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Stationary disks and Green functions
in almost complex domains

GIORGIO PATRIZIO AND ANDREA SPIRO

Abstract. Using generalized Riemann maps, normal forms for almost complex
domains (D, J ) with singular foliations by stationary disks are defined. Such
normal forms are used to construct counterexamples and to determine intrinsic
conditions under which the stationary disks are extremal disks for the Kobayashi
metric or determine solutions to almost complex Monge-Ampère equation.

Mathematics Subject Classification (2010): 32Q60 (primary); 32Q65, 32U35,
32G05 (secondary).

1. Introduction

Let D ⇢ M be a domain of an almost complex manifold (M, J ) with smooth
boundary @D and eJ the canonical almost complex structure of T ⇤M determined
by J . We recall that a smooth, proper J -holomorphic embedding f : 1 ! D
of the unit disk into D is called stationary disk if there exists a map ef : 1 !

T ⇤M \ {zero section}, which iseJ-holomorphic, projects onto f and is such that, for
any ⇣ 2 @1, the 1-form ⇣�1

·
ef (⇣ ) 2 T ⇤

f (⇣ )M vanishes identically on T f (⇣ )@D (see
Section 2).

The stationary disks of almost complex domains have been introduced by
Coupet, Gaussier and Sukhov in [4, 5] (see also [6]). They are useful biholomor-
phic invariants of almost complex domains and constitute a natural generalization
of the stationary disks of strictly linearly convex domains of Cn , considered for
the first time in celebrated Lempert’s papers on extremal disks and Kobayashi met-
rics [11,12].

Existence and uniqueness results on stationary disks, with prescribed center
and direction, have been established in various contexts, both in the integrable and
non-integrable case (see e.g. [4,6,11,14,19,20,22]). Moreover, when J is integrable
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and D ⇢ (M, J ) is equivalent to a strictly linearly convex domain inCn , the family
F (xo) of stationary disks centered at a fixed xo 2 D, determines a smooth foliation
of D \ {xo} with several important properties [11,12]:

a) it determines a natural diffeomorphism 8 : Bn �! D, which generalizes the
usual Riemann map between 1 and any other smoothly bounded domain of C;

b) it consists of disks that are extremal for the Kobayashi metric of D;
c) it can be used to determine a Green pluripotential for D with pole in xo, i.e.
a plurisubharmonic function that solves the classical complex Monge-Ampère
equation and has a logarithmic pole at xo.

When J is not integrable, there are several cases, in which the family F (xo) of sta-
tionary disks, centered at a fixed xo 2 D, gives a smooth foliation for D \ {xo}
(e.g. when (D, J ) is equivalent with a strictly linearly convex domain of Cn and J
is a small deformation of Jst). In these cases, it is still true that F (xo) determines
a J -biholomorphically invariant, generalized Riemann map 8 : Bn �! D. But
in general, it is no longer true that the disks of F (xo) are extremal disks for the
Kobayashi metric nor that they can be used to solve the almost complex Monge-
Ampère equation. Here, by “almost-complex Monge-Ampère equation” we mean
the differential equation that characterizes the maximal J -plurisubharmonic func-
tions of class C2 of an almost complex, strongly pseudoconvex domain. By com-
parison with usual complex Monge-Ampère equation, it can be considered as a very
appropriate analogue in almost complex settings.

There are many reasons which justify these phenomena. In case of non-integra-
ble complex structures, the great abundance of J -holomorphic curves, which gives
an advantage in many geometrical considerations, turns into a drawback in con-
sidering objects as the Kobayashi metric, which reveals to be a weaker and more
elusive invariant. In particular, it is natural to expect that the notions of stationary
and extremal disks, which involve fine (and different!) properties, become equiv-
alent only when the almost complex structure satisfies appropriate restrictions. In
fact, in [9] it is shown that, in general, these notions are different.

As for the construction of Green pluripotentials, additional difficulties emerge.
In fact, if one has the integrable setting in mind, the behavior of plurisubharmonic
functions in the non-integrable case is quite unexpected. For instance, there are
arbitrarily small deformations J of the standard complex structure, with respect to
which the logarithm of squared norm log | · |

2 of Cn is not J -plurisubharmonic.
Furthermore, the kernel distribution of an almost-complex Monge-Ampère opera-
tor, even if appropriate non-degenericity conditions is assumed, is usually neither
integrable, nor J -invariant. Since all this is in clear contrast with the classical set-
ting, it cannot be expected that for completely arbitrary non-integrable structures
one can reproduce the whole pattern of fruitful properties, which relate regular so-
lutions of complex Monge-Ampère equations and Monge-Ampère foliations.

In this paper, with the help of generalized Riemann maps, we determine “nor-
mal forms” for almost complex domains (D, J ) with singular foliations by station-
ary disks. We use such normal forms to construct examples and determine intrin-
sic conditions, under which the disks of the foliations are extremal disks for the
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Kobayashi metric or give solutions to the almost complex Monge-Ampère equa-
tion. In fact, we are able to determine sufficient conditions on the almost complex
structure, which ensure the existence of almost complex Green pluripotential and
the equality between the two notions of stationary disks and of extremal disks. It is
interesting to note that the class of such structures (called nice or very nice almost
complex structures) is very large in many regards, in fact determined by a finite set
of conditions (it is finite-codimensional) in an infinite dimensional space. We hope
that such notions will be fruitful also for other questions in almost complex analysis
and geometry.

The paper is organized as follows. After a preliminary section, in Section 3 we
introduce the notion of almost complex domains of circular type in normal form.
They are pairs (Bn, J ), formed by the unit ball Bn ⇢ Cn and an almost complex
structure J , which satisfies conditions that guarantee that any radial disk through
the origin is stationary for (Bn, J ). Since any almost complex domain, admitting a
singular foliation by stationary disks, is biholomorphic to a domain in normal form,
any problem on such foliations can be reduced to questions on the radial disks of
normal forms. In Section 4, we study conditions on J , under which the radial disks
of a normal form (Bn, J ) are extremal. In Section 5, we define the almost com-
plex Monge-Ampère equation, we prove that it characterizes maximal C2 plurisub-
harmonic functions and we determine conditions on normal forms (Bn, J ), under
which the stationary foliation by radial disks determines a Green pluripotential.

Notation. The standard complex structure of Cn is denoted by Jst, the unit ball
{ |z| < 1 } ⇢ Cn is denoted by Bn and, when n = 1, by 1 = B1.

For any ↵ > 0 and ✏ 2]0, 1[, a map f : 1 �! M into a manifold M is
said of class C↵,✏ if there are coordinates ⇠ = (x1, . . . , xN ) : U �! RN on a
neighborhood of f (1), such that ⇠ � f : 1 �! Rn is of class C↵ on1 and Hölder
continuous of class C✏ on 1. If Y = Y j

i
@

@x j ⌦ dxi is a tensor field of type (1, 1) on
Rm and U is a subset of Rm , we denote

kYkU,Ck
def
=

X
|J |k

sup
x2U

�����
@ |J |Y ij
@x J

(x)

�����.

2. Preliminaries

2.1. Canonical lifts of almost complex structures

Let (M, J ) be an n-dimensional complex manifold with integrable complex struc-
ture J . In this case, T M and T ⇤M are naturally endowed with integrable com-
plex structures J andeJ, respectively, corresponding to the atlases of complex chartsb⇠ : T M|U �! TCn

' C2n ,e⇠ : T M⇤
|U �! T ⇤Cn

' C2n , determined by charts
⇠ = (zi ) : U ⇢ M �! Cn of the atlas of the complex manifold structure of
(M, J ).
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When (M, J ) is an almost complex manifold, there is no canonical atlas of
complex charts on M and the above construction is meaningless. Nevertheless,
there are natural almost complex structures J andeJ on T M and T ⇤M , respectively,
also in this more general case (see [24, Section I.5 and Section VII.7]). Using
coordinates they are defined as follows. For a given a system of real coordinates
⇠ = (x1, . . . , x2n) : U ⇢ M �! R2n , we denote by

b⇠ = (x1, . . . , x2n, q1, . . . , q2n) : ⇡�1(U) ⇢ T M �! R4n, (2.1)
e⇠ = (x1, . . . , x2n, p1, . . . , p2n) : e⇡�1(U) ⇢ T ⇤M �! R4n, (2.2)

the associated coordinates on T M|U and T ⇤M|U , determined by the components
qi of vectors v = qi @

@xi and the components p j of covectors ↵ = p jdx j . If
J ij = J ij (x) denote the components of J = J ij

@
@xi ⌦ dx j , the almost complex

structures J andeJ are defined by the expressions
J = Jai

@

@xa
⌦ dxi + Jai

@

@qa
⌦ dqi + qb Jai,b

@

@qa
⌦ dxi , (2.3)

eJ = Jai
@

@xa
⌦ dxi + Jai

@

@pi
⌦ dpa

+

1
2
pa
⇣
�Jai, j + Jaj,i + Ja`

⇣
J `
i,m J

m
j � J `

j,m J
m
i

⌘⌘ @

@p j
⌦ dxi .

