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Reduction of critical mass in a chemotaxis system
by external application of a chemoattractant

JOSÉ IGNACIO TELLO AND MICHAEL WINKLER

Abstract. In this paper we study non-negative radially symmetric solutions of
the parabolic-elliptic Keller-Segel system

(
ut = 1u � r · (urv), x 2 R2, t > 0,
0 = 1v + u + f0 · �(x), x 2 R2, t > 0,

(?)

where f0 > 0 and � is the Dirac distribution. This system describes the chemo-
tactic movement of cells under the additional circumstance that an external appli-
cation of a chemoattractant at a distinguished point is introduced.

It is known that without such an external source the number 8⇡ plays the
role of a critical mass in (?), in the sense that if the total mass µ :=

R
R2 u0 of the

cells exceeds 8⇡ then the solutions may blow up within finite time and collapse
into a Dirac-type singularity, and that this does not occur when µ < 8⇡ .

The present paper shows that this critical number is reduced to 8⇡ � 2 f0 by
an application of the signal substance in the above way. Indeed, it is proved that
whenever f0 > 0 and u0 6⌘ 0, a measure-valued global-in-time weak solution
can be constructed which blows up at x = 0 immediately. Now if µ < 8⇡ � 2 f0
then this solution satisfies u(x, t)  C(⌧ )|x |�

f0
2⇡ for t > ⌧ > 0 and |x | < 1 and

hence does not blow up in L ploc(R
2) for any 1  p < 4⇡/ f0. On the other hand,

if µ > 8⇡ � f0 then the mass will asymptotically completely concentrate at the
origin, that is, u(·, t) converges to µ ·� as t ! 1 in the sense of Radon measures.

Mathematics Subject Classification (2010): 35K40 (primary); 35B44, 35K61
(secondary).

Introduction

Chemotaxis is the biological phenomenon whereby single-cells or multicellular or-
ganisms move guided by concentration gradients of a chemical. The response of
the organisms to the chemical substance may be positive, leading to movement
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toward higher concentrations of the chemical, or negative, moving away from it.
Chemotaxis appears in many different biological processes such as motion of bac-
teria, immune system response, migration of cells in embryonic development, and
formation of blood vessels in tumor growth.

One of the first mathematical models which appears in the literature to describe
aggregation of certain types of bacteria was proposed by Keller and Segel [17, 18],
see also Patlak [26]. In the classical Keller-Segel system in the two-dimensional
setting, the density distribution u = u(x, t) of the living organisms is governed by
the PDE

ut = 1u � r · (urv), x 2 R2, t > 0,

where v represents the concentration of a chemoattractant substance. Secondly, in
many biologically meaningful situations this chemoattractant is produced by the
cells themselves (see [13] for a number of examples). Under the assumption that
molecules diffuse much faster than cells, v approximately satisfies an elliptic equa-
tion

0 = 1v + g(u, v), x 2 R2, t > 0,

where the function g represents the balance of production and degradation of the
signal substance.

In the pioneering work [16], the authors consider the particular case g(u, v) =

u �
1

|�|

R
� u0 in a circle B0(R) ⇢ R2 of radius R and they prove that radially sym-

metric solutions exist globally and remain bounded if the total mass
R
� u0 of cells is

small, whereas some solutions may blow up in finite time with respect to the norm in
L1(�) when

R
� u0 is suitably large. This critical mass phenomenon, already con-

jectured in [8], attracted a considerable interest in the subsequent years, and quite
a complete answer is available in the radial version of the corresponding Cauchy
problem in the whole space R2 where accordingly g(u, v) = u. In fact, in this
framework the number 8⇡ plays the role of a critical mass in the sense that when-
ever

R
R2 u0 < 8⇡ , the solution is global and bounded, whereas if

R
R2 u0 > 8⇡ then

the solution will blow up in finite time. A comprehensive demonstration of this,
using approaches originating from [22], can be found in [1]. In addition, a rich lit-
erature has revealed that a critical mass phenomenon also occurs in a number of re-
lated chemotaxis systems, both of parabolic-elliptic and of parabolic-parabolic type,
and also in non-radial frameworks and in corresponding Neumann-type boundary-
value problems. Here the main difference arising in the non-symmetric bounded
domain case appears to be the fact that the mass threshold is then halved to 4⇡ ,
which is due to the possible occurrence of blow-up on the boundary of the domain
(see [2,6,20,23] for parabolic-elliptic systems and [9,15,24,28] for fully parabolic
analogues).

As to the qualitative behavior of such large mass solutions near blow-up,
formal arguments suggest that the cell population aggregates at the origin in the
strongest conceivable sense, namely, that the spatial profile of the first component
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u of an unbounded solution should approach a Dirac mass near its blow-up time
(see [34]). In the borderline case

R
R2 u0 = 8⇡ , such a collapse into a Dirac mea-

sure occurs in infinite time, as was proved in [7]. Some further results on blow-up
mechanisms in this and related Keller-Segel systems support the conjecture that this
tendency toward Dirac-type singularity formation in fact is a generic phenomenon
(see [11,12] and [31,32] as well as [33] for a simplified argument).

It is the purpose of the present work to examine in how far these mechanisms
are influenced by an external source of chemoattractant. The motivational back-
ground for this stems from the observation that artificial gradients of chemoattrac-
tants are frequently introduced in experiments, see for instance [37] where corre-
sponding effects on the migration of hematopoietic progenitor cells are studied.

As a prototypical model for such a process, subsequently we shall consider the
problem 8><

>:
ut = 1u � r · (urv), x 2 R2, t > 0,
0 = 1v + u + f0�(x), x 2 R2, t > 0,
u(x, 0) = u0(x), x 2 R2,

(0.1)

with a constant f0 > 0, where u0 6⌘ 0 is a given radially symmetric bounded
non-negative function with finite total mass, that is,

µ :=

Z
R2
u0(x)dx < 1. (0.2)

Here, � denotes the Dirac distribution supported at the origin, and thus (0.1) de-
scribes the respective evolution when the chemoattractant is introduced precisely at
the spatial origin, with constant rate f0. In this framework, the question we address
is the following:

Does the source term f0 · �(x) reduce the threshold number 8⇡
for chemotactic aggregation into a Dirac singularity?

Our main results in this direction state that the critical mass is actually reduced to

µc := 8⇡ � 2 f0,

but as compared to the borderline case f0 = 0 this threshold has a slightly different
meaning. Indeed, we shall first prove that for any choice of f0 > 0, a global
solution of (0.1) exists in some generalized sense (cf. Definition 1.1); however, any
such solution blows up immediately:

Theorem 0.1. Let f0 � 0. Then for all t0 � 0 there exists a globally defined radial
weak solution u of (0.1). If f0 > 0, then this solution satisfies

kukL1(R2⇥(t0,t0+⌧ )) = 1 for all ⌧ > 0. (0.3)

Now the size of the initial mass, as compared to µc, decides whether the above
solution approaches a Dirac singularity, or remains less singular:
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Theorem 0.2.
i) Assume that f0 � 0, and that u0 satisfies (0.2) with some µ > 8⇡ �2 f0. Then
the radial weak solution u from Theorem 0.1 satisfies

u(x, t)
?
* µ�(x) as t ! 1

in the sense of Radon measures over R2.
ii) Suppose that f0 2 [0, 4⇡), and that u0 satisfies (0.2) with some µ < 8⇡�2 f0.

Then for all ⌧ > 0 there exists C(⌧ ) > 0 such that for the radial weak solution
u from Theorem 0.1 we have

u(x, t)  C(⌧ )|x |�
f0
2⇡ for all x 2 B1(0) and t � ⌧.

In particular, given any p 2 [1, 4⇡f0 ) and ⌧ > 0 one can find C(⌧ ) > 0 with the
property that

ku(·, t)kL p(B1(0))  C(⌧ ) for all t � ⌧.

