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Abstract. We prove a higher order generalization of the Glaeser inequality,
according to which one can estimate the first derivative of a function in terms of
the function itself and the Hölder constant of its k-th derivative.

We apply these inequalities in order to obtain pointwise estimates on the
derivative of the (k + ↵)-th root of a function of class Ck whose derivative of
order k is ↵-Hölder continuous. Thanks to such estimates, we prove that the
root is not just absolutely continuous, but its derivative has a higher summability
exponent.

Some examples show that our results are optimal.
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1. Introduction

Let v 2 C2(R) be a function such that either v(x) � 0 or v(x)  0 for every x 2 R.
Let us assume that v00(x) is bounded. Then one has that

|v0(x)|2  2|v(x)| · sup
x2R

|v00(x)| 8x 2 R. (1.1)

This is known as Glaeser inequality (see [7]). If we set u(x) := |v(x)|1/2, then
estimate (1.1) implies that

|u0(x)| =

|v0(x)|
2|v(x)|1/2



⇢
1
2
sup
x2R

|v00(x)|
�1/2

for every x 2 R such that v(x) 6= 0. In other words, a bound on the second deriva-
tive of some function v(x) with constant sign yields a bound on the first derivative
of the square root of |v(x)|.
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The first question we address in this paper is how to obtain bounds on the first
derivative of higher order roots of v. We prove that for every integer k � 2 there
exists a constant C(k), depending only upon k, such that

|v0(x)|k+1  C(k) · |v(x)|k · sup
x2R

|v(k+1)(x)| 8x 2 R (1.2)

for every v 2 Ck+1(R) such that either v(x) � 0 or v(x)  0 for every x 2 R, and
either v0(x) � 0 or v0(x)  0 for every x 2 R. This means that we can estimate the
first derivative of u(x) := |v(x)|1/(k+1) (even without absolute value, if k is even)
in terms of the (k + 1)-th derivative of v, namely

|u0(x)| =

1
k + 1

·

|v0(x)|
|v(x)|k/(k+1)



1
k + 1

⇢
C(k) sup

x2R
|v(k+1)(x)|

�1/(k+1)

for every x 2 R such that v(x) 6= 0. We refer to Theorem 2.1 below for a slightly
more general result. Example 4.1 and Example 4.2 below show the optimality of
the assumptions. It is quite interesting that for k � 2 we have to impose that also
v0(x) does not change its sign, but we do not need similar assumptions on higher
order derivatives (even if such assumptions would strongly simplify proofs).

The second question we address in this paper is to obtain similar estimates for
the first derivative of roots of a function defined in some interval (a, b). So we
take a function g : (a, b) ! R, an integer k � 1, and any continuous function
f : (a, b) ! R such that

| f (x)|k+1 = |g(x)| 8x 2 (a, b). (1.3)

Trivial examples suggest that without assumptions on the sign of g we cannot expect
more than some sort of absolute continuity of f .

This problem was considered for the first time in [4, Lemma 1], where the au-
thors proved that f is absolutely continuous in (a, b) provided that g 2 Ck+1((a,b))
is a nonnegative function. This is a quite strong requirement which, for example,
forces g0 to vanish whenever g vanishes. More recently, S. Tarama [13] extended
the technique introduced in [4] and proved the same conclusion without assuming
that g is nonnegative. We state Tarama’s result in Section 2 as Theorem A.

The absolute continuity of f is equivalent to saying that f 0
2 L1((a, b)). In

this paper we prove (Theorem 2.2) a better summability of f 0, namely that f 0
2

L p((a, b)) for every p < 1 + 1/k. Example 4.3 and Example 4.4 below show the
optimality of our result, both with respect to p, and with respect to the regularity
of g. Although the result is one dimensional, it can be easily extended to any space
dimension through a straightforward sectioning argument (see Theorem 2.3).

A higher summability of f 0 was obtained by F. Colombini and N. Lerner in [5],
but once again in the case where g is nonnegative. They proved that for every
nonnegative g 2 Ck+1((a, b)) one has that f 0

2 L p((a, b)) (locally) for every
p < 1 + 2/(k � 1), and the same in any space dimension. Of course all solutions
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of (1.3) are also solutions of | f (x)|2k+2 = |g(x)|2, and thus their result implies that
f 0

2 L p((a, b)) for every p < 1 + 1/k provided that g 2 C2k+2((a, b)), without
sign restrictions on g. In other words, one obtains our summability of f 0 but with
twice stronger regularity assumptions on g. This is observed in a remark at the end
of [5, Section 4]. The authors conclude the same remark by pointing out that it is
plausible that the only assumption g 2 Ck+1 is needed in order to obtain the same
summability, but the proof of this fact would require a nontrivial modification of
their arguments.

In this paper we prove this conjecture, and indeed we follow a completely dif-
ferent path with respect to the previous literature. The technique used in [4] and [13]
is oriented to obtaining estimates of the total variation, namely integral estimates.
In our approach the higher summability of f 0 follows from suitable pointwise es-
timates on f 0(x). To this end, we first divide (a, b) into intervals (ai , bi ) where
g(x) · g0(x) 6= 0. Then in each interval we exploit a natural generalization of
Glaeser inequalities (1.2) to functions defined in bounded intervals (see Proposi-
tion 3.5). Thanks to this generalization, we have an estimate on f 0(x), multiplied
by a standard cutoff function, in terms of the derivatives of g up to order (k+1), and
of the length (bi � ai ) of the interval itself. These estimates yield an upper bound
on the measure of the sublevels of f 0 in (ai , bi ). Summing over all subintervals we
obtain the conclusion.

We point out that this approach works because the set of points where g(x) ·

g0(x) = 0 does not contribute to the integral of f 0(x). We stress that this would
be false for the set of points where g(x) · g0(x) · g00(x) = 0, and this is the reason
why it is important to obtain higher order Glaeser inequalities such as (1.2) with
assumptions on v and v0 only.

We conclude by mentioning some related results. Regularity of roots has long
been studied, both because the problem is interesting in itself, and because of sev-
eral applications, ranging from algebraic geometry to partial differential equations,
for which we refer to the quoted references.