(2.4)

These tensor fields can be checked to be independent on the chart (xi ) and:

i) the standard projections ⇡ : T ⇤M �! M , e⇡ : T ⇤M �! M are (J, J )-
holomorphic and (eJ, J )-holomorphic, respectively;

ii) given a (J, J 0)-biholomorphism f : (M, J ) �! (N , J 0) between almost com-
plex manifolds, the tangent and cotangent maps

f⇤ : T M �! T N and f ⇤

: T ⇤N �! T ⇤M

are (J, J0)- and (eJ0,eJ)-holomorphic, respectively;
iii) when J is integrable, J andeJ coincide with above described integrable com-

plex structures of T M and T ⇤M , respectively (in the integrable case, all deriva-
tives Jai, j are 0 in holomorphic coordinates).

We call J,eJ canonical lifts of J on T M and T ⇤M .

2.2. Blow-ups of almost complex manifolds

Given a point xo of an almost complex manifold (M, J ), we call blow-up at xo the
topological manifold eM obtained as follows [19].

Consider a system of complex coordinates ⇠ = (z1, . . . , zn) : V �! U ⇢ Cn

on a neighborhood V of xo, with ⇠(xo) = 0 and which maps J |xo into the standard
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complex structure Jst|0 of T0Cn
' C2n . The manifold eM is obtained by gluing

M \{xo} with the blow up eU at 0 of U ⇢ Cn
= R2n , identifying V \{0} with U \{0}

by means of the map ⇠ = (zi ). As it was remarked in [19], the smooth manifold
structure of eM does not depend on the choice of the coordinates ⇠ = (zi ). Hence,
this manifold eM can be considered as canonically associated with (M, J ) and xo.

Since M \ {0} ⌘
eM \ ⇡�1(xo) and ⇡�1(V) ⌘ ⇡�1(eU) ⇢

eBn , we may con-
sider the tensor field J of type (1, 1) on eM , with Jx : Tx eM ! Tx eM equal to the
almost complex structure of M for any point x 2

eM \ ⇡�1(xo) and to the standard
complex structure of eBn for any x 2 ⇡�1(xo) ⌘ ⇡�1(0) ⇢

eBn . Such tensor field is
obviously smooth on M \ ⇡�1(xo) and, in our discussions, there will be no need to
know whether it is smooth also on ⇡�1(xo). It is however possible to check that it
is in fact smooth at all points.

3. Normal forms of almost complex domains of circular type

In what follows, D ⇢ M denotes a domain in a 2n-dimensional almost complex
manifold (M, J ) with smooth boundary 0 = @D.

3.1. Almost complex domains of circular type

LetN be the conormal bundle of 0 = @D, i.e. the subset of T ⇤M|0

N = { � 2 T ⇤

x M , x 2 0 : ker� ⇢ Tx0 }.

We recall that, given ↵ � 1 and " > 0, a C↵,"-stationary disk of D is a map
f : 1 �! M such that
i) f |1 is a J -holomorphic embedding and f (@1) ⇢ @D;
ii) there exists aeJ-holomorphic map ef : 1 �! T ⇤M with ⇡ �

ef = f , so that

⇣�1
·
ef (⇣ ) 2 N \ {zero section} for any ⇣ 2 @1 (3.1)

ande⇠ �
ef 2 C↵,"(1, C2n) for some complex coordinatese⇠ = (zi , w j ) aroundef (1).

In (3.1) “ · ” denotes the usual C-action on T ⇤M , i.e. the action1

⇣ · ↵
def
= Re(⇣ )↵ � Im(⇣ )J⇤↵ for any ↵ 2 T ⇤M, ⇣ 2 C. (3.2)

If f is stationary, the maps ef satisfying (ii) are called stationary lifts of f .
In this paper we are concerned with domains D in an almost complex manifold

(M, J ), admitting singular foliations by stationary disks with the same properties
of the singular foliations by Kobayashi extremal disks of the domains of circular
type in Cn . Here is the definition of such domains.

1 We follow Besse’s convention on signs, for which J⇤↵(v) = �↵(Jv) [2]; see also Section 5.1.
Due to this, on Cn we have J⇤

stdx j = dy j , dz j = dx j + i J⇤

stdx j and idz j = �J⇤

stdz j .
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Definition 3.1 ([19]). For any point xo of an almost complex domain D ⇢ (M, J ),
we denote by F (xo) the family of stationary disks of D with f (0) = xo. We say the
F (xo) is a foliation of circular type if:

i) for any v 2 Txo D, there exists a unique disk f (v)
2 F (xo) with f (v)

⇤

�
@
@x
��
0
�

=

µ · v for some 0 6= µ 2 R;
ii) for a fixed identification (Txo D, Jxo) ' (Cn, Jst), the map from the blow upeBn at 0 of Bn to the blow up eD at xo of D

8 :
eBn ⇢

eCn
�!

eD, 8(v, [v])
def
=
gf (v)(|v|) (3.3)

is smooth, extends smoothly up to the boundary and determines a diffeomor-
phism between the boundaries 8|@Bn : @Bn �! @D.

The point xo is called center of the foliation and 8 :
eBn �!

eD is called (general-
ized) Riemann map of (D, xo). Any domain D ⇢ (M, J ) admitting a foliation of
circular type is called almost complex domain of circular type.

There exists a wide class of almost complex domains of circular type. In fact,
any bounded, strictly linearly convex domains eD ⇢ Cn , with smooth boundary and
endowed with a small deformation J of the standard complex structure Jst, admits
singular foliations of circular type made of stationary disks [19, Theorem 4.1]. For
such domains, Gaussier and Joo proved in [9] the same existence result for singular
foliations, made of the so-called J -stationary disks (see later for the definition).

On the other hand, the following fact is well-known (see e.g. [8]).

Lemma 3.2. Let (M, J ) be an almost complex manifold and xo 2 M . For any
integer k � 0 and " > 0, there exists a neighborhood U of xo, such that (U , J )
is (J, J 0)-biholomorphic to (Bn, J 0) for some almost complex structure J 0 on a
neighborhood of Bn ⇢ Cn with kJ 0

� JstkBn, Ck < ".

This and previous remarks imply that any point xo of an almost complex do-
main (M, J ) admits a neighborhood U containing a domain D b U of circular type
with center xo.

3.2. Normal forms

By definitions, for any almost complex domain (D, J ) of circular type with center
xo, the map 8 :

eBn ⇢
eCn

�!
eD is a biholomorphism between (eD, J ) and

(eBn, eJ ), where eJ def= 8�1
⇤

(J ).
If we denote by ⇡ :

eBn �! Bn , ⇡ 0
:
eD �! D the natural blow down maps

and by J 0
= ⇡⇤(eJ ) the projected almost complex structure on Bn \{0}, we have that

the map E = ⇡ �8 �⇡ 0�1
: D \ {0}) �! Bn \ {0} is a (J, J 0)-biholomorphism. In

general, the tensor field J 0 does not extend smoothly at 0 2 Bn . Nonetheless such
singularity is “removable” in the following sense.
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First of all, we remark that the map E extends uniquely to a homeomorphism
E : D �! Bn by setting E(xo) = 0. So, we may consider the atlas A on Bn ,
formed by the charts ⌘ = ⇠ � E�1 determined by charts ⇠ : U ⇢ D ! R2n of
the manifold structure of D. Such atlas defines a smooth manifold structure on Bn ,
which coincides with the standard one on Bn \{0}, but contains charts around 0 that
in general are non-standard. By construction, the components of J 0 in the charts of
A extend smoothly at 0.

We call the pair (Bn, J 0) normal form of (D, J ) determined by F (xo). If we
endow Bn with the atlas A, by construction (Bn, J 0) is an almost complex domain
of circular type with center 0 and foliation F (0) given by the straight disks

f (v)
: 1 �! Bn, f (v)(⇣ ) = ⇣ · v, v 2 Cn. (3.4)

Now, let us give an intrinsic characterization of the almost complex structures J on
Bn \ {0} that correspond to normal forms of domains of circular type. For this pur-
pose, we need some new notation and the notion of “almost L-complex structures”.

