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A quantitative characterisation of functions
with low Aviles Giga energy on convex domains

ANDREW LORENT

Abstract. Given a connected Lipschitz domain Q2 we let A(€2) be the set of

functions in WZ’Z(Q) with # = 0 on €2 and whose gradient (in the sense of trace)

satisfies Vu(x) - ny = 1, where 1, is the inward pointing unit normal to 92 at x.
2 2

The functional /¢ (1) = %fge_l ‘1 — |Vu|2’ + € ‘Vzu’ dz, minimised over

A(£2), serves as a model in connection with problems in liquid crystals and thin
film blisters. It is also the most natural higher order generalisation of the Modica
and Mortola functional. In [16] Jabin, Otto and Perthame characterised a class of
functions which includes all limits of sequences u, € A (2) with I¢, (uy) — 0
as €, — 0. A corollary to their work is that if there exists such a sequence
(up,) for a bounded domain €2, then €2 must be a ball and (up to change of sign)
u = limy— oo Uy, is equal dist(-, 3€2). We prove a quantitative generalisation of
this corollary for the class of bounded convex sets. Namely we show that there
exists a positive constant 1 such that, if € is a convex set of diameter 2 and
u € A(RQ) with I (1) = B, then | By (x) AQ| < ¢B! for some x and

2
Z—x
/ ’Vu(z) + —’ dz < cB".
Q |z — x|
A corollary of this result is that there exists a positive constant y» < y; such that

1
if © is convex with diameter 2 and C2 boundary with curvature bounded by €~ 2,
then for any minimiser v of /¢ over A(£2) we have

lv—Zliwizg) < cle+ irylfIQAB1 M2,
where ¢ (z) = dist(z, d€2). Neither of the constants y; or y; are optimal.

Mathematics Subject Classification (2010): 49N99 (primary).

1. Introduction
We consider the following functional
1 2 2
I.(u) = 5/ ¢! ‘1 - |Vu|2‘ + € ‘Vzu‘ dz
Q

the study of which arises from a number of sources, one of the earliest and most
important of which is the article by Aviles and Giga [7]. We will refer to the quantity
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I.(u) as the Aviles-Giga energy of the function u. The functional /. is usually
minimised over the space of functions u € W22(Q) where u(x) = 0 and Vu(x) -
ny = 1 on 92 (in the sense of trace) where 7, is the inward pointing unit normal,
we will denote this space of functions by A (£2).

Aviles and Giga raised the problem of the study of the limiting behavior of
I as € — 0 in connection with the theory of smectic liquid crystals [7]. In [14]
Gioia and Ortiz studied I, as a model for thin film blisters. Jin and Kohn [17]
introduced the by now classic method of estimating the energy by ‘divergence of
vector fields’. A related functional arising from micromagnetics was studied by
Riviere and Serfaty [24]. In this case the functional acts on vector fields m (in two
dimensions) satisfying [m| = 1 in 2, and the functional is given by M.(m) =

€ o |Vm R Jr2 |V_1divm 2, where m is the vector field m extended trivially
by 0 outside €2. For the Aviles-Giga functional we minimise over curl free vector
fields and the functional forces the norm of the vector field to be close to 1 with
weighting ¢! while constraining an € multiple of the L? norm (squared) of the
gradient. On the other hand the micromagnetics functional is minimised over vector
fields whose norm is taken to be 1 from the outset, and the functional forces the
vector field to be divergence free with weighting € ! !, while again constraining
an € multiple of the L? norm (squared) of the gradient. Functional M, is much
more rigid, and very much stronger results are known for it than for I, see [1,6,24]
and [5].

Roughly speaking: the conjecture is that as ¢ — 0 the energy of minimisers of
I will converge to a collection of curves on which the gradient of the minimisers
makes a jump of order O (1) perpendicularly across the curve. This has already been
proved for functional M, [24]. A way to think about this is the following: given
a connected Lipschitz domain 2 let w be the distance from 92 and let v be w
convolved by a convolution kernel of diameter €. The regions where |Vvc| % 1 will
be exactly the € neighborhoods of the curves on which Vw has a jump discontinuity.
If @ is a ball Vw will have a discontinuity only at one point. In all other cases
there will be non trivial curves of singularities, and for the specific function v, it
is exactly in an € neighborhood of these curves that the energy will concentrate.
The conjecture is that what we can observe directly for ve will hold true for the
minimisers of /.

The most natural way to study these questions is within the framework of
["-convergence. One of the earliest successes of I'-convergence was the char-
acterisation of the I'-limit of the so called Modica-Mortola functional Ac(w) =

fQ €|lVw)? + ¢! }1 — |w|2]2 which is minimised over scalar functions w satisfy-
ing an integral condition of the form [, wdx = 0. It was shown by Modica and
Mortola [21] (confirming a conjecture of De Giorgi) that the I'-limit of A is a con-
stant multiple of the H"~! measure of the jump set J,, minimised over the space of
functions w € {v e BV :ve{l,—1} a.e.and f vdx = 0}. Given the elementary

2
! The term /] R2 ’V_ldivm‘ is the L2 norm of the Hodge projection onto curl free vector fields.
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inequality

2
e|Vw|2+e_l‘l—|w|2‘ lewl‘l—lwlz

, (1.1)
we have that for any sequence (w,) of equibounded A, energy (for some subse-

3
obtain as the limit of this L' sequence of gradients will naturally be supported on
the jump set of the limiting function. In some sense the nature of the I'-limit of A,
could be anticipated from (1.1).

Functional /. is the most natural higher order generalisation of A.. In the
case of I, the conjectured I'-limit is surprising. This is part of the reason that
functional /. has received so much attention. The first works on identifying the
["-limit are by Aviles and Giga [7] and Jin and Kohn [17]. Later these ideas were
developed by Ambrosio, De Lellis and Mantegazza [2]. Roughly speaking, the
limiting function space is conjectured to have a structure similar to the space of
functions whose gradient is BV and the limiting energy is conjectured to have the

3
quence €, — 0) has a uniform L' control of V (wn — ﬂ) and the measure we

form f Tou ]Vu+ — Vu~|>dH". Much progress has been made on this conjecture.
In particular equi-coercivity of /. has been shown independently in [2] and in the
work of DeSimone, Kohn, Muller and Otto [11]. A proposed limiting function
space AG(£2) and limiting functional I as been suggested in [2], and it was shown
that all limits of sequences of functions (u,) with sup, I, (1#,) < oo are such that

1,3
Up W—> u € AG(R2) and liminf /., (Vu,) > I(u). The compactness proofs pro-
vided by [11] and [2] are different but share some common ideas. The proof by [11]
identifies the set of all smooth functions ® : R? — RR? for which there exists a
smooth ¥ : R? — R2 such that

/|div [D(Va)]| SC/‘\IJ(Vu)-V(l _ |Vu|2>‘ for any C2 function u. (1.2)

Influenced by ideas of Tartar and Murat on compensated compactness [25] [22] the
authors were able to prove that this set of @ is sufficiently rich so as to force Vu, to
converge strongly. In [7] the authors, building on work of Jin and Kohn [17], found
two third order polynomial vector fields ¥ : R> — R? and ¥, : R* — R? such
that

/|div[2i(Vu)]|§ c/’v%t‘ ‘1—|W|2] for any C2 function u, fori=1,2. (13)

Using some elementary and surprising identities satisfied by X1(Vu), X2(Vu), a
different approach to compactness was found. Rather naturally considering (1.3).
The function space AG(€2) proposed by [2] is given by the set of functions v for
which div(%;(Vv)) forms a Radon measure for i = 1,2 and the limiting energy
functional I (v) is given by the total absolute value of this measure on £2.

Given vector field w let x (§, w) := 1 (¢.,y0), Jabin and Perthame [15] showed
that gradients of sequences of bounded Aviles-Giga energy (in fact their method
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extends to more general functionals) are compact and the limit Vu satisfies a kinetic
equation of the form & - V, x (§, R(Vu)) = g where ¢ is the distribution derivative
with respect to £ of some measure on Rg X Rﬁ and R is the rotation given by
R(x,y) = (—y, x). By application of kinetic averaging lemmas [12] this leads to
some regularity: Vu € W59 forall 0 < s < %, g < 3, and using the kinetic
equation a different proof of compactness was found. The kinetic equation deduced
by [15] was motivated by the characterisation of the set of ® satisfying (1.2) given
in [11]: defining ®(z) = |z|>e for z - e > 0 and O otherwise it was shown that a
sequence @, satisfying (1.2) could be found that approximates ® pointwise. Using
the kinetic equation deduced in [15], Jabin, Otto and Perthame [16] were able to
characterise zero energy limits (and the domains that allow them) for /.. In fact
their result is stronger: they showed that if a divergence free vector field m satisfies
the kinetic equation £ - Vyx(m, &) = 0, [m(x)| = 1 ae.in Qand m(x) - n, =0
on 9€2, then either €2 is a strip and m is a constant or Q2 = B, (x) for some r > 0,

1 1
x € R? and m(z) = (Z_x ) orm(z) = — ( 2=t ) . An analogous result for

[z—x] lz—x|

zero energy limits of M. is stated in [18] and is a consequence of the main theorem
of [5].

As a corollary: given a sequence u, € A(S2) and €, — 0 such that I, (u,) —
0 as n — oo and letting u be the limit of this sequence, then the vector field
R(Vu) satisfies the hypothesis stated and hence we have (up to a sign) a complete
description of Vu.

The main theorem of this paper is a quantitative generalisation of the corollary
to Jabin, Otto and Perthame theorem over the class of bounded convex sets.

Theorem 1.1. Let € > 0 and Q2 be a convex domain with diameter 2. Let u €
W22(Q) be withu = 0 on 3Q and Vu(x) - n, = 1 of 92 (in the sense of trace)
where ny is the inward pointing unit normal. Then there exists positive constants
C > landy < 1 such that for some x € S,

IQAB(x)| < C (Ie(u))”

and
z—x |?
Vu(z) + ——| dz <Cc(w))” .
|z — x|

J.

Corollary 1.2. Let € > 0 and Q be a convex set of diameter 2 and with C* bound-

ary and curvature bounded above by e_%. Let A(RQ) :={u € W22(Q):u=0o0n
0Q and Vu(z) - n; = 1 for z € 9Q}. There exists positive constants C = C(R) > 1
and A < 1 such that if u is a minimiser of I over A(2), then

A
Il = Zllwrq) <€ (E + jnf 'QAB'(”')
yeQ

where ¢ (z) = dist(z, 0€2).
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In Theorem 1.1 we take ¥ = 5127! and in Corollary 1.2, A = 5462~!. Nei-
ther constant is optimal. Corollary 1.2 requires a fair amount of technical work
establishing an upper bound for the minimiser of /. in terms of the ‘eccentric-
ity’ infycq r>0 |S2A B, (y)|. For the reader primarily interested in the asymptotic
behavior of minimisers as € — 0 recent powerful results on I'-convergence up-
per bound of I, (in the case where the function u being approximated satisfies
Vu € BV(Q : SH) by Conti and De Lellis [8] and Poliakovsky [23] do much of
the work for us and we can give a relatively shorter proof of the following corollary
to Theorem 1.1. Note that Corollary 1.3 stated below is a corollary to Corollary 1.2.

Corollary 1.3. Let Q be a convex set of diameter 2 with C? boundary. Let A(Q)
be as defined in Corollary 1.2. There exists positive constants C = C(R2) > 1 and
A < 1 such that if u€ is a minimiser of I over A(2), then

A
tim sup 14 — ¢lly120qy < C <;25f2 |QABl(y)|>

e—0
where ¢ (z) = dist(z, 0€2).

Plan of paper. After the introduction in Section 1 we sketch the proof of the main
theorem in Section 2. In Section 3 we prove the main theorem. In Section 4 we
establish Corollary 1.3, the additional lemmas needed to establish Corollary 1.2 are
given in Section 5.

1.1. Background

Given a sequence €, — 0 and u,, € A(S2) with limsup I, (1,) < 00, let u be the
limit of u,,. The vector valued measure given by v, := (div [X{(Vu)], div[Z2(Vu)])
(where X1, ¥, are the third order polynomial vector fields that satisfy (1.3)) gives
us the expression of the limiting energy, i.e. I (u) = ||v,||(2). If we consider the
1-dimensional part of the measure

I':= {x :limsupw >O}

r—0 r

it has been shown that I" is 1-rectifiable [9] (see also [10]) and an analogous result
has been shown for M, [6]. It was also shown Vu has jump discontinuities across
the rectifiable set I" exactly as would be the case if Vu was BV and its jump set
was given by I'. However it is not known (even if u, are the minimisers of I, ) if
measure ||v, || is even singular with respect to Lebesgue measure. Note that for the
function M, the minimiser of the limiting energy is known to be rectifiable [5]. For
a sequence with only equibounded energy the measure is not known to be singular.

The original motivation for Theorem 1.1 was to prove a version of it for 2= B;(0)
without boundary conditions and under the hypotheses |’ B, | 1—|Vu |2| |V2u | dz=p,

fBl 11— |Vu|2|dz < eandsup {|lu — AllL>,(0)) : Ais affine with [VA| =1} <
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1000~!. The conclusion in this case would be that there exists a smooth function
with |[Vyr| = 1 everywhere such that ||Vu—V1ﬁ||L2(BZ_l ) = ¢B? forsome y > 0.
This is a kind of quantitative version of the main proposition required to prove
compactness in [2], (see Proposition 4.6). The hope is to use such a quantitative
result to show ||v, || is singular, or at least that Vu is continuous at H! a.e. point
outside I". We will address these issues in a forthcoming paper [19].

The many strong results about measure ||v,|| (and the measure that gives the
limiting functional for the micromagnetics function) have been achieved by charac-
terising various kinds of blow up of the measure and understanding well the absolute
(i.e. non quantitative) situation in the limit [5,6,9,10,16]. In some sense there are
only two possibilities, either to take a limit and have an absolute situation and to un-
derstand the measure from this, or to stop before the limit and have a non-absolute
situation and try and understand something about it with a quantitative theorem.
Our primary motivation in proving a quantitative version of Jabin-Otto-Perthame
Theorem was so as to obtain a result that could be used for the latter approach.

By Poincaré’s inequality it is easy to see infa(q) Ie > ce and so Theorem 1.1
follows from the following slightly more general result.

Theorem 1.4. Let Q2 be a convex body centered on 0 with diam(2) = 2. Let 8 > 0,
suppose u : W2(Q) - Risa Jfunction satisfying

/Q(l—|vu|2HV2u‘dz§ﬁ (14)

and

/Q‘l—wuﬁ(zdzgﬁz (1.5)

and in addition u satisfies u = 0 on Q2 and Vu(z) - n, = 1 on 92 in the sense of
trace where 1, is the inward pointing unit normal to 9S2 at 7.