Theorems 0.1 and 0.2 can be also applied to the case f0 = 0 to obtain results similar
to those derived in [2], where finite-time blow-up and continuation of solutions for
the supercritical case were described. In this context we also refer to [30], where
certain global weak solutions for the case f0 = 0 were constructed. We also
mention the recent work [5] which is related to our Theorem 0.1 in that it can be
used to state a nonexistence result for classical, and also for some weak, solutions
of (1.2) in any time interval when f0 > 0. However, this apparently does not
immediately entail that (0.3) is valid for the (very weak) solution that we will obtain.

This study is to be understood as a first step towards understanding the behavior
of chemotactic movement under the influence of external sources. One mathemat-
ically interesting open problem is to clarify the behavior in the critical-mass case
µ = 8⇡ � f0 when f0 > 0. Also, allowing for more general source terms f (x),
not necessarily in the radial setting, would be worthwhile being studied, because
it might be thought of as a preparatory step for the corresponding optimal control
problem which targets at approaching a desired distribution of cells after a given
time by suitably adjusting an external application of signal.

Let us remark that clearly v can be expected to be unique only up to addition
of constants. However, since we do not address the uniqueness question for (0.1) in
this paper, we refrain from introducing an extra normalization condition for v such
as

R
B1(0) v ⌘ 0, because this evidently does not change any of the claimed results.
The paper is organized as follows. In Section 1 the auxiliary problem for the

unknown

W (s, t) := 2
Z p

s

0
ru(r, t)dr, s > 0, t > 0

is introduced and preliminary properties of W are studied. In Section 2 we present
the proof of instantaneous blow-up for f0 > 0 (Theorem 0.1). In Section 3 we
address the problem for supercritical mass (Theorem 0.2 (i)). The last section is
devoted to the analysis of the subcritical case (Theorem 0.2 (ii)).
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1. Existence of measure-valued solutions

Following [16], we transform (0.1) by introducing

W (s, t) :=

1
⇡

Z
Bp

s(0)
u(x, t)dx, s > 0, t > 0, (1.1)

which in the case of a radially symmetric u = u(r, t) means that we set

W (s, t) = 2
Z p

s

0
ru(r, t)dr, s > 0, t > 0.

Weare thereby formally led to considering the degenerate parabolic initial-boundary
value problem

8>><
>>:
Wt = 4sWss + WWs + 2F0Ws, s > 0, t > 0,

W (0, t) = 0, lim
s!1

W (s, t) =

µ

⇡
, t > 0,

W (s, 0) = W0(s), s > 0,

(1.2)

with parameter

F0 :=

f0
2⇡

and initial data

W0(s) := 2
Z p

s

0
⇢u0(⇢)d⇢, s > 0.

Observe that if u0 is non-negative and bounded fulfilling (0.2) then W0 satisfies
8>><
>>:
(H1) W0 2 W 1,1((0,1)),

(H2) W0s � 0 in (0,1),

(H3) W0(s) !

µ

⇡
as s ! 1.

(1.3)

Clearly, in view of (1.1) for each t the function W (·, t) must be non-decreasing,
and if u enjoys the expected mass-conservation property

R
R2 u(x, t)dx ⌘ µ then

W (s, t) !
µ
⇡ as s ! 1. In particular, this means that W is bounded and hence

standard parabolic regularity theory tells us that Ws is smooth in (0,1) ⇥ (0,1),
because the PDE in (1.2) is uniformly parabolic in each cylinder (s0,1) ⇥ (0,1)
with s0 > 0. As a consequence, away from the origin we expect the pointwise
identity Ws(s, t) = u(

p

s, t) suggested by (1.1), and the only possibility for u(·, t)
to develop a singularity corresponds to a jump of W (·, t) at s = 0 with jump size
determined by W (0+, t) := lims&0W (s, t). Thus, once we are given a possibly
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discontinuous solution W of (1.2) we can reconstruct u according to the measure-
valued identity

u(x, t) := Ws(|x |2, t) + ⇡W (0+, t) · �(x) (1.4)

for t > 0. For the study of global-in-time solutions of (0.1) it therefore appears to
be natural to act in the framework of Radon measures. To become more precise in
the following definition, we letMrad(R2) denote the space of radially symmetric
Radon measures on R2, that is, the space of all functionals �, radially symmetric
about x = 0, defined on the space C00(R2) of compactly supported continuous
functions over R2. Here we recall that such a functional � is radially symmetric
about x = 0 if �( @ @� ) = 0 for all  =  (r,�) 2 C1

0 (R2).

Definition 1.1. Let f0 � 0, and assume that u0 2 L1(R2) is non-negative and
µ :=

R
R2 u0 is finite. Then by a radial weak solution of (0.1) in R2 ⇥ (0,1) we

mean a function

u 2 C0([0,1);Mrad(R2))

such that the function W : [0,1) ⇥ [0,1) defined by (1.1) satisfies W (s, t) !
µ
⇡

as s ! 1 for all t > 0 and

�

Z
1

0

Z
1

0
⇣tW �

Z
1

0
⇣(·, 0)W0

= 4
Z

1

0

Z
1

0
(s⇣ )ssW �

1
2

Z
1

0

Z
1

0
⇣sW 2

�

f0
2⇡

Z
1

0

Z
1

0
⇣sW

(1.5)

for all ⇣ 2 C1

0 ([0,1) ⇥ [0,1)), where W0(s) :=
1
⇡

R
Bp

s(0)
u0(x)dx for s � 0.

In order to construct such solutions of (1.2) by a suitable approximation proce-
dure, we fix a cut-off function � 2 C1([0,1)) such that � ⌘ 0 on [0, 12 ],� ⌘ 1
on [1,1) and � 0

� 0 on [0,1), and for " 2 (0, 1) we introduce � (")(s) := �( s" ),
s � 0. Then

� (")
⌘ 0 on [0, "2 ], � (")

⌘ 1 on [",1) and � (")
s � 0 on [0,1), (1.6)

and
|� (")
s | 

c�
"

and |� (")
ss | 

c�
"2

(1.7)

are valid with c� := k� 0
kL1((0,1)) + k� 00

kL1((0,1)). Moreover,

� (")(s) % 1 as " ! 0

holds for all s > 0.
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We first make sure that the approximate problems
8>><
>>:
W (")
t = 4sW (")

ss + � (")(s)W (")W (")
s + 2F0� (")(s)W (")

s , s > 0, t > 0,

W (")(0, t) = 0, lim
s!1

W (")(s, t) =

µ

⇡
, t > 0,

W (")(s, 0) = W0(s), s > 0,

(1.8)

allow for a comparison principle:

Lemma 1.2. Let F0�0 and ">0, and assume thatW andW belong toC0([0,1)⇥
[0,1)) \ C2,1((0,1) ⇥ (0,1)) and satisfy

Wt � 4sWss + � (")(s)WWs + 2F0� (")(s)Ws (1.9)

and
Wt  4sWss + � (")(s)WWs + 2F0� (")(s)Ws (1.10)

for all s > 0 and t > 0. Moreover, suppose that the initial data W 0 := W (·, 0) and
W 0 := W (·, 0) satisfy (1.3) with positive numbers µ and µ, respectively, and that
W 0 � W 0 holds on (0,1). Then W � W in [0,1) ⇥ [0,1).

Proof. According to our hypotheses, d := W � W satisfies

d(0, t)  0 and lim
s!1

d(s, t)  0 for all t > 0

and
d(s, 0)  0 for all s > 0, (1.11)

and subtracting (1.9) from (1.10) yields

dt  4sdss +

1
2
� (")

· (W 2
� W 2

)s + 2F0� (")ds for all s > 0 and t > 0.

Let ⇠(d) := (d � � )+ for � > 0; then, multiplying by ⇠(d)
s and integrating by parts

gives

1
2
d
dt

Z
1

0

⇠2(d)

s
=�4

Z
1

0

�
⇠(d)

�2
s�

1
2

Z
1

0

� (")(s)
s

(W 2
�W 2

)·
�
⇠(d)

�
s

+

1
2

Z
1

0

� (")(s)
s2

·(W 2
� W 2

) · ⇠(d) �

1
2

Z
1

0

�
(")
s (s)
s

· (W 2
� W 2

) · ⇠(d)

+F0
Z

1

0

� (")(s)
s2

· ⇠2(d) � F0
Z

1

0

�
(")
s (s)
s

· ⇠2(d) for all t > 0.