A first research line concerns square roots, namely the case where f 2 = g
(see [2] and the references quoted therein). The leitmotif of these papers is the
search of conditions on g under which one can choose a regular enough root f . The
usual requirement is the existence of sufficiently many derivatives of g and their
vanishing at the zeroes of g.

Our problem is different for two reasons. Firstly we investigate the regularity
of a given root, which we cannot choose. Secondly, we have no assumptions on the
sign of g, since we are actually solving | f |k+1 = |g|.

Roots of functions are just the first step toward roots of polynomials with co-
efficients depending on a parameter. Regularity results for roots of nonnegative
functions have their counterpart in analogous results for roots of hyperbolic poly-
nomials, namely polynomials whose roots are all real. Classical conclusions are that
one can choose roots of class C1 or twice differentiable provided that coefficients
are smooth enough (see [1, 3, 6, 9, 10, 14, 15]).

The situation considered in this paper corresponds to non-hyperbolic polyno-
mials, in which case one investigates the regularity of a given continuous root. The



1004 MARINA GHISI AND MASSIMO GOBBINO

problem is still quite open. T. Kato [8] proved that for a monic polynomial of degree
n with continuous coefficients one can always choose n continuous functions repre-
senting the roots of the polynomial. S. Spagnolo [12] proved that continuous roots
of monic polynomials of degree 2 and 3 are locally absolutely continuous provided
that coefficients are of class C5 and C25, respectively. This result is based on the
explicit formulae for solutions, and on the nonoptimal [4, Lemma 1], and for this
reason it is probably nonoptimal.

Spagnolo’s result was in some sense extended by A. Rainer [11], who proved
the absolute continuity of roots of monic polynomials of arbitrary degree with co-
efficients of class C1, but with the assumption that one can continuously arrange
roots in such a way that no two of them meet with an infinite order of flatness.
In the case of the polynomial P(y) := yk � g(x), namely in the case of k-th
roots, this implies that g has a finite number of zeroes. This simplifying assump-
tion greatly reduces the difficulty of the problem, but the estimates obtained in
this way do blow up when the number of zeroes goes to infinity. In this paper
we do not impose this simplifying assumption, and indeed the potential accumula-
tion of zeroes of g and its derivatives is the main difficulty we have to face in our
proofs.

We hope that our new approach based on pointwise estimates could be helpful
in order to understand in full generality the case of non-hyperbolic polynomials.

This paper is organized as follows. In Section 2 we fix notations, and we
state our main results. In Section 3 we prove them. In Section 4 we present the
examples showing the optimality of our results, and the open problem concerning
the regularity of roots of non-hyperbolic polynomials.

ACKNOWLEDGEMENTS. We discovered this problem thanks to a conference held
by Prof. F. Colombini during the meeting “Asymptotic Properties of Solutions to
Hyperbolic Equations” (London, March 2011). For this reason, we are indebted to
him and to the organizers of that workshop.

We would like also to thank Prof. S. Spagnolo for pointing out reference [13],
and Prof. F. Colombini for pointing out reference [5].

Finally, we thank the anonymous referee for carefully checking the manuscript,
and for many insightful and powerful suggestions which greatly improved the clar-
ity of the presentation.

2. Notation and statements

Let � ✓ R be an open set, and let ↵ 2 (0, 1]. A function f : � ! R is called
↵-Hölder continuous if there exists a constant H such that

| f (y) � f (x)|  H |y � x |↵ 8(x, y) 2 �2. (2.1)
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In this case

Höld↵ ( f,�) := sup
⇢

| f (y) � f (x)|
|y � x |↵

: (x, y) 2 �2, x 6= y
�

denotes the ↵-Hölder constant of f in �, namely the smallest H for which (2.1)
holds true. Note that this includes the case of Lipschitz continuous functions
(↵ = 1).

If k is a positive integer, Ck,↵(�) denotes the set of functions g 2 Ck(�) with
derivatives up to order k which are bounded in �, and whose k-th derivative g(k) is
↵-Hölder continuous in �.

Regularity of roots of elements of Ck,↵ was investigated in [13]. The precise
result is the following.
Theorem A. Let k be a positive integer, let ↵ 2 (0, 1], let (a, b) ✓ R be an interval,
and let f : (a, b) ! R and g : (a, b) ! R be two functions.

Let us assume that f is continuous in (a, b), and that g 2 Ck,↵((a, b)) satisfies

| f (x)|k+↵ = |g(x)| 8x 2 (a, b). (2.2)

Then we have that f 0
2 L1((a, b)), and there exists a constant C(k) such that

| f 0

kL1((a,b))

 C(k)

(
Höld↵

⇣
g(k), (a, b)

⌘
(b � a)k+↵ +

kX
i=1

kg(i)
kL1((a,b))(b � a)i

)1/(k+↵)

.

We are now ready to state our main contributions. The first result of this paper is
the following generalization of Glaeser inequality.

Theorem 2.1 (Higher order Glaeser inequalities). Let k be a positive integer, let
↵ 2 (0, 1], and let v 2 Ck(R) be a function such that v(x) and v0(x) do not change
their sign in R (namely either v(x) � 0 or v(x)  0 for every x 2 R, and either
v0(x) � 0 or v0(x)  0 for every x 2 R).

Let us assume that the k-th derivative v(k)(x) is ↵-Hölder continuous in R.
Then there exists a constant C(k), depending only upon k, such that

|v0(x)|k+↵  C(k) · |v(x)|k+↵�1
· Höld↵

⇣
v(k), R

⌘
8x 2 R. (2.3)

A careful inspection of the proof of Theorem 2.1 reveals that in the case k = 1 we
do not need assumptions on the sign of v0(x), as in the standard Glaeser inequality
(1.1).