3

Then there exists positive constant C; > 0 such that |B; (0) AQ| < C187

and
/.

2

Vu@) + | dz <, ph. (16)

||
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2. Sketch of the proof

2.1. Sketch of the proof of Theorem 1.4

While the proof for convex domains is slightly involved, there are only a couple
of ideas that are really central. We will sketch the proof for the case 2 = B;(0).
Ignoring (without comment) many technicalities in order to give an impression of
the basic skeleton.

The real engine of the proof is the characterisation in [11] of the set of &
such that (1.2) is satisfied. As mentioned in the introduction: as a consequence
of the characterisation it was shown there exists a sequence of @, satisfying (1.2)
that converge pointwise to the function ®(z) = |z|2 e for z - e > 0 and 0 otherwise.
Following closely the proof of this, it is possible to extract the existence of functions
®p and Wy with [V®g|| < cB~1, | Wyl < cB~4, [VWs|| < ¢B~2 such that the
following two inequalities hold:

Let Ag(z) := 0 for z - 6 > 0 and O otherwise,

|y (2) — Ag ()] < cBi forz e Nya(SI\B, 1 6) 2.1)
and (letting R(z1, z2) = (—2z2, z1) be the anti-clockwise rotation)
div [q)g (R(Vw)) — Wy (R(Vw)) (1 — |R(Vw)|2)]

scﬁ‘%

1— |Vw|2‘ ’VZw‘ for any w € w21,

Recall for simplicity we have taken Q2 = B;(0), as Vu(z) = —é on 9 B1(0) then
we can extend u to a function i : By1/10(0) — R such that

2
/ ‘1—|Vﬁ|2HV2ﬁ‘dz§cﬁ, ‘1—|va|2) dz < cf?
B11/10(0) B11/10(0)

and

~ Z
Vii(z) = B for any z € By1/10(0).

It is more convenient to work with vector fields that are almost curl free instead of
almost divergence free. So notice that (2.1) can be rewritten as

IR (@9 (2) = R (A @] = cB forz € Nyp(SINB, 10)  (22)

and we have fB]]/lO(O) ‘curl [R (®g (R (Vi))) — R (Vg (R (Vi) (1 — |Vﬁ|2)]| <

c+/B. By the quantitative Hodge decomposition type theorem from [2] (Theorem
4.3) we can find a scalar valued function wg such that

/B o ’ng - <R (®g (R (Vii))) — R (Vg (VR (Vii))) (1 — |Vﬁ|2)))dz
11/10

<c/B.

(2.3)
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The real power of (2.3) is that on the annulus A4 := By /10(0)\ B1(0) we know
that Vii(z) = —é—l and hence given inequality (2.2) (and the fact that |Vi| = 1

on A) we have a that &y (R (Vii(2))) € Nﬂ% (0) forany z € AN H (RO, 0), see
Figure 2.1.

Figure 2.1.

In much the same way in the ball B (0) by inequalities (2.2), (2.3) and the inequality

2
[ fi-war] < g
B1(0)

we have that there exists a large set G C B1(0) N H(0, RO), with |B;(0)\G| < /B
such that if z € G then Vwy(z) € B,s% (RO) or Vwg(z) € Bﬁ%(O) depending on

whether R(Vu(z)) -6 > 0or R(Vu(z)) -6 <0.
It is not hard to see we can find points a, b € N'BI ((0)0831 (0)) with |a — b| ~

2,0 - \b ZI > 0, the angle between -2 |b

ﬁZ. Let G = {x €G:Vu)- -R! (9) > O} and G = G\G;. As can be seen
from Figure 2.1, we can connect a to b with a path ' C A so

> ‘R@ - </ tZdle)
r

—al - cpt.

|we (b) — we(a)| = '/ Vwg (2)t,dH'z —Cﬂi
r

(2.4)

= RO -
' |b—
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On the other hand
—a 1
|wg (b) — wg(a)| = we(Z) dH' 7z
[a.b] |b— |
< f ng(z)|b |a’Hl C,B‘ll
[a,b1NG; (2.5)
b—a . 1
< / dH z| + cp*?
ab]ng, b —al
b—
= |RO - b | H'([a, b]mg1)+cﬂ4

—a
_al

> B 8 so putting (2.4) and (2.5) together

and since )RQ . ‘2

1

IBZ
‘RO —a

—al

la — bl < H' (la.b] N Gy) + < H' (la.b] N Gy) + cB?.

So by arguing in the same way for lines parallel to [a, b], by Fubini’s theorem we
can show ‘H ("+b R (Ib al)) \gll < cﬂs Thus all butﬂs points z € B1(0) N
H (0, R(9)) are such that Vu(z) - R™1(0) > 0. As 0 is arbitrary we can rephrase
this the following way. Given ¢ € § ! for all but ﬂé points z € B1(0) N H(0, ¢) are
such that Vu(z) - (—¢) > 0.

1

Now take ¢ = (Cosﬁf ) For all but ,3% points in H(0, e;) N H(O, —y) N
sin B 16

H (0, —e>) we have that Vu(z) - (—ey) > 0 and Vu(z) - ¥ > 0, it is not hard to

show this implies |Vu(z) - e1| < cﬁ% and since Vu(z) - eo > 0 and |Vu(z)| ~ 1

we have Vu(z) € B L (e2) with an exceptional set of measure less than c,B%. So
c
integrating a carefully chosen line inside H (0, e;) N H(0, —y) N H(0, —ey) and

using the fact that u = 0 on d B{(0), we can show |u(0) — 1| < cﬁ%.
Now, recall |Vu| is mostly very close to 1 and we have zero boundary condi-
tion. To avoid technicalities let us assume we can apply the coarea formula at O so

we have
/ / ‘|Vu(z)|2—l‘dH1de19§c\/E.
fes! R4+6NB1(0)

Note also that for any @ € S', u(9) = 0 so by the fundamental theorem of Calculus

f vbt(z)~(—9)dHlZ—1‘ < |m(0) —u®)) — 1|
R,6NB;(0)

< cBTs
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SO

/ / [Vu(z) +6|>dH"z6
fes! JR{6NB;(0)

_ / / Vu@P +2Vu() -6 + 0P dH' zdH'0
pest JRLONB;(0)
< c,B%.

This concludes the sketch of the proof of Theorem 1.4.

2.2. Sketch of the proof of Corollary 1.2 and Corollary 1.3

In order to deduce Corollary 1.2 we need to apply Theorem 1.1 to the minimiser
of I, over A(€2). We can only do this if the minimiser has small energy (and from
Theorem 1.1 we know it can only have small energy if €2 is close to a ball). For this
reason it is necessary to construct a function in A (£2) with this property. This turns
out this is a surprisingly delicate task. It is achieved in Section 4 and Section 5 of
the paper.

The obvious way to attempt the construction is to make some adaptation of the
function ¢(z) = dist(z, 2). This function clearly satisfies the correct boundary
condition. The first problem is that V¢ will have its gradient in BV and it is easy to
construct examples of convex domains that are close to balls for which the singular
part of V¢ is widely spread over the domain. So it is necessary to convolve ¢. Let
Y denote the convolution of ¢ with a convolution kernel of support size ~ €.

We need to check that the function ¢ we obtain by convolving ¢ will have
small energy. By recent results of [3] we have that V¢ € SBV(Q : S'). So by
Poincaré inequality if for most balls the gradient of V¢ is not too concentrated in

balls of sized € then we would have fQ |1 — IVWI2 |2 dz is small. Now assuming €2
is close to a ball, then for x not too close to the center of 2 (which we assume is

0) it is not hard to show that (V;(z) +

is small. By convexity of , if ®' is a

parameterization of ¢~ Y) then h — V¢ (®'(h)) will be a monotonic parameter-
ization of S!. So the total variation of V¢ can be explicitly bounded above. The

closer €2 is to a ball the better the estimate on )V{ () + é—l ‘ holds but near the center
it breaks down. To overcome this we do the following. Let 8 = |Q2QAB1(0)| and let
n(z) = l—ﬁ%+|z|,so IT:={z : n(z) < ¢(z)}isroughly aball centered on 0 of ra-
dius ﬂ%. So defining w := min {¢, n} we have [Vw| = 1 a.e.and Vw € SBV. No-
tice that [, g [Vut = Vo ['dH! < [, |Vet = Ve[ dH + 8H! (D).
Now IT is a convex set of diameter approximately ,B% so HI(I') ~ ﬂ33_2. So we
have the estimate ’Vf(z) +5| < eB¥ so Ve~ () = Vet < B> for any
z € Jy¢\I1. Now by convexity of €2 and hence monotonicity of the gradient along
the level set ¢ ~!(t) we can prove an explicit upper bound V (V¢, Q\IT) < 87. So
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we can estimate

/ |VC+—V§_|3dH] < sup }V{+—V;—|2/ |V§+—V§_‘dHl
Joe\IT Jv\II Jve\IT
< sup |Vet — Ve P V(ve, Q\I) < 8xpTs.
Jye\IT

Putting these things together we have vawﬂQ |Vw+ —Vw™ |3 dH' < cﬂ%. This
allows us to apply recent results on I'-upper bounds of functions whose gradient
belongs to SBV by [8,23]. These results give the existence of a sequence u¢ with
the same boundary conditions as w and with the property that lim sup,_,q I (u€) <
cﬁ-%%. This energy bound allows us to apply Theorem 1.1 and hence to establish
Corollary 1.3.

To establish Corollary 1.2 requires us to construct a Sobolev function by adapt-
ing w with ‘our own hands’. Function i we obtained by convolving ¢ has a problem
in that the convolution will destroy the boundary condition. To circumvent this ob-
stacle, in an /€ neighborhood of the 2. We convolve the ¢ with a convolution ker-
nel who support decreases in proportion to the distance to the boundary. Let the new
function be denoted by ¢. We make the assumption that 32 is C? with curvature
bounded above by €7 and this allows us estimate the various error terms involved
in differentiating a function that is convolved with a kernel of varying support.

. -1 2 3 2 12
Clearly the goal is to show that [ € ™! |1 — |Vg|*|dz < B3 and € [, |V?p| dz <
ﬂ%iz Establishing the upper bounds required in €2\ (N NAC YRS Ne(l'l)> can be

achieved by Poincaré inequalities and the estimate V (2\I1, V¢) < 8m. Establish-
ing the upper bounds on N (9€2) can be achieved by very precise estimates on V¢

and V2¢ which are made due to the fact that the curvature conditions on €2 implies
3
V¢ has no singular points in this neighborhood. The length of 911 is less than ¢f32
3
s0 as |V@llee < ¢ we know fNe(Bl'I)G_l |1 = |Vo[?|dz < ¢B3. Similarly as for

_ 2 3
z € Q\N £(09), IV2¢lloc < ce™!s0 € fv.om |V2¢|"dz < c¢B32. The energy

of ¢ in IT\ N¢(9I1) can easily be estimated and shown to be negligible so putting

these things together gives that I (¢) < cf 23_2 This upper bound allows us to apply
Theorem 1.1 and hence to establish Corollary 1.2.

3. Proof of Theorem

It should be re-emphasized that the main calculations that make this lemma work
(specifically equation (3.7)) are very minor adaptations of the calculations in [11].

Lemma 3.1. Let Q be a convex body centered on 0 with diam(2) < 2. Suppose
u: W»1(Q) — R satisfies (1.4) and (1.5). For each & € S' let Ag : R?> — S' be
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defined by
0 ifz-0>0,

0 ifz-6<0. G-

Ay (2) = {
Let R € SO(2) be the anti-clockwise rotation defined by R(z1, z2) = (—z2, z1) and

let m = R(Vu). We will show there exists a set T C S! with Hl(Sl\F) < 407r,3%
and —T' = T such that for any 6 € T we can find function wg : Q@ — R with the

property
/ Vs — R (Ag (m))] < cB?. (32)
Q

1

Proof of Lemma 3.1. Let M = 2 [f‘T“} we divide S! into M disjoint connected

subsets of length zﬁ” denote them Ay, A, ... Ay. We assume they have been

ordered sequentially, i.e. AiNAj 1 #@fori =1,2,...M — 1. Also assume they
have been ordered so that —A; = Ai+% fori =1,2,... % Let

B % _ S Vux)  —  —
B_{ke{l,2,...2}.erQ.lvu(xﬂeAkUAH%}

zﬂf‘*}-

Since Card (B) B% < |Q| < 47 we have that Card (B) < 47f~5.
Let D := {ke{2,3,...%—1}:{k—l,k,k—l—I}OB;&@}.Asimplecov-

ering argument shows that Card (D) < 2078 _é.

1. TUA o
Let ' = {QGS .Oeuke[ AkUAk+1\24}. Note that for any

23,..4-1)\p
0 € T" we have

- Vu(x)
erQ €B I(Q)UBzﬁl(—e)}

ol € Bt < 3B5. (3.3)

So pick 6 € I" without loss of generality we can assume 6 = ¢;. Lets : R — R
be a smooth monotone function where s(x) = 0if x < Oand s(x) = x if x > ,Bflt

and || V2s||pe < ,B*% and || V3s||pe < ,8*%. It is clear such a function exists.
Let o(z) = s(z-e1) = s(z1). Define @ : R? - R2 by

s (2] oo () ()

_ ( 9 @)1+ 2301 2) )
0 @)z — 222101 @))°

_(Y1@) _ (%1
¥ = <‘112 (Z)) o (%290,11 (Z)) '

(34)

Define
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Recall m (z) :== R (Vu (z)) so m is divergence free. Note (using the fact ¢ o = 0
and ¢, 12 = 0 and divin = 0 for the third inequality, and using divmm = O for the last
inequality)

- (e m)ymi +m3p,1 (m)
AV [P (m)] = div <<ﬂ (m)ymy — mszmﬂ,l (m)>

= (p1(m)my 1+ @ 2(m)mz )my+ @(m)my 1+ 2momy 19 1(m)
+m3(@,11(m)my 1 + @ 12(m)ma, 1)
+ (@, 1(mym1 2 + @ 2(m)my 2)my
+ @(m)myp — ((my2my + mymy2)@,1(m) (3.5)
+mima(@11(m)ymy 2 + @ 12(m)myz 2))

= mig,1(mymy 1 + 2momo 19,1 (m) + m3my 19,11 (m)
+ momy 29 1(m) — ((my,2ma + myma )@, 1(m)
+mimomi 29, 11(m)

=2¢1(m)(mimy 1+ momy 1) — @ 11(m)ma(mym 2+ moms 2).