(1.12)
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Here the fourth and the last term on the right are non-negative, because � (")
s � 0

and W 2 > W 2 whenever ⇠(d) > 0. Next, by Young’s inequality we have

�

1
2

Z
1

0

� (")(s)
s

· (W 2
� W 2

)
�
⇠2(d)

�
s

 4
Z

1

0

�
⇠(d)

�2
s +

1
64

Z
1

"
2

1
s2

·

�
W 2

� W 2�2
· �{d>� }

and

1
2

Z
1

0

� (")(s)
s2

(W 2
�W 2

)⇠(d)
1
4

Z
1

0

⇠2(d)

s
+

1
4

Z
1

"
2

1
s3

·

�
W 2

�W 2�2
· �{d>� },

for � (")
⌘ 0 on [0, "2 ] and 0  � (")

 1. By means of the estimate

�
W 2

�W 2�2
=

�
W + W

�2d2⇣µ + µ

⇡

⌘2
· d2 c1

⇣
(d � � )2

+
+ � 2

⌘
in {d>� },

valid for c1 := 2(µ+µ

⇡ )2, from (1.12) we thereby obtain

1
2
d
dt

Z
1

0

⇠2(d)

s


c1
64

Z
1

"
2

⇠2(d)

s2
+

c1
4

Z
1

"
2

⇠2(d)

s3
+

1
4

Z
1

0

⇠2(d)

s

+F0
Z

1

"
2

⇠2(d)

s2
+

c1� 2

64

Z
1

"
2

ds
s2

+

c1� 2

4

Z
1

"
2

ds
s3

 c2
Z

1

0

⇠2(d)

s
+ c2� 2 for all t > 0,

where c2 is a positive constant possibly depending on " but not on � . It remains to
integrate the resulting ODE, to recall (1.11) and to let � ! 0 to infer that d+ ⌘ 0,
which implies the claim.

We next prove that the approximate problem (1.8) is uniquely solvable in the
classical sense:

Lemma 1.3. Assume that F0 � 0, and that W0 satisfies (1.3) with some µ > 0.
Then for each " 2 (0, 1) there exists precisely one function

W (")
2 C0([0,1) ⇥ [0,1)) \ C2,1((0,1) ⇥ (0,1))

which satisfies (1.8) in the classical sense.
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Proof. Since uniqueness trivially results from Lemma 1.2, we only need to prove
existence of a classical solution. To achieve this, for S > 0 we consider the degen-
erate parabolic problem on a bounded interval,8>>>><

>>>>:

W (",S)
t = 4sW (",S)

ss + � (")(s)W (",S)W (",S)
s

+2F0� (")(s)W (",S)
s , s 2 (0, S), t > 0,

W (",S)(0, t) = 0, W (",S)(S, t) = W0(S), t > 0,
W (",S)(s, 0) = W0(s), s 2 (0, S),

(1.13)

and the uniformly parabolic regularizations thereof given by
8>>>>>><
>>>>>>:

W (",S,⌘)
t = 4(s + ⌘)W (",S,⌘)

ss

+� (")(s)W (",S,⌘)W (",S,⌘)
s

+2F0� (")(s)W (",S,⌘)
s , s 2 (0, S), t > 0,

W (",S,⌘)(0, t) = 0, W (",S,⌘)(S, t) = W0(S), t > 0,
W (",S,⌘)(s, 0) = W0(s), s 2 (0, S),

(1.14)

where ⌘ 2 (0, 1). By standard parabolic theory, (1.14) admits a classical solution
W (",S,⌘)

2 C0([0, S]⇥ [0,1))\C2,1([0, S]⇥ (0,1)), which is global in time and
bounded, because the inequalities 0  W0 

µ
⇡ along with the maximum principle

entail the uniform two-sided a priori bound 0  W (",S,⌘)


µ
⇡ . In conjunction with

parabolic regularity theory ([21]), this moreover provides uniform estimates for the
family (W (",S,⌘))⌘2(0,1) in the spaces C

✓, ✓2
loc ((0, S]⇥ [0,1)) and C2+✓,1+

✓
2

loc ((0, S]⇥
(0,1)) for some ✓ > 0. Thus, the Arzelà-Ascoli theorem enables us to extract
a sequence of numbers ⌘ j & 0 such that W (",S,⌘)

! W (",S) in C0loc((0, S] ⇥

[0,1)) \ C2,1loc ((0, S] ⇥ (0,1)) as ⌘ = ⌘ j ! 0 for some limit function W (",S)

which can easily be seen to satisfy the first and third lines in (1.13) as well as
W (",S)(S, t) = W0(S, t) for all t > 0. In order to obtain continuity also down to
s = 0, we use that by (1.6) and (1.7), � (")(s) 

c� s
" for all s � 0 and " 2 (0, 1),

whence

W (",S,⌘)
t  4(s + ⌘)W (",S,⌘)

ss + C"sW (",S,⌘)
s

holds in (0, S) ⇥ (0,1) with C" :=

c�
" (µ

⇡ + 2F0), because W (",S,⌘)


µ
⇡ . Using

W (s, t) := c1 eC" t · s with c1 := kW0skL1((0,1)) as an upper comparison function
here, we find that

W (",S,⌘)(s, t)  c1 eC" t · s in [0,1) ⇥ [0,1) for all " 2 (0, 1), S > 0
and ⌘ 2 (0, 1).

(1.15)

Accordingly, the convergence W (",S,⌘)
! W (",S) is actually locally uniform in

[0,1)⇥[0,1)andW (",S) also satisfies the desired boundary conditionW (",S)(0,t)=
0 for all t > 0.



842 JOSÉ IGNACIO TELLO AND MICHAEL WINKLER

Next, since (1.15) implies that W (",S)(s, t)  c1 eC" t · s in [0,1) ⇥ [0,1)
for all " 2 (0, 1) and S > 0, we may follow a similar reasoning to find a se-
quence of numbers Sk ! 1 such that W (",Sk)

! W (") in C0loc([0,1) ⇥ [0,1)) \

C2,1loc ((0,1) ⇥ (0,1)) as Sk ! 1, where W (") is a non-negative function solving
(1.8) in the classical sense. Note here that since W0s � 0, the maximum principle
ensures that W (",S,⌘)

s � 0 in (0, S)⇥ (0,1) for all " 2 (0, 1), S > 0 and ⌘ 2 (0, 1)
and hence lims!1 W (")(s, t) exists and coincides with limS=Sk!1 W (",S)(S, t) =

limk!1 W0(Sk) =
µ
⇡ for all t > 0.

We can proceed to prove global existence of a weak solution of the original
problem in the radial framework:
Lemma 1.4. Let f0 � 0 and assume that u0 2 L1(R2) is radially symmetric,
non-negative and satisfies (0.2). Then there exists at least one radial weak solution
u of (0.1) in the sense of Definition 1.1. More precisely, the solutions W (") of (1.8)
increase to a limitW as " & 0, and u as defined by (1.4) solves (0.1) in the claimed
sense.
Proof. Using that � (")

% 1 in (0,1) as " & 0, we see by comparison thatW (",S,⌘)

is nonincreasing with respect to " 2 (0, 1). Accordingly, we have

W (")
% W in (0,1) ⇥ (0,1) as " & 0 (1.16)

with some limit function W which, as an easy consequence, satisfies the bound-
ary condition W (s, t) !

µ
⇡ as s ! 1 for all t > 0. Moreover, if we fix

⇣ 2 C1

0 ([0,1) ⇥ [0,1)) and test (1.8) by ⇣ to obtain an obvious analogue of
(1.5) for " > 0, by (1.16) we can take " & 0 in each integral to arrive at (1.5) in the
limit.