Theorem 2.1 above is optimal. Indeed

• in Example 4.1 we construct a positive function v 2 C1(R), whose derivatives
are all bounded, and such that the ratio

|v0(x)|k+↵

[v(x)]k+↵�1 (2.4)
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is unbounded for every k � 2 and every ↵ > 0 (of course v0(x) is a sign changing
function),

• in Example 4.2 we construct a function v 2 C1(R) such that the product v(x) ·

v0(x) never vanishes, v 2 Ck,�(R) for every � < ↵, and the ratio (2.4) is
unbounded.

In the second result we consider functions defined on an interval (a, b), and we
improve Theorem A by showing a better summability of f 0. As in [5] we express
this better summability in terms of weak L p spaces, whose definition we briefly
recall.

If � ✓ R is a bounded open set, and  : � ! R is a measurable function,
then for every p � 1 one can set

k kp,w,� := sup
M�0

n
M ·

⇥
meas{x 2 � : | (x)| > M}

⇤1/po
,

where “meas” denotes the Lebesgue measure. The weak L p space L pw(�) is the set
of all functions for which this quantity (which is not a norm, since the triangular
inequality fails to hold) is finite. In Lemma 3.1 we state all the properties of weak
L p spaces needed in this paper. Here we just recall that for every q < p we have
that L p(�) ⇢ L pw(�) ⇢ Lq(�), with strict inclusions.

We are now ready to state our main result.
Theorem 2.2 (Optimal regularity of roots). Let k be a positive integer, let ↵ 2

(0, 1], let (a, b) ✓ R be an interval, and let f : (a, b) ! R be a function.
Let us assume that f is continuous in (a, b), and there exists g 2 Ck,↵((a, b))

such that (2.2) holds true. Let p = p(k,↵) be such that
1
p

+

1
k + ↵

= 1. (2.5)

Then we have that f 0
2 L pw((a, b)), and there exists a constant C(k), depending

only upon k, such that

k f 0

kp,w,(a,b)

 C(k)max
⇢h
Höld↵

⇣
g(k), (a, b)

⌘i1/(k+↵)
· (b � a)1/p, kg0

k
1/(k+↵)
L1((a,b))

�
.
(2.6)

In particular, we have that f lies in the Sobolev space W 1,q((a, b)) for every q 2

[1, p).
We point out that in the right-hand side of (2.6) we have the maximum between

two terms which are homogeneous of degree 1 � 1/p with respect to dilatations
(namely when replacing g(x) with g(�x)). Also the left-hand side of (2.6) is ho-
mogeneous with the same degree. Moreover Theorem 2.2 above is optimal, in the
sense that
• in Example 4.3 below we construct f and g such that g 2 Ck,↵((a, b)) \

C1((a, b)), but f 0
62 L p((a, b)) for p given by (2.5),
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• in Example 4.4 below we construct f and g such that g 2 C1((a, b)) and
g 2 Ck,�((a, b)) for every � < ↵, but f is not a bounded variation function in
(a, b), hence also f 0

62 L1((a, b)).

Example 4.4 shows also that there is some sort of gap phenomenon. If g 2 Ck,� for
all � < ↵, then it is possible that its (k+↵)-th root f is not even a bounded variation
function. As soon as g 2 Ck,↵ we have that f 2 W 1,q for every q 2 [1, p). So
we have an immediate jump in the regularity of the root without passing through
intermediate values of the Sobolev exponent.

We conclude by extending Theorem 2.2 to higher dimension. The extension is
straightforward because the spaces Ck,↵(�) and L pw(�) can be easily defined for
every open set � ✓ Rn , and the Sobolev regularity of a function of n real variables
depends on the Sobolev regularity of its one-dimensional sections.

We obtain the following result.

Theorem 2.3 (Higher dimensional case). Let n and k be two positive integers, let
↵ 2 (0, 1], let � ✓ Rn be an open set, and let f : � ! R be a function.

Let us assume that f is continuous in�, and there exists g 2 Ck,↵(�) such that
(2.2) holds true for every x 2 �. Let p be defined by (2.5), and let Höld↵

�
g(k),�

�
be the maximum of the Hölder constants in � of all partial derivatives of g with
order k.

Thenr f2L pw(�0) for every�0
⇢⇢�, and there exist constantsC1(n,k,�,�0)

and C2(n, k,�,�0), both independent of f , such that

kr f kp,w,�0

max
⇢
C1(n, k,�,�0)

h
Höld↵

⇣
g(k),�

⌘i1/(k+↵)
,C2(n, k,�,�0)krgk1/(k+↵)

L1(�)

�
.

A careful inspection of the proof reveals that C1 and C2 have homogeneity degrees
with respect to dilatations equal to �n/p and �(n � 1)/p, respectively, which
makes the two terms in the maximum homogeneous with the same degree of the
left-hand side. It also reveals that what we actually need to assume on g is the
regularity of its one-dimensional sections obtained by freezing (n � 1) variables in
all possible ways.

3. Proofs

3.1. Technical preliminaries

Lemma 3.1 (Properties of weak L p spaces). For every bounded open set� ✓ R,
and every p � 1, we have the following conclusions.

(1) If  1, . . . , n are elements of L pw(�), then

k 1 + . . . +  nkp,w,�  n
�
k 1kp,w,� + . . . + k nkp,w,�

�
.
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(2) We have that

k� kp,w,� = |�| · k kp,w,� 8� 2 R, 8 2 L pw(�).

(3) For every  1 and  2 in L pw(�) we have that

kmax{ 1, 2}kp,w,�  2max{k 1kp,w,�, k 2kp,w,�}.

(4) Let�:=(a,b)beaninterval,andlet 1(x):=1and 2(x):= [(x�a)(b�x)]�1/p
for every x 2 (a, b). Then we have that

k 1kp,w,(a,b) = (b � a)1/p, k 2kp,w,(a,b) 

✓
4

b � a

◆1/p
.

(5) Let {�J }J2C be a finite or countable family of open sets whose union is �.
Then we have that

k k
p
p,w,� 

X
J2C

k k
p
p,w,�J

8 2 L pw(�).