Let Z def
= Re

⇣
zi @

@zi

⌘
and denote by Z the Jst-invariant distribution on Bn \

{0} ⇢ Cn defined by Zz
def
=< Zz, JstZz > at any z 6= 0. We recall that

Zz = ker ddcst log ⌧o
��
x , where ⌧o(z)

def
= |z|2, dcst

def
= J⇤

st � d � J⇤

st (3.5)

and that ddcst⌧o(Z , X) = X (⌧o) for any X 2 T Bn \ {0}. One can check that Z is
integrable and that its integral leaves are the (images of the) disks (3.4).

Consider the blow up eBn of Bn at 0, the standard identification of eBn with
an open subset of the tautological bundle ⇡ : E �! CPn�1 and the coordinates
⇠ : U ⇢ E �! Cn , U def

= { ([v], v) : vn 6= 0 }, defined by

⇠�1(z0, . . . , zn�1)

def
=

0
@
2
4z1 : · · · : zn�1 :

vuut1�

n�1X
i=1

|zi |2

3
5; z0·

0
@z1, . . . , zn�1,

vuut1�n�1X
i=1

|zi |2

1
A
1
A.

(3.6)

In these coordinates, ZC
z = SpanC

n
@

@z0

���
z
, @

@z0

���
z

o
and J

⇣
@

@z0

���
z

⌘
= i @

@z0

���
z
. Now,

let us use capital letters A, B,C, . . . for indices that might be indifferently of the
form a or a, so that we may denote the complex coordinates and their conjugates
by (zA) = (za, za def= za). Let also denote by (pA) = (pa, pa

def
= pa) the complex

components of real 1-forms ! = padza+padza 2 T ⇤Bn . Using these conventions,
the canonical lifteJ of an almost complex structure J on Bn \ {0} is of the form

eJ = J BA

✓
@

@zB
⌦ dzA +

@

@pA
⌦ dpB

◆

+

1
2
pC
⇣
�JCA,B + JCB,A + JCL

⇣
J LA,M J

M
B � J LB,M J

M
A

⌘⌘ @

@pB
⌦ dzA,
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where J AB are the components of J with respect to the complex vector fields⇣
@

@zA

⌘
. One way to recover such formula is, for instance, to look at the expres-

sion of eJ in terms of Nijenhuis tensor and tautological form of T ⇤M [21, 24]
and write all terms using the complex coordinates (zA, pB). Again, we remark
that, when J is integrable and (z1, . . . , zn) are holomorphic coordinates, eJ =

J BA
⇣

@
@zB ⌦ dzA +

@
@pA ⌦ dpB

⌘
.

We can now introduce the “almost L-complex structures”: as we will shortly
see, a pair (Bn, J ) is a domain of circular type in normal form if and only it J is
an almost complex structure of this kind (Theorem 3.7). We will also see that these
structures are characterized by a finite collection of equations in the space of almost
complex structures (Proposition 3.4).
Definition 3.3. We call almost L-complex structure any almost complex structure
J on Bn \ {0}, smoothly extendible at @Bn , such that:

i) Z is J -stable and J |Z = Jst|Z ;
ii) for any v 2 S2n�1, the following differential problem on 2n�2C-valued maps

g↵, g↵̄ : 1 �! C of class C↵,✏ is solvable (in (3.7), A, B denote indices of the
form ↵, ↵̄, �, �̄, respectively, with 1  ↵,�  n � 1)

8>>>>>>>><
>>>>>>>>:

⇣
�BA � i( J BA

��
⇣ ·v

)
⌘
gB,⇣

+

✓
�

i
2

⇣
J B
A,0 + i J BL J

L
A,0

⌘���
⇣ ·v

◆
gB

�

✓
i
2

⇣
J 0
A,0 + i J 0L J

L
A,0 + J ¯0

A,0 + i J ¯0
L J

L
A,0

⌘���
⇣ ·v

◆
=0 when ⇣ 2 1,⇣

(Re ⇣ )�BA�(Im ⇣ ) J BA
��
⇣ ·v

⌘
gB�(Im ⇣ )

⇣
J 0A+ J ¯0

A

⌘���
⇣ ·v

=0 when ⇣ 2 @1,

(3.7)

where (J BA ) are the components of J in coordinates of the form (3.6);
iii) there exists a homeomorphism ⇠ : U �! V between neighborhoods of 0 2

Cn , which is C1 on U \ {0} and such that ⇠⇤(J )|V\{⇠(0)} extends smoothly at
0; in particular, J admits a smooth extension at 0 if Bn is endowed with a
(non-standard) atlas containing ⇠ ;

iv) the blow-up eBn of Bn , determined by J and the non-standard smooth mani-
fold structure described in (iii), is diffeomorphic to the usual blow-up of Bn
determined by Jst.

Unless explicitly stated, for any almost L-complex structure, we will always assume
Bn endowed with the smooth manifold structure described in (iii).

It is useful to remark that condition (ii) of the above definition is satisfied by a
very large class of almost complex structures. Moreover, in the integrable case, (ii)
is automatically satisfied by the complex structures of the normal forms of domains
of circular types (see [18]).
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Proposition 3.4. Let J be an almost complex structure J on Bn \ {0} such that, for
any v 2 S2n�1 and ⇣ 2 @1, the matrices

C =

✓
�BA � i( J BA

���
⇣ ·v

)

◆�
, D =

✓
(Re ⇣ )�BA � (Im ⇣ ) J BA

���
⇣ ·v

◆�

are invertible. Let also F 2 C↵�1,✏(1, C2n�2) and G 2 C✏(@1, R4n�4) defined by

F(⇣ ) = C�1(⇣ ) ·

✓
i
2

⇣
J 0A,0 + i J 0L J

L
A,0 + J ¯0

A,0 + i J ¯0
L J

L
A,0

⌘���
⇣ ·v

◆
,

G(⇣ ) = (Im ⇣ )
⇣
J 0A + J ¯0

A

⌘���
⇣ ·v

.

Then, (3.7) is solvable if and only if (F, G) is in the (finite codimensional) range of
the Fredholm operator described in formula (3.9) below.

Proof. The system (3.7) is equivalent to the “generalized Riemann-Hilbert prob-
lem” on maps g : 1 �! C2n�2

(
g,⇣̄ +(C�1A) · g = F on 1,

D · g = G on @1,
(3.8)

where A : 1 ! M2n�2(C) is A(⇣ )
def
=


�

i
2

⇣
J B
A,0 + i J BL J

L
A,0

⌘���
⇣ ·v

�
. The operator

R : C↵,✏(1, C2n�2) �! C↵�1,✏(1, C2n�2) ⇥ C✏(@1, R4n�4)

R(h) def=

✓
@h
@⇣

+ A · h, (Re (D · h) , Im (D · h))
◆ (3.9)

is known to be Fredholm if and only ifD is invertible at all points [23, Section 3.2]
and [13, Section VII.3]. The claim follows immediately.

Remark 3.5. Notice that if the components J 0A, J
¯0
A, appearing in (3.7), are identi-

cally equal to 0 along the considered disk, the system (3.7) always admits the trivial
solutions g↵ ⌘ 0 ⌘ g↵̄ , regardless on the invertibility of C and D. This fact turns
out to be quite useful to produce examples.

The interest for almost L-complex structure is motivated by the following.

Lemma 3.6. If J is an almost L-complex structure on Bn , any straight disk through
0 is stationary with respect to J .

Proof. Using coordinates (3.6), since J satisfies (i) of Definition 3.3, then

J A0 = i�A0 , J A0 = �i�A0 , J A0,B = 0, J A0,B = 0. (3.10)
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Given v = (v1, . . . , vn�1) 2 Cn�1, consider the straight disk f : 1 �! Bn , with

tangent direction at 0 given by

v1 : · · · : vn�1 :

q
1�

Pn�1
i=1 |vi |2

�
, i.e.

f (⇣ )
def
= ⇠�1(⇣, v1, . . . , vn�1) for any ⇣ 6= 0.

Recall that f is stationary if and only if there is

ef : 1 �! T ⇤eBn, ef (⇣ ) = (⇣, v1, . . . , vn�1; gA(⇣ )A=0,¯0,1,¯1,...,n�1,n�1)

such that: a) ⇣�1
·
ef (⇣ ) is in the conormal bundleN \{zero section} of @Bn for any

⇣ 2 @1; b) ef iseJ-holomorphic, i.e. ef⇤ ⇣Jst @
@⇣

⌘
=
eJ ⇣ef⇤ ⇣ @

@⇣

⌘⌘
.