Adopting a notion introduced in [10], in the sequel we shall call the function
W defined through (1.16) the proper solution of (1.2).

Applying Lemma 1.2 to appropriate solutions of (1.8) and taking limits, we
easily obtain the following favorable comparison property of proper solutions:
Lemma 1.5. Suppose that F0 � 0 and that W and W are proper solutions ema-
nating from W 0 and W 0, where W 0 and W 0 satisfy (1.3) with certain µ > 0 and
µ > 0, respectively. If W 0 � W 0 in [0,1) then W � W in [0,1) ⇥ [0,1).

For later use, let us provide a statement on time monotonicity of some proper
solutions of (1.2):
Lemma 1.6. Assume that F0 � 0 and that W0 satisfies (1.3). Moreover, suppose
that there exists s0 > 0 such that W0 ⌘ 0 in [0, s0], that W0 2 C2([s0,1)) with
lim infs&s0 W0s(s) > 0, and that

4sW0ss + W0W0s + 2F0W0s � 0 in (s0,1). (1.17)

Then the proper solution W of (1.2) fulfils

Wt � 0 in (0,1) ⇥ (0,1). (1.18)
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Proof. By construction of � ("), for all sufficiently small " > 0 we have

I (s) := 4sW0ss + � (")W0W0s + 2F0� (")W0s � 0

in the sense of distributions over (0,1), because I (s) = 0 for all s 2 (0, s0) �

(0, "), since I (s) � 0 for all s2(s0,1) by (1.17), and because lim infs&s0W0s(s)>
0 = lim sups%s0 W0s(s). Therefore, a standard reasoning (see [27, Ch. 52]) allows
us to conclude that the solutions W (") of (1.8) satisfy W (")

t � 0 in (0,1) ⇥ (0,1)
for all " 2 (0, 1), from which (1.18) easily follows.

2. Instantaneous blow-up

It is the purpose of the present section to make sure that, in a sense to be specified
below, the spatial derivative Ws of the proper solution W of (1.2) blows up imme-
diately, and that hence so does u. In order to prepare this, we state two auxiliary
lemmata, the first of which can be regarded as a variant of Gronwall’s lemma:

Lemma 2.1. Suppose that 8 2 W 1,1
loc (R) is non-decreasing, and that for some

t1 2 R, T > 0 and c 2 R we are given two functions y 2 C0([t1, t1 + T )) and
z 2 C1([t1, t1 + T )) such that

y(t) � c +

Z t

t1
8(y(t̄))dt̄ for all t 2 (t1, t1 + T ) (2.1)

and (
z0(t) = 8(z(t)) for all t 2 (t1, t1 + T )

z(t1) = c.

Then
y(t) � z(t) for all t 2 (t1, t1 + T ). (2.2)

Proof. For ⌘ > 0 we let z⌘ 2 C1([t1, t1 + T⌘)) denote the maximally extended
solution of (

z0⌘(t) = 8(z⌘(t)), t 2 (t1, t1 + T⌘),
z⌘(t1) = c � ⌘.

(2.3)

Then by a continuous dependence argument we have lim sup⌘&0 T⌘ � T , and hence
for proving (2.2) it is sufficient to show that y(t) > z⌘(t) for all t 2 [t1, t1+T̂⌘)with
T̂⌘ := min{T, T⌘}. Indeed, if this was false then there would exist t2 2 (t1, t1 + T̂⌘)
such that y > z⌘ on [t1, t2) and

y(t2) = z⌘(t2). (2.4)
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Integrating (2.3) and using the monotonicity of 8 along with (2.1) we then would
obtain

z⌘(t2) = c � ⌘ +

Z t2

t1
8(z⌘(t̄))dt̄  c � ⌘ +

Z t2

t1
8(y(t̄))dt̄

< c +

Z t2

t1
8(y(t̄))dt̄  y(t2),

which contradicts (2.4) and ends the proof.

Next, by explicit construction we provide a family of time-independent func-
tions that will essentially play the role of test functions for (1.2) in the proof of
Lemma 2.3 below:

Lemma 2.2. Let F0 > 0 and let � 2 (0, 1) be such that � > 2�F0
2 . Then there exist

positive constants a, b, ⇠, k0 and K0 such that for any choice of � > 0 the function
' = '(� )

: (0,1) ! (0,1) defined by

'(s) :=

8><
>:
a
� �
s�� � b if 0 < s <

⇠

�
,

e�� s if s �

⇠

�

(2.5)

belongs to W 2,1
loc ((0,1)) and satisfies

4s'ss + (8� 2F0)'s � k0�' a.e. in (0,1) (2.6)

as well as Z
1

0

'2(s)
|'s(s)|

ds 

K0
� 2

. (2.7)

Proof. Given F0 and �, we fix c1 > 0 large enough fulfilling c1 > F0 + 2� � 4, so
that

⇠ :=

c1 + 4� F0
2

satisfies ⇠ > �. Therefore

a :=

⇠�+1

�
e�⇠ and b :=

⇣⇠
�

� 1
⌘
e�⇠

are both positive. Now defining ' as in (2.5), we have

lim
s% ⇠

�

'(s) =

a
� �

·

⇣ ⇠
�

⌘
��

� b =

⇠�+1

�
e�⇠ · ⇠��

�

⇣⇠
�

� 1
⌘
e�⇠ = e�⇠
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and hence ' is continuous on (0,1). Since moreover

's(s) =

8><
>:

�

a�
� �
s���1 if 0 < s <

⇠

�
,

�� e�� s if s >
⇠

�
,

(2.8)

we find

lim
s% ⇠

�

's(s) = �

a�
� �

·

⇣ ⇠
�

⌘
���1

= �� ⇠�+1e�⇠ · ⇠���1
= �� e�⇠

and we infer that also 's is continuous on (0,1) and therefore clearly ' 2

W 2,1
loc ((0,1)). A further differentiation of (2.8) shows that for large s

4s'ss + (8� 2F0)'s = 4� 2se�� s � (8� 2F0)� e�� s

= [4� s � 8+ 2F0]� e�� s

� [4⇠ � 8+ 2F0]� e�� s

= 2c1�'(s) for all s >
⇠

�
,

(2.9)

whereas for small s

4s'ss + (8� 2F0)'s =

4a�(� + 1)
� �

s���1 �

(8� 2F0)a�
� �

s���1

=

4a�
� �

⇣
� �

2� F0
2

⌘
s���1

�

4a�
� �

⇣
� �

2� F0
2

⌘
·

�

⇠
s�� for all s <

⇠

�
,

because � > 2�F0
2 . Since b > 0, on the other hand we have '(s) 

a
� �
s�� and

therefore

4s'ss + (8� 2F0)'s �

4�
✓
� �

2� F0
2

◆

⇠
· � · '(s) for all s <

⇠

�
.

Combined with (2.9), this establishes (2.6) upon an obvious choice of k0, so that it
remains to prove (2.7) for suitably large K0. To this end, we compute

Z
1

⇠
�

'2(s)
|'s(s)|

ds =

1
�

Z
1

⇠
�

e�� sds =

1
� 2
e�⇠ (2.10)
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and estimate, again using the positivity of b,

Z ⇠
�

0

'2(s)
|'s(s)|

ds <

Z ⇠
�

0

a2

� 2�
s�2�

a�
� �
s���1

ds =

a⇠2��

�(2� �)� 2
. (2.11)

Evidently, (2.7) is a consequence of (2.10) and (2.11).