Proof. All these properties are simple consequences of the definition of weak L p
spaces. In order to estimate k 2kp,w,(a,b) in statement (4) it is enough to remark
that

meas{x 2(a, b) : | 2(x)|>M} =meas{x 2 (a, b) : (x � a)(b � x) < M�p
}

2meas
⇢
x 2

✓
a,
a + b
2

◆
:(x�a)

✓
b�a
2

◆
<

1
Mp

�



4
b � a

·

1
Mp .

Lemma 3.2. Let (a, b) ✓ R be an interval, let f : (a, b) ! R be a continuous
function, and let �0 := {x 2 (a, b) : f (x) 6= 0}.

Let us assume that f 2 C1(�0), and that f 0
2 L pw(�0) for some p > 1.

Then we have that the distributional derivative of f in (a, b) is a measurable
function f 0

2 L pw((a, b)), and

k f 0

kp,w,(a,b) = k f 0

kp,w,�0 . (3.1)

Proof. Let us set

 (x) :=

(
f 0(x) if x 2 �0,

0 if x 2 (a, b) \�0.

Clearly we have that  2 L pw((a, b)). We claim that  is the distributional deriva-
tive of f in (a, b). Indeed let us take any compactly supported test function � 2

C1((a, b)). Let C denote the (finite or countable) set of connected components of
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�0. Then in each J 2 C we can use the standard integration-by-parts formula for
smooth functions, and obtain that

Z b

a
f (x)�0(x) dx =

Z
�0

f (x)�0(x) dx =

X
J2C

Z
J
f (x)�0(x) dx

= �

X
J2C

Z
J
f 0(x)�(x) dx = �

Z
�0

f 0(x)�(x) dx

= �

Z b

a
 (x)�(x) dx .

Now that we know that  is the distributional derivative of f it is easy to conclude
that

k f 0

kp,w,(a,b) = k kp,w,(a,b) = k kp,w,�0 = k f 0

kp,w,�0,

which completes the proof.

3.2. Key estimates

The following surprising property of polynomials is the key tool in the proof of our
higher order Glaeser inequalities. We stress that the “magic constants” �k and "k do
not depend on P(x).

Lemma 3.3 (Magic constants). For every positive integer k there exist positive
constants �k and "k , depending only upon k, with the following properties.

(1) For every polynomial P(x), with degree less than or equal to k, such that
P(0) = 1 and P 0(0) = �1, there exists x 2 [0, �k] such that either P(x)  �1
or P 0(x) � 1.

(2) For every real number A, every ↵ 2 (0, 1], and every polynomial P(x), with
degree less than or equal to k, such that P(0) = 1 and P 0(0) = �1, the
following implication

P(x) + Axk+↵ � 0 8x 2 [0, �k]
P 0(x) � Akxk+↵�1

 0 8x 2 [0, �k]
=) A � "k (3.2)

holds true.

Proof. Let us assume that statement (1) is false for some k. Then there exists
a sequence of polynomials Pn(x), with degree less than or equal to k, such that
Pn(0) = 1, P 0

n(0) = �1, and

Pn(x) � �1 and P 0

n(x)  1 8x 2 [0, n]. (3.3)

These assumptions easily imply that

�1  Pn(x)  Pn(0) + x = 1+ x  2
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for every x 2 [0, 1]. In particular, the sequence {Pn(x)} is bounded for at least
(k + 1) distinct values of x , which we denote by x1, . . . , xk , xk+1.

As a consequence, there exists a polynomial P1(x), with degree at most k,
such that Pn(x) ! P1(x) up to subsequences (not relabeled), in the sense that we
have both convergence of coefficients, and pointwise convergence. This is a well
known fact which follows, for example, from the simple remark that coefficients
of a polynomial P(x) with degree less than or equal to k depend in a linear way
(through a Vandermonde matrix) from the values of P(x) in the (k + 1) points x1,
. . . , xk , xk+1. Alternatively, it follows from the fact that the maximum of |P(xi )|
for i = 1, . . . , k + 1, and the maximum of the absolute value of the coefficients of
P(x) are two norms on the space of all polynomials with degree less than or equal
to k, and they are equivalent because the space is finite dimensional.

In any case, convergence of coefficients implies that P1(0) = 1 and P 0

1
(0) =

�1. Pointwise convergence implies that we can pass to the limit in (3.3) and obtain
that

P1(x) � �1 and P 0

1
(x)  1 8x � 0. (3.4)

If the degree of P1(x) is 1, then P1(x) = 1 � x , which does not satisfy (3.4). If
the degree of P1(x) is at least 2, then as x ! +1 we have that both P1(x) and
P 0

1
(x) tend to +1 or �1 according to the sign of the leading coefficient. This

contradicts (3.4) also in this case, and completes the proof of statement (1).
Now we claim that the conclusion of statement (2) is true with

"k := min

(
1
�k+1k

,
1
k�kk

)
.

Indeed from statement (1) we know that there exists x 2 [0, �k] such that either
P(x)  �1 or P 0(x) � 1. In the first case the first inequality in the left-hand side
of (3.2) gives that (clearly �k � 1 for every k � 1)

A �

�P(x)
xk+↵

�

1
xk+↵

�

1
�k+↵k

�

1
�k+1k

.

In the second case the second inequality in the left-hand side of (3.2) gives that

A �

P 0(x)
kxk+↵�1 �

1
kxk+↵�1 �

1
k�k+↵�1

k
�

1
k�kk

.

In both cases implication (3.2) holds true.

Next result is the main step toward higher order Glaeser inequalities, both inR
and in bounded intervals. The proof exploits the “magic constants” of Lemma 3.3
and Taylor’s expansion.
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Proposition 3.4 (Higher order Glaeser inequality in an interval). Let k be a pos-
itive integer, and let ↵ 2 (0, 1], x0 2 R, and d > 0 be real numbers.

Let v 2 Ck((x0 � d, x0 + d)) be a function such that v(x) and v0(x) do not
change their sign, namely either v(x) � 0 or v(x)  0 for every x 2 (x0�d, x0+d),
and the same for v0(x). Let us assume that the k-th derivative v(k)(x) is ↵-Hölder
continuous in (x0 � d, x0 + d).