Note also that

Wm) - V(1 = mf) = —W(m) - (2(’"1’"1,1 +mzmz,1>>

2(mymi 2 + mamy 2)
= 2¢,1(m)(mimy1 + moymy 1) (3.6)
—ma@ 11(m)(mymy 2 + mymy )

so by (3.5) we have
div[® (m)] = W(m) - V(1 — |m|?). (3.7)

Let ® := R(®) and ¥ := R (¥) note curl [cb(m)] D dividm)] = Wm) -

v —|m|?). So

curl [xif(m)a _ |m|2)] — div[W (m)]|(1 = [m|?) + W(m) - V(I — |m|?)

— div[¥ (m)] (1 = |m[?) + curl [é (m)] : oY
Thus using the fact that | VW(2)| < ¢ |z| V3]l () < ¢8™? |2] we have
curl [ ®(m) — Bm)(1 = ) |
D _div[w(m)I(1 — Im[?) (3.9)

=— (W11 (m)my 1 +W 2(m)ma 1+ 1 (m)my 24+ Wp 2(m)my 2)(1—|m|?)

< B3 ml |1 = ImP| V.
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Hence
/(curl[ém)—\i/(m)<1—|m|2)]( < cﬂ—if ml |1 = pmP2| 19|
Q Q

Using (3.9), note that if x is such that [m(x)| > 2 then for J(x) := Im(x)|> we have
IVJ(x)| < ¢ |1 —|m[*||Vm]| and so

/ |VJ(x)|dx§c/ ‘1—|m|2‘|Vm|§c,3.
{x:2<Im(x)|<4} Q

Applying the Co-area formula we know f864 H'(J71(s))ds < cp and so we must
be able to find 7 € [8, 64] such that H'(J~1(¢)) < ¢B. Let

G={xeQ:Jkx) <t} (3.10)

and define w : Q@ — R by

| ®m) =Y m)(1 — |m|*>) forxeG
wix) = {0 for x € Q\G. G-11)
Soifx € G,
curl(w) =  curl (ci»(m) —m)(1 - |m|2)>
(39,3100 |
< 2l —|ml|[|Vm]. (3.12)

Thus if x € int (\G), curl (é(m) —V(m)(1 — |m|2)) —0.

_ Sincem € W1(Q) and d(x) — W (x)(1 — |x|?) is C!, the vector field & (m) —
v(m)(1l — |m|2) is BV by Theorem 3.94 [4]. So by Theorem 3.83 [4] we have that
w is also BV and the singular part of Vw, which we denote by [Vw];, is supported

on J7 (1) N Q. As )cb(m(x))( < clmx)? and ‘\Il(m(x))‘ < ¢f~% |m(x)| we have
that 1
ess 5D -1y [BOn(0) = () (1 = Im()P)| < cp~H

and thus || [Vw], |(S) < cB~TH'(J='(t) N Q) < cB1. Now we know that for any
set S C Q

[curlw[|(S) < c[VwlI(S),

and so in particular

leurlw || (J 7 (1)) < | Vwl[(J 71 (1)) < cBi. (3.13)
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Thus

leurlw|[(R) < eurlw]|(J 7! (1)) + lleurlw|[[(§) + llcurlw || (int(R\G))

(3.12),(3.13) 3 1
B 83 4 ep z/g|1—|m|||Vm| (3.14)

Now we try and understand the nature of vector field d~>(m (x)) — \if(m x)Ha —
2 : 1 _
|m(x)|”). Note that if z € N /g (S ) N{z; > 0}\ <Bz,33¢ (ex) U Bzﬂ% ( 62)) then

2 2
©() = z1,9,1(2) = 1 and so P(z) Ea (Zl —5Z2>. On the other hand if z €

Nﬂ(Sl) N{z1 <0}\ (Bzﬂél1 (ep) U BZﬂ% (—e2)> then ¢(z) = ¢,1(z) = 0 and so

°@) = <8)

. 1 _
Now, if 7 € Nﬁ(S )N {z1 > 0}\ (BZﬂle (ex) U B2,B‘l1 ( e2)> we have

(@@ -F@U-1P)=R (A )] = |B() = R (A )]

+cy/B  sup ‘i’(z)‘
ZZEN;F(SI) (3.15)
=[r(T53) - x o)+
< cpi.

. 1 _ . .
And if we have z € NJB (S ) N{z; <0}\ (Bzﬂ% (ex) U B2ﬁ% ( ez)> arguing in

the same way we can conclude
(@@ = F@ = 122) - R (A, )] = . (3.16)

Let IT := {z €eQ:|m@)|ed— /B, 1+ ﬁ)} and let

Vu (x)
. eB 1
[Vu (x)] 284

E = {x eQ (e1) U BZﬁ‘lt (—61)} . 3.17)

Note from (3.3) that we know |E| < 3,3% .
(1.5)
Note also /B 1Q\IT| <¢ [o\ [1=IVul’| < B thus

IQ\IT| < ¢y/B. (3.18)
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Now from (3.15) and (3.16)

Bl

'/n\g(&)(m) — U (m)(1 = m|») = R (Ae, (m)) dz| < cp3. (3.19)

On the other hand recalling the fact that ’\i/(z)’ < ,3_% |z,
using the definition of G (see (3.10)) we have

@) = clz? and

‘ [ (@n) = bm 1~ m) R (a0, ) dz
g\
<clG\1|

(3.18)
2 B (3.20)

Thus applying (3.19) to (3.20) gives

Vg\g ((c'IS(m) — U (m)(1 — |m»)) — R (A, (m))) dz| < cﬂ%. (3.21)

Recall that |£] < 3,8% SO

’/ ((cb(m) — U (m)(1 — m») — R (A, (m)))dz, < cl€|
ENG

< c,B%.

Putting this inequality together with (3.21) gives

Vg ((é(m) — U(m)(1 — Im?) — R (A, (m))> dz| < cBs. (3.22)

So by definition of w (see (3.11)) we have that

'/ w — R(A, (m))dz
Q

(3.22) 1
2 cﬂ§+' / R(Ae, (m))dz
Q\G

< B5 +|2\0
(3.18) |
< s, (3.23)

Now from (3.14), applying Theorem 4.3 from ( [2]), there exists w,, € whl(Q)
such that

/ |Vwe, —w|dz < cﬁ%
Q

thus putting this together with (3.23) and gives (3.2). O



FUNCTIONS WITH LOW AVILES GIGA ENERGY 17

Lemma 3.2. Let Q be a convex body centered on 0 and let u : W>2(Q) — R bea
function satisfying (1.4) and (1.5) and u = 0 on 0Q and Vu(z) -n, = 1 on 92 in
the sense of trace, where 1, is the inward pointing unit normal to 02 at 7.

For any r > 0 define 2, := N,(2); we will show we can construct a function
i W>L(Q,) — R satisfying

1 — |Vil?| |V dz < B, 1 — |Vii|*|dz < B, (3.24)
N L& | |
Q Q

and
i) = {u(z) +r forz € Q (325)

r—d(z, Q) ifzeQ\Q.

Proof of Lemma 3.2.

Step 1. We will show Vu(x) = n, for H' ae. x € 9.

Proof of Step 1. Recall Vu € W'1(Q) and Vu is defined on 9L in the sense of
trace, as the trace operator is bounded we know f aq |VuldH I < 0.
We define

u(z) forzeQ
v(z) = .
0 ifzeQ\Q.

So note the vector field Vv(z) is equal to Vu(z) inside €2 and is zero outside, so by
Theorem 3.8 [4] Vv € BV (2,) and hence by Theorem 3.76 [4] and Theorem 2,
Section 5.3 [13] for H! ae. x € 9K the following limits exist

lim [IVu(z) — Vu(x)|dz =0 (3.26)
p—>0 B, (x)N{z:(z—x)-ny >0}
and
lim IVv(z)|dz = 0. (3.27)
P=0J B, (x)N{z:(z—x)n, <0}

Let w?(z) = W, by (3.26) and (3.27) for any sequence p, — 0 we have

Wl,l
wf(z) = w, as n — 0o where

Vu(x)-z forze H(Q,ny)
wy (2) =

0 forz € H(O, —ny)
however Vw, would not be curl free unless Vu(x) = An, for some A € R. As we
know Vu(x) - ny = 1 this implies Vu(x) = 7, for H'ae.x € Q. This completes
the proof of Step 1.
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Step 2. For any z € 2,\Q, u(z) = d(z, 0%;).
Proof of Step 2. Note that [|Vi| o\ < 1. Let x € 0%, let g(x) be the
metric projection onto a convex set €2, i.e. the unique point for which |x — g(x)| =
d(x,2).Sincex € 02, = (N, () ={x € Q° : d(x, Q) =r}so|x —qgx)|=r.
Since ii(x) = 0 and it(g(x)) = r and as # is 1-Lipschitz on €2, \ 2 this implies
u((1 —a)x + ag(x)) = ar forany @ € [0, 1].
Now let Q(z) := d(z, 02;). Forevery x € 992,, Q(g(x)) < |g(x) — x| =r.
As 02, = 9(N,(R2)) so we know Q(g(x)) > r and thus have Q(g(x)) = r.
We also know Q is 1-Lipschitz and Q(x) = 0, thus in the same way as before
O —a)x + aq(x)) = ar for any o € [0, 1]. Therefor Q(z) = iu(z) for any
z € [x,q(x)], x € 32, and this completes the proof of Step 2.

Step 3. We will show that i € W21(£,) and that i satisfies (3.24).
Proof of Step 3. First we claim that i € W>!(Q,\) and

/ )v%?‘ dz <c. (3.28)
Q\Q

Note that i#(z) = dist(z, 022,) in 2,\Q2. By Corollary 1.4 [3] for any compact
subset Q' CC €, we have Vii € SBV(Q\Q). Also as ii(z) = r — dist(z, Q) for
any z € Q,\Q again by Corollary 1.4 [3] for any compact subset Q" cC R*\Q
we have Vi € SBV ((Q,\R2) N Q"). Putting these thing together we have Vi €
SBV(22,\2). Recall i(x) =r —d(z, ) for z € 2,\£2, so as Q is convex for every
z € 2\ there is a unique point b(z) € dS2 such that d(z, 2) = |b(z) — z| and

Vi(z) = igi:;l . Since b is a continuous function this shows that Vi is continuous

on Q,\Q, hence Sy; N Q,\Q = ¥ (recall Definition 3.63 [4]). So by equation (4.2)
of Section 4.1 [4] we have that Vii € W!1(,\2). Thus in particular (3.28) holds
true.

Since €2 is an extension domain by Theorem 1, Section 4.4 [13] there exists a
function p : WH2(R?) — R? such that p(z) = Vii(z) on  and Sptp is compact.
Similarly as €2,\€2 is an extension domain there exists a function g : wLI(R?) —
IR? such that ¢(z) = Vii(z) on ,\2 and Sptq is compact. We define w : Q, — R?
by w := pllg+qlg,\q,by Theorem3.83 [4] w € BV (£, : R?) and since p and ¢
agree on d€2 we have that Vw as a measure is absolutely continuous with respect to
Lebesgue measure (and hence w € WLHQ, : R?)) and Vw = Vplg+Vglg\q.
Now as w = Vi a.e. in 2, we have that Vii € WL-1(Q,).

Since V2ii € L' we know

/ ‘1—|Vﬁ|2HV2ﬁ)dz=/|1—|Vﬁ|2HV2ﬁ|dz+/ ‘I—IVL?FHVZzZ‘dz
Q, Q \Q
=/ ‘1—|V12|2HV212‘dz
Q
< B.

Similarly [, ‘1 —|V12|2‘dz:f9‘1 —|Vﬁ|2‘dz§,3. 0
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Lemma 3.3. Let Q be a convex body with diam(Q) = 2. Let u : W>2(Q2) — R be
a function satisfying (1.4) and (1.5) and u = 0 on 02 and Vu(z) -n, = 1 on 0Q2 in
the sense of trace where n; is the inward pointing unit normal to 02 at 7. For any
x,v € R? let H(x,v) := {Z€R2 (z—x)-v >0}.

Let T C S! be the set constructed in Lemma 3.1. LetU = € /10 be the convex

body and ii : W>'(U) — R be the function constructed in Lemma 3.2. Let R be
the anti-clockwise rotation deﬁned by R(z1,22) = (—22,21). Let Ry € {R_1 R}

There exists a set ' C T with H' (F\F) = 0 such that for every 0 € T there exists
unique points ag, by € oU with n,, = 6 and np, = —6 with the property that if we

define gfo = {z elU :Vi(z) - R0_19 > O}, then

ag + by bg — ag R
UNH , R 0
‘ ( 2 O(lbe—a9|>)\g9

Proof of Lemma 3.3. Without loss of generality assume €2 is centered on 0, i.e.
Jozdz = 0. Since dU is smooth and U is convex there exists a set 8 C S !

with H'(S"\ E) = 0 with the following property:

1

< B, (3.29)

3 unique ay, € 0U with n,, =¢ and a unique b, € 9U with np, =—¢ forall p € E.

Now by Lemma 3.2 (3.24) function u satisﬁes (1.4) and (1.5) so by Lemma 3.1
there ex1sts I c S! with H! (S \I') < 407r,38 satisfying (3.2) for every 8 € I'.
Define I' := I'N . Pick 6 € T' and let ¢ := RR,, 1o sonote thatp =6 or ¢ = —6

depending on whether Ryp = R or Ry = R~
Note since €2 is convex 2 C H (ay, ¢) we also know that b, € H (ay, ¢) (since
otherwise given that 92 is smooth it would not be possible that np, = —¢), hence

defining 7, = | we have 7, - ¢ > 0.

|b
Letm = R(Vu) it is easy to see that

I, :={z€L{\Q:ﬂz(z)-(p>O}={zeU\Q:Vu(z)-R71(p>0}

forms a connected set whose boundary is contained in 9/ and 952 and in two lines
parallel to ¢. See Figure 3.1. Note also the endpoints of dl/ N Iy, are given by a,
and b,,.