We claim that a map ef of the above form and satisfying (a) and (b), exists. In
fact, by (3.10), condition (b) is equivalent to (here indices A, B might assume any
value, 0, ¯0 included)

�igA,⇣ � ( J BA
���
f
)gB,⇣ �

1
2
gB
✓⇣
J BA,0 + i J BL J

L
A,0

⌘���
f

◆
= 0. (3.11)

By (3.10), in case A = 0 equation (3.11) reduces to 2ig0,⇣ = 0, i.e. to the require-
ment of holomorphicity for g0 : 1 �! C. On the other hand, since the conormal
bundle N is generated at any point by ! = z0dz0 + z0dz0, (a) is equivalent to the
existence of a continuous � : @1 �! R \ {0} such that

⇣�1g0(⇣ ) = ⇣�(⇣ ) for any ⇣ 2 @1, (3.12)

(and hence g0 ⌘ 1 ⌘ g0) and to the requirement that g↵|@1, g↵̄|@1, ↵ 6= 0, satisfy
the boundary conditions of (3.7). Therefore, inserting g0 = g¯0 = 1 into (3.11), by
condition (ii) of Definition 3.3, we conclude that there always exists a stationary liftef (⇣ ) = (⇣, v1, . . . , vn�1; gA(⇣ )) for f .

By Lemma 3.6, if J is an almost L-complex structure, (Bn, J ) is an almost
complex domain of circular type that coincides with its normal form. Conversely,
one can directly check that if (Bn, J ) is a domain of circular type in normal form,
then J satisfies all conditions of Definition 3.3. We have therefore the following
intrinsic characterizations of normal forms.

Theorem 3.7. A pair (Bn, J ) is a domain of circular type in normal form if and
only if J is an almost L-complex structure.



STATIONARY DISKS AND GREEN FUNCTIONS 985

3.3. Deformation tensors of normal forms

Consider now the Jst-invariant distributionH on Bn \ {0} defined by

Hz
def
= { X 2 TxM : ddcst⌧o(Z , X) = ddcst⌧o(JstZ , X) = 0 }. (3.13)

One can directly check that TzM = Zz �Hz and thatHz coincides with the holo-
morphic tangent space to the sphere S|z| = { w : |w| = |z| }. In particular, for any
0 < c < 1, the pair (H|Sc , Jst) is the CR structure of the sphere Sc = { ⌧o = c }.
It is known that the distributions Z and H extend smoothly on the blow up eB and
that also such extensions are Jst-invariant (see e.g. [15, 16, 18]).

Recall that any complex structure Jz on a tangent space Tz Bn is uniquely de-
termined by its �i-eigenspaces (Tz Bn)01J in TC

z Bn . If ZC
z = Z10z + Z01z and

HC
z = H10

z + H01
z are decompositions into Jst-eigenspaces, a generic complex

structure Jz : Tz Bn �! Tz Bn is completely determined by the tensors

�Zz 2 Hom(Z01z ,Z10z ), �Hz 2 Hom(H01
z ,H10

z ), �Z,H
z 2 Hom(Z01z ,H10

z ),

�H,Z
z 2 Hom(H01

z ,Z10z ),

which determine the �i-eigenspace (Tz Bn)01J as the complex subspace

(Tz Bn)01J =

⇣
Z01 + �Zz (Z01) + �Z,H

z (Z01)
⌘

+

⇣
H01

+ �Hz (H01) + �H,Z
z (H01)

⌘
.

(3.14)

We call deformation tensor of J with respect to to Jst the tensor field � 2 (T 01⇤ ⌦

T 10)(Bn \ {0}), defined at any point by �z
def
= �Zz + �Z,H

z + �Hz + �H,Z
z . From

Definition 3.3 (i), it follows immediately that

Proposition 3.8. A generic almost L-complex structure J is uniquely determined
by a deformation tensor of the form

�z = �Hz + �H,Z
z for any z 2 Bn \ {0}. (3.15)

and, conversely, any deformation tensor as in (3.15) gives an almost L-complex
structure, provided that the corresponding J extends to @Bn and 0 as required in
(ii)-(iv) of of Definitions 3.3.

Remark 3.9. Conditions (iii)-(iv) of Definition 3.3 are requirements that might be
hard to check. However, to construct examples, it is often sufficient to observe that,
given a deformation tensor �o that satisfy those conditions (e.g. �o ⌘ 0), also the
deformation tensors of the form � = �o + ��, in which �� vanishes identically on
some neighborhood U of 0, satisfy them.

Notice also that if J is an almost complex structure, determined by a deforma-
tion tensor of the form � = �H, for any given disk f (⇣ ) = ⇣ · v, we may choose
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coordinates of the form (3.6), in which v = (0, . . . , 0, 1) and hence the components
J 0A, J

¯0
A, appearing in (3.7), are identically equal to 0 along the disk. In this case,

(3.7) always admits the trivial solutions g↵ ⌘ 0 ⌘ g↵̄ . On the other hand, condition
(ii) corresponds to the solvability of the system that determines stationary lifts and
hence it is independent on the choice of the coordinate system. All this implies that
when � = �H, condition (ii) of Definition 3.3 is always automatically satisfied.

4. Extremal disks and critical foliations

4.1. Critical and extremal disks

In this section, we recall the notion of “critical disks”, recently introduced by
Gaussier and Joo in [9] in their studies on the extremality with respect to the
Kobayashi metric of J -holomorphic disks. We have to point out that “critical disks”
is not the name used in [9]. In that paper, such disks are called “disks vanishing the
first order variations”.

For this, we first need to remind of a few concepts related with the geometry
of the tangent bundle of a manifold M . We recall that the vertical distribution in
T (T M) is the subbundle of T (T M) defined by

T V (T M) =

[
(x,v)2T M

T V(x,v)M, T V(x,v)M = ker⇡⇤|(x,v).

For any x 2 M , let us denote by (·)V : TxM �! T V(x,v)M the map
⇣
wi @

@xi

���
x

⌘V def
=

wi @
@qi

���
(x,v)

. It is possible to check that this map does not depend on the choice of
coordinates and that it determines a natural map from T M to T (T M) (see [24]).
For any w 2 T M , the corresponding vector wV

2 T (T M) is called vertical lift of
w.
Definition 4.1 ([10]). Let f : 1 �! M be a C↵,✏ , J -holomorphic embedding
with f (@1) ⇢ @D. We call infinitesimal variation of f any J-holomorphic map
W : 1 �! T M of class C↵�1,✏ with ⇡ � W = f (here, ⇡ : T M �! M is the
natural projection). An infinitesimal variation W is called attached to @D and with
fixed center if

a) ↵(W⇣ ) = 0 for any ↵ 2 N f (⇣ ), ⇣ 2 @1,
b) W |0 = 0.

It is called with fixed central direction if in addition it satisfies

c) W⇤

⇣
@

@ Re ⇣

���
0

⌘
2 T VW0(T M) and it is equal to �

⇣
f⇤
⇣

@
@ Re ⇣

���
0

⌘⌘V
for some � 2

R.
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The disk f is called critical if for any infinitesimal variationW , attached to @D and
with fixed central direction, one has W⇤

⇣
@

@ Re ⇣

���
0

⌘
= 0.

Remark 4.2. The previous definition is motivated by the following facts. When
f (t)

: 1 �! M , t 2] � a, a[, is a smooth 1-parameter family of J -holomorphic
disks of class C↵,✏ with f (0)

= f , it is simple to check that W def
=

d f (t)

dt

���
t=0

is a
variational field on f . Moreover, if f (t) is such that, for all t 2]a, a[

f (t)(@1) ⇢ @D, f (t)(0) = f (0), f (t)
⇤

✓
@

@ Re ⇣

����
0

◆
2 R f⇤

✓
@

@ Re ⇣

����
0

◆
, (4.1)

then W satisfies (a)-(c). On the other hand, a disk f is a locally extremal disk if for
any J -holomorphic disk g : 1 �! M of class C↵,✏ , with image contained in some
neighborhood of f (1) and such that, for some � 2 R,

g(@1) ⇢ @D, g(0) = f (0) = xo, g⇤

✓
@

@ Re ⇣

����
0

◆
= � f⇤

✓
@

@ Re ⇣

����
0

◆
,

then �  1. One can directly check that any locally extremal disk f , with f (@1) ⇢

@D, is critical (see [10, proof of Theorem 4.3]). Conversely, by Section 5 and [9,
Theorem 6.4], in case D ⇢ Cn is strictly convex on a neighborhood of f (1) (in
suitable cartesian coordinates) and J is sufficiently close to Jst, any critical disk f
is locally extremal.

Notice that, when J is close to Jst, the critical disks are characterized by prop-
erties that closely resemble those that define the stationary disks. Disks with such
properties are called J -stationary disks [9].

It is well-known that, when J is integrable, the disks that are stationary coin-
cide with the disks that are critical (see e.g. [11, 14]). This equality is no longer
valid for generic non-integrable complex structures. In [9], counterexamples are
given.