Then there exists a constant C(k), depending only upon k, such that

|v0(x0)|k+↵

 C(k) · |v(x0)|k+↵�1
·max

⇢
Höld↵

⇣
v(k), (x0 � d, x0 + d)

⌘
,
|v0(x0)|
dk+↵�1

�
.
(3.5)

Proof. Up to symmetries we can assume, without loss of generality, that v(x) � 0
and v0(x)  0 for every x 2 (x0�d, x0+d). If v0(x0) = 0, then there is nothing to
prove. If v(x0) = 0, then it is easy to see that also v0(x0) = 0, and once again there
is nothing to prove. So from now on we assume that v(x0) > 0 and v0(x0) < 0.

Let �k be the constant of Lemma 3.3. We distinguish two cases.
Case 1. Let us assume that

|v0(x0)|
v(x0)

d  �k .

This is equivalent to saying that |v0(x0)|  �kd�1v(x0), and hence

|v0(x0)|k+↵ = |v0(x0)| · |v0(x0)|k+↵�1
 |v0(x0)| ·

✓
�k
d

◆k+↵�1
[v(x0)]k+↵�1,

which implies (3.5) in this first case, provided that C(k) � �kk .
Case 2. Let us assume now that

|v0(x0)|
v(x0)

d > �k . (3.6)

Let us set for simplicity H := Höld↵
�
v(k), (x0 � d, x0 + d)

�
, and let us write Tay-

lor’s expansion of v(x) of order k. For every � 2 [0, d) we obtain that

v(x0 + �) =

k�1X
j=0

v( j)(x0)
j !

� j +

v(k)(x0 + ⇠)

k!
�k

for some ⇠ 2 (0, �). Since v(k) is ↵-Hölder continuous we have that

|v(k)(x0 + ⇠) � v(k)(x0)|  H�↵.

Therefore our assumption that v(x) � 0 for every x 2 (x0� d, x0+ d) implies that

0  v(x0 + �) 

kX
j=0

v( j)(x0)
j !

� j +

H
k!
�k+↵ 8� 2 [0, d).
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In an analogous way we obtain that

0 � v0(x0 + �) �

k�1X
j=0

v( j+1)(x0)
j !

� j �

H
(k � 1)!

�k+↵�1
8� 2 [0, d).

Let us write both inequalities with � := x · v(x0) · |v0(x0)|�1. We obtain that the
two inequalities

0 |v(x0)|

 
kX
j=0

v( j)(x0)
j !

·

[v(x0)] j�1

|v0(x0)| j
· x j +

H
k!

·

[v(x0)]k+↵�1

|v0(x0)|k+↵
· xk+↵

!
,

0� |v0(x0)|

 
k�1X
j=0

v( j+1)(x0)
j !

·

[v(x0)] j

|v0(x0)| j+1
· x j�

H
(k � 1)!

·

[v(x0)]k+↵�1

|v0(x0)|k+↵
·xk+↵�1

!

hold true for every

0  x <
|v0(x0)|
v(x0)

d.

Due to (3.6), the upper bound is larger than �k , which proves that the two inequali-
ties hold true at least for every x 2 [0, �k]. Thus if we set

P(x) :=

kX
j=0

v( j)(x0)
j !

·

[v(x0)] j�1

|v0(x0)| j
· x j , A :=

H
k!

·

[v(x0)]k+↵�1

|v0(x0)|k+↵
, (3.7)

we have that P(0) = 1, P 0(0) = �1, and the assumptions in the left-hand side of
(3.2) are satisfied.

Therefore from (3.2) it follows that A � "k , which implies (3.5) also in this
second case, provided that C(k) � ("kk!)�1.

Proof of Theorem 2.1. Let us fix any point x0 2 R. Then the assumptions of Propo-
sition 3.4 are satisfied for every d > 0. The conclusion follows by remarking that

Höld↵
⇣
v(k), (x0 � d, x0 + d)

⌘
 Höld↵

⇣
v(k), R

⌘
,

and finally letting d ! +1.

3.3. Absolute continuity of roots

The aim of this section is to prove Theorem 2.2 and Theorem 2.3. The proof is
based on some pointwise estimates on the derivative, which are the content of next
two results.
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Proposition 3.5. Let k be a positive integer, let ↵ 2 (0, 1], let (a, b) ✓ R be an
interval, let f : (a, b) ! R be a continuous function, and let g 2 Ck,↵((a, b)).

Let us assume that f and g satisfy (2.2), and that g(x) · g0(x) 6= 0 for every
x 2 (a, b). Let us set for simplicity

H := Höld↵
⇣
g(k), (a, b)

⌘
, kg0

k1 := kg0

kL1((a,b)).

Then we have the following conclusions.

(1) There exists a constant C1(k), depending only upon k, such that for every x 2

(a, b) we have that

| f 0(x)|k+↵  C1(k)max

(
H, kg0

k1 ·


b � a

(x � a)(b � x)

�k+↵�1
)

. (3.8)

(2) Let p be defined by (2.5). Then there exists a constant C2(k), depending only
upon k, such that

k f 0

kp,w,(a,b)  C2(k)max
n
H1/(k+↵)

· (b � a)1/p, kg0

k
1/(k+↵)
1

o
. (3.9)

Proof. Let us fix any point x0 2 (a, b), and let d := min{x0 � a, b � x0}. We can
apply Proposition 3.4 to the function v(x) := g(x) in the interval (x0 � d, x0 + d).
We obtain that

| f 0(x0)|k+↵ 

|g0(x0)|k+↵

|g(x0)|k+↵�1  C(k)max
⇢
H,

|g0(x0)|
dk+↵�1

�
.

Since
1

dk+↵�1 


b � a

(x0 � a)(b � x0)

�k+↵�1
,

conclusion (3.8) easily follows.
Let us consider now statement (2). From (3.8) and definition (2.5) of p, we

have that | f 0(x)|  [C1(k)]1/(k+↵)max{ 1(x), 2(x)}, with

 1(x) := H1/(k+↵),  2(x) := kg0

k
1/(k+↵)
1

·

(b � a)1/p

[(x � a)(b � x)]1/p
.