Slnce eitherp = 0 € T or ¢ =-0¢ F we can apply Lemma 3.1. To m and
thus there exists function wy, : &/ — R such that

/ [Vw, — R (Ay ()| dx < cB5. (3.30)

By the Co-area formula and Chebyshev’s inequality there exists aset H C [0, 1/10]
such that H'([0, 1/10]\H) < cB2 where

/ |Vwy — R (Ay ()| dH' < B> forall r € H. (331)
i~ (1)



20 ANDREW LORENT

Figure 3.1.
Pick s € [1/10 — c,Bﬁ, 1/10] N H. Recall 7, = % and define
¢ 4

_ b
W, =UNH (% Rup). (332)

We claim that L L

WUNTly, =0UNW,. (3.33)
Since the endpoints of dU N T1,, are the same as the endpoints of U N ch it is
sufficient to show H! (BZ/I NI, N Ww) > 0. Let

b
A:sup{k>0: (%M\R@,Hup))nau#@}

then let ¢, be the point given by <@ + ARty + (‘L]p)) NAU. Since ol is smooth
Ne, = R7'1y,50 Vu(cy) = Rty and thus Vu (c,)- R ' = R7'r, R p = 1,-
¢ > 0. As this inequality is strict, in a neighborhood of ¢, the same inequality will
be satisfied. Thus we have H' (81/[ NI, N W¢,> > 0 and so we have established

(3.33).
By the construction of Iy, W, and by (3.33) and the choice of sy € [% -

c,821_4, %] we have
H' (0%, NTI,AW, ) < B, (334)

. 1 . . fcosyr —siny
There must exist ¢ € (0,2824) such that, defining Q := (sinw cos ¥ ), we

have ,
|Rp - Q1y| > B2, (3.35)
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b 1 L
Let ¢, = a“’; £ 4 C,B 24 Rt,. From the construction it is clear that we can choose

constant C, large enough so that

ag + by,

Card <BQSOOH( ,R%) m{;¢+<Qr¢>}) =2.

Let
A:=sup{r >0:0Q, N{¢ +1RT, + (1)} # ¥} . (3.36)

For € (0,20) let o}, 07 be the points defined by {0} ,07} =02, N{¢p +1R7y+H O1,)}
and Qtz <01y > Q,l - Qt,. By (3.34) we can assume constant C; was chosen large

enough so that Q[l, Qtz € I1,. Let %, be the connected component of 9 €2, \ {,Q,l, Qtz}
that lies inside IT,. Thus

(wy(eD) = wo(e)) = (@F — 0}) - Ry

/Vw¢(z)~tde1z—/ Ry -t,dH'z
%t

> (3.37)
= V (Vwy(z) — Rp) - t,dH'z
i
(331) 1
< c¢B1n.
Let
e,=/[ ]{Vw(p—R(A(p(ni))\dHlx. (3.38)
ol .of

By the fundamental theorem of Calculus

< é;.

(wso(ef)—ww(gtl)) —/I ) R (Ay (i) - QrpdH'x

[Qt th]

Thus in combination with (3.37) we have

<e BT (339)

(o7 —ol) - Re - / R (Ay(R)) - QrpdH'x
[of 7]

Given the definition of A, (see (3.1)) and of Q(f O (see the statement of Lemma 3.3)
SO

R(Ay(1(x))) =R < i (x)-¢ >0<:>Vﬁ(x).R_1<p>O<:>Vﬁ(x)-R(;10>0<:>xe Qée‘?

In exactly the same way A, (11 (x)) =0 < x ¢ QGR . Hence

[,y Aomenan's =oi’ ([af.a2] nG")
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which from (3.39)

R L
(67 —0o!) - Ro - 07 ot ([0} 7| NG°)| < e + B

2_ 1
since (recall (3.35)) we chose Q so that |R(p . Qr¢| > ,Bﬁ and since 2’2_9’1 = 01y

| 0 |
’ —H' ([QLQ?]“%RO)
Thus (recall definition (3.36) of )

R,
H' ([Q#Q?] ﬂge") > ‘Q} — 0}

So

2 1 — L L
Or — 6 S He + cf.

— BT, — cB for any t € [0,2]. (3.40)

‘QSO NH (¢, R (Q7)) N gé?o

= / H! ([g},gf]mgfo)dt
[0,2(]
(3.40) /
>
[0,2(]

3.38) 1
= | N H (¢p, R(07y))| — B2 (341)

—c,82]4/ [Vw, — R (Ay (7))| dx
u

(3.30)
= |94 N H (6, R (Q7,))| — B

| |
—cf e — cf2AdL

o —of

Note [\, | <87 and by definition of W, (see (3.32)) [W,\H(Zy, R(Q1,))| <
c,321_4 this together with (3.41) gives ‘W(p\QQR o < B 2. Now if Rp = R and

so ¢ = 0, it is immediate that 7, = |ZZ:ZZ| and so (again recalling definition
(3.32)) (3.29) follows. On the other hand if Ry = R~' then ¢ = —6 and so
ay, = by, by = ap, which implies 7, = _IZZ:ZZI so Rt, = R<_|ZZ:ZZI) =

|bg—ap| [bg—aq|
follows in this case. O

R~! ( ba—ao ) = Ry ( by —ap ) hence (again recalling definition (3.32)),(3.29) also

Lemma 3.4. Let Q be a convex body with diam(Q2) = 2. Letu : W>*(Q) — R
be a function satisfying (1.4) and (1.5) and in addition u satisfies u = 0 on 92 and
Vu(z) - n, = 1 on 02 in the sense of trace where n; is the inward pointing unit
normal to 02 at z. Let a,b € Q be such that diam (2) = |a — b|. We will show

1,1 1
there exists constant C3 > 1 and rg € (C; 18512, C38512) such that

e a+b
u(x) >1—C3p52 for any x € 9By, 5 . (3.42)
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Proof of Lemma 4. Let U be the convex set and & be the function constructed in
Lemma 3.3. To simplify our notation we will without loss of generality assume

that # = 0. It is easy to see we can chose @, b € U such that F_Z‘ = |Z:Z|,
G
‘Zz — l;‘ = diam (/) and &%b = 0. Without loss of generality also assume ’%_Z) =
G

e>. For any z € ol let n; denote the inward pointing unit normal to 9/ at z. Note

that n; = —e; since otherwise U ¢ B’a_[;’(l;) and this contradicts the fact that

a— l;‘ = diam(lA). For the same reason n; = e;.

Step 1. Let P : [0, H‘(au)) — ol be a ‘clockwise’ parameterisation of dlf by
arclength with P (0) = a. For some y; € (H'(U) — Zﬂi, H'(0U) — ,821%) and

V2 € (,62;76, Zﬂﬁ) we have that for o1 = P(y1), 020 = P(y2), (see Figure 3.2) the
points o1, o, satisfy the following properties: firstly

Mo, € T and 115, - (—e2) = 1 — cfTS fori = 1,2, (3.43)
secondly
o1 — o2 < 40850, (3.44)
and thirdly
b B

o1 (—e1) > and oy - €1 > (3.45)

Proof of Step 1. Recall Y = Q%(Q), so for any x € ol let z, € 9 be such
that d(x, Q) = |x — z,|, note that we can inscribe a ball BLO (zx) C U with x €
1
oB L (zx)NOU and B i (zx) NOU = @. Thus the curvature of 0l is bounded above
by 10 and so
| PllLoecarey < 10. (3.46)
Let T' C S! be the set constructed in Lemma 3.3. We will show
inf{h c [ﬁ%, H‘(BU)] Ny € F} <2851, (3.47)
.. 1 ne ~
Suppose this is not true: so for every & € [,B 256,28 512], npay € I'. Note that
since al is C!, {T]P(h) the [/82;_6 2,35%]} is connected and since Hl(Sl\F) <
4075 . Thus

L

H ({np(h) ‘he [/3256, 2;35}—2]}) < 40785 . (3.48)
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Note that as P(0) = ep, P(O) = ¢1 and as generally for x € [O, HI(BZ/{)] where
we have that P(x) = R(51p(x)). So for any h [0, 2,35%]

[Py —el| = |PET) = PO|+|Puy - PpT)

(3.48),(3.46)
=

20875 + 407BF < 4077, (3.49)

Thus by the fundamental theorem of Calculus, (a + 2ﬁ5%e1)‘

8077475 572 . Now

\(a+2ﬂsize1)—5)=/a—5 +487%
a—b|+ 3 gk
- 4

L
6

Thus ‘P(Zﬂsm) _ b( > (a - b(
established (3.47).

Hence (recalling the fact H'!(S'! \F) <40rp %) we can pick y» € [,8 2 28 51z ] N
T such that

1
n — NPy | < 50mB3 (3.50)

P(B75%)

and NPy, € F
In the same way we can pick y; € [HI(BZ/{) - 2,3ﬁ, H'(U) — ,Bﬁ] such that

l ~
= NPy | = 507838 and NPH) € r.

77P(Hl(dlff) 132L
Define oo = P(y») and 01 = P(yy). Since P (0) = €1 and recalling again that
nps) = R7U(P(5)),

PO - PO = |PO - P+ [P - Pon)

3.46),(3.50

GO0 ook
Arguing in the same way we can establish |P(O) — P(y1)| < 608 ﬁ Thus as olf
1s convex |r)(,i + ezi < 6071,3ﬁ for i = 1, 2 which establishes (3.43). Hence

B
2

. vz, (3.49) i
02-e1 = (02 —a)-e; =/ P(s)-eids > (1—-40np28)y, >
0
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which establishes (3.45) for o,. Inequality (3.45) for o) can be established in the
same way. Finally note

HY(0U)

o1 — 02 = |[P(r2) — POn)] < /

. 2.
|P<z)\dz+/ "|P(2)] dz < 405t
V2 0

(3.51)
which establishes (3.44).

Step 2. For y e R?, ¢ e R?, y > 0 define X (y,¥,y) := {z :

We will show there exists positive constant C4 and xg € NC 5 & ([El, 15]) NU such
4

that for some g € BC 5 S (e2) the following inequality holds:
4

‘X (x(), xpo,cmﬁ) AU\ {x Vil (x) - e1] < cmﬁ}‘ <CifF. (352

Proof of Step 2. Recall we know o7 and o, are chosen so that 74, € T and No, € T.

We also know n; = —ez and n; = e2. Let w1 € ol be the unique point for which
—Nw, = No, and let wp € U be the unique point for which —7,, = 71s,. See
Figure 3.2.

Define

m, ::H(oz—sz’R(wz—oz ))ﬂH <01+w1,R1 (M)) (3.53)
2 lwp — 03] 2 |y — o]

and

M, := H (02+‘“2,R1 ( @2 % ))ﬂH (G‘ te g ( ad il )) (3.54)
2 |2 — o2 2 |y — o1

and let IT = IT; U I, and let xo := I1; N Iy, see again Figure 3.2.
Let us define lf = x + R, 60 for any x € RZ%, 0 € S!. First we will show
(xo + Rey) C TT however this inclusion is relatively easy to see because firstly

1

w —0 o — oy \ (3.45 1087%
ez-R( 1 1>=€1'( 1 1) 4 B
lwy — o1 lwr — o1l 44

thus 152 CcCH (0, R <M>> And secondly as xo € dH (”‘;“" . R < @179 ))

|lwi—o1] |y —o1]

l;ch 0. R a)l—:al _H 01+w1’R a)1:01 ‘
w1 — o1 2 |1 — o]

In exactly the same way I5> C H (@ R! <|2§:§§|>) Hence Iy2 C T1j. Ar-

guing in the same manner we have [, C 1, and thus we have established the
claim.
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Figure 3.2.

Let y = [ N U, by construction we have that y lies in the component of af
between o1 and o, and hence by (3.51) we know d (y, l(e)z) < 40/35]? and so it
follows xg € N 1 ([Ez, l;]) nY.

cB312
Since nz = —ez, n; = ez and U is convex we know wp € H (0, —e;) and for
. (3.45)
the same reasons w; € H (0, e1) see Figure 3.2. So (00 —wp) -e1 > 0p-€1 >
(3.45) 1

1
¢f 256 and for exactly the same reason (o7 — w1) - (—ey1) > 01 - (—e1) > ¢BZ%6.

Thus as |07 — w1| < 2diam (/) and |0, — wo| < 2diam () we have ;;:gil ‘e >

1 _ L
¢B 76 and ‘Zi_zh - (—e1) > ¢B7%6 . Hence

(01—w1> (0"2—602) (01—601 )(02—602 )
. = 7.61 7.61
lo1 — w1 |02 — s lo1 — w1 lo2 — ws|

o] — W] o) —

lo1 — w1 loz — w3

< —cpTH £ 1.

o1—w)
oj—wi|

oy - L
and 2—%% is greater than C4872% for

In other words the angle between i o0 —wr]

some positive constant Cy.
] .
Thus there exists ¥y € B 5 Sk (ep) such that X (xo, Yo, C4,3ﬁ) C TI1. Now since
C,

Noy» Noy € T we can apply Lemma 3.3 so we know that

UnH 02+a)2,R_1 wy — 09 \ngl
2 |z — o2 o2

1
<cB%
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and

Unm (2590 g (L)) \GR | < g,
2 lw1 — o1] o

Thus (recalling the definition of Iy, (3.54))

)Hl NGy 1 NGR | < B

In exactly the same way we have (recall (3.53))
-1 1
M2 nunGE ' NGR | < e

Now for any x € gR N gRl we have Vi (x) - Rny, > 0 and Vii (x) - R™ 'y, >
0. Since from (3.43) Mo, € XT (0, —ey, cﬂf%> fori = 1,2 we know Ryn,, €
Xt (0, el, cﬁﬁ) and R~1n,, € X+ (O, —eq, ﬂﬁ), from this it is easy to see

(assuming we chose C4 large enough)|Vii (x) - e1| < Cs IBfls . And in the same way
for any x € g,ﬁ;l N Q,ﬁz we also have |Vii (x) - e1] < C4/32§_6,

X (x0. vo. Cap ) N2 [ 19 o) -] < Cap 5 |
<c‘nlmu\g’3 ng ‘-l—c‘nzﬂU\gR mgﬁl)

< C4,3ﬂ

which establishes (3.52).

