧r2/↵

�↵
= C1(1� ⌘)↵⌧↵ =: !,

and thus by continuity and strict positivity of E↵,↵ in (�1, 0],

r↵, ✓ (s) � 0(↵)g↵(s) min
y2[0,!]

E↵,↵(�y) =: C2(↵,!)0(↵)g↵(s), s 2 (0, (1� ⌘)⇢).

We may then argue as in [32, Section 2.1] to obtain

Hm
�
eW̃ (s)�

� C2(↵,!)
↵(s/[⌘⇢])↵

1+ (s/[⌘⇢])
(⌘⇢)↵�1�g1�↵ ⇤ Hm

�
eW
��

(⌘⇢),

a.a. s 2 (0, (1� ⌘)⇢).
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Evidently, Hm(y) % y as m ! 1 for all y 2 R. Thus by sending m ! 1 and
applying Fatou’s lemma we conclude that

eW̃ (s)
� C2(↵,!)

↵(s/[⌘⇢])↵

1+ (s/[⌘⇢])
(⌘⇢)↵�1�g1�↵ ⇤ eW

�
(⌘⇢),

a.a. s 2 (0, (1� ⌘)⇢).

(3.50)

We then employ (3.50) to estimate as follows.

e�µ1
�
J+(�)

�
= e�µ1

�
{t 2 J+ : eW (t) < ec(u)e��}

�
=

Z
J+(�)

e� dt



Z
J+(�)

ec(u)�W (t) dt 

Z
J+
ec(u)�W (t) dt

=

(g1�↵ ⇤ eW )(⌘⇢)

g2�↵(⌘⇢)

Z (1�⌘)⇢

0
e�W̃ (s) ds



C2(↵,!)�1(⌘⇢)1�↵

↵g2�↵(⌘⇢)

Z (1�⌘)⇢

0
(1+ s/⌘⇢)(s/⌘⇢)�↵ ds

=

0(2� ↵)⌘⇢

↵C2(↵,!)

Z 1�⌘
⌘

0
��↵(1+ � ) d� = C3(↵, ⌘,!)⇢ .

Hence

I4 = µ1
�
J+(�/2)

�
µN (�B) 

2C3(↵, ⌘,!)�N

�
r2/↵µN (B), � > 0. (3.51)

We come now to I1. Set J1(�) = {t 2 J� : c � W (t) + �/2 � 0} and ��

t (�) =

{x 2 �B : w(t, x) > c + �}, t 2 J1(�), where c = c(u) is given by (3.41). For
t 2 J1(�), we have

w(t, x) � W (t) > c � W (t) + � � �/2, x 2 ��

t (�),

and thus we deduce from (3.40) that a.e. in J1(�)
⌫

16r2µN (B)
µN
�
��

t (�)
�



1
(c � W + �)2

✓
e�W @t (g1�↵,n ⇤ eW ) +

C1
r2

+ Sn
◆

.

(3.52)

Set �(t, �) = µN
�
��

t (�)
�
, if t 2 J1(�), and �(t, �) = 0 in case t 2 J� \ J1(�).

Let further H(y) = (c � log y + �)�1, 0 < y  y⇤ := ec+�/2. Clearly, H 0(y) =

(c � log y + �)�2y�1 as well as

H 00(y) =

1
(c � log y + �)2y2

⇣ 2
c � log y + �

� 1
⌘
, 0 < y  y⇤,
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which shows that H is concave in (0, y⇤] whenever � � 4. We will assume this in
what follows.

We next choose a C1 extension H̄ of H on (0,1) such that H̄ is concave,
0  H̄ 0(y)  H̄ 0(y⇤), y⇤  y  2y⇤, and H̄ 0(y) = 0, y � 2y⇤. Then

0  y H̄ 0(y) 

2
�
, y > 0. (3.53)

In fact, for y 2 (0, y⇤] we have

y H̄ 0(y) =

1
(c � log y + �)2



1
(c � log y⇤ + �)2



4
�2



1
�
, (3.54)

while in case y 2 [y⇤, 2y⇤] we may simply estimate

y H̄ 0(y)  2y⇤ H̄ 0(y⇤) 

2
�
.