From statements (2) through (4) of Lemma 3.1 we easily obtain (3.9).

Proposition 3.6. Let k be a positive integer, let ↵ 2 (0, 1], let (a, b) ✓ [c, d] ✓ R
be an open and a closed interval, let f : (a, b) ! R be a continuous function, and
let g 2 Ck([c, d]). Let us assume that

(i) f and g satisfy (2.2),
(ii) g(x) · g0(x) 6= 0 for every x 2 (a, b),
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(iii) the k-th derivative g(k)(x) is ↵-Hölder continuous in (c, d) (hence also in
[c, d]),

(iv) for every h = 1, . . . , k there exists xh 2 [c, d] such that g(h)(xh) = 0.

Let p be defined by (2.5), and let C2(k) the the constant in (3.9). Then we have that

k f 0

kp,w,(a,b)  C2(k)
h
Höld↵

⇣
g(k), (c, d)

⌘i1/(k+↵)
· (d � c)1/p. (3.10)

Proof. Let us set for simplicity H := Höld↵
�
g(k), (c, d)

�
. Due to assumptions

(i), (ii), and (iii), we can apply Proposition 3.5 and obtain estimate (3.9). Due to
assumptions (iii) and (iv), we can estimate in [c, d] all derivatives of g up to order
k. For every h = 1, . . . , k we obtain that

|g(h)(x)|  H · (d � c)k+↵�h
8x 2 [c, d]

(formally one should argue by induction on k � h), and in particular

kg0

kL1((a,b))  kg0

kL1((c,d))  H · (d � c)k+↵�1. (3.11)

Plugging this inequality into (3.9), and estimating (b � a) with (d � c), we easily
obtain (3.10).

Proof of Theorem 2.2. Let us consider the open set

�0 := {x 2 (a, b) : f (x) 6= 0} = {x 2 (a, b) : g(x) 6= 0}.

From (2.2) it is easy to see that f 2 C1(�0) (or better f 2 Ck(�0)), and

�1 := {x 2 �0 : f 0(x) 6= 0} = {x 2 �0 : g0(x) 6= 0}.

Let C denote the (finite or countable) set of connected components of �1. Each
J 2 C is an open interval of the form (aJ , bJ ), so that

�1 =

[
J2C

J =

[
J2C

(aJ , bJ ).

Thanks to Lemma 3.2 and statement (5) of Lemma 3.1 we have that

k f 0

k
p
p,w,(a,b) = k f 0

k
p
p,w,�0

= k f 0

k
p
p,w,�1



X
J2C

k f 0

k
p
p,w,J . (3.12)

It is therefore enough to show that the right-hand side of (3.12) is estimated by
the right-hand side of (2.6), raised to the power of p, for a suitable constant C(k)
depending only upon k. To this end, we divide the connected components of �1
into two disjoint classes C0 and C1.
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Partitioning connected components. Let C0 ✓ C be the set of connected compo-
nents J 2 C for which (aJ , bJ ) is such that either aJ = a or

��
[bJ , b) \�1

��
 2k, (3.13)

where vertical bars denote the number of elements of a set, and let C1 := C \ C0.
If (a, b) \ �1 is a finite set, then C is finite and C0 contains the leftmost and the
(2k + 1) rightmost connected components of �1, or C0 = C if |C|  2k + 1.

If (a, b)\�1 is not finite, then C0 contains the connected component of�1 with
aJ = a (if it exists), and the rightmost h connected components of �1, where h is
the largest integer less than or equal to (2k+1) such that the rightmost h connected
components of �1 exist and their right-hand endpoints are not accumulation points
of (a, b) \�1.

Note that it may happen that a and b themselves are accumulation points of
(a, b) \ �1, and in this case C0 is empty. It is also possible that |C| = 2k + 2 but
|C0| < 2k + 2, because it could happen that (a, b) \�1 contains an interval.

What is important is that in any case we have that |C0|  2k + 2.
Absolute continuity in the union of C0-components. Let us apply Proposition 3.5
in a connected component J 2 C0. We obtain that

k f 0

k
p
p,w,J  [C2(k)]p max

⇢h
Höld↵

⇣
g(k), J )

⌘ip/(k+↵)
· (bJ�aJ ), kg0

k
p/(k+↵)
L1(J )

�

 [C2(k)]p max
⇢h
Höld↵

⇣
g(k), (a, b)

⌘ip/(k+↵)
· (b�a),kg0

k
p/(k+↵)
L1((a,b))

�
.

Summing over all J 2 C0, and recalling that |C0|  2k + 2, we deduce that
X
J2C0

k f 0

k
p
p,w,J (2k+2)·[C2(k)]p·

·max
⇢h
Höld↵

⇣
g(k),(a,b)

⌘ip/(k+↵)
· (b�a),kg0

k
p/(k+↵)
L1((a,b))

�
.

(3.14)

Expanding C1-components. We prove that to every J 2 C1 we can associate a
closed interval [cJ , dJ ] in such a way that the following three conditions are satis-
fied.

(P1) We have that (aJ , bJ ) ✓ [cJ , dJ ] ✓ (a, b) for every J 2 C1.
(P2) Every x 2 (a, b) lies in the interior of at most (2k+ 1) such intervals, namely

��
{J 2 C1 : x 2 (cJ , dJ )}

��
 2k + 1. (3.15)

(P3) For every J 2 C1, and every h = 1, . . . , k, there exists xJ,h 2 [cJ , dJ ]
such that g(h)(xJ,h) = 0 (note that g is always defined in the closed interval
[cJ , dJ ]).



1016 MARINA GHISI AND MASSIMO GOBBINO

To this end, for every J 2 C1 we set

DJ :=

�
x 2 [bJ , b) :

��
[bJ , x] \�1

��
� 2k + 1

 
.

Since J 62 C0, we have that (3.13) is false. It follows that DJ 6= ;, so that we can
define cJ := aJ and dJ := inf DJ < b.