Step 3. There exists positive constant Cs such that for some v € {e;, —e;} we have

X (30, Yo, C4B750 ) NUNH (CspPvr, 1) \Voy, | = Csp7 (355)

where

Vo = {x eU:Vii(x)e N 256 1 (— vl)} (3.56)

Proof of Step 3. Let @y = I, “' N dU. Note since U is convex ng;, - e; > 0. We

claim

1
Nexg - €1 > o (3.57)

Suppose this were not the case, then 15, - e; < %. Since U is convex (and recall
U = Q%) and diam(l{) = % we know U C H(z’z}f), 1750) C H( 1061 77w0>
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which implies (l; + %el) ‘&, > 0 and thus

~ 99 ~ 22 -~ 22
b-ep 100 ((b—l—ﬁel)-ez)(nﬁ)-ez)>—(<b+ﬁe1>-el) (775;2)'61)

2 o »
10770 "1 =00

%

However as ‘& - 15‘ = diam(f) = 35, 5> =0 and “7_"‘ = e, this is a contradic-

tion. Thus (3.57) is established.
Let N
aozsup{a>0:{nx :xeBa(ﬁo)ﬂal/{}ﬂFsz}.
In the case where {a >0:{n::x € By(my) NAUIN T'= @} =f@letag =0.
Since H!'(S'\T) < 4071;3% we know U\ By, (o) # ¥. Note also

Mo == {ny : x € Boy(@0) N U}

is a connected subset of S!. Thus H!(Mj) < 4071/3% and hence for every z €
By, (@) NoU, ’nz — n50| < 4071,3% . So we can pick o1 > o such that some point
w( € dBqy, (@0) N U satisfies 14, € I' and

0. = 1y | < SOB for all z € By, (50). (3.58)

1

Now since B L 0) Cc U, we know @y - (—ey) > 19- Using again the fact that

0-
Np@s) = R~! (P(s)) (where P is the parameterisation of 3l{) it is easy to see by the
fundamental theorem of Calculus that (3.58) implies

1
@y - (—e1) = —. (3.59)
11
Also from (3.57) and (3.58) we know that
1

Ny * €1 > ITh (3.60)

Let w1 € ol be the unique point for which 74, = —n4,. Note that by (3.60) we

know that 0, - (—e1) > 1—11 and as n; = —ez and n; = e; by convexity of U this
implies

wy € U N H(O, ey). (3.61)

[ —w0|

H! <[a, bINH <M1)> s la—bl (3.62)

1
Now let! € ( D190 ) N S! be such that

2 2
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|| —w|

Choose S € {R‘l, R} so that § ( ZLZ0 ) = [. Since 1y, € T' we can apply
Lemma 3.3 and hence we have

‘L{ﬂH <Mz) \GS

: S | =em. (3.63)

From (1.5) and (3.52) we know

}X (xo, o, cmﬁa) AU\ {x : Vii(x) € Ny (fea, —ez})}‘ < B, (3.64)

. _ (3.60) .
Since so |S lnwo ~e2| > 117! there exists some fixed vector vy € {e2, —ea}

such thatif x € gngﬂ{x : Vi (x) € Nygo-1 ({ea, —ez})} then Vit (x) € Bygg-1 (Vo).
So using (3.63) and (3.64)

— + i
’X (xo, Yo, c4ﬁz§6) NUNH (Q,l) \ {x : Vii(x) € Bygp1 (UO)}’ (3.65)

1
< cp=.

Now for any w € H (0,v9) we have the elementary inequality |w —vo| <4d(w,S h+
2 |w - e1], so using (1.5), (3.52) and (3.65) we have (assuming constant Cs is large
enough, recall definition (3.56))

‘X<x0,z//0,c4ﬂz§6)mUnH(M,z) \Vy,| < B (3.66)
By (3.61 > 0 and so | ZL=20 O 1 and so |l > L. Thusb
y (3.61) @ - e1 = 0 and so o —mo] " €l| = g a0 so |l - e2] > zz. Thus by

the fact that ¥y € BC srke (e2) and that inequality (3.62) implies 0 € H (%, D
4

there exists v; € {e, —ep} such that for some constant Cs5 we have

(3.67)

X (xo, Vo, c4ﬁz.lTé) NH ((35/32;_6111, vl) CH (M 1) .

2

Putting (3.67) together with (3.66) gives

§c,3i.

X (w0, Yo, C4B755) U H (C501, 11 ) \V

Letx € U\Q N X (xo, 1/10,04;82%6) N H(CsBT5 vy, v1) s0 as d(x) = d(x, )
(and since again ¥ € chﬁ (e2)) so Vu(x) € Ncsﬁﬁ (—v1) thus we must have

vg = —v1, this gives (3.55).
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Step 4. We will show there exists a positive constant Cg such that
—0 0 L
(57 VDB, 1 () € X (0, Yo, Cap ™)

1
forall x € Bﬁllﬁ(xo),é? esS' N Bﬂﬁw’O)'

(3.68)

Proof of Step 4. Without loss of generality we assume xo = 0, o = e and Cq = 1.

To begin with to take point x = 8 % e1, we will show later the general case follows
from this. See Figure 3.3.

y
X (0, ¢y, 31/256) ! !
€ N :
Rkt : T
A ,
el [ OR—x :
A o
, 5/31/1:\2\8 Ty
' [ T Tl
Yy
311256 s
'/ g1/128
| [
0 X z

[31/128

Figure 3.3.

oL

Let9 = (Sm’;f ) and let y = 9X(0, e3, ﬂﬁ) N19. We will get an upper bound
cos B 128

on |y|. Let z = y - eje;. We have two triangles to calculate with: triangle 77 with

corners on 0, x, y which is a subset of triangle 7, with corners on 0, z, y. Note that

by applying the law of sins we have |y|~! sin(5 —{—ﬂﬁ) =|x —y|™! sirll(% —,Bﬁ).

Note that 73 = T>\T is also a right angle triangle and since |z| = BT2® + |x — Z]

we have |y|cos(F — ,Bﬁ) = ﬂﬁls + |y —x|cos(F — ﬂﬁ). Putfing this together
cos 256

. . . S 1 A S
with the previous equation we have |y|sin 8256 = 128 4 |y| ——— sin 128 which
cos B128

gives |y| (sin B — B i ,Bﬁ> — BTS. Now by taking the Taylor series

approximating sin and cos we have |y| (,82;7 + 0 (ﬂﬁ>) = ,Bﬁ. Thus |y| ~

ﬂﬁ and thus the existence of constant Cg such that (3.68) holds follows instantly
for the case x = ﬂllﬁel .

In the general case where x # ﬁel suppose without loss of generality x -
e1 > 0. Define X = (x 4+ (8)) N (e1), since the angle between 6 and e; is with
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cﬂzg*e of % it is easy to see X € Bzﬁﬁ (0) and of course lg N 90X (0, ey, ,32%6) =

lf NaxX(0,ez, B ﬁ) so the argument for the special case x = 8 b e1 can be applied
to show the existence of constant C¢ satisfying (3.68).

Step 5. We will establish (3.42).
Proof of Step 5. Let

h(z) =1 (3.69)

1 1
X(xo,wo,cmﬁ)ﬂH (Csﬂﬁ V] ,v|>ﬂM\V_Ul

(3.55)
so we know f h < c,82_14 . So by Fubini’s Theorem,

2
[ [ (n+ 57 1= ] )1 = o1 azas
uJu
2
= (h(z)+ﬁ—‘]1—|va(z>|2] )(/ |z—x|—‘dx)dz
u u

2
< c/ (h(z) 87 |1 = Va@)P| )dz
u

(1.5) 1
S ch 24,

Let

Gi={ven g oo [ (ho+s - Wi )iz < gk
pI128 u

1 1 .
so we know 838 < ¢B#®. Assuming

Bﬂ&;(XO)\G‘ < cﬁi,thus

B,sﬁ (x0)\G

B is small enough |G| > 2’1,36]_4. By Step 4, (3.68) for any x € Bﬂﬁ (x0), 0 €

_ 1
B}Sllﬁ (o) N S! we have (170 U lf)\Bcﬁﬁﬁ (x) C X (x0, Yo, C4B75).

Since X (xq, Yo, C4/3ﬁ) = X (x0, —v0, C4/3ﬁ) we can assume without loss
generality that ¥ - vi > 0. Pick x € G. By the coarea formula we must be able to
find 0 € Bﬂﬁ (¥o) N S! such that

2
/ h@) + B~ |1 = Vi@ P?| dH'z < BB /T8 < BT, (3.70)
@ ulynu

Let K == ;" uiynun H(Csﬁﬁvl, v1). Let d, e be the endpoint of
where we chose d € 8H(C5,62;76v1, v1) and e € dU. As already noted, by Step
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(3.68)
4KNB, 1 () X (o, o, C4f75) N H(CsB5v1, v1) NU, so for any 7z €
s
IC\BC ﬂﬁ (x) with 2(z) = 0 by definition (3.69) we must have z € V_,,. Thus
6

H (K\V_,.) <4Cpm + H' (K\ (B uv O gk 371
(K\V_,) < 4Cep¥s +H' (K\ (B, 4 )UV-y, )) "< epe. (71

Note also that if z € V_,, so Vii(z) € BC ﬁﬁ (—v1) and as (recall from Step 2,
BT

1 . .
|0 - e1] < ¢B256 and we assumed without loss of generality vy - v1 > 0)

freB 1 (o) CB, 1 () (3.72)

_ o2
thus Vii(z)-(—61) > 1+ % — cﬂllﬁ . Now for z € K let ¢, denote the tangent
to IC. Since ¢, = —6; by the fundamental theorem of Calculus

ﬁ(d)—a«z)z/

V_yN

> (1= ™) H' (Vo NK) = H' (K\V-,)

Vi(z) - (—0)dH'z —/ Vi) dH'z
IC

V_y,

(3.73)
_ c/ ‘1 _ |Vﬁ|2‘ dH'z
I

(3.70),(3.71)
>

ld — e| (1 — cB7%).

And as the curvature of dl{ is bounded above by 10 and by (3.72) it is easy to see
either e is very close to a or b. We will without loss of generality assume the former,
so by (3.72) we have

le — | < cp. (3.74)
It is also easy to see [e, @] C U\ and i is 1-Lipschitz on U\ so

lii(e) — ii(@)| < cB. (3.75)

Note also as d € 9H (CsB vy, vy) N (1;91 U zf?l) by (3.72) and the fact that x €
Bﬂllﬁ(xo) and from Step 2 we know xg € N 1 ([&, 5]) thusd € B ﬁL(O).
4 C

C. ﬂ512 37
So we have
u(d) = u(d) —u(a)
3.73),(3.74),(3.75
( )(2)( )|d—&|—cﬁﬁ 576
> |a| — cpsi? = 27 diam@) — B2

Pick rg € [Idl—{—ﬁsi—z, |d|+2ﬂﬁ] suchthatfaB ) ‘I—IVﬁ(z)Iz‘ dleicﬁ_si—zﬂ.
o
Now fix y € 9B,,(0). Let s = K N 3By, (0) and I'1 denote a connected component
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of 9By, (0)\ {s, y}. So we know frlu[d,s] |Vi(z)|dH'z < cH' (T U [d,s]) <

cﬂﬁ. Thus we can apply the fundamental theorem of Calculus we have that

lu(y) —u(d)| < cﬂﬁ. Since y was an arbitrary point in 9 B, (0), by using (3.76)
this gives

inf {i(z) : z € By, (0)} > 27 diam@) — cB12. (3.77)
By definition (see (3.25)) u(z) =u(z) + 10~! for any z € By, (0). Since diam (/) =
% putting this with (3.77) we have (3.42). 0

Proof of Theorem 1 4. Let rg € (C;' B2, C38512) be a number. From Lemma 3.4
we obtain that satisfies (3.42).

By Fubini’s Theorem we know o, [o |1 — |Vu(z)|2|2 Iz — y|~ ' dzdy < C78? for
some constant C7 > 0. Let

Go == {yeQ:/ )1—IVu(z)Izrlz—yl_]dzs,B}. (3.78)
Q

Note that [2\Go| < C78.
Let a,b € Q be such that |a — b| = diam(2). Let 9 = # Since r¢g >

C;lﬂs% we can pick xg € Bﬁ% () NGy C By (¥). So by the Co-area formula
there exists U C S! such that H!(S"\W¥) < /B and

2
/ ‘1 — IVMIZ‘ dH'z < ¢\/B for each 6 € . (3.79)
19 NQ
)

Forany 6 € S define P(6) := 1% N 0Q, we will show

|P(6) — xo| > 1 — ¢B5T forany 6 € W. (3.80)
To see this we argue as follows
u(xo) = u(xo) —u (P (0))

= Vu(z) - (—0)dH'z
/[xo,me)] (381)

(3.79) 1
< |xo—P©O)+cB*.

Let yg := [x0, P(8)] N 0B, (¥). In exactly the same way we have

lu(yp) — u(x0)| < cB3T2. (3.82)
So

(3.82) 1 (342 1
u(xo) > u(yg) — lu(ys) —u(xo)l > u(yp) —cp52 > 1—cps2. (3.83)
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This together with (3.81) establishes (3.80).
Let N = [2_1 ,8_%], we can divide S! into N disjoint pieces of equal length,

denote them Iy, I, ... Iy. Formally; U,](v:1 I = St and HY(I}) = 27” for each
k=1,2,...N. Wecanpick 6 € I NV foreachk =1,2,...N.
Let
h=min{|Pr) —xo|l : k€{1,2,...N}}.

We define IT to be the convex hull of the points xg + h61, xo + h63, . ..x0 + hby.
Now by the construction of IT, for any y € dI1 we can find k € {1,2,... N} such
that |y — (xo + h6y)| < c/B and thus |y — x| > h — ¢4/ and so

By,_yp(x0) C II. (3.84)

Note that by using (3.80) we know & > 1—¢f57 and since |xo — 9| < ¥ (recalling
also that 2 is convex and so IT C 2) there exists positive constant Cg such that

I—Cxﬂﬁ(ﬁ) C Q. (3.85)

We claim

QCB (3.86)

)
1+zcgﬂsﬁ( )

Suppose not, so there exists y € 3Q such that |y — &#| > 1+2Cg ,Bﬁ . By inequality

(3.85) we know —&%g‘ (1 - Cgﬂﬁ> + 9 C Q and as by convexity of £ we know

[y, 9 — 2= (1 - C8ﬂ5}_2>] C Q, thus

i ([ - =5 (e ) =2

which contradicts the fact diam(€2) = 2. Hence (3.86) is established. Since the
center of mass of Q is 0, i.e. fg x dx = 0, by (3.85), (3.86) we have that |¢}| <

=

(3.86)
B3 Recall xg € B 1) 50 o= PO < [PO)] + |l < 1+ BT 50
putting this together with (3.83) we have

1

u(xo) —u(P(0)) = uxo) = |xo — P(O)| — cp52. (3.87)

Thus

/ |Vu(z)+9|2dH1z:/ <|Vu(z)|2+2Vu(z)-0—i—l> dH'z
[x0, P(6)] [x0, P(6)]

€ (3.88)

;%2(1 +c13%) %0 —P(©)[+2 (P (©)) —u(x0))

(3.87) 1
< c¢pB52 forany 6 € W.



FUNCTIONS WITH LOW AVILES GIGA ENERGY 35

2
Now using the elementary fact that ‘Vu(z) + é:ﬁh < ||Vu (2)]* — 1|2 + 4, since
xo € Go we have
2
/ f Vu(e) + —| dH'zdH'0
pesh\w Jit, lz — xol

2
< 4H'(S"\W) + / IVu()? — 1‘ dH'zdH'9 B89
pest Ji¢

(3.78)
< 5/B.
And thus
Z— X0 2 — X0 2
/ Vu(z) + dz<c Vu(z)+ lz —xol ' dz
Q lz — xol |z — xol
2
/ / Vu() + X0 yH zdH'
pest i, Z — xo|
3.89),(3.88
( >§( ) c,35+2.
By Holder’s inequality this gives
2 2
Z— X0 1
/ Vu(z) + dz | <cBiox=, (3.90)
Q lz — xol

Note that as xy € Bﬂ% (%) and (3.84), (3.85) we established that || < c,BS]ﬁ

1
|x0] < ¢B512. Now for any 7 € Q\Bﬁﬁ )

2 z—x | |zlz—x0l—(z—x0)lzl
lz| |z — xol 1zl |z — xol
|2z = xol = |z]) + x0 2]
1z] 1z — xol (3.91)
— X0| — X
< |z —xo| — Izl |xo]
lz — xol lz — xol
1
SCIBW_
So 1
1 2
Z z—x0 |? : I z z—x0 |°
f — — dz | =<cB52 + / — =
allzl 1z —xol o8 Izl 1z —xol
1024
(3.91) |
< cf102%,

Putting this together with (3.90) we have (1.6). U
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4. Proof of Corollary 1.3

We begin by establishing the following proposition.