It is clear that H̄ is bounded above. There holds

H̄(y) 

3
�
, y > 0. (3.55)

To see this, note that since H̄ is nondecreasing with H̄ 0(y) = 0 for all y � 2y⇤, the
claim follows if the inequality is valid for all y 2 [y⇤, 2y⇤]. For such y we have by
(3.54) and by concavity of H̄

H̄(y)  H̄(y⇤) + H̄ 0(y⇤)(y � y⇤)  H̄(y⇤) + y⇤ H̄ 0(y⇤) 

3
�
.

Observe also that

eW (t)H 0(eW (t)) =

1
(c � W (t) + �)2

, a.a. t 2 J1(�).

Since H̄ 0
� 0, and e�W @t (g1�↵,n ⇤eW )+C1r�2

+Sn � 0 on J� by virtue of (3.40),
we infer from (3.52) and (3.53) that

⌫

16r2µN (B)
�(t, �)

 eW H̄ 0(eW )

✓
e�W @t (g1�↵,n ⇤ eW ) +

C1
r2

+ Sn
◆

 H̄ 0(eW )@t (g1�↵,n ⇤ eW ) +

2C1
�r2

+

2|Sn(t)|
�

, a.a. t 2 J�.

(3.56)

Since H̄ is concave, the fundamental identity (2.6) yields

H̄ 0(eW )@t (g1�↵,n ⇤ eW )@t
⇣
g1�↵,n ⇤ H̄

�
eW
�⌘

+

⇣
� H̄(eW ) + H̄ 0(eW )eW

⌘
g1�↵,n

@t
⇣
g1�↵,n ⇤ H̄

�
eW
�⌘

+

2
�
g1�↵,n, a.a. t 2 J�,
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which, together with (3.56), gives a.e. in J�

⌫

16r2µN (B)
�(t, �)  @t

⇣
(g1�↵,n ⇤ H̄

�
eW
�⌘

+

2
�
g1�↵,n +

2C1
�r2

+

2|Sn(t)|
�

.

(3.57)

We then integrate (3.57) over J� = (0, ⌘⇢) and employ (3.55) for the estimate

⇣
g1�↵,n ⇤ H̄

�
eW
�⌘

(⌘⇢) 

3
�

Z ⌘⇢

0
g1�↵,n(t) dt.

By sending n ! 1, this leads to
Z
J1(�)

µN
�
��

t (�)
�
dt=

Z ⌘⇢

0
�(t, �) dt 

16r2µN (B)

⌫

✓
5
�
g2�↵(⌘⇢) +

2C1⌘⇢
�r2

◆

=

16r2/↵µN (B)

⌫�

�
5g2�↵(⌘⌧ ) + 2C1⌘⌧

�
=: C4

r2/↵µN (B)

�
, � � 4.

Hence with C5 = max{4⌧,C4} we find that

I1 

C5r2/↵µN (B)

�
, � > 0. (3.58)

It remains to derive the desired estimate for I3. To this purpose we shift again the
time by putting s = t � ⌘⇢, and denote the corresponding transformed functions
as above by W̃ , w̃, . . . and so forth. Set further J̃+ := (0, (1 � ⌘)⇢). By the time-
shifting property (3.2) and by positivity of eW , relation (3.40) then implies

⌫

16r2µN (B)

Z
�B

(w̃ � W̃ )2dx  e�W̃ @s(g1�↵,n ⇤ eW̃ ) +

C1
r2

+ S̃n(s),

a.a. s 2 J̃+.

(3.59)

Next, set J2(�) = {s 2 J̃+ : W̃ (s) � c + �/2 � 0} and �+

s (�) = {x 2 �B :

w̃(s, x) < c � �}, s 2 J2(�). For s 2 J2(�), we have

W̃ (s) � w̃(s, x) � W̃ (s) � c + � � �/2, x 2 �+

s (�),

and thus (3.59) yields that a.e. in J2(�)

⌫

16r2µN (B)
µN
�
�+

s (�)
�



1
(W̃ � c + �)2

✓
e�W̃ @s(g1�↵,n ⇤ eW̃ ) +

C1
r2

+ S̃n
◆

.
(3.60)
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We proceed now similarly as above for the term I1. Set �(s, �) = µN
�
�+

s (�)
�
,

if s 2 J2(�), and �(s, �) = 0 in case s 2 J̃+ \ J1(�). We consider this time the
convex function H(y) = (log y � c + �)�1 for y � y⇤ := ec��/2 with derivative
H 0(y) = �(log y� c+�)�2y�1 < 0. We define a C1 extension H̄ of H on [0,1)
by means of

H̄(y) =

(
H 0(y⇤)(y � y⇤) + H(y⇤) 0  y < y⇤
H(y) y � y⇤.