Next theorem gives conditions that imply the equality between stationary and
critical disks and will be used in the sequel. The claim and the proof are refinements
of a result and arguments given in [9]. In the statement, f : 1 �! M is a J -
holomorphic embedding, of class C↵,✏ with f (@1) ⇢ @D, and Varo( f ) denotes
the class of infinitesimal variations of f attached to @D and with fixed center.

Theorem 4.3. Assume that D ⇢ M is of the form D = { ⇢ < 0 } for some J -
plurisubharmonic ⇢ (see Section 5.1, for definition) and that Varo( f ) contains
a (2n � 2)-dimensional J -invariant vector space, generated by infinitesimal varia-
tions ei , Jei , 1  i  n�1, such that the maps ⇣�1

·ei (⇣ ), ⇣�1
·Jei (⇣ ) : 1 �! T M

are of class C↵,✏ on 1. Assume also that, for any ⇣ 2 1, the set {ei (⇣ ), Jei (⇣ )} ⇢

T f (⇣ )M span a subspace, which is complementary to T f (⇣ ) f (1) ⇢ T f (⇣ )M . Then
f is critical if and only if it is stationary.
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Proof. Let e0 : 1 �! T M be the map defined by e0(⇣ ) = f⇤
✓

@
@ Re ⇣

���
⇣

◆
. By

hypotheses, the collection
⇣
e0(⇣ ), Je0(⇣ ), ⇣�1

· e1(⇣ ), . . . , ⇣�1
· en�1(⇣ ), ⇣�1

· Jen�1(⇣ )
⌘

(4.2)

is a basis for T f (⇣ )M for all ⇣ 2 1 and we may consider a system of coordinates
⇠ : (x0, x1, . . . , x2n�2, x2n�1) = (z0, . . . , zn�1) : U �! R2n = Cn on a neigh-
borhood U of f (1) such that

@

@x0

����
f (⇣ )

=e0(⇣ ),
@

@x1

����
f (⇣ )

= J (e0(⇣ )),

@

@x2i

����
f (⇣ )

=⇣�1
· ei (⇣ ),

@

@x2i+1

����
f (⇣ )

= J (⇣�1
· ei (⇣ )) for all ⇣ 2 1 \ {0}.

(4.3)

If we identify U with ⇠(U) ⇢ Cn , we have that J |y = Jst|y for all y 2 f (1) and
the maps f , ei and Jei are of the form (here, any vector valued map is denoted by
a pair, formed by the base point and the vector components):

f (⇣ ) = (Re ⇣, Im ⇣, 0, . . . , 0),
ei (⇣ ) = ((Re ⇣, Im ⇣, 0, . . . , 0); (0, . . . ,Re(⇣ )

2i-th place
, . . . , 0)),

Jei (⇣ ) = ((Re ⇣, Im ⇣, 0, . . . , 0); (0, . . . , Im(⇣ )
(2i + 1)-th place

, . . . , 0)).
(4.4)

A map W = ( f, v j @
@x j ) : 1 �! TR2n ' T M is an infinitesimal variation (i.e.

J-holomorphic) if and only if it is solution of the p.d.e. system

@vi

@ Re ⇣
+J ij

���
f

@v j

@ Im ⇣
+

@ J ij
@xk

�����
f

vk
@ f j

@ Im ⇣
=

@vi

@ Re ⇣
+Jstij

@v j

@ Im ⇣
+

@ J i1
@xk

�����
f

vk =0. (4.5)

By hypotheses, the fields in (4.4) are solutions of (4.5). From this and the fact that
the components J ij | f (1) = Jstij | f (1) are constant on f (1) we get that

@ J i1
@xk

=

@ J ij
@x0

=

@ J ij
@x1

= 0 at all points of f (1). (4.6)

From this and the explicit formulae in coordinates for J and eJ, one can directly
check that a map W = ( f, w j @

@z j + w j @

@z j
) : 1 �! TCn

' T M (respectively
ef = ( f, gidzi+gidzi ) : 1 �! T ⇤Cn

' T ⇤M) is J- (respectivelyeJ-) holomorphic
if and only if the functions w j (respectively gi ) are holomorphic in the classical
sense. Assume that f is stationary and that ef = ((⇣, 0, . . . , 0); gidzi + gidzi ) is
a stationary lift of f and W : 1 �! T M is an infinitesimal variation, attached
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to @D and with fixed central direction. Then, for any ⇣ 6= 0, W (⇣ ) is the form
W (⇣ ) = ⇣ ·µ j (⇣ ) · ei (⇣ )+ ⇣ · µ j (⇣ ) · ei (⇣ ), for some holomorphic µ j

: 1 �! C,
and W⇤

⇣
@

@ Re ⇣

���
0

⌘
= µ j (0) · e j (0). By Definition 4.1 (c), we get that µ0(0) 2 R

and µi (0) = 0 for i 6= 0. On the other hand, by Definition 4.1(b), the function

' : 1 �! R, '(⇣ ) =
ef (⇣ )

⇣
⇣�1

· W (⇣ )
⌘

= Re(µ j g j )(⇣ ),

is so that '|@1 ⌘ 0. Since ' is harmonic, ' ⌘ 0 and in particularµ0(0)Re(g0(0))=
0. By [9, Corollary 2.5], ef ⇣ @

@ Re ⇣

���
0

⌘
= g0(0) 6= 0 and µ0(0) = 0, i.e. f is

critical. Conversely, assume f critical and let ef : 1 �! T ⇤M be defined byef (⇣ ) = (⇣, 0 . . . , 0; dz0+dz0). By previous observations, ef iseJ-holomorphic and
it is an embedding. From the fact that Je0|⇣ , ei |⇣ , Jei |⇣ span the tangent spaces
T f (⇣ )@D, ⇣ 2 @1, we get that ef is a stationary lift of f and that f is stationary.
4.2. Critical foliations of normal forms

Let (Bn, J ) be an almost complex circular domain in normal form. We recall that,
for any v 2 S2n�1 ⇢ T0Bn , the straight disk f (⇣ ) = ⇣ · v is stationary for (Bn, J ).

For any w 2 TvS2n�1 and any smooth curve �
(w)
t in S2n�1 with �

(w)
0 = v

and �̇
(w)
0 = w, we may consider the infinitesimal variation, with fixed center and

attached to @Bn , defined by

W (w)
: 1 ! TC2n, W (w)(⇣ ) =

d
⇣
⇣ · �

(w)
t

⌘
dt

������
t=0

= ⇣ · w 2 T f (⇣ )Cn. (4.7)

These maps form a (2n� 2)-subspace gVaro( f ) of the vector space of infinitesimal
variations inVaro( f ) such that:

a)
n
W (⇣ ), W 2

gVaro( f )
o

= H f (⇣ ) for any ⇣ 6= 0;

b) for any W 2
gVaro( f ), the map ↵(⇣ )

def
= |⇣ |

�1
|W (⇣ )| is constant on 1 \ {0}.

Moreover,

Lemma 4.4. The space JgVaro( f ) is included in Varo( f ) if and only if LZ01 J =

0, with Z01 = zi @

@zi
.

Proof. Consider an open subset V ⇢ S2n�1 ⇢ T0Bn and a field of real frames
(eo1(v),J0eo1(v) . . . ,J0eon�1(v)),v2V , for the holomorphic subspaces Hv ⇢ TvS2n�1

of S2n�1. We denote by ei (v, ·), (J0ei )(v, ·) the corresponding infinitesimal varia-
tions along f (v)(⇣ ) = ⇣ · v, i.e.

e1(v; ⇣ )
def
= ⇣ · eo1(v), . . . , (J0en�1)(v; ⇣ )

def
= ⇣ · (J0eon�1(v)).
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Notice that the points f (v)(⇣ ), with (v, ⇣ ) 2 V ⇥ {1 \ {0}}, fill an open subset
U ⇢ Bn \ {0}, that the ordered set of vector fields
 
e0(v; ⇣ )

def
= f (v)

⇤

 
@

@x

����
⇣

!
, Je0(v; ⇣ )

def
= f (v)

⇤

 
@

@y

����
⇣

!
,e1(v; ⇣ ), . . . ,(J0en�1)(v; ⇣ )

!

is a frame field on U ' V ⇥ {1 \ {0}} and that the field 1
2 (e0(v; ⇣ ) + i Je0(v; ⇣ ))

= f (v)
⇤

✓
@
@⇣

���
⇣

◆
is a generator for Z01. One can also check that

LZ01ei = LZ01(J0ei ) = 0 for 1  i  n � 1. (4.8)

We claim that LZ01 Jei = LZ01 J (J0ei ) = 0 (or, equivalently, that LZ01 J |U = 0) if
and only if the fields Jei (v; ⇣ ) and J (J0ei )(v; ⇣ ) are in Varo( f (v)); by arbitrari-
ness of V ⇢ S2n�1 this conclude the proof. To check the claim, let us fix a straight
disk f (v)(⇣ ) = ⇣ ·v. By construction, the fields ⇣�1

·ei (v; ⇣ ) and ⇣�1
· (J0ei )(v; ⇣ )

are of class C1 at any ⇣ 2 1. We may therefore consider a system of coordinates
⇠ = (z0 = x0+ i x1, . . . , zn�1 = x2n�2+ i x2n�1) around f (v)(1) satisfying (4.3).
As in the proof of Theorem 4.3, we have that a vector field W : 1 �! T Bn along
f (v)(1) is J-holomorphic if and only if the complex functions w j

: 1 �! C such
that

W⇣ = Re(w j (⇣ )) e j ( f (v)(⇣ )) + Im(w j (⇣ ))(J0e j )( f (v)(⇣ ))

are holomorphic. By (4.8), such holomorphicity condition is equivalent toLZ01W =

0. Since, by construction, the fields Jei and J (J0ei ) satisfy (a) and (b) of Definition
4.1, they are inVaro( f (v)) if and only if they are J-holomorphic, i.e. if and only if
LZ01 Jei = LZ01 J (J0ei ) = 0.