Proposition 4.1. Let Q be a bounded convex domain with C? boundary and

IQAB1(0)] < B. There exists a sequence u¢ € C>®(Q) such that u¢(z) = 0,

Vu¢(z) - n, = 1 for z € 9 (where n, is the inward pointing unit normal to 92 at

z) and for which

: —1 €2 2 2 € 2 X

hmsup/e ‘l—Wu | ) —I—E‘Vu dz < cB3. 4.1)
Q

e—>0

4.1. Proof of Proposition 4.1

Lemma 4.2. Suppose Q2 is a convex and |QAB1(0)| = B. Forag = Q2 N lg the
following inequality holds true

llag) — 11 < ¢y/B forany 0 € S' and s0 9Q C N, /5(3B1(0)).  (4.2)
In addition there exists constant ¢ such that
04 + 60| < cB forany 6 € S 4.3)
Proof of Lemma.
Step 1. We will show B% 0) C Q.

Proof of Step 1. Suppose not, so we can selectx € 0Q2NB 1 (0). Let n, be the inward

pointing unit normal to 92 at x. By convexity of & we have 2 C H (x, n,) and so
B1(0)NH(x, —n,)NQ = @ which implies |B; (0)\2] > |B1(0) N H(x, —ny)| > %
which contradicts that |QAB;| < 8.

Step 2. ap € Bl+c\/E(0)'

Proof of Step 2. Suppose not. Since €2 is convex we have conv ({ag} UB 1 (0)) C Q

and
‘conv ({ag} UB, (0)) \B, (0)( > B

Thus we have |2\ B1(0)| > ¢f which contradicts the fact that |[QAB;(0)| = 8.
Step 3. We will show ag & B _.. /5(0).

Proof of Step 3. Suppose ag € By_, /5(0) this implies | B1(0)\H (ag, 114,)| = B
and Q2 C H(ag, ng,) so |B1(0)\2]| > cﬂ% which gives a contradiction.
Proof of Lemma completed. Suppose (4.3) is false, since |ag — 0| < c+/B we have

|BIO\H (9. 1a,)]| = cB.

As before this implies |B;(0)\ 2] > ¢ 3 which is a contradiction. O
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Lemma 4.3. Let 2 be convex and define u(x) := d(z, 02) for any z € Q then
function u is concave.

Proof of Lemma. Let a,b € Q. Since €2 is convex conv (Bu(a)(a) U Bup) (b)) C
2. Now suppose there exists A € (0, 1) such that

u(a+ (1 —=1b) < iu(a) + (1 —Nu (b)

then as this implies By (.a+(1-np) (Aa+(1 — A)b) Cint (conv(By(a)(a) U B,y (b))
we must be able to find x € 92 with x € 92 N conv (Bu(a)(a) U By (b)) which
is a contradiction. O

Lemma 4.4. Let B > 0. Suppose Q2 is a convex set with |QAB1(0)] < B. Let
u(z) =d(z,0%2). For any x € Q\Bﬂ 1 (0) for which the approximate derivative Vu

exists

Vu(x) + —

< cps. (4.4)
IXI

Proof. For any x € Q\Bﬂ% (0) let b, € 32 be such that |by — x| = u (x).
We begin by showing

X 3
by — —| < cpTs.

|x|

Recall from Lemma 4.2 a &= 02N, 1 . Using (4.2) from Lemma 4.2 and the fact

L

(x—aﬁ)‘x _) = = we have

-+ cV/B. (4.5)

|x — by |<‘x—ax

Hence

4.5)
Ix — b = |x|*> = 2x - by + by < 1=2x|+ x>+ ¢/B. (4.6)

Therefore

“ox b 2 1—2|x|+cf b
—2|x|+c\/ﬁ.

Thus 2 |x| < 2x - by + c+/B. Since x| > ¥ we have

1
; 2
lmept<1-cP o2y @)
x| — |x]
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Hence )
(4.7),(4.2)
by —i‘ =P 412" b cph
|x] x|
which gives
X 3
— —by| <cBTs. (4.8)
|x]
b . @.3)
Let x = ;7% so using Lemma 4.2 ‘be = | N4y, +6x| =< 0,34 and by (4.2)
this easily implies
1
|1, + by| < cB3. (4.9)
Now since Vu(x) = &:Z:\ = np, and so
b X (4.8),(4.9) 3
VM(X)+—‘§|7]hx+bx|+ 5 — bx = cpe
|x] |x]
thus we have established (4.4). O

Lemma 4.5. Let Q2 be a convex set and |QAB1(0)| < B. Define u(x) = d (x, 9K2).
Note that since u is convex Vu is BV. Let V(Vu, -) denotes the total variation of the
measure Vu. Firstly we have

V(Vu, Q\B 1(0)) < 16m. (4.10)
Secondly for any ¢ € (0, ,3%] and for any x € Q\ (Nze @)U B4ﬂ% (0)) we have

V(Vu, B.(x)) < cBos. @.11)

Proof. Let Tt € (0, 25—0) be some small number.
For any x € Q\(N4;(0Q2) U B3ﬂé(0)) =: Il;. Let w;(x) = u * p;(x) and v* =
2

. Note from Lemma 4 4 for any x € I1;

[Vwe|
‘Vwr(X)+— V <Vu(x—z)+| |>pr(z)dz
-z
5/‘<Vu(x—z)+ )pf(z) dz
lx — z|
X —
e[ = o @)
lx —z|  |x]
(4.4) X —z x 3
< ¢ sup — — |+ cBT6
2By, ) | 1x =z x|

3
< cBTs.
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From this it is easy to conclude that
3

lwe — dist(-, dB1(0)) [ Loo(r,) < cBT6. (4.13)

Step 1. Let 19 > 0 be a very small number. We will show

li T—Vv =0. 4.14
lim lv ull iy, (4.14)

Proof of Step 1. Now

/ |1—|Vwr||dZ=f [IVul — [Vwe||dz
I I

0 0

< / |Vu — Vw;|dz - 0ast — 0. 4.15)
1

0

Now from (4.12) we have

[Vw:(x)| > = forany x € Iy, T € (0, 10). 4.16)

N =

So

We

[Vwe|

1
[ — Vel i, = Ve (WwT' - 1) ey

(4.15),(4.16)
=

4.17)

2|11 — [Vwe]| ”L](Hr()) —0ast —> 0.

Since ||Vw; — Vu||L1(1—[t0) — 0 as T — O putting this together with (4.17) gives
(4.14).

Step 2. We will show that for any G € Q\B, 1(0)

w

383
V(Vu, G) <2|div(Vu)| (G) (4.18)
and
|div(Vu)| (G) < 1imi(r)1f/ |Uf L+ 2| dz, (4.19)
T— G ’ ’

where |div(Vu)| denotes the total variation of measure div(Vu).

Proof of Step 2. We can find 79 > O such that G C I1,. Now from [3] Vu € SBVjoc
so in particular div(Vu) is a signed measure defined by

/ div(Vu)gdz = / G111 + ¢ ouodz forall ¢ € CO(RQ). (4.20)
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So for ¢ € C2°(2) we have

/div(Vu)¢>dz

(4.202(4.14) lim /gb,lv]f +¢,2U§dz
7—0

= lirr%)/(vi1 + 13 ) pdz.
T—

Now given open set G C Iy, if ¢ € C2°(G) then

’/ div(Vu)gpdz

lim /(vfl + 3 ,)¢dz
7—0 ’ ’
< ||¢||L°°(Hf0)/G [v]1 + 03] dz.

So this in particular by Proposition 1.47 [4] implies (4.19).

Now since Vu € SBV)(2) we know by Theorem 3.78 [4] that there ex-
ists a rectifiable set Jy, C Sy, (where Sy, denotes the set of approximate jump
points of Vu) with H"~'(Sy,\Jvy) = 0 and DVulJy, = (Vu™ —Vu~) ®
vH" | Jy, where v(x) is the normal to the approximate tangent of the rectifi-
able set Jy, at point x. Following [4] Definition 3.67 we assume that the triple
(Vut(x), Vu~(x), v(x)) satisfies (3.69) of [4]. By Theorem 3.94 [4] we have that
(VuT (x)—Vu~(x))®v(x) is a rank-1 matrix for [DVu| a.e.x € Jy,. Now DVu is
amatrix valued measure and indeed letting 0;u ; denote the individual ‘component’
measures, just from the definition we know that d;u_; = d;u ; so DVu is a symmet-
ric matrix valued measure. Specifically by differentiation of measures (see Theorem

22 [4]) M(x) := lim,_¢ % exists for |[DVu| a.e. x and M (x) will be a

symmetric 2 x 2 matrix. So for H'" Vae. x € Jv,, Vut(x) — Vu— (x)) @ v(x)

. . . .. . . )=V
is a symmetric rank-1 matrix, this is easily seen to imply mfx,g;l

So (Vut(x) — Vu™ (x)) ® v(x) = |VuT(x) — Vi~ (x)| v(x) ® v(x). Thus we can
decompose D(Vu) into absolutely continuous and singular parts we have

= v(x).

D(Vu)(S) = / D(Vu)dx +/ |VuT = Vu~|v(x) @ v(x)d H'
N SNJvu (4.21)

for any set S C R".

Obviously this is a matrix valued Radon measure and the signed Radon measure
Au is given by the sum of diagonal elements of the matrix defined by (4.21) and so
is given by

Au(S) = /diVa(Vu)dx +/ |Vut —Vu~|v-vdH'
N N

NJvu

= f dive (Vu)dx + / |Vu™ — Vu~|dH' forany S C R".
N SNJvu



FUNCTIONS WITH LOW AVILES GIGA ENERGY 41

Now recall |Vu(x)| = 1 for a.e. x € Q. So by Volpert chain rule (see Theorem
3.94 [4]) we have that the function x — |Vu(x) |2 is BV and the standard chain rule
holds so

u 11 (x)u 1 (x) +u 2(x)u2(x) =0 and

(4.22)
u2(x)u 1 (x) +uxnx)urx)=0fora.c. x € Q.

Since u 21 = u 12 we have

Uil U112 ui\@2) (0 Uil U112 —u\ 422 )
SO )= and | - - T =" wntun) | 7).
un ux ) \uyz 0 w2 U2 u, u

. . U —u
Letting || - || denote the operator norm of a matrix, since (u; B 12> e 0(2) we

have
Uil U2 _ Uil w2\ (u1 —up
Uzl U2 upr u2/)\u2 u)
_ (O =1 +uuy
0 (u11+unnu,
< 2un 4 un|.
Hence
|Dg(Vu(x))| < 2|dive(Vu(x))| fora.e. x € Q.
Thus

V(Vu,G) = / |Da(Vu)|dz+f |Vut — Vu~|dH'
G GNJvy

IA

2/ \div,(Vu)| dz +/ |Vut —Vu~|dH'
G GNJyy

2|div(Vu)[ (G),

IA

thus establishing (4.18).
Step 3. We will show that for any # € (87,1 — 2,8%)

/ [vf (@) + ], ()| dH'z < 27.
wle) ’

Proof of Step 3. We define the ‘angle’ function by

arccos (%) forx, >0
Ax) = . (4.23)
27 — arccos (I)fv_ll forx, <0
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Note that A is smooth expect at the half line {(x1, x3) : x2 = 0, x; > 0}. Forx € I,
we have |v’()c)|2 = 1, so as before
2
a1(Jv ()] = v ()] | (x) + v ()] | (x) = 0. (4.24)
Since u is 1-Lipschitz,
lwr —ullLeeq,) <27, (4.25)

and so from this and (4.13) we have that wr_l (t) c Il forany t € (87,1 — 2,3%).
Hence by (4.12) v" is well defined along this level set. We also know that for any

Y
X € w;l(t) the tangent to curve w;l(t) is given by < ng()(:;)) Note that w;l(t)
1

is the boundary of a smooth convex set so there exists a point x; € w; 1(¢) such that

—v3 (xr) : —1
A . = 0. There must also exist y; € w; " (¢) such that

Ul (xt)
—Ué(yt) _
A( v (1) ) =. (4.26)

Let @ : [0, H 1(wt_ 1(t))) — wy I(t) denote the clockwise parameterization of

_ : _ ooy — (2 (@(s) .
w; ! (¢) by arc-length with ®'(0) = x,. So ®/(s) = ( vf2(d>’(s)) ) Define O, :
[0, H'(w;'(#))) — R by ©,(s) = A(P'(s)). Now select s € (0, H (w7 (1))),

suppose v (®'(s)) > 0, then

O (s) = arccos( V) (Cb (s))) a7 ( v; (CD (s)))
= arccos (—vj (®'(s))) (—v3 31 (@'(s)) (1) — V3, (D' () (iJ’z(t))
= arccos (—v} (®(5))) (v3 | (P'(5)) v3 (' (5))— 3, (D' (s)) v] (P'(5)))

@2 arceos (v (@1(9))) (0] | (P () o] (@' () —v] 5 (' (5)) V] (@' (5)))

= —arccos (—vj (P'(s))) vf (P'(s)) (vf1 (@' (s)) + V3, (@'(5))) -
Now for any w € (—1, 1), arccos(w) = —(sin(arccos(w))) ! so

vl (®'(5))
sin(arccos(—v} (®'(s))))

O, (1) = (v | (P'(9)) 4+ 3, (' (9)). 427

—vl (D (s)
Recall ‘( Ulfz((@t(s))))‘ = 1 and we supposed vT (P’ (s)) > 0,50

vi (@'(s)) = \/1 — (V3 (<I>’(s)))2

= \/1 cos arccos (—vg (<I>’(s)))))2
= sin (arccos (—vj ('(s)))).

(4.28)
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Thus from (4.27)
O15) = (o], (& (9) + 01, (¢ ()))

4.29
for any s € (0, Hl(w;l(t))> with vf (®'(s)) > 0. *29

Suppose we have s € (O, H! (w;1 (t))) with v} (Cbt(s)) < 0, then in the same way
as (4.28) we have

of (01(5)) = _\/1 — (cos (arccos (—v§ ((I’t(s)))))2 (4.30)
= — sin (arccos (—vj (d)t(s)))) .