Evidently, �H̄ is concave in [0,1) and

0  �H̄ 0(y)y 

1
(log y⇤ � c + �)2



1
(�/2)2



4
�
, y � 0, � � 1. (3.61)

We will assume � � 1 in the subsequent lines.
Observe that

�eW̃ (s)H 0(eW̃ (s)) =

1
(W̃ (s) � c + �)2

, a.a. s 2 J2(�).

Since �H̄ 0
� 0, and e�W̃ @s(g1�↵,n ⇤ eW̃ ) + C1r�2

+ S̃n � 0 on J̃+ due to (3.59),
it thus follows from (3.60) and (3.61) that

⌫

16r2µN (B)
�(s, �)  �eW̃ H̄ 0(eW̃ )

✓
e�W̃ @s(g1�↵,n ⇤ eW̃ ) +

C1
r2

+ S̃n
◆

 �H̄ 0(eW̃ )@s(g1�↵,n ⇤ eW̃ ) +

4C1
�r2

+

4|S̃n(s)|
�

, a.a. s 2 J̃+.

(3.62)

By concavity of �H̄ , the fundamental identity (2.6) provides the estimate

� H̄ 0(eW̃ )@s(g1�↵,n ⇤ eW̃ )�@s
⇣
g1�↵,n⇤ H̄

�
eW̃
�⌘

+

⇣
H̄(eW̃ )� H̄ 0(eW̃ )eW̃

⌘
g1�↵,n

 �@s
⇣
g1�↵,n ⇤ H̄

�
eW̃
�⌘

+ H̄(0)g1�↵,n  �@s
⇣
g1�↵,n ⇤ H̄

�
eW̃
�⌘

+

6
�
g1�↵,n,

a.e. in J̃+, which when combined with (3.62) leads to

⌫

16r2µN (B)
�(s, �)  �@s

⇣
g1�↵,n ⇤ H̄

�
eW̃
�⌘

+

6
�
g1�↵,n +

4C1
�r2

+

4|S̃n(s)|
�

,
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for a.a. s 2 J̃+. We integrate this estimate over J̃+ and send n ! 1 to the result
Z
J2(�)

µN
�
�+

s (�)
�
ds =

Z (1�⌘)⇢

0
�(s, �) ds



16r2µN (B)

⌫

✓
6
�
g2�↵

�
(1� ⌘)⇢

�
+

4C1(1� ⌘)⇢

�r2

◆

=

16r2/↵µN (B)

⌫�

�
6g2�↵

�
(1� ⌘)⌧

�
+ 4C1(1� ⌘)⌧

�

=: C6
r2/↵µN (B)

�
, � � 1.

Hence with C7 = max{⌧,C6} we obtain that

I3 

C7r2/↵µN (B)

�
, � > 0. (3.63)

Finally, combining (3.42), (3.43), and (3.44), (3.51), (3.58), (3.63) establishes the
theorem.

3.4. The final step

We are now in position to prove Theorem 1.1. Without loss of generality we may
assume that u � " for some " > 0; otherwise replace u by u + ", which is a
supersolution of (1.1) with u0 + " instead of u0, and eventually let " ! 0+.

For 0 < �  1, we set U� = (t0 + (2 � � )⌧r2/↵, t0 + 2⌧r2/↵) ⇥ � B and
U 0

� = (t0, t0+�⌧r2/↵)⇥� B. Clearly, Q�(t0, x0, r) = U 0

� and Q+(t0, x0, r) = U� .
By Theorem 3.2,

ess sup
U� 0

u�1


 
CµN+1(U1)�1

(� � � 0)⌧0

!1/�
|u�1

|L� (U� ), �  � 0 < �  1, � 2 (0, 1].

Here C = C(⌫,3, �, ⌧,↵, N ) and ⌧0 = ⌧0(↵, N ). This shows that the first hy-
pothesis of Lemma 2.3 is satisfied by any positive constant multiple of u�1 with
�0 = 1.