We are now in the position to state our key result in respect of immediate blow-
up:

Lemma 2.3. Suppose that F0 > 0 and that W0 satisfies (1.3) for some µ > 0.
Then for any positive ↵ > 2�F0

2 and each t0 � 0 the proper solution W of (1.2)
satisfies

sup
s>0,t2(t0,t0+⌧ )

W (s, t)
s↵

= 1 for all ⌧ > 0. (2.12)

In particular, we have

kWskL1((0,1)⇥(t0,t0+⌧ )) = 1 for all ⌧ > 0. (2.13)

Proof. If the lemma were false, there would exist ↵ > 2�F0
2 , t0 � 0 and c1 > 0

such that
W (s, t)  c1s↵ for all s � 0 and t 2 [t0, t0 + ⌧ ]. (2.14)

Our goal is to show that then there exists some large � such that, with ' = '(� )

taken from Lemma 2.2, the function

y(t) :=

Z
1

0
'(s)W (s, t)ds, t > 0, (2.15)

blows up before t = t0 + ⌧ . To this end, we note that since ↵ > 2�F0
2 and F0 > 0,

we can fix � 2 (0, 1) such that

� < ↵ and � �

2� F0
2

, (2.16)

and then let the positive constants a, b, ⇠, k0 and K0 be as provided by Lemma 2.2.
We next pick  > 0 small fulfilling

 

k0⌧
8

, (2.17)

so that with t1 := t0 +
⌧
2 , the number

c2 := W (, t1), (2.18)
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is positive. We here use the fact that W is positive in ( 2 ,1) ⇥ (0,1) by the
strong maximum principle applied to (1.2), which in fact is uniformly parabolic in
( 2 ,1) ⇥ (0,1). Finally, we let � > 1 be large enough fulfilling

� >
⇠


(2.19)

and
1+

k0K0
c2

· e�  e2� . (2.20)

Upon these choices, we let ' := '(� ) be as given by (2.5) and, for " 2 (0, 1), we
multiply the PDE in (1.8) by '(s)� (")(s). For arbitrary

s0 >
n ⇠
�

,
1
�

o
, (2.21)

an integration by parts over s 2 (0, s0) yields

d
dt

Z s0

0
'(s)� (")(s)W (")(s, t)ds

=

Z s0

0
'� (")

·

⇢
4sW (")

ss +

1
2
� (")

⇣
(W ("))2

⌘
s
+ 2F0� (")W (")

s

�

= 4
Z s0

0
(s'� ("))ssW (")

�

1
2

Z s0

0

⇣
'(� ("))2

⌘
s
(W ("))2

�2F0
Z s0

0

⇣
'(� ("))2

⌘
s
W (")

+ B(t)

(2.22)

with

B(t) :=

⇢
4s'� (")W (")

s � 4(s'� ("))sW (")
+

1
2
'(� ("))2(W ("))2

+ 2F0'(� ("))2W (")

�����
s0

0

for t > 0. Here we calculate

(s'� ("))s = s's� (")
+ '� (")

+ s'� (")
s

and

(s'� ("))ss = s'ss� (")
+ 2's� (")

+ 2s's� (")
s + 2'� (")

s + s'� (")
ss (2.23)
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as well as ⇣
'(� ("))2

⌘
s
= 's(�

("))2 + 2'� (")� (")
s . (2.24)

Thus, since � (")
⌘ 0 on (0, "2 ) and �

(")
⌘ 1 on (",1) 3 s0, the boundary terms in

(2.22) become

B(t) = 4s0e�� s0W (")
s (s0, t) + 4[� s0e�� s0 � e�� s0] · W (")(s0, t)

+

1
2
e�� s0

⇣
W (")(s0, t)

⌘2
+ 2F0e�� s0W (")(s0, t) for t > 0.

Recalling that W (")
s � 0, dropping the non-negative terms we thus find that

B(t) � 4(� s0 � 1)e�� s0W (")(s0, t)
� 0 for all t > 0

due to (2.21). Therefore, using (2.23) and (2.24) in (2.22) we obtain

d
dt

Z s0

0
'(s)� (")(s)W (")(s, t)ds � 4

Z s0

0
s'ss� (")W (")

+ 8
Z s0

0
's�

(")W (")

+ 8
Z s0

0
s's� (")

s W (")
+ 8

Z s0

0
'� (")

s W (")
+ 4

Z s0

0
s'� (")

ss W
(")

�

1
2

Z s0

0
's(�

("))2(W ("))2 �

Z s0

0
'� (")� (")

s (W ("))2

� 2F0
Z s0

0
's(�

("))2W (")
� 4F0

Z s0

0
'� (")� (")

s W (")

=

Z s0

0

n
4s'ss + 8's � 2F0's� (")

o
· � (")W (")

�

1
2

Z s0

0
's(�

("))2(W ("))2 + I1(t) + I2(t) for all t > 0,

(2.25)

with

I1(t) :=

Z s0

0

n
8s's + 8' � '� (")W (")

� 4F0'� (")
o

· � (")
s W (")

and

I2(t) := 4
Z s0

0
s'� (")

ss W
(").
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Now using that � (")
s 

c�
" , |�

(")
ss | 

c�
"2
and � (")

s ⌘ 0 on (",1), in view of our
hypothesis (2.14) on W and the facts that W (")

 W 
µ
⇡ and �

(")
 1, we can

estimate

I1(t) � �

Z "

0

n
8s|'s | +

µ

⇡
' + 4F0'

o
·

c�
"

· c1s↵ds

� �

c�c1
"

·

[8� +
µ
⇡ + 4F0]a
� �

·

Z "

0
s��+↵ds for all t 2 (t0, t0 + ⌧ )

and similarly

|I2(t)| 

4c�c1
"2

·

a
� �

·

Z "

0
s1��+↵ds for all t 2 (t0, t0 + ⌧ )

whenever " < ⇠
� , because in that case we know that 0  '(s) 

a
� �
s�� for all

s 2 (0, "). Since � < ↵, we conclude that there exists c3 > 0 such that

I1(t) + I2(t) � �c3"↵�� for all t 2 (t0, t0 + ⌧ ). (2.26)

Next, the property (2.6) of ' implies that

4s'ss + 8's � 2F0's� (")
� k0�' + 2F0's(1� � (")) a.e. in (0,1),

so that altogether an integration of (2.25) shows that

y(",s0)(t) :=

Z s0

0
'(s)� (")(s)W (")(s, t)ds, t � 0,

satisfies

y(",s0)(t) � y(",s0)(t1) + k0�
Z t

t1

Z s0

0
'� (")W (")

+ 2F0
Z t

t1

Z s0

0
's(1� � ("))� (")W (")

�

1
2

Z t

t1

Z s0

0
's(�

("))2(W ("))2� c3"↵��
· (t � t1) for all t 2(t1, t0+⌧ ),

provided that " < ⇠
� . Invoking the dominated convergence theorem along with the

exponential decay of '(s) and 's(s) as s ! 1, we may take s0 % 1 to see that
y(")(t) :=

R
1

0 '(s)� (")(s)W (")(s, t)ds, t � 0, fulfills

y(")(t)� y(")(t1) + k0�
Z t

t1

Z
1

0
'� (")W (")

+ 2F0
Z t

t1

Z
1

0
's(1� � ("))� (")W (")

�

1
2

Z t

t1

Z
1

0
's(�

("))2(W ("))2�c3"↵��
·(t�t1) for all t 2(t1, t0+⌧ ).

(2.27)
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Here, since for some c4 > 0 we have
���'s(s)(1� � (")(s))� (")(s)W (")(s, t)

���  |'s(s)W (s, t)|  c4(1+ s↵���1) · e�� s

for all s > 0 and t 2 [t0, t0 + ⌧ ], by (2.14) and the definition of ', one more
application of the dominated convergence theorem asserts that

2F0
Z t

t1

Z
1

0
's(1� � ("))� (")W (")

! 0 as " & 0

for all t 2 (t1, t0+ ⌧ ), because � < ↵. In the remaining terms making up (2.27), we
apply the monotone convergence theorem in taking " & 0 to conclude that again
since ↵ > �, the function y defined by (2.15) satisfies

y(t) � y(t1)+k0�
Z t

t1

Z
1

0
'W�

1
2

Z t

t1

Z
1

0
'sW 2 for all t 2 (t1, t0+⌧ ), (2.28)

because � (")
% 1 on (0,1) and W (")

% W in (0,1) ⇥ (0,1). In order to take
advantage of the quadratic term in (2.28), we employ Hölder’s inequality and (2.7)
to see that

y2(t) =

⇣ Z
1

0
'W

⌘2


✓Z
1

0

'2

|'s |

◆
·

✓Z
1

0
|'s |W 2

◆



K0
� 2

·

Z
1

0
|'s |W 2 for all t > 0,

and thereby (2.28) becomes

y(t) � y(t1) + k0�
Z t

t1
y(t̄)dt̄ +

� 2

K0
·

Z t

t1
y2(t̄)dt̄ for all t 2 (t1, t0 + ⌧ ).