ﬁnd since vf(dD’ (s)) < 0, by definition of A (see (4.23)) arguing as in (4.27) we
ave

. _ _UI (c])t(s)) T t T t
©1(s) = sin (arccos (_Ug ((bt(s)))) (Ul,l (CD (s)) t v (CD (s)))
@30 v (CIDI(S))—l-viz (@' (s)) forse (O, Hl(w;l(t))> with v] (' (s)) <0.

Without loss of generality we can assume Hs €[0,H! (wr_1 )] :vf (CDt(s)) :O}| =
0. Thus by continuity of ©;(-), vf,l(cbt()) and v%yz(d)’()) we have

Gr(s) = o7 (D' (5)) + 05, (¥ (s)) fors e [0, H' w7 @)

Now since u is concave, w, is concave and so the set wr—1 ([t, 00)) is a convex set,
hence

o1 (916)) + v, (¥(9) = B,(5) = O forany s € [0, H' (w7 (1)) . 431)

Therefore
H'w7l@)
/ |vf1(z)+v§2(z)|dle=/ O (s)ds < 2m.
wrley ' 0
Step 4. Let x € T1;\Np.(0€2) and define
= inf{s eR: w;l(s) N B:(x) # (2)} and
(4.32)
153 :sup{s eR: wr_l(s)ﬂBg(x) 7&@}.

Recall y; € wr_l(t) was chosen so that (4.26) holds true, let 7, := (<I>’)_1(y,). We
have for any ¢ € (1, 12)

sup {101 (s1) =, ()| 51,52 (@) ™! (w7 ' (1) N B () N[0, 7]} <cBT (433)
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and

sup {|®;(S1) O;(s2)|: 51,82 € (D)~ 1( ;1(r)mBg(x))m[m,Hl(wt_l(t)))} “434)
<cpT

o“"

Proof of Step 4. Let 51,52 € [0, m,] such that ®'(sy), ®'(s2) € Be(x), since @
is parameterization of w, 40 by arclength ®’(s) is the unit tangent to w_ L) at

®’(s). Thus
t(a.
NALICICORN & (s;) fori = 1,2.
[Vw, (P!(s;))]

1

1
However by Lemma 4 .4 (recalling the fact that |CI>’ (s1)| > 3‘328 and |<I>’ (s2)| > 3 :
in order to apply the lemma)
[Vwe (@' (s1)) — Ve (¢ (52))]
‘ / (Vu (' (s1) — 2) — Vu (' (s2) — 2)) pr (2)dz (4.35)

(DZ(S])—Z q)t(SZ)—Z li
|®!(s1) —z| | D!(s2) — 2| ‘ 0z (2)dz + cBT6.

“4 /
< c
B-(0)

1
Note ze B, (0) C B ! (0) so as ]@’(s1)| > 3’378 we have ‘CD’(sl) — z’ > |<I>‘(s1)|—
8
0
|z| > ,3%. Recall the elementary inequality inequality

|Z—|—|y—| 21z — y| forany z, y with |z] > 1, |y| > 1.
Z

So in particular we have

‘ Di(s1) — z D (s0) — 2
| P! (s1) — zl |¢I(S2)—Z|

‘ T — [@"(s1) = D' (s2)| < 263,

Thus with (4.35) this gives

Sl

|Vwe (@' (s1)) — Vw (D' (52))| < B (4.36)

As a consequence of (4.12) we know

IVwe (x)| — 1] < ¢BT6 for any x € T, 4.37)
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SO

. . (4.36)
|D(s1)—d(s2)| <

R (M) — R (Vuy (<I>’(Sl)))‘

[Vwe (@ (s1))|

. ‘R (M) R (Vas (' 50))

Ve (@ (52))] +cpio (4.38)

4.37
(5)6,813_6.

Now as sy,s2 € [0, 7;], since w; L(t) is the boundary of a convex set so we know
P (s1), D' (s2) e{ve S : v-e;<0}. Now, as A is Lipschitzon {v € S : v - e, <0},

101 (s1) — @, (s2)] = | A (& (s1)) — A (& (s2)| 2 cpTs

and so (4.33) is established. Inequality (4.34) follows in exactly the same way.
Step 5. We will show

V(Vu, Be(x)) < cefTs forall x € Q\ (Nzg(aﬂ) UB, (0)) . (4.39)

Proof of Step 5. Let x € Q\ <N25(852) U B4ﬁ% (0)). Lett € (t1, t2). The most

non-trivial case is where
{s€[0, ] : @' (s) € By (x)} 0 and {s c [nt, H' (! (t))] LD (s) e Bg(x)} £0.

When either of these sets is empty the proof follows in a very similar way.
Let s =inf{s €[0, /] : ®(s) € Be(x)}, s =supfs € [0, ;] : ®'(s) € Be(x)}.
So [st, s3] = {s € [0, ;] : D' (s) € Bs(x)}. Now

/[, . |0 1 (@' (5)) + v, (P ())| ds 42 f[t | O, (s)ds

1'%2 152
(4.40)

(4.33) 3
< cfTs.

In the same way we let
i =inf{s € [m. H' @7 o) ') € B}

rt = sup {s c [m, H‘(w;‘(z))] S Dl (s) € Be(x)}
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then
/[ [of (@' ($)) + v} 5 (D(5))|ds < B 5. (441)

1:5]

Thus

/ v 1 (2) + 03 ,@)| [Vw, (2)] dz
Be(x)
15}
:/ /1 v 1 (2) + v} ,(2)| dH'zdt
n Jwi'0

15}
=/ /[t Ul |U1 (@ (5)) + v (' (9))| dsdt
n S1:5

rl rz
(4.40),(4.41) 3
< C|t1—12|l3'6-

By using (4.12) and recalling the definition (4.32) of Step 2 we must have |f; — ;| <

ce. Also from (4.12) we know |Vw;(z)| > 1 — cﬂl% for all z € B:(x), so putting
these things together we have

/ o] 1 (@) + v} ,(2)|dz < cefs forall x € Q\ (Nk(asz) UB ;(O)) :
Bo(x) ’ 4p8
So for any x € Q\ (Ngg (02) U B4ﬂ% (O)) we know B (x) C I"I% so by Step 2

4.18)
V(Vu, Be(x)) = 2|div(Vu)| (Be(x))

@19 . .

< 2liminf \v11+v22|dz
7—0 Be(x) ’ >

< CSﬁ%,

and hence we have established (4.39).
Proof of Lemma completed. Note that by (4.13) and (4.25) we have

nlér\B 1 0) c wy! ([8r, |- 2ﬂ%])

by using the Co-area formula

1288
/ [vl1 +v3o| [V |d1</ / o] | +v3,|dH zds < 4m.
Mis:\B | (0)
388
Thus using (4.12)

\vfl + v§’2| dz < 8.

M6 \B 1 B 1(0)
388
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By Step 2 this implies V (Vu, H16,\B 1(0)) < 167 and as 7 is arbitrary
V(Vu, Q\B 1(0)) < l6r. O

Lemma 4.6. Let Q2 be a convex domain and |QAB1(0)] < B.
Letu(x)=d(x, 02) and n(x):l—S,B%—i—lxl. DefineI' := {x : u(x) = n(x)},
we will show T is the boundary of a convex set with H' (") < cﬁ%,

I' C Ncﬁ% (834/33;2 0)) (4.42)

and for any € € (0, ,3%]
3
[Nz ()] < cep. (443)
Proof of Lemma.
Step 1. We will show IT := {x € Q2 : n(x) < u(x)} is convex.

Proof of Step 1. Take a,b € Il and pick A € [0, 1]. Since u is concave u(la +
(1 —2)b) > tu(a) + (1 — AM)u(b) and since n is convex n(ra + (1 — A)b) <
An(a) + (1 — A)n(b). Hence as a, b € T1,u(ha + (1 — X)b) = n(ha + (1 — A)b).
Thus [a, b] C IT and thus the set IT is convex.

Step 2. We will establish (4.42).
Proof of Step 2. Let x € T" and let b, € 92 be such that |[x — b,| = u(x). So

| — 883 + |x| = |by — x]. (4.44)
And thus 1 — 883 + [x| > [by| — |x]. so using (4.2)

20x] > |be| — 1 + 883 > 887 — c/B.

Also from (4.44) we have
3 (42 :
] = lbx — x| — (1-86%) < 86% +/B. (4.45)
Now using Lemma 4.4, since Vu(x) = x ZYI SO
X by _ ' by —x by x —by X
x| [bxl - [by — x| [bx] lx — byl |x]
(4.45),(4.4) 3
= B
SO )
‘1— be XN _pmr| b X1 _ gk (4.46)
bl x| lbx| x|
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Again by Lemma 4.4 we have
X x—b X
be—XI+(x—bx)'—' < |x — byl — =
x| |x—b| x|
< ‘Vu(x) + xl (4.47)
(454) cﬂ%
and thus
(4.46) by
2x-1—8 3 < _813224_1__ 1_1_2 ‘-}_CIBM
|x| |bx] Ix]

C:B 16

= 1—8,332+|X| <|b | )

(4.44)
o ) o
byl

4.2)

< |lbx = x[+ (x = by) - ||’+Cﬂ“’
4.47

(_)c,Bl%

hence ‘2 |x] — 8,8% < C,B% for any x € I", so (4.42) is established.

Since (4.42) implies the diameter of IT is bounded by 0,33% and since IT is a

convex set it follows immediately that H ) <cB £ .

Now the set I" equipped with the Euclidean norm is a bounded compact metric
space. So by applying the 5r Covering Theorem [20, Theorem 2.1] we can find
a disjoint collection of balls B.(x1), Bac(x2), ... Bas(xp) with x1,x2,...xy €
I such that I' C (J{_; Bioe(x;). This implies Ny, (') C (U, Baoe(xi). Since

H'(T) < ¢B% so M < ce~'B% and thus | N2 ()| < cef® which establishes
(4.43). 0
Lemma 4.7. Let Q2 be a convex set. Let B = |QAB1(0)|. Let

w(z) := min {d(z, 9Q), 1 —88% + |z|} .

We will show Vw € SBV(Q : SV) and

/ Vwt — vu [PdH' < cp. (4.48)
JvwN2
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Proof. By Lemma 4.5 we know Vu € BV(Q\Bw% (0)) and V (Vu, 9\33,3% 0)) <

8. This implies

/ |Vut — Vu~|dH' <87 (4.49)
@51 ONSe

Now by Lemma 4.4 (4.4) forany x e (Q\Bwé(O))ﬂSvu we have |Vu+(x) —Vu~ (x)| <

3
cBT16. So
/ Vut—vu~ |’ dH' <3 |Vut—Vu~|dH'
Q\B 0)NSvy Q\B 0)NSvy
@8 | onnsy @8 | onnsy @50
4.49
( P ) c,B%.

As in Lemma 4.6 let I := {x ulx)<1-— 8,3% + |x|} and I := JI1. Since IT is
convex it is also a set of finite perimeter. Let n(z) = 1 —8[333_2 +|x]|,itis clear w(z) =
Inn(z) + lo\nu(z). By Theorem 3.83 [4] we know Vw € BV (2 : s1. Also by

Lemma 4.6, H'(I') < cﬂ%. Now for any x € T, since Vwt(x), Vw™(x) € st,
|[Vwt(x) = Vw~(x)| < 2. So

/ 'Vt —vw [PdH' = / [Vuwt — vw | dH!
Jvu JvwN(Q\IT)

+/ IVuwt — vu~ [ dH'
JyvwNIT

“50) 3 .
< B8 +8H (I
< B>, 0

4.2. Proof of Proposition 4.1 completed

By Lemma 4.7 we know that w € BV (2, S!) we can apply Theorem 1 of [8] or
Corollary 1.1 [23] to find a sequence u€ that satisfies u€(z) = 0and Vu¢(z)-n, = 1
for z € Q2 (where 7, is the inward pointing unit normal to d€2 at z) such that

2
limsup/ e ! ‘1 — |Vué‘2‘ + € ‘Vzu6 <
e—0 Q

dr < / IVwt — V| dH'
JywN2

(4.48) 3
< c¢Bx. O
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4.3. Proof of Corollary 1.3

Let B =inf,cq |2QA By (a)|. Without loss of generality we can assume |Q2AB1(0)| <
2B. So by Proposition 4.1 we can find €9 € (0, 1) such that for € € (0, €), any
minimiser u€ of I, defined on 2 satisfies

-1 e2)? 2 |? S
e 1= [vuP[ e V| dz = g, @51)
Q
So we can apply Theorem 1.1 to conclude that
2
z 1
/ Vu®(z) + —| dz < 5.
Q |zl
Applying Lemma 4.4 we have
2 1
/ |Vu® —ve¢|” < cpsia, (4.52)
Q\B 1 (0)
B8
Now
/ Vus —ve[Pdz < / Vu |* + 2 |Vus| + 1dz
B 1(0) B 1(0)
B8 8
< [, o (= +o)e
B 1(0)
88
(4;1) cﬂ33_2
together with (4.52) this gives |u€ — ¢ lwizg) < C,B%. O

5. Proof of Corollary 1.2

In this section we will show that given a convex domain  with C2 boundary with

curvature bounded above by 6_% and that satisfies |B;(0)AR2| < B we will con-

struct a function u with I, (u) < ,3%. This is the content of Proposition 5.1 below.

The proof of Corollary 1.2 will follow easily from this.

Proposition 5.1. Let Q be a convex body with C? boundary and with curvature
1

bounded above by 6_% and |QAB1(0)] < B. Let € € (0, %]. There exists a

function C? function & : Q@ — R which satisfies VE(z) - n, = 1 (where n; is the
inward pointing unit normal to 02 at z), £(z) = 0 for z € 92 and for which

1 2| 2. |7 3
/e_ ‘1—|vs| ‘ —I—e‘V g‘ dz < cB%. 5.1)
Q
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5.1. Proof of Proposition 5.1
We begin with a preliminary lemma.

Lemma 5.2. Let ¢ : Ry — Ry be a continuous function. Let p denote the stan-
dard convolution kernel, i.c. f,odx = 1 and Sptp C B% (0) and define pp(z) =

h=2p(h~ 7).
Suppose f : R" — R be an affine function. If g(x) = f * pp(x)(x) then

g(x) = f (x) forall x € R".