Consider now f1 = u�1ec(u) where c(u) is the constant from Theorem 3.4 with
K� = U 0

1 and K+ = U1. Since log f1 = c(u) � log u, we see from Theorem 3.4,
estimate (3.32), that

µN+1({(t, x) 2 U1 : log f1(t, x) > �})  MµN+1(U1)��1, � > 0,

where M = M(⌫,3, �, ⌧, ⌘,↵, N ). Hence we may apply Lemma 2.3 with �0 = 1

to f1 and the family U� ; thereby we obtain

ess sup
U�

f1  M1
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with M1 = M1(⌫,3, �, ⌧, ⌘,↵, N ). In terms of u this means that

ec(u)  M1 ess inf
U�

u. (3.64)

On the other hand, Theorem 3.3 yields

|u|L p(U 0

� 0
) 

 
CµN+1(U 0

1)
�1

(� � � 0)⌧1

!1/��1/p

|u|L� (U 0

� ), �� 0 <� 1, 0<�  p/̃.

Here C = C(⌫,3, �, ⌧,↵, N , p) and ⌧1 = ⌧1(↵, N ). Thus the first hypothesis
of Lemma 2.3 is satisfied by any positive constant multiple of u with �0 = p and
⌘ = 1/̃ . Taking f2 = ue�c(u) with c(u) from above, we have log f2 = log u�c(u)
and so Theorem 3.4, estimate (3.31), gives

µN+1({(t, x) 2 U 0

1 : log f2(t, x) > �})  MµN+1(U 0

1)�
�1, � > 0,

where M is as above. Therefore we may again apply Lemma 2.3, this time to the
function f2 and the sets U 0

� , and with �0 = p and ⌘ = 1/̃; we get

| f2|L p(U 0

�)
 M2µN+1(U 0

1)
1/p,

where M2 = M2(⌫,3, �, ⌧, ⌘,↵, N , p). Rephrasing then yields

µN+1(U 0

1)
�1/p

|u|L p(U 0

�)
 M2ec(u). (3.65)

Finally, we combine (3.64) and (3.65) to the result

µN+1(U 0

1)
�1/p

|u|L p(U 0

�)
 M1M2 ess inf

U�
u,

which proves the assertion.

4. Optimality of the exponent 2+N↵
2+N↵�2↵ in the weak Harnack inequality

In this section we will show that the exponent 2+N↵
2+N↵�2↵ in Theorem 1.1 is optimal.

To this purpose consider the nonhomogeneous fractional diffusion equation
on RN

@↵t u �1u = f, t 2 (0, T ], x 2 RN , (4.1)

with initial condition
u(0, x) = 0, x 2 Rn. (4.2)
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Following [10], we say that a function u 2 C([0, T ] ⇥ RN ) \ C((0, T ];C2(RN ))
with g1�↵⇤u 2 C1((0, T ];C(RN )) is a classical solution of the problem (4.1), (4.2)
if u satisfies (4.1) and (4.2). For any bounded continuous function f that is locally
Hölder continuous in x , there exists a unique classical solution u of the problem
(4.1), (4.2), and it is of the form

u(t, x) =

Z t

0

Z
RN

Y (t � ⌧, x � y) f (⌧, y) dy d⌧, (4.3)

where

Y (t, x) = c(N )|x |�N t↵�1H2012

✓
1
4
t�↵|x |2

���(↵,↵)
(N/2,1), (1,1)

◆
,

cf. [10]. Here H2012 (z|(↵,↵)
(N/2,1), (1,1)) denotes a special H function (also termed Fox’s

H function), see [17, Section 1.12] and [10] for its definition. It is differentiable
for z > 0, the asymptotic behaviour for z ! 1 and z ! +0, respectively, is
described in [10, formulae (3.9) and (3.14)]. It has been also proved in [10] that Y
is nonnegative.

We choose a smooth and nonnegative approximation of unity {�n(t, x)}n2N
in R+ ⇥ RN such that each �n is bounded. Put f = �n in (4.1) and denote the
corresponding classical solution of (4.1), (4.2) by un . Evidently, un is nonnegative
and satisfies

@↵t un �1un = �n � 0, t 2 (0, T ], x 2 RN .