Consequently, Lemma 2.1 states that

y(t) � z(t) for all t 2 (t1, t0 + ⌧ ), (2.29)

where z is the solution of
(
z0 = Az + Bz2, t > t1,
z(t1) = y(t1),

with

A := k0� and B :=

� 2

K0
. (2.30)
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The solution of this Bernoulli-type initial-value problem is explicitly given by

z(t) =

1✓
1

y(t1)
+

B
A

◆
e�A(t�t1) �

B
A

, t 2 (t1, t1 + T ), (2.31)

with its maximum existence time determined by

T =

1
A
ln

⇣
1+

A
By(t1)

⌘
.

Now by (2.18) and the fact that Ws � 0, we can estimate y(t1) from below accord-
ing to

y(t1) =

Z
1

0
'(s)W (s, t1)ds � c2

Z
1


'(s)ds = c2

Z
1


e�� sds =

c2
�
e�� ,

because (2.19) ensures that  > ⇠
� and hence '(s) = e�� s for all s >  . Thus, by

(2.30) and (2.20) we have

T 

1
k0�

· ln

0
BBB@1+

k0�
� 2

K0
·

c2
�

· e��

1
CCCA =

1
k0�

· ln
✓
1+

k0K0
c2

e�
◆



1
k0�

· ln(e2� ) =

2
k0

.

But in light of (2.17) this means that T 
⌧
4 , so that (2.29) and (2.31) entail that y

blows up before or at t = t1 +
⌧
4 = t0 +

3⌧
4 . Since � < 1 and hence ' is integrable

over (0,1), this is evidently incompatible with the boundedness of W and thereby
proves that the assumption (2.14) must have been false.

Proof of Theorem 0.1. The conclusion results upon a reformulation of Lemma 2.3
in terms of u rather than W .

3. Formation of Dirac-type singularities when µ > 8⇡ � 2 f0

In this section we shall see that if µ > 8⇡ � 2 f0 then u will asymptotically exhibit
a Dirac-type singularity at the origin. As a first step towards this, let us explicitly
construct initial data such that the corresponding solution of (1.2) will lie below W ,
but will be increasing with time.
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Lemma 3.1. Suppose that F0 � 0, and that (1.3) is satisfied with some

µ > 8⇡ � 4⇡F0. (3.1)

Then for all positive µ̂2(8⇡�4⇡F0,µ) there exist s0>0 andW 02W 1,1((0,1))\

C2([0,1)\{s0}) such thatW 0 ⌘ 0 in [0, s0], lim infs&s0 W 0s(s) > 0,W 0(s) !
µ̂
⇡

as s ! 1, and such that

4sW 0ss + W 0W 0s + 2F0W 0s = 0 in (s0,1) (3.2)

as well as
W 0  W0 in (0,1). (3.3)

Proof. Abbreviating a :=
µ̂
⇡ , from (1.3) we know that there exists some large s1 >

0 such that
W0(s) � a for all s � s1. (3.4)

Since a > 8� 4F0 by assumption, both

b :=

1
2(a + 2F0 � 4)

(3.5)

and
� :=

a + 2F0 � 4
4

(3.6)

are positive and moreover b < 1
a . Therefore we can pick some small c > 0 such

that

s0 :=

0
B@
1
a

� b

c

1
CA

1
�

� s1. (3.7)

We now let

W 0(s) :=

8<
:
0 if s 2 [0, s0],

a �

1
b + cs�

if s > s0,

and we see, using (3.7), thatW 0 has the claimed regularity properties, whereas (3.4)
and (3.7) guarantee that W 0  W0 on [0,1). Furthermore, computing

W 0s(s) =

�cs��1

(b + cs�)2
and

W 0ss(s) =

�(� � 1)bcs��2
� �(� + 1)c2s2��2

(b + cs�)3
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for s > s0, we see that lim infs&s0 W 0s(s) > 0, and that for s > s0,

4sW 0ss + W 0W 0s + 2F0W 0s

=

1
(b + cs�)3

·

⇢
4�(� � 1)bcs��1

� 4�(� + 1)c2s2��1

+

h
ab + acs� � 1

i
· �cs��1

+ 2�cF0s��1
· (b + cs�)

�

=

1
(b + cs�)3

·

⇢
�c ·

h
4(� � 1)b + ab � 1+ 2F0b

i
· s��1

+�c2 ·

h
� 4(� + 1) + a + 2F0

i
· s2��1

�
.

According to (3.5) and (3.6), it can be easily checked that

�4(� + 1) + a + 2F0 = 0 and 4(� � 1)b + ab � 1+ 2F0b = 0,

whereby (3.2) follows and the proof is complete.

The following statement will be useful in identifying possible limits of solu-
tions of (1.2) as t ! 1 in Lemma 3.3 below. It rules out non-trivial steady states
 of (1.2) having their ‘mass’ lims!1 (s) larger than 8⇡ � 4⇡F0.

Lemma 3.2. Let F0 � 0 and assume that  2 C2((0,1)) is a non-negative solu-
tion of

0 = 4s ss +   s + 2F0 s, s > 0, (3.8)

with the additional properties  s � 0 on (0,1) and

 (s) %

µ

⇡
as s ! 1 (3.9)

with some µ � 0. Under these assumptions

µ > 8⇡ � 4⇡F0, (3.10)

then
 ⌘

µ

⇡
in (0,1). (3.11)

Proof. Wemay confine ourselves to the caseµ > 0, in which we substitute s = e�⇠
and let

z(⇠) :=  (e�⇠ ), ⇠ 2 R.

Then computing

 s = �e⇠ z⇠ and  ss = e2⇠ (z⇠⇠ + z⇠ ),
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from (3.8) we obtain

0 = 4e�⇠ · e2⇠ (z⇠⇠ + z⇠ ) � z · (e⇠ z⇠ ) + 2F0 · (�e⇠ z⇠ )
= e⇠ · (4z⇠⇠ + 4z⇠ � zz⇠ � 2F0z⇠ ), ⇠ 2 R,

which shows that if we write ↵ :=
2�F0
2 , we have

0 = 4z⇠⇠ + 4↵z⇠ � zz⇠ =

⇣
4z⇠ + 4↵z �

1
2
z2

⌘
⇠

on R.

Therefore there exists c 2 R such that 4z⇠ + 4↵z �
1
2 z
2
+ 4c ⌘ 0 or, equivalently,

z⇠ = �↵z +

1
8
z2 � c on R. (3.12)

By (3.9), c is determined by taking ⇠ ! �1 and thus satisfies

c = �↵ ·

µ

⇡
+

1
8

·

⇣µ

⇡

⌘2
=

µ

8⇡
·

⇣
� 8+ 4F0 +

µ

⇡

⌘
> 0 (3.13)

according to (3.10). Using that  s � 0, we have z⇠  0 on R and hence an ODE
argument applied to (3.12) shows that z(⇠) & z1 as ⇠ ! +1, where z1 must be
a steady state of (3.12) and thus satisfy

0 = �↵z1 +

1
8
z2
1

� c,

that is,

z1 2

n
4↵ +

p
16↵2 + 8c, 4↵ �

p
16↵2 + 8c

o
=

nµ

⇡
, 4↵ �

p
16↵2 + 8c

o
.

Since 4↵ <
p

16↵2 + 8c by (3.13), this means that z1 =
µ
⇡ and therefore z must

be a constant, as claimed.