Let us introduce the following definition.
Definition 4.5. Let (Bn, J ) be an almost complex domain of circular type in nor-
mal form. We call it nice if the distribution H defined in (3.13) is J -invariant. We
call it very nice if for any straight disk f (⇣ ) = ⇣ · v, the associated vector spacegVaro( f ) is J -invariant.

An almost complex domain (D, J ) of circular type with center xo is called nice
(respectively very nice) if it has a nice (respectively very nice) normal form.

Motivation for considering such notions comes from the following

Proposition 4.6. The stationary disks of the circular type foliation F (xo) of a very
nice almost complex domain (D, J ) of the form D = { ⇢ < 0 } for some J -
plurisubharmonic ⇢, are critical.

Proof. With no loss of generality, assume that (D, J ) = (Bn, J ) is in normal form
and that its foliation of circular type is given by the straight disks f (⇣ ) = ⇣ ·

v, v 2 S2n�1 ⇢ T0Bn ' Cn . Fix v 2 S2n�1 and let Hv ⇢ TvS2n�1 be the



STATIONARY DISKS AND GREEN FUNCTIONS 991

holomorphic tangent space at v and (eo1, . . . , e
o
n�1) a basis over C for Hv . Consider

the infinitesimal variations in gVaro( f ) defined in (4.8)

e1(⇣ )
def
= ⇣ · eo1, . . . , en�1(⇣ )

def
= ⇣ · eon�1, ⇣ 2 1.

By construction, the fields ⇣�1
· ei and ⇣�1

· Jei , defined at the points of 1, are
of class C1. Being (Bn, J ) very nice, they span Hz ⇢ T f (⇣ )Cn , which is comple-
mentary to T'(⇣ ) f (1). By Theorem 4.3, the conclusion follows.

By definitions any very nice domain is nice. The converse is not true, as next
proposition and example show.
Proposition 4.7. Let (Bn, J ) be an almost complex domain of circular type in nor-
mal form, with J given by a deformation tensor � = �H + �H,Z . It is nice if and
only if �H,Z

⌘ 0, while it is very nice if and only if

�H,Z
⌘ 0 and LZ01�

H
= 0. (4.9)

Proof. It follows from definitions and Lemma 4.4.

Example 4.8. Let � = �H be a deformation tensor in Hom(H01
z ,H10

z ) at any z 2

Bn , which is non zero only on a relatively compact subset, whose closure does
not contain the origin. By Remark 3.9 and Proposition 4.7, � = �H determines
an almost complex structure J such that (Bn, J ) is nice. On the other hand, by
assumptions, there are straight disks f with �H| f (1) 6⌘ 0 and with �H|V ⌘ 0 on
some open subset of V ⇢ f (1). Due to this, the equality LZ01�

H
= 0 is not

satisfied and (Bn, J ) is not very nice.

5. Almost complex Monge-Ampère operators

5.1. Plurisubharmonic functions and pseudoconvex manifolds

Let (M, J ) be an almost complex manifold and�k(M), k � 0, the space of k-forms
of M . We denote by dc : �k(M) �! �k+1(M) the classical dc-operator

dc↵ = (�1)k(J⇤

� d � J⇤)(↵),

where J⇤ denotes the usual action of J on k-forms, i.e. J⇤ �(v1, . . . , vk)
def
=

(�1)k�(Jv1, . . . , Jvk) (see e.g. [2]). If J is integrable, it is well known that

dc = i(@ � @), @@ =

1
2i
ddc, ddc = �dcd

and that ddcu is a J -Hermitian 2-form for any C2-function u. Unfortunately, when
J is not integrable, dcd 6= �ddc and the 2-forms ddcu, with u 2 C2(M), are
usually not J -Hermitian. In fact, one has that

ddcu(J X1, X2) + ddcu(X1, J X2) = 4NX1X2(u), (5.1)
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where NX1X2 is the Nijenhuis tensor evaluated on X1, X2 and is in general non zero.
This fact suggests the following definition.

Definition 5.1. Let u : U ⇢ M �! R be of class C2. We call J -Hessian of u
at x the symmetric form Hess(u)x 2 S2TxM , whose associated quadratic form is
L(u)x (v) = ddcu(v, Jv)x . By polarization formula and (5.1), one has that, for any
v, w 2 TxM ,

Hess(u)x (v,w) =

1
2
�
ddcu(v, Jw) + ddcu(w, Jv)

�����
x

= ddcu(v, Jw)x � 2Nvw(u).
(5.2)

We remark that Hess(u)x is not only symmetric, but also J -Hermitian, i.e.
Hess(u)x (Jv, Jw) = Hess(u)x (v,w) for any v,w. It is therefore associated with
the Hermitian antisymmetric tensor

Hess(u)(J ·, ·) =

1
2
�
ddcu(·, ·) + ddcu(J ·, J ·)

�
=

1
2
�
ddcu + J⇤ddcu

�
. (5.3)

The quadratic form L(u)x (v) = ddcu(v, Jv)|x is the so-called Levi form of u at x
(see e.g. [6]) and it is tightly related with the notion of J -plurisubharmonicity. On
this regard, we recall that an upper semicontinuous function u : U ⇢ M �! R
is called J -plurisubharmonic if, for any J -holomorphic disk f : 1 �! U ⇢ M ,
the composition u � f : 1 �! R is subharmonic. By simple arguments (similar
to those used for complex manifolds), whenever u is in C2(U) one has that u is
J -plurisubharmonic if and only if L(u)x (v) = Hess(u)x (v, v) � 0 for any x 2 U
and v 2 TxM .

This motivates the following generalizations of classical notions (see e.g. [7]).
In the following, for any U ⇢ M , the symbol Psh(U) denotes the class of J -
plurisubharmonic functions on U .
Definition 5.2. Let (M, J ) be an almost complex manifold and U ⇢ M an open
subset. We say that u 2 Psh(U) is strictly J -plurisubharmonic if:

a) u 2 L1loc(U);
b) for any xo 2 U there exists a neighborhood V of xo and v 2 C2(V) \ Psh(V) for
whichHess(v)x is positive definite at all points and u � v is in Psh(V).

In particular,u2Psh(U)\C2(U) is strictly plurisubharmonic if and only ifHess(u)x
is positive definite at any x 2 U .

The almost complex manifold (M, J ) is called weakly (respectively strongly)
pseudoconvex if it admits a C2 exhaustion ⌧ : M �!]�1,1[, which is plurisub-
harmonic (respectively strictly plurisubharmonic)2.

2 Strongly pseudoconvex manifolds are called almost complex Stein manifolds in [8].



STATIONARY DISKS AND GREEN FUNCTIONS 993

5.2. Maximal plurisubharmonic functions

J -plurisubharmonic functions share most of the basic properties of classical pluri-
subharmonic functions. For instance, for any open domain U ⇢ M , the class
Psh(U) is a convex cone and a lattice, as for domains in complex manifolds. In
fact, given ui 2 Psh(U) and �i 2 R, also the functions u =

Pn
i=1 �i ui and

u0
= max{ u1, . . . , un } are in Psh(U).
It is therefore natural to consider the following notion of “maximal” J -plurisub-

harmonic functions. This and next theorem indicate which operator should be con-
sidered as natural generalization of the classical complex Monge-Ampère operator.
Definition 5.3. Let D be a domain in a strongly pseudoconvex almost complex
manifold (M, J ). A function u 2 Psh(D) is called maximal if for any open U b D
and h 2 Psh(U) satisfying the condition

lim sup
z!x

h(z)  u(x) for all x 2 @U , (5.4)

one has that h  u|U .