Hence un is a nonnegative supersolution of (4.1) with f = 0 for all n 2 N.
Suppose the weak Harnack inequality (1.3) holds for some p �

2+N↵
2+N↵�2↵ .

Then, by taking Q� = (0, 1) ⇥ B(0, 1) and Q+ = (2, 3) ⇥ B(0, 1) it follows
that ✓Z

Q�

u pn dµN+1

◆1/p
 C inf

Q+

un, n 2 N, (4.4)

where the constant C is independent of n. Since un ! Y in the distributional sense
as n ! 1, we have

inf
Q+

un 

1
µN+1(Q+)

Z
Q+

un dµN+1

 1+

1
µN+1(Q+)

Z
Q+

Y dµN+1 < 1, n � n0,

for a sufficiently large n0. On the other hand, the left-hand side of (4.4) cannot
stay bounded, since Y /2 L p(Q�) for p �

2+N↵
2+N↵�2↵ . In fact, writing H

20
12 (z) =
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H2012 (z|(↵,↵)
(N/2,1), (1,1)) for short, we have

|Y |
p
L p(Q�) =

Z 1

0

Z
B(0,1)

c(N )p|x |�Npt (↵�1)pH2012
�
t�↵|x |2/4

�p dx dt
= c1

Z 1

0

Z 1

0
r N�1�Npt (↵�1)pH2012

�
t�↵r2/4

�p dr dt
= c1

Z 1

0

Z t�↵/2

0

�
⇢t↵/2)N�1�Npt (↵�1)p+↵/2H2012

�
⇢2/4

�p d⇢ dt
� c1

Z 1

0
t↵(N�Np)/2+(↵�1)p dt

Z 1

0
⇢N�1�NpH2012

�
⇢2/4

�p d⇢
� c2

Z 1

0
t↵(N�Np)/2+(↵�1)p dt,

with some positive constant c2. The last integral diverges for all p �
2+N↵

2+N↵�2↵ .
Hence (4.4) yields a contradiction.

5. Applications of the weak Harnack inequality

The strong maximum principle for weak subsolutions of (1.1) may be easily derived
as a consequence of the weak Harnack inequality.

Theorem 5.1. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1)-(H3) are satisfied. Let u 2 Z↵ be a weak subsolution of (1.1)
in �T and assume that 0  ess sup�T u < 1 and that ess sup� u0  ess sup�T u.
Then, if for some cylinder Q = (t0, t0 + ⌧r2/↵) ⇥ B(x0, r) ⇢ �T with t0, ⌧, r > 0
and B(x0, r) ⇢ � we have

ess sup
Q

u = ess sup
�T

u, (5.1)

the function u is constant on (0, t0) ⇥�.

Proof. Let M = ess sup�T u. Then v := M�u is a nonnegative weak supersolution
of (1.1) with u0 replaced by v0 := M � u0 � 0. For any 0  t1 < t1 + ⌘r2/↵ < t0
the weak Harnack inequality with p = 1 applied to v yields an estimate of the form

r�(N+2/↵)

Z t1+⌘r2/↵

t1

Z
B(x0,r)

(M � u) dx dt  C ess inf
Q

(M � u) = 0.

This shows that u = M a.e. in (0, t0) ⇥ B(x0, r). As in the classical parabolic case
(cf. [19]) the assertion now follows by a chaining argument.
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We next apply the weak Harnack inequality to establish continuity at t = 0 for
weak solutions.

Theorem 5.2. Let ↵ 2 (0, 1), T > 0, and� ⇢ RN be a bounded domain. Suppose
the assumptions (H1) and (H2) are satisfied. Let u 2 Z↵ be a bounded weak
solution of (1.1) in �T with u0 = 0. Then u is continuous at (0, x0) for all x0 2 �
and lim(t,x)!(0,x0) u(t, x) = 0. Moreover, letting ⌘ > 0 we have for any cylinder
Q(x0, r0) := (0, ⌘r2/↵0 ) ⇥ B(x0, r0) ⇢ �T and r 2 (0, r0]

ess osc
Q(x0,r)

u  C
✓
r
r0

◆�
|u|L1(�T ), (5.2)

with
ess osc
Q(x0,r)

= ess sup
Q(x0,r)

� ess inf
Q(x0,r)

and constants C = C f (⌫,3, ⌘,↵, N ) > 0 and � = �(⌫,3, ⌘,↵, N ) 2 (0, 1).