The following lemma prepares the main result of this section.

Lemma 3.3. Let F0 � 0 and suppose that (1.3) is fulfilled with some

µ > 8⇡ � 4⇡F0. (3.14)

Then the proper solution W of (1.2) satisfies

W (s, t) !

µ

⇡
as t ! 1, (3.15)

the convergence being uniform on compact subsets of (0,1).
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Proof. We let � > 0 be given and fix a positive µ̂ 2 (8⇡ � 4⇡F0, µ) close enough
to µ such that

µ̂

⇡
>

µ

⇡
� �. (3.16)

Applying Lemma 3.1 provides a minorant W 0 of W0 with the properties listed in
that lemma. According to Lemma 1.5 and Lemma 1.6, the corresponding proper
solution W satisfies W  W in [0,1) ⇥ [0,1) and

Wt � 0 in (0,1) ⇥ (0,1). (3.17)

SinceW 
µ
⇡ in [0,1)⇥ [0,1), in view of (3.16) and the monotonicity ofW with

respect to s, it is sufficient for proving (3.15) to show that

W (s, t) %

µ̂

⇡
as t ! 1 (3.18)

for all s > 0. To this end, we note that due to (3.17) we have

W (s, t) %  (s) as t ! 1 (3.19)

with some non-negative limit function  that clearly is non-decreasing on (0,1)

and satisfies  
µ̂
⇡ on (0,1) as well as

 (s) %

µ̂

⇡
as s ! 1. (3.20)

SinceW solves the PDE in (1.2) classically in (0,1)⇥ (0,1), parabolic estimates
ensure that the convergence in (3.19) is locally uniform in (0,1) ⇥ (0,1), which
entails that  is smooth in (0,1) and solves

0 = 4s ss +   s + 2F0 s in (0,1).

Along with (3.20) and the fact that µ̂ > 8⇡ � 4⇡F0, in view of Lemma 3.2 this
means that  ⌘

µ̂
⇡ and thereby establishes (3.18).

Proof of Theorem 0.2 i). The assertion is precisely that of Lemma 3.3, restated in
the original variables.

4. Emergence of mild singularities for µ < 8⇡ � 2 f0

In order to complete our identification of the number µ = 8⇡ � 2 f0 as a critical
mass in (0.2), in this section our goal is to show that if the cellular mass is below
this threshold then the singularity of the solution will be comparatively mild in the
sense that u(·, t) remains bounded in some L p space for all times. To begin with,
we establish an upper bound for W (") near s = 0 that is independent of t and ":
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Lemma 4.1. Suppose that F0 2 [0, 2), and that W0 satisfies (1.3) with some

µ < 8⇡ � 4⇡F0. (4.1)

Then there exists C > 0 such that for all " > 0 the solution of (1.8) fulfills

W (")(s, t)  Cs
2�F0
2 for all s � 0 and t � 0. (4.2)

Proof. Writing ↵ :=
2�F0
2 , for a > 0 we introduce

 (a)(s) :=

as↵

1+

a
8↵
s↵

, s � 0, (4.3)

and compute

 (a)
s (s) =

↵as↵�1⇣
1+

a
8↵
s↵

⌘2 (4.4)

and

 (a)
ss (s) = �

↵(1� ↵)as↵�2
+

1
8
(↵ + 1)a2s2↵�2

⇣
1+

a
8↵
s↵

⌘3 (4.5)

for s > 0. We observe that  (a)(s) increases both with s and with a, and that

 (a)(s) % 8↵ as a ! 1

for all s > 0. Since W0(s) 
µ
⇡ < 8↵ for all s � 0 by (4.1), and since

lim inf
s&0

 (a)
s (s) ! +1 as a ! 1,

from the fact that W0s 2 L1

loc([0,1)) we easily infer that for some large a > 0 we
have

W0(s)   (a)(s) for all s � 0. (4.6)
Now by (4.4) and (4.5), we find that

4s (a)
ss +  (a) (a)

s + 2F0 (a)
s =

�4↵(1� ↵)as↵�1
�

1
2 (↵ + 1)a2s2↵�1

�
1+

a
8↵ s↵

�3
+

as↵ · ↵as↵�1�
1+

a
8↵ s↵

�3 +

2↵aF0s↵�1
+

1
4a
2F0s2↵�1

�
1+

a
8↵ s↵

�3
=

1�
1+

a
8↵ s↵

�3 ·

⇢
↵a

h
� 4(1� ↵) + 2F0

i
s↵�1

+a2

�

1
2
(↵ + 1) + ↵ +

1
4
F0

�
s2↵�1

�

= 0 for all s > 0
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because of the definition of ↵. Since 0  � (")
 1 and  (a)

s � 0, this entails that

�4s (a)
ss � � (") (a) (a)

s � 2F0� (") (a)
s � 0 in (0,1)

and hence  (a) is a stationary supersolution of (1.8). Therefore in view of (4.6), by
comparison we infer that W (",S)(s, t)   (a)(s) and hence

W (")(s, t)   (a)(s) for all s � 0 and t � 0.

Using (4.3), from this we immediately obtain (4.2).

Using a Bernstein-type technique, from the above result we can derive the
natural analogue for the spatial derivative of W :

Lemma 4.2. Let F0 2 [0, 2) and suppose that (1.3) is satisfied with some µ <
8⇡ � 4⇡F0. Then for all ⌧ > 0 there exists C(⌧ ) > 0 such that the proper solution
W of (1.2) fulfills

Ws(s, t)  C(⌧ )
⇣
1+ s�

F0
2

⌘
for all s > 0 and any t > ⌧. (4.7)

Proof. Since in (12 ,1) ⇥ (0,1) we know that W is a bounded smooth solution of
the uniformly parabolic PDE in (1.2) , interior parabolic regularity theory ensures
that Ws is bounded in (1,1) ⇥ (⌧,1), and hence we only need to establish (4.7)
for s 2 (0, 1] and t > ⌧ . For this purpose, we fix " 2 (0, 1) and let the non-negative
function Q = Q(s, t) be defined through the substitution

W (")(s, t) = Q2(s, t), s � 0, t � 0.

Then, using (1.8), we compute

2QQt = 4s(2QQss + 2Q2s ) + 2� (")Q3Qs + 4F0� (")QQs

and thus we have

Qt = 4sQss + 4s
Q2s
Q

+ � (")Q2Qs + 2F0� (")Qs for s > 0 and t > 0.

By further differentiation,

Qst = 4sQsss + 4Qss + 8s
QsQss
Q

� 4s
Q3s
Q2

+ 4
Q2s
Q

+ � (")Q2Qss

+ 2� (")QQ2s + � (")
s Q2Qs + 2F0� (")Qss + 2F0� (")

s Qs

for s > 0 and t > 0.

(4.8)

We now fix z 2 C1([0,1)) such that z(0) = 0, z ⌘ 1 on [⌧,1) and 0  z0(t) 
2
⌧

for all t � 0, and let
⇣(s) :=

⇣
s(2� s)2

⌘�
, s 2 [0, 2], (4.9)
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with
� :=

F0 + 2
2

. (4.10)

Then

g(s, t) := z(t)⇣(s)Q2s (s, t), s 2 [0, 2], t � 0,

vanishes at s = 0, at s = 2 and whenever t = 0, so that if for some T > 0, g attains
a positive maximum over [0, 2] ⇥ [0, T ] at some point (s0, t0) 2 [0, 2] ⇥ [0, T ],
then necessarily s0 2 (0, 2) and t0 2 (0, T ], and hence gs = 0, gss  0 and gt � 0
hold at this point. Since

gs = 2z⇣QsQss + z⇣s Q2s and
gss = 2z⇣QsQsss + 2z⇣Q2ss + 4z⇣s QsQss + z⇣ss Q2s ,

at (s0, t0) we thus have Qss = �
⇣s Qs
2⇣ and therefore by (4.8)