Roughly speaking, if (a, b) \ �1 is a finite set, then [cJ , dJ ] is the closure of
the union of (aJ , bJ ) and of the first 2k connected components of�1 on its right. If
(a, b) \�1 is not finite, then we stop the union as soon as we find an accumulation
point of (a, b) \ �1. For example, dJ = bJ when bJ is an accumulation point of
(a, b) \�1.

We have to show that properties (P1) through (P3) are satisfied. This is trivial
for (P1) because cJ = aJ > a (we recall that the connected component of �1 with
aJ = a, if it exists, does not belong to C1), and bJ  dJ < b.

In order to prove (P2), let us assume by contradiction that (3.15) is false for
some x0 2 (a, b). Then x0 2 (cJ , dJ ) for at least (2k + 2) connected components
J0, J1, . . . , J2k+1 in C1. Let us assume, without loss of generality, that components
are named in such a way that bJ0 < bJ1 < . . . < bJ2k+1 .

On the one hand we have that [bJ0, bJ2k ] \ �1 ◆ {bJ0, bJ1, . . . , bJ2k }, hence
this set has at least (2k + 1) elements. This means that bJ2k 2 DJ0 , hence bJ2k �

dJ0 > x0. On the other hand we have also that x0 > cJ2k+1 = aJ2k+1 � bJ2k , which
gives a contradiction.

It remains to prove (P3). Let us take any x 2 DJ . Then [bJ , x] contains at
least (2k + 1) points which are not in �1, hence at least (2k + 1) points where
either g vanishes or g0 vanishes. As a consequence, [bJ , x] contains either at least
(k + 1) points where g vanishes, or at least k points where g0 vanishes. In the first
case Rolle’s Theorem implies the existence of at least k points where g0 vanishes,
so actually we are always in the second case.

Applying Rolle’s Theorem again, we obtain that [bJ , x] contains at least
(k � 1) points where g00 vanishes, at least (k � 2) points where g000 vanishes, and so
on, up to find at least one point where g(k) vanishes. We have thus proved that all
derivatives of g up to order k vanish at least once in [bJ , x]. Since they are contin-
uous functions, the same is true in [bJ , dJ ], hence also in [cJ , dJ ]. This completes
the proof of (P3).
Absolute continuity in the union of C1-components. Let J 2 C1, and let [cJ , dJ ]
be the interval defined in the previous paragraph. Due to (P1) and (P3) we can apply
Proposition 3.6 in the intervals (aJ , bJ ) ✓ [cJ , dJ ]. We obtain that

k f 0

k
p
p,w,J  [C2(k)]p

h
Höld↵

⇣
g(k), (cJ , dJ )

⌘ip/(k+↵)
· (dJ � cJ ).

Estimating the Hölder constant in (cJ , dJ ) with the Hölder constant in (a, b), and
summing over all J 2 C1, we deduce that

X
J2C1

k f 0

k
p
p,w,J  [C2(k)]p

h
Höld↵

⇣
g(k), (a, b)

⌘ip/(k+↵)
·

X
J2C1

(dJ � cJ ).
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Now we estimate the series in the right-hand side through a “geometric double
counting” argument. Let �(cJ ,dJ )(x) be 1 if x 2 (cJ , dJ ), and 0 otherwise. Due to
(3.15) we have that

X
J2C1

(dJ � cJ ) =

X
J2C1

Z b

a
�(cJ ,dJ )(x) dx

=

Z b

a

 X
J2C1

�(cJ ,dJ )(x)

!
dx  (2k + 1)(b � a),

hence
X
J2C1

k f 0

k
p
p,w,J  (2k+1)[C2(k)]p

h
Höld↵

⇣
g(k), (a, b)

⌘ip/(k+↵)
·(b�a). (3.16)

From (3.14) and (3.16) we easily obtain (2.6).

Proof of Theorem 2.3. Letusassume,without loss of generality, that�0
:=(a1,b1)⇥

. . . ⇥ (an, bn) is a rectangle. From statement (1) of Lemma 3.1 we have that

kr f kp,w,�0 

�����
nX

m=1
| fxm |

�����
p,w,�0

 n
nX

m=1
k fxmkp,w,�0 .

Thus we can limit ourselves to showing that all partial derivatives of f lie in
L pw(�0). Without loss of generality, we prove this fact in the case m = 1. Let
y := (x2, . . . , xn) denote the vector of the remaining variables, and let �00

:=

(a2, b2) ⇥ . . . ⇥ (an, bn). Then for every M � 0 we have that

meas
�
x 2�0

: | fx1(x)|>M
 
=

Z
�00

meas
�
x12(a1,b1) : | fx1(x1, y)|>M

 
dy. (3.17)

For every fixed y 2 �00, the measure in the integral involves only the function
x ! f (x, y), which is a function of one real variable. Therefore the measure
can be estimated with the aid of Theorem 2.2 in terms of the function of one real
variable x ! g(x, y), which for simplicity we denote by g(·, y). We obtain that

meas
�
x1 2 (a1, b1) : | fx1(x1, y)| > M

 


1
Mp k fx1(·, y)k

p
p,w,(a1,b1)



[C(k)]p

M p max
⇢h
Höld↵

⇣
Dk
x1g(·,y), (a1,b1)

⌘ip/(k+↵)
(b1�a1),kgx1(·,y)k

p/(k+↵)
L1((a1,b1))

�



[C(k)]p

M p max
⇢h
Höld↵

⇣
g(k),�

⌘ip/(k+↵)
· (b1 � a1), krgk

p/(k+↵)
L1(�)

�
.

(3.18)
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Therefore we can estimate the left-hand side of (3.17) with the right-hand side of
(3.18) multiplied by the (n � 1)-dimensional measure of �00.

Thus we obtain that

k fx1kp,w,�0 = sup
M�0

M ·

⇥
meas

�
x 2 �0

: | fx1(x)| > M
 ⇤1/p

C(k)max
⇢h
Höld↵

⇣
g(k),�

⌘i1/(k+↵)
·|�0

|
1/p,krgkp/(k+↵)

L1(�) ·|�00

|
1/p

�
,

where |�0
| and |�00

| are the n-dimensional measure of �0, and the (n � 1)-dimen-
sional measure of �00, respectively.