Theorem 5.4. Let D ⇢ M be a domain of a strongly pseudoconvex almost complex
manifold (M, J ) of dimension 2n. A function u 2 Psh(D) \ C2(D) is maximal if
and only if it satisfies �

ddcu + J⇤(ddcu)
�n

= 0. (5.5)

Proof. Let ⌧ : M �!]�1,+1[ be a C2 strictly plurisubharmonic exhaustion for
M and assume that u satisfies (5.5). We need to show that for any h 2 Psh(U) on
an U b D that satisfies (5.4), one has that h  u|U . Suppose not and pick U b D
and h 2 Psh(U), so that (5.4) is true but there exists xo 2 U with u(xo) < h(xo).
Let � > 0 so small that

h(xo) + � (⌧ (xo) � M) > u(xo), where M = max
y2U

⌧ (y),

and denote bybh the function
bh def= h + �(⌧ � M)|U . (5.6)

By construction, bh 2 Psh(U), satisfies (5.4) and (bh � u)(xo) > 0. In particular,bh�u achieves its maximum at some inner point yo 2 U . Now, we remark that (5.5)
is equivalent to say that, for any x 2 D, there exists 0 6= v 2 TxM so that�

ddcu + J⇤(ddcu)
�
x (v, Jv) = Hessx (u)(v, v) = 0. (5.7)

Let 0 6= vo 2 TyoM be a vector for which (5.7) is true and let f : 1 �! M be a
J -holomorphic disk so that f (0) = yo and with

f⇤
✓

@

@x

����
0

◆
= vo, f⇤

✓
@

@y

����
0

◆
= f⇤

✓
Jst

@

@x

����
0

◆
= Jvo.
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Then, consider the function G : 1 �! R defined by

G def
=
bh � f � u � f = h � f + (�⌧ � �M � u) � f. (5.8)

We claim that there exists a disk 1r = {|⇣ | < r} such that G|1r is subharmonic.
In fact, since ⌧ is C2 and strictly plurisubharmonic andHess(u)yo(vo, vo) = 0, we
have that

0 < Hess((�⌧ � �M � u))yo(vo, vo) = 2i @@((�⌧ � �M � u) � f )
��
0 .

Hence, by continuity, there exists r > 0 so that

0 < 2i @@((�⌧ � �M � u) � f )
��
⇣

for any ⇣ 2 1r .

It follows that (�⌧ � �M � u) � f |1r is strictly subharmonic and that G|1r is
subharmonic, being sum of subharmonic functions. At this point, it suffices to
observe that, since yo is a point of maximum for bh � u on f (1) ⇢ U , then 0 =

f �1(yo) 2 1r is an inner point of maximum for G|1r . In fact, from this and the
maximum principle, we get that G|1r is constant and hence that h � f |1r is C2 with
2i @@(h � f )

��
1r

< 0, contradicting the hypothesis on subharmonicity of h � f .
Conversely, assume that u 2 C2(D) \ Psh(D) is maximal, but that (5.5) is

not satisfied, i.e. that there exists yo 2 D for which Hessyo(u)(v, v) > 0 for any
0 6= v 2 TyoM . By Lemma 3.2, there exist a relatively compact neighborhood U of
yo and a (J, J 0)-biholomorphism between (U , J ) and (Bn, J 0), with J 0 arbitrarily
close in C2 norm to the standard complex structure. Due to this, we may assume
that ⌧ = ⌧o � ', with ⌧o(z) = |z|2, is a C2 strictly J -plurisubharmonic exhaustion
on U , tending to 1 at the points of @U . Hence, there is a constant c > 0 such that

Hessx (u + c(1� ⌧ ))(v, v) = Hessx (u)(v, v) � cHessx (⌧ )(v, v) � 0,

for all x 2 U and v 2 TxM ' R2n with |v| = 1. This means that

bh def= (u + c(1� ⌧ ))|Byo (r)

is in C2(U) \ Psh(U), satisfies (5.4) and, by maximality of u, satisfies bh  u at
all points of U . But there is also an ✏ > 0 such that ; 6= ⌧�1([0, 1 � ✏[) ( U
and hence such that, on this subset,bh � u + c✏ > u, contradicting the maximality
of u.

5.3. Green functions of nice circular domains

The results of previous section show that (5.5) is a natural analogue of classical
complex Monge-Ampère equation for domains in Cn and that the solutions of (5.5)
are interesting biholomorphic invariants of strongly pseudoconvex domains. This
motivates the following generalized notion of Green functions (see e.g. [1]).
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Definition 5.5. Let D be a relatively compact domain in a strongly pseudoconvex,
almost complex manifold (M, J ). We call almost pluricomplex Green function with
pole at xo 2 D an exhaustion u : D �! [�1, 0] such that

i) u|@D = 0 and u(x) ' log kx � xok when x ! xo, for some Euclidean metric
k · k on a neighborhood of xo;

ii) it is J -plurisubharmonic;
iii) it is a solution of the generalized Monge-Ampere equation (ddcu+

J⇤(ddcu))n = 0 on D \ {xo}.

Notice that, if a Green function with pole xo exists, by a direct consequence of
property of maximality (Theorem 5.4) it is unique.

Consider now an almost complex domain D of circular type in (M, J ) with
center xo. Denoting by 8 :

eBn �!
eD the corresponding Riemann map, we call

standard exhaustion of D the map

⌧(xo) : D �! [0, 1[, ⌧(xo)(x) =

8><
>:

|8�1(x)|2 if x 6= 0,

0 if x = xo.
.

When D is in normal form, i.e. D = (Bn, J ) with J almost L-complex structure,
its standard exhaustion is just ⌧o(z) = |z|2.

Proposition 5.6. Let D be a domain of circular type in (M, J ) with center xo and
standard exhaustion ⌧(xo). If u = log ⌧(xo) is J -plurisubharmonic, then u is an
almost pluricomplex Green function with pole at xo.

Proof. With no loss of generality, we may assume that the domain is in normal
form, i.e. D = (Bn, J ) and ⌧(xo)(z) = ⌧o(x) = |x |2. Since ⌧o is smooth on Bn \ {0}
and u = log ⌧o is J -plurisubharmonic, we have that Hess(u)x � 0 for any x 6= 0.
On the other hand, for any straight disk f : 1 �! Bn of the form f (⇣ ) = v · ⇣ , we
have that u � f is harmonic andHess(u) f (⇣ )(v, v) = 0 for any ⇣ 6= 0. This means
that Hess(u)x � 0 has at least one vanishing eigenvalue at any point of Bn \ {0}
and means that (5.5) is satisfied. Other conditions of Definition 5.5 can be checked
directly.

When J is integrable, the standard exhaustion u = log ⌧(xo) of the normal form of
a domain of circular type is automatically plurisubharmonic [18]. In the almost
complex case, this is no longer true, as the following example shows.
Example 5.7. Consider a quadruple of vector fields (Z , JstZ , E, JstE) on eB2, de-
termined as follows. The field Z has been defined in Section 3.2 and, in coordinates
(3.6), is of the form Zz = Re

⇣
z0 @

@z0

���
z

⌘
at any z 2

eB2 \⇡�1(0). The field E is any
vector field in the distributionH that satisfies the conditions

[Z , E] = [JstZ , E] = 0, [E, JstE] = �JstZ . (5.9)
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It is uniquely determined, up to a smooth family of unitary transformations of the
subspaces Hz ⇢ TzeB2. Notice that the standard holomorphic bundle T 10eB2 is
generated at all points by the complex vector fields Z10 = Z � i JstZ , E10 =

E � i JstE . In the following, we denote by (E10⇤, E01⇤, Z10⇤, Z01⇤) the field of
complex coframes, which is dual to (E10, E01 = E10, Z10, Z01 = Z10) at all
points.

Consider a deformation tensor � 2 Hom(H01,Z10 +H10) of the form �z =

h(z)Z10z ⌦ E01⇤z for some smooth real valued function h :
eBn �! R, which is

constant on all spheres Sc = { ⌧o(z) = c } (i.e. h = h(|z0|)) and is equal to 0 on an
open neighborhood of ⇡�1(0) = CP1.