0  gt=z0⇣Q2s + 2z⇣Qs ·

⇢
4sQsss + 4Qss + 8s

QsQss
Q

� 4s
Q3s
Q2

+ 4
Q2s
Q

+� (")Q2Qss + 2� (")QQ2s+ � (")
s Q2Qs + 2F0� (")Qss

+ 2F0� (")
s Qs

�

= z0⇣Q2s + 4s ·

n
gss � 2z⇣Q2ss � 4z⇣s QsQss � z⇣ss Q2s

o

+2z⇣Qs ·

⇢
4Qss+ 8s

QsQss
Q

� 4s
Q3s
Q2

+4
Q2s
Q

+� (")Q2Qss+2� (")QQ2s

+ � (")
s Q2Qs + 2F0� (")Qss + 2F0� (")

s Qs

�

 z0⇣Q2s + 4s ·

⇢
� 2z⇣ ·

⇣
�

⇣s Qs
2⇣

⌘2
� 4z⇣s Qs ·

⇣
�

⇣s Qs
2⇣

⌘
� z⇣ss Q2s

�

+2z⇣Qs ·

⇢
4
⇣

�

⇣s Qs
2⇣

⌘
+ 8s

Qs
Q

·

⇣
�

⇣s Qs
2⇣

⌘
� 4s

Q3s
Q2

+ 4
Q2s
Q

+ � (")Q2 ·

⇣
�

⇣s Qs
2⇣

⌘
+ 2� (")QQ2s + � (")

s Q2Qs

+ 2F0� (")
·

⇣
�

⇣s Qs
2⇣

⌘
+ 2F0� (")

s Qs

�

= z0⇣Q2s � 2sz
⇣ 2s
⇣
Q2s + 8sz

⇣ 2s
⇣
Q2s � 4sz⇣ss Q2s � 4z⇣s Q2s � 8sz⇣s

Q3s
Q

�8sz⇣
Q4s
Q2

+ 8z⇣
Q3s
Q

� � (")z⇣s Q2Q2s + 4� (")z⇣QQ3s + 2� (")
s z⇣Q2Q2s

�2F0� (")z⇣s Q2s + 4F0� (")
s z⇣Q2s .
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Rearranging this shows that at (s0, t0) we have

8sz⇣
Q4s
Q2



⇢
�

8sz⇣s
Q

+

8z⇣
Q

+ 4� (")z⇣Q
�

· Q3s

+

⇢
z0⇣ + 6sz

⇣ 2s
⇣

� 4sz⇣ss � 4z⇣s � � (")z⇣s Q2 + 2� (")
s z⇣Q2

�2F0� (")z⇣s + 4F0� (")
s z⇣

�
· Q2s

or, equivalently,

z⇣Q2s 

⇢
� z⇣s Q + z

⇣

s
Q +

� (")z⇣
2s

Q3
�

· Qs

+

1
8

·

⇢
z0
⇣

s
Q2 + 6z

⇣ 2s
⇣
Q2 � 4z⇣ss Q2 � 4z

⇣s
s
Q2 (4.11)

�� (")z
⇣s
s
Q4+2� (")

s z
⇣

s
Q4�2F0� (")z

⇣s
s
Q2+4F0� (")

s z
⇣

s
Q2

�
.

Now Lemma 4.1 says that there exists c1 > 0 such that Q(s, t)  c1s
2�F0
4 , that is,

Q(s, t)  c1s
2��
2 for all s � 0 and t � 0 (4.12)

in view of (4.10). Notice that W (")
s � 0 implies Qs � 0. Using (4.12) and the

facts that � (")
 1 and z  1, on the right of (4.11) we can estimate by Young’s

inequality
n
z
⇣

s
Q +

� (")z⇣
2s

Q3
o

· Qs 

1
4
z⇣Q2s + z

⇣

s2
Q2

⇣
1+

1
2
Q2

⌘2



1
4
z⇣Q2s +

(4s)�

s2
·

⇣
c1s

2��
2

⌘2
·

⇣
1+

1
2

· c21 · 22��
⌘2

=

1
4
z⇣Q2s + 4� · c21 ·

⇣
1+

1
2

· c21 · 22��
⌘2

,

(4.13)

because ⇣(s)  (4s)� and we know that s0 2 (0, 2). Next, we observe that from
(4.9) we easily see that ⇣s � 0 for s 2 [0, 32 ], and that since � > 1 there exists
c2 > 0 such that

|⇣s(s)|c2s��1, |⇣ss(s)| c2s��2 and
⇣ 2s (s)
⇣(s)

 c2s��2 for all s2(0, 2). (4.14)

Since Qs � 0, the remaining term �z⇣s QQs obtained from the first bracket in
(4.11) is non-positive for s 

3
2 , whereas for s 2 (32 , 2) we again use Young’s

inequality to find

�z⇣s QQs 

1
4
z⇣Q2s + z

⇣ 2s
⇣
Q2.
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In view of (4.14) and the boundedness of Q we conclude that at all points we have
the upper estimate

�z⇣s QQs 

1
4
z⇣Q2s + c3 (4.15)

for some c3 > 0. In conjunction with (4.12), (4.14) also entails that there exist
c4 > 0 and c5 > 0, depending on ⌧ only, such that

1
8

·

⇢
z0
⇣

s
Q2+6z

⇣ 2s
⇣
Q2�4z⇣ss Q2�4z

⇣s
s
Q2�� (")z

⇣s
s
Q4�2F0� (")z

⇣

s
Q2

�

 c4 ·

n
s��1 · s2�� + s2(��1)�� · s2�� + s��2 · s2�� + s��2 · s2��

+ s��2 · s2(2��) + 0
o

 c5

(4.16)

whenever s 2 (0, 2). Finally, recalling that our requirements on � (") were such that
�

(")
s ⌘ 0 on (",1) and � (")

s 

c�
" , we obtain

1
8

·

n
2� (")

s z
⇣

s
Q4 + 4F0� (")

s z
⇣

s
Q2

o

 c6 ·

⇢
1
"

· "��1 · "2(2��) +

1
"

· "��1 · "2��
�

 c7
(4.17)

for all s 2 (0, 2) with appropriately large c6 > 0 and c7 > 0. All in all, from
(4.11), (4.13), (4.15), (4.16) and (4.17) we infer that there exists c8 = c8(⌧ ) such
that g(s, t)  c7 in (0, 2) ⇥ (0, T ), which since T > 0 was arbitrary entails that
⇣Q2s  c8 in (0, 2) ⇥ (⌧,1). Rewritten in terms of W ("), this means that
⇣
W (")
s (s, t)

⌘2
= 4Q2(s, t)Q2s (s, t)  4c8 ·

1
⇣(s)

· Q2(s, t)

 4c8 · s�� · c21s
2��

= 4c21c8s
2�2� for all s 2 (0, 1] and t > ⌧,

because ⇣(s) � s� for all s 2 (0, 1]. As 2 � 2� = �F0 by (4.10), this shows the
validity of (4.7) for s 2 (0, 1] and t > ⌧ and thereby completes the proof.

Proof of Theorem 0.2ii). The statement is an immediate consequence of Lem-
ma 4.2.
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[11] M. A. HERRERO and J. J. L. VELÁZQUEZ, Singularity patterns in a chemotaxis model,
Math. Ann. 306 (1996), 583–623.
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862 JOSÉ IGNACIO TELLO AND MICHAEL WINKLER

[28] T. SENBA and T. SUZUKI, Parabolic system of chemotaxis: blowup in a finite and the
infinite time, Methods Appl. Anal. 8 (2001), 349–367.

[29] T. SENBA and T. SUZUKI, Chemotactic collapse in a parabolic-elliptic system of mathe-
matical biology, Adv. Differential Equations 6 (2001), 21–50.

[30] T. SENBA and T. SUZUKI, Weak solutions to a parabolic-elliptic system of chemotaxis, J.
Funct. Anal. 191 (2002), 17–51.

[31] T. SENBA and T. SUZUKI, Chemotactic collapse of radial solutions to Jäger-Luckhaus
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