Proof. Let u 2 Z↵ be a bounded weak solution of (1.1) in �T with u0 = 0. Set
u(t, x) = 0 and A(t, x) = I d for t < 0 and x 2 �. For T0 > 0 we shift the time
by setting s = t + T0 and put f̃ (s) = f (s � T0), s 2 (0, T + T0), for functions f
defined on (�T0, T ). Since Du(t, ·) = 0 for t < 0 and

@t (g1�↵,n ⇤ u)(t, x) = @t

Z t

�T0
g1�↵,n(t � ⌧ )u(⌧, x) d⌧ = @s(g1�↵,n ⇤ ũ)(s, x),

the function ũ is a bounded weak solution of

@↵s ũ � div
�
Ã(s, x)Dũ

�
= 0, s 2 (0, T + T0), x 2 �.

Next, assuming r 2 (0, r0/2] we introduce the cylinders

Q⇤(x0, r) =

�
� ⌘r2/↵, ⌘r2/↵

�
⇥ B(x0, r),

Q�(x0, r) =

�
� ⌘(2r)2/↵,�⌘(3r/2)2/↵

�
⇥ B(x0, r),

and denote by Q̃⇤(x0, r) resp. Q̃�(x0, r) the corresponding cylinders in the (s, x)
coordinate system. Let us write Mi = ess supQ̃⇤(x0,ir) ũ and mi = ess infQ̃⇤(x0,ir) ũ
for i = 1, 2. Choosing T0 � ⌘(2r)2/↵ , we may apply Theorem 1.1 with p = 1 to the
functions M2� ũ, ũ�m2, which are nonnegative in (0, ⌘(2r)2/↵+T0)⇥ B(x0, 2r),
thereby obtaining

r�N+2/↵
Z
Q̃�(x0,r)

(M2 � ũ) dµN+1  C(M2 � M1),

r�N+2/↵
Z
Q̃�(x0,r)

(ũ � m2) dµN+1  C(m1 � m2),
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where C > 1 is a constant independent of u and r . By addition, it follows that

M2 � m2  C(M2 � m2 + m1 � M1).

Writing !(x0, r) = ess supQ̃⇤(x0,ir) ũ � ess infQ̃⇤(x0,ir) ũ, this yields

!(x0, r)  ✓!(x0, 2r), r  r0/2, (5.3)

where ✓ = 1 � C�1
2 (0, 1). Iterating (5.3) as in the proof of [11, Lemma 8.23]

we obtain

!(x0, r) 

1
✓

✓
r
r0

◆log ✓/ log(1/2)
!(x0, r0), r  r0.

The estimate (5.2) then follows by transforming back to the function u and using
that u = 0 for negative times. In particular, we also see that u is continuous at
(0, x0) for all x0 2 � and that lim(t,x)!(0,x0) u(t, x) = 0.

The last application is a uniqueness theorem for global bounded weak solu-
tions. We say that a function u on R+ ⇥ RN is a global weak solution of

@↵t u � div
�
A(t, x)Du

�
= 0, (5.4)

if it is a weak solution of (5.4) in (0, T ) ⇥ B(0, r) for all T > 0 and r > 0.

Corollary 5.3. Let ↵ 2 (0, 1). Assume that A 2 L1(R+ ⇥ RN
; RN⇥N ) and that

there exists ⌫ > 0 such that
�
A(t, x)⇠ |⇠

�
� ⌫|⇠ |2, for a.a. (t, x) 2 R+ ⇥ RN , and all ⇠ 2 RN .

Suppose that u is a global bounded weak solution of (5.4). Then u = 0 a.e. on
R+ ⇥ RN .

Proof. For r > 0 and x0 = 0 it follows from the proof of Theorem 5.2 that

!(0, r)  ✓!(0, 2r), r > 0, (5.5)

where ✓ 2 (0, 1) is independent of r and u. By induction, (5.5) yields

!(0, r)  ✓n!(0, 2nr)  2✓n|u|L1(R+⇥RN ), r > 0, n 2 N.

Sending n ! 1 shows that u is constant. The claim then follows by Theorem 5.2.
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