This is enough to complete the proof.

4. Examples and open problem

Example 4.1. Let us consider the function v(x) := sin2 x + e�x2 . Then v 2

C1(R), and all its derivatives are bounded in R, which means that v 2 Ck,↵(R)
for every admissible value of k and ↵. Moreover v(x) > 0 for every x 2 R. Let us
consider the sequence xn := 2⇡n + n�1. It is not difficult to see that

v(xn) ⇠

1
n2

, v0(x) ⇠

2
n

as n ! +1,

hence the ratio (2.4) is not bounded whenever k � 2 and ↵ > 0.
This example shows that the conclusion of Theorem 2.1 is false when v0(x) is

a sign changing function (as in this example).
Example 4.2. Let ' 2 C1(R) be a function such that '(x) = 1 for every x  0,
'(x) = 0 for every x � 1, and '0(x) < 0 for every x 2 (0, 1). We note that
these conditions imply that all derivatives of ' vanish in x = 0 and x = 1. Let us
consider the following sequences

�n := e�(n+1)2, an := � k+↵n · | log �n|, ↵n :=

1X
i=n+1

ai .

Some simple calculus shows that ↵n is well defined (namely the series converges),
and

lim
n!+1

↵n
an

= 0. (4.1)

Let w : R ! R be defined by

w(x) :=

8<
:
↵0 + a0 if x  0,
↵n + an'

�
��1
n (x � n)

�
if x 2 [n, n + �n],

↵n if x 2 [n + �n, n + 1].
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It is easy to see that w 2 C1(R), and for every x 2 R we have that w(x) > 0 and
w0(x)  0. Moreover for every � 2 (0, 1] we have that

w 2 Ck,�(R) () sup
n2N

an
�
k+�
n

< +1,

hence w 2 Ck,�(R) for every � < ↵, but not for � = ↵.
Let us consider now the function  (x) := arctan e�(x��0/2)3 , and let us set

v(x) := w(x) +  (x). It is not difficult to see that  2 C1(R), its derivatives of
any order are bounded in R, and  (x) > 0, hence also v(x) > 0, for every x 2 R.
Moreover we have that  0(x)  0 for every x 2 R, with equality if and only if
x = �0/2 (wherew0(x) does not vanish), so that v0(x) < 0 for every x 2 R. Finally
we have that v 2 Ck,�(R) for every � < ↵, but not for � = ↵.

Let us consider now the sequence zn := n + �n/2. It is not difficult to check
that

lim
n!+1

 (zn)
an

= 0, lim
n!+1

 0(zn) · �n
an

= 0.

Exploiting also (4.1), it follows that (up to numeric constants) we have that

v(zn) = an'(1/2) + ↵n +  (zn) ⇠ an as n ! +1,

v0(zn) =

an
�n
'0(1/2) +  0(zn) ⇠

an
�n

as n ! +1.

This implies that the sequence

|v0(zn)|k+↵

[v(zn)]k+↵�1 ⇠

ak+↵n

� k+↵n
·

1
ak+↵�1
n

=

an
� k+↵n

= | log �n|

is unbounded, hence the ratio (2.4) is unbounded.
Example 4.3. Let f : (�1, 1) ! R and g : (�1, 1) ! R be defined by

f (x) := |x |1/(k+↵), g(x) := x .

All assumptions of Theorem 2.2 are satisfied (and g is actually of class C1), and
f 0

62 L p((�1, 1)) when p is defined by (2.5). This shows that the summability of
f 0 given by Theorem 2.2 is optimal.
Example 4.4. Let ' 2 C1(R) be a function such that '(x) > 0 for every x 2

(0, 1), and '(x) = 0 elsewhere, so that all its derivatives vanish in x = 0 and
x = 1. Let us assume also that '0(x) > 0 for every x 2 (0, 1/2), and '0(x) < 0 for
every x 2 (1/2, 1), so that it is quite easy to estimate the total variation of ' and all
its roots. Let us consider the following sequences

�n :=

1
(n + 3) log(n + 3) log2(log(n + 3))

, �n :=

1X
i=n

�i , an :=� k+↵n · | log �n|.
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Some simple calculus shows that �n is well defined (namely the series converges).
Let g : (0, �0) ! R be defined by

g(x) := an'
✓
x � �n+1
�n � �n+1

◆
8x 2 [�n+1, �n),

and let f (x) := [g(x)]1/(k+↵) be its (k + ↵)-th root.
It is easy to see that g 2 C1((0, �0)). Moreover for every � 2 (0, 1] we have

that
g 2 Ck,�((0, �0)) () sup

n2N

an
�
k+�
n

< +1,

hence g 2 Ck,�((0, �0)) for every � < ↵, but not for � = ↵. Moreover the total
variation of f in (0, �0) is given by

T V ( f, (0, �0)) = 2
1X
n=0

a1/(k+↵)
n · ['(1/2)]1/(k+↵) ,

hence

f 0

2 L1((0, �0)) =) f 2 BV ((0, �0)) =)

1X
n=0

a1/(k+↵)
n < +1

(actually also the reverse implications hold true, but we don’t need them). Now
some simple calculus shows that

1X
n=0

a1/(k+↵)
n =

1X
n=0

�n| log �n|1/(k+↵)
= +1.

This means that f (x) is not a bounded variation function in (0, �0), and hence f (x)
is not even absolutely continuous in (0, �0).

We conclude by recalling the main open problem in this field, namely the ab-
solute continuity of roots of polynomials instead of roots of functions. We point
out that the problem is open even in the case of a real root of a non-hyperbolic
polynomial with real coefficients of class C1.

Open problem. Let k be a positive integer, let (a, b) ✓ R be an interval, and let

P(x) := xk+1 + ak(t)xk + . . . + a1(t)x + a0(t)

be a monic polynomial with complex valued coefficients ai 2 Ck,1((a, b)). Let
z : (a, b) ! C be a continuous function such that P(z(t)) = 0 for every t 2 (a, b).

Then z0 2 L pw((a, b)) for p = 1+ 1/k.
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