By definitions and Remark 3.9, the deformation tensor � determines an almost
complex structure J , with J -holomorphic spaces T 10J z eBn = CZ10z � CeE10z , eE10z def

=

E10z + h(z)Z01z , that satisfies (i), (iii) and (iv) of Definition 3.3. We claim that the
system (3.7) is always solvable, so that J is an almost L-complex structure and
(eBn, J ) is an almost complex domain of circular type in normal form. This claim
can be checked observing that the components of J in coordinates (3.6) along the
disk f (⇣ ) = ⇣ · v with v = (0, 1), are such that

J 11 = i = �J ¯1
¯1 , J 1

¯1 = J ¯1
1 = 0

and J 0A = J 0A(|z
0
|), J ¯0

A = J ¯0
A(|z

0
|) for any A = 1, ¯1. So, (3.7) reduces to(

g1,⇣̄ = F1 on 1,

g1 = k(⇣ 2 � 1) on @1,
(5.10)

with F1 : 1 �! C depending only on ⇢ = |⇣ | and k constant. Consider the map

eF1 : 1 �! C, eF1 def= �

1
⇡

Z
1

F1(|w|)

w � ⇣
dw ^ dw̄.

It is such that

eF1,⇣̄ = F1 and
Z

@1

eF1⇣ nd⇣ = 2i
Z

1
F1(⇢)⇢n+1ein#d⇢ ^ d# = 0

for any n � 0. Hence, if h1 : 1 �! C is a holomorphic map such that h1|@1 =eF1|@1, the map g1 =
eF1�h1+k(⇣ 2�1) is a solution to (5.10). Since the solvability

of (3.7) is independent on the choice of coordinates, this concludes the proof of the
claim.

Now, we want to show that if h 6⌘ 0, the function u = log ⌧o is not J -
plurisubharmonic. For this, we first observe that, for any pair of real vector fields
X,Y , if we set X10 = X � i J X , Y 01 = Y + i JY

Hess(u)(X,Y )=
1
2
Im ddcu(X10,Y 01)

=

1
2
Im
⇣
i X10(Y 01(u))+iY 01(X10(u))+ J [X10,Y 01](u)

⌘
.

(5.11)
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We also recall that (here, (·)Z
def
= Z(·) denotes derivation along Z )

Z10(u) = 1 = Z01(u), E10(u) = 0, eE10(u) = h =
eE01(u), (5.12)

eE10(eE01(u)) = hhZ =
eE01(eE10(u)), (5.13)

[E10, E01] = �2i[E, J E] = �i2J Z , (5.14)
J [eE10, eE01](u)= J [E10,E01](u)+ ihhZ (Z10 + Z01)(u) = i2(1+ hhZ ), (5.15)
J [eE10, Z01](u) = ihZ Z01(u) = ihZ . (5.16)

Hence, if we set eE = Re(eE10) and JeE = Re(ieE10), using (5.11) - (5.16) we may
conclude that

Hess(eE, eE) = 1+ 2hhZ , Hess(eE, JeE) = 0,
Hess(eE, Z) = hZ , Hess(eE, J Z) = Hess(Z , Z) = Hess(Z , J Z) = 0,

so that the matrix H , with entries given by the components ofHess(u)z in the basis
B = (e1 =

eEz, e2 = JeEz, e3 = Zz, e4 = J Zz), is

H =

0
B@
1+ 2hhZ 0 hZ 0

0 1+ 2hhZ 0 hZ
hZ 0 0 0
0 hZ 0 0

1
CA .

Since the eigenvalues of H are �± =

(1+2hhZ )±
q

(1+2hhZ )2+4h2Z
2 , we conclude that

u is J -plurisubharmonic if and only if hZ ⌘ 0, i.e. if and only if h ⌘ 0.
From previous example, we see that the standard exhaustion ⌧(xo) of an almost

complex domain (D, J ) of circular type is in general not a Green function, indepen-
dently on how J is close to an integrable complex structure. However, the property
remains valid if one restricts to the class of nice domains and to small deformations
of integrable structures, as it is shown in next theorem. This property nicely relates
to [9, Theorem 6.4] (see also Remark 4.2) on the existence of extremal disks for
domains with small deformations of an integrable complex structure.

Theorem 5.8. Let D be a nice circular domain with standard exhaustion ⌧(xo) and
normal form (Bn, J ). If J is a sufficiently small C1-deformation of Jst, then u =

log ⌧(xo) is the Green function with pole at xo.

Proof. By Proposition 5.6, it suffices to show that, when J is sufficiently close to
Jst, then u = log |z|2 is J -pseudoconvex on Bn \ {0}. For this, we first claim that if
(Bn, J ) is nice, then Hess(u)z(Z,H) = 0 at any z 6= 0. Since Z and H are both
J -invariant, this is equivalent to claim that, that for any z 6= 0,

�
ddcu + J⇤(ddcu)

�
z (Z , X) = 0, Z def

= Re
✓
zi

@

@zi

◆
, X 2 H. (5.17)
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But this follows from the fact that X and J X are tangent to the level sets of u =

log ⌧o, that [Z,H] ⇢ H and hence that

ddcu(Z , X)=�Z(J X (u)) + X (J Z(u)) + (J [Z , X])(u) = X (JstZ(u)) = 0
J⇤ddcu(Z , X)= J Z(X (u)) � J X (Z(u)) + (J [J Z , J X])(u) = �J X (Z(u)) =0.

SinceHess(u)|Z⇥Z = 0, it remains to check thatHess(u)|Hz⇥Hz � 0. Since any
sphere S2n�1c = { z 2 Bn , ⌧o(z) = c }, c 2]0, 1], is strongly Jst-pseudoconvex and
its (real) holomorphic tangent distribution distribution isH|S2n�1c

, if J is sufficiently
close to Jst, the sphere S2n�1c is strongly pseudoconvex also with respect to J by a
continuity argument. This is the same of saying that Hess(u)|Hz⇥Hz � 0 for any
z 6= 0, as needed.

5.4. Concluding remarks

It is well known that on (integrable!) complex manifolds there is a tight connection
between the existence of regular plurisubharmonic solutions u of maximal rank
for homogeneous complex Monge-Ampère equations and existence of foliations
by Riemann surfaces. In fact, such foliation is given by the complex curves along
which the solution u is harmonic.

This idea was exploited by Lempert in his work on strictly convex domains in
Cn [11]. In this case, the foliation is made of the extremal disks for the Kobayashi
metric through a fixed point xo, which coincide with stationary disks through xo.
The function u is the pull-back on each disk of the standard Green function with
pole at 0 of 1 ⇢ C, so that any strictly convex domain is a domain of circular
type. Conversely, the singular foliation by holomorphic disks, determined by the
exhaustion u of a domain of circular type, is a foliation by Kobayashi extremal
disks [17].

Also for almost complex domains, the plurisubharmonic C2 functions, which
are harmonic along the leaves of a foliation of circular type F (xo), are solutions of
an almost complex Monge-Ampère equation:
Proposition 5.9. Let D ⇢ M be a domain in a strongly pseudoconvex manifold
(M, J ) with a foliation of circular type F (xo) of (D, xo). Let also u : D �!

]�1,+1[ be a function which is in Psh(D)\C2(D \{xo}) and so that u � f : 1\

{0} �! R is harmonic for any f 2 F (xo). Then u is a solution of the generalized
Monge-Ampère equation (5.5) on D \ {xo}.
Proof. First of all, we claim that u satisfies the generalized Monge-Ampere equa-
tion (5.5) at all points of D \ {xo}. In fact, by (ii) of Definition 3.1, for any y 2 D
we know that there exists a disk f : 1 �! D in F (xo) with y = f (⇣ ) for some
⇣ 2 1. Since u � f is harmonic, if we denote by v = f⇤

⇣
@

@(Re ⇣ )

⌘
, we have that

H(u)y(v, v) = (ddcu + J⇤(ddcu))y(v, Jv) = 1(u � f )⇣ = 0, (5.18)

from which it follows immediately that (ddcu + J⇤(ddcu))ny = 0. The conclusion
follows immediately from Theorem 5.4.
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Notice that, by Example 5.7, the previous remark is not so useful to determine
almost pluricomplex Green functions, since in general the function u = log ⌧(xo),
which is determined by the geometric construction, is not plurisubharmonic. Fur-
thermore, we know that, in general, stationary disks of an almost complex domain
D are not extremal disks for the Kobayashi metric of D [9]. Nevertheless, the above
properties of strictly convex domains of Cn remain valid in a large class of almost
complex domains, as it is illustrated in the following theorem, which is direct con-
sequence of our results.

Theorem 5.10. Let D be an almost complex domain of circular type with center
xo in (M, J ) strongly pseudoconvex. If the normal form (Bn, J 0) of (D, J ) is very
nice with J 0 sufficiently close to Jst, then

a) the stationary foliationF (xo) consists of extremal disks with respect to Kobayashi
metric;

b) the function u = log ⌧(xo) is the almost pluricomplex Green function of D with
pole xo;

c) the distribution Zz = kerHess(u)z is integrable and the closures of its integral
leaves are the disks in F (xo).
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