Proof of Lemma. Letn =V f. As fisaffine f(x —y) = f(x) —n-y
gx) = / & =@ @@ dy

= / (fx) —n- V@) p@ )" y)dy
= f(x). 0

Lemma 5.3. Let e > 0. Suppose Q is a convex body with C* boundary and with

curvature bounded above by € 2 Let u(x) = d(x, 02). Let p be the standard
convolution kernel and pc(z) = p ( ) —2. We will construct a Sfunction ¥ : QN
Ngec(0R2) > Rwithy =00n Q2 whlch satlsﬁes the following properties

2
/ ‘1 - |vw|2‘ dz < cé?, (52)
QNNg (39)
2
/ ‘v%p‘ dz <, (5.3)
QNNg (39)
V(2) = [u * pe] (2) for any z € Q\Nge(9€2) (54)
and
Vi (z) = n; for each z € 9%2. (5.5)

Proof. Let w : Ry — R, be a smooth monotone function with the following
properties
z forze [0, %)

5.6
€ forz>c¢ (5.6)

w(z) =

and sup |w| < ce 1.
For any x € Q N Ng(9€2) define

¢ (x) = w(ux)). 5.7
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We will convolve the function u with convolution kernel pg ) (z):= p(ﬁ) N (x))?

Since the convolution kernel varies with x, when we differentiate u * py(y), the
derivative will involve a term with the derivative of pg(y). For this reason we need
to calculate various partial derivatives of pg x).

Since the curvature of d€2 is bounded above by e*% . Forany x € QN Ng(92)
we have that there is one unique b, € 02 such that |[x — by| = u(x). We define
¢y = &:Zj‘ .LetR = (? _01> and define w, = Rg¢y.

Note ¢y = np, , i.e. the inward pointing unit normal to 9€2 at b,.. Note also that

for all small enough h, by = by4hc, so u(x +hgy) = h + u(x). Thus

b () = fim PRS0
»Gx -

h—0 h
. w(ux) +h) —wu(x))
= lim
h—0 h
= w(u(x)).
Note also that since |[Vu(x)| =1 and u . (x) = limj,_, w =1so0
g () = }}EH) u(x + ha:) —u(x) _o.
Thus
}.0, (x) = wWux))u u, (x) = 0. (5.8)
Hence
] a z
— (Pp0 (@) = —— (p (—) <¢(x))2)
06y 06y ¢ (x) 5.9

z b, () ( z )%(x)
—_v : —2
P (qb(x)) ‘bt "o ) b))’

and
Pp(x)(2)) = 0.
G (P00 @)
Define f
| Jutx —2ppu)(z)dz forx € Q
wuy—{O forx ¢ Q ° (5.10)
Now

Vo () / e, (X — 2) Py (2)d2

(5.11)
Z ¢, (%) ( Z >¢,§x(x))

— [u@x—2) (v : 20 (—— dz.

/ ulx Z)< P <¢(x)) Yot TP em) @)
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In the same way it is easy to see ¥, (x) = f U0, (X — 2)pg(x)(2)dz and so

)
V. ceon (x):/M,wxgx (x = 2)pgx)(2)dz +/M,wx (x — Z)E (Ppx) (@) dz. (5.12)

And
1;ka),(wx (x) = /’/‘,a)xw)C (x — Z)qu(x)(Z)dZ- (5.13)

Finally

ad
wvgxgx ('x) = /uagxgx (x - Z)IO¢(X)(Z) + 2uv§x (x - Z)g (IO¢(X)(Z)) dZ

)2 (5.14)
+ f u(x = y)=— (Pp) () dz
9”6x
each term will be estimated later in Step 4.
Step 1. We will show
‘Vzu(x)) < ce 2 forany x € N (392). (5.15)
5

Proof of Step 1. Let b, € 02 be such that dist(x, 02) = |x — by|. We start by
showing

[Vu(x) — Vu(y)| < ce_% |x —y| foranyx € N z(0R2),y € B%(x). (5.16)
5

—by - . .
Now recall ﬁ = Nb,» ﬁ = np, . We have two cases to consider. Firstly the

case that (by + Rynp,) N (by + Rynp,) = . In this case since €2 is convex this
y— b) x—by
v=b,] ~ bl

implies np, = Mb, - Thus as |Vu(x) — Vu(y)| = ‘ Ty=by]

0 so (5.16) is established.
Now suppose we have the case that 7 := (by + Rynp, ) N (by + Rymp) # 0.

Then let
by — by —
6 = arccos y7Y  OxTX . 5.17)
by =] b2 =51

Since the curvature of 92 is bounded by e_% we know that 7 ¢ N ﬁ(a ). Con-

sider the triangle whose corners are x, y, w, which we denote by T (x, y, ). The

angle at corner 7 is . Note that |[x — y| < &, |x — 7| > % and |y — | > 4 So

as|lx —mw|—|y—m|| < |lx —y|l < %wethereforeknow

= |np, —mp,| =

2

%zllx—nl—ly—n||2= 2x —wlly—nl—lx—nP—ly—n

m

2
I<].
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Thus by the law of cosines

2Ix = 7|y —7|cost = |x — x>+ |y —7]® = |x —y]?
2

-2
36

> x—nlP+ly—n

2
> 2x — — - —
|x —m|ly — 7| T
Which implies cos§ > 1 — ce and so |0] < c/e.
Let§ := [by, 7]N3Bjx—x|(x). Since 0] < cy/e wehave [x — §| < 15 [x — yl.
Consider the triangle 7' (x, y, 7). Note the angle of this triangle at 7 is 6 and de-
noting the angle at x by ¥ we have y ~ 7.

Then by the law of sins
=3 _ ol el Ve
sin @ siny 2 4
So 4% > sin@ which gives 0| < C‘i;yl < Cl’if” So as Vu(x) = ;= and
Vu(y)= | | , hence (recalling the definition of 6 from (5.17)) [Vu(x) — Vu(y)| <

carccos (Vu(x) - Vu(y)) < Clx—fyl So (5.16) is established. Thus letting y — x

we have that |V2u(x)| < ce~2 and this completes the proof of Step 1.
Step 2. For any x € N6 (0€2) N 2 we have

sup {|Vie(z) — il : 2 € Biougo () N Q) < ce 2u(x). (5.18)

Proof of Step 2. Since 02 has curvature less than 6_% for any x1,x2 € 0%,
[xl,xl + G%le] N [xz,xz —i—e%nm] = . So for any x1, x2 € B3y, x)(x) N0,
|77x1 — an| < e_%Hl(B32u(x)(x) N 9£2). Note as £ N B3y, x)(x) is convex and
082 N B3pyx)(x) C (2 N B3y (x)(x)) so H! (02 N B3oy(x)(x)) < cu(x). Hence

1 ..
|nx1 — r;x2| < ce 2u(x) < c4/€ so it is clear that

Bi6ux)(x) N2 C U [,z + Ven:]. (5.19)
2€3RN B30y (x) (x)

For any z € Bieu(x)(x) N © we have Vu(z) = IE%ZJ = np, where b; is such that
|z —b;| = d(z,082). So for any z1,z2 € Bieux)(x) N 2 by (5.19) we have that

_1
beys by € 090 By (0,50 |Va(@1) = Vae(@)| = |1, — o | < ceHu).

Step 3. For any x € Ng.(0€2) N 2 we have
IV o)l = 1] < cv/e. (5.20)
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And
y11_>mz Vi (y) = n;. (5.21)

Proof of Step 3. From (5.11) we have

|wv§x(x) - 1‘

B

/wg@ n—»m(m))@(»zw

c

i (v () i 2 (564
+V (¢ (x))3 P dx)) @x) o (x ¢

Now for any z € Sptpg(x) we have that Vu(x —z) = u ¢ (x —2) 6y +u o, (X —2)wy.
As Sptpg(x) C Bag(x)(0) C Boy(x)(0) so for any z € Sptpg(x) by (5.18) from Step 2

(5.22)

we have |[Vu(x —z) — ¢x| < ce_%u(x) and thus
‘u,gx(x —-2)— 1| < ce_%u(x) for any z € Sptpg(x).
So (noting u(x) < c¢(x) for any x € Ng(9€2) N 2)
B <cu(x)e? < cp(x)e 2. (5.23)

Also defining w = JCqu(x)(x) Vudz

(5.18) 1
][ (Vu(z) —gx)dz| < ce 2¢ (x). (5.24)
By (x) (%)

So by Poincaré’s inequality there exists affine function /,, with V[, = w

lw— gy =

][ lu (2) =1y (2)|dz < c (x) [Vu(z) —wl|dz
By (xfx) By (x)(x)

Sc¢(x)(][ |VM(Z)—gx|dz+c|w—§x|> (5.25)
By (xy(x)

(5.18),(5.24)
=<

e (p (1))~

Now using (5.24), again for the appropriate choice of affine function /., with VI =
Gx, we have by Poincaré’s inequality

ﬁ<ﬁg@—MMMswu> w—erldz C2" ce (@ (1))
¢ (x) (X

By (x)
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with (5.25) this gives

]im) )

Let g be defined by g(y) = I, *pg(y)(¥). Note by Lemma 5.2 we have Vg(y) = ¢y
forany y € Q2 and hence g ., (x) = 1. As

.o (%) =f <¢< )>(¢>(X))_2dz
e (o) 5+
f@())g 5 Vol o5 2 (@) +2p 50)) «
le,(x — 2) z _
[t o) oo i)
/<¢<>)3¢§*(x)<p<¢<x>) Koty 25 )

fl“(x ¢ (x)(v ( )z(qb(x)) +2p( ))dz.
@) ¢ (x) ¢ (x)

Vp 2 d
b5 (x)( («1»( )) 2@ONT "<¢>< >>>‘ :

I, (2) — u(2)| dz (5.27)

le, (2) —u(@)| dz < ce 3 (¢ (x))?. (5.26)

Thus

So

CE/ le, (x—2) — u(x)|
(¢ (x))°

< c@() /
By (x)(x)

(5260 1
= ce 2¢(x).

Since x € Ng(9€2) N Q2 we know ¢ (x) < ce applying (5.27) and (5.23) to (5.22)
gives

¥ () — 1] < ceTIg (x) < /e (5.28)
Now using that u 4, (x) = 0 we have that
V0, )| < ‘/u,wx(x — 2)Pp(x)(2)dz
< / |”,a)x (x—2)— U o, ()C)\ P (x) (2)dz

(5.29)
(5.15)

< eI f P (@)dz

< celg(x).
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Thus |V (x) — ¢¢| < c/€ and (5.20) follows easily. Also for (5.28), (5.29) we

know |V (x) — np, | < ce~2¢(x) and (5.21) follows. This completes the proof of
Step 3.

Step 4. We will show

)Vzw(x)‘ < ce? forany x € Nse(92) N Q. (5.30)

Proof Step 4. We will estimate the terms in (5.14) one by one. First note

)
/u(x - y)azgx (Pp ) (2)) dz
B / v (k,i:l P <¢> fx)) (ipg((;))é) o
-3 () s (220)

2 z (¢.c, (X))?
+2 m m ' SX
,;p’ ((]b(x)) P03

Z ‘ib,gx(x) ))
-2 0 RALEES d
P <¢(x>> 9‘<<¢<x>>3 :

Note
<¢>,gx (x)) L 3, (02 oo, ()
9, 3) 4 3
(@ (x)) (@ (x)) (@ (x))
and
P <¢,gx(x)) _ _4(¢,§x(x))2 + ?.crce(X)
T\ (@) (@ (1)) @ )t
So

82
/u(x - y)ﬁ (Pp)(2)) dz

2
_ B v2 L) : ) (9,6, (%))
/u(x 2) (( P (¢ ) Z®z 7(4) )

(5.31)
+(_¢,gxgx<x) LGERC) ( z )'Z

G0 @y ) "\ew

6(6.c,(02 2900, ( . )
+ - dz.
( @' () )p o)
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From Step 2 (5.26) we know the existence of an affine function /., with VI. = ¢y

with fB¢(X)(x) lu—1c|dz < ce%d)(x). Let g(x) = I, * pg(x) (x); by Lemma

5.2 we know g . .. (x) = 0. By following through the same calculation that gave
(5.31), we have

2
0= |! - v? < ) . ) (@, (¥)
/ ot —2) (( r <¢ m) ¥t (¢ (x))6

4
+ (_¢,§x§x(x) + 6(¢§x(x)) > vp< < ) 4 (532)

(¢ (x)? (¢ (x))° ¢ (x)

66,002 2, ) ( : )
+ — dz.
( @' (@) )p o)

Note for x € N3c(32) N Q, [¢,¢, (x)| < cand |p ¢, (X)]| < ce™! < c(@(x)) .
So applying (5.32) to (5.31)

82
L/Wx—@&§0%m@n

2
o - v z >: )M
5/|”(x ) =l x Z)|< p(qs(x) ) o

() 6( () ( z )

+ + Vol——-
( G (@) ) Plow) ©
N 6(d,c. () 20 () p( z )
(¢ (x)* (¢ (x))° ¢ (x)

lu(x —2) =l (x —2) )
d \ o+ 1IVPolloo + 0
Sc/l;d)(x)(o) * ()4 Z(” el Vol loll )

dz (5.33)

<c / 4 (@) — 1, (2)| (@ ()~ dz
By (x)(x)

(5.26) |

< ce 2.

Define h(x):= [pgx)(z)dz. Note that h =1 and so %(x) :faigx(pd,(x)(z))dz = 0.
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So

‘/ uc (x — (/0¢(x)(2)) dz

0
= ‘/ (u,gx(x —2)— 1) 3. (p¢(x)(z)) dz

(5.9,(5.18) 1 _4
< ce 2u(x) f¢gv () <Vp (¢( )> -z (¢ (x)) (5.34)
2
+ p<¢( )>(¢( X))~ >‘
Sce_%.

Finally we estimate the first term from (5.14):

‘/ Ucoo (X —2)ppx)(2)dz| < ||V2M||L°°(34p¢(x)(x)) ’/ P (x)(2)dz

(5.35)
(.15 1
< ce 2.
Putting (5.33), (5.34) and (5.35) together and applying this to (5.14) we have
|V cocr (6)| < ce™2 forany x € Ny (982) N 2. (5.36)
Now by (5.12) for any x € N3 (9€2) N Q2 we have
V0] = [ [Vutx = )] oo @1
0
# [ e =005 (o @) dz
Sx (5.37)
(5.18),(5.15 1 1 0
< ce€ 2 + cel / ‘—(pmx)(z))‘dz
d6x
59 1
< ce 2.
And by (5.13)
|wwxwx (X)| =< '/ U wwy (x — Z),0¢(x)(Z)dZ
(5.38)

(5.15) 1
< ce 2.

Putting (5.36), (5.37) and (5.38) together establishes (5.30).
Proof of Lemma completed. From Step 3 for any x € Ng.(3€2) N 2 we have

VP — 1] < ce

so (5.2) follows. In the same way from Step 4 (5.30) and (5.3) follows.
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Since for any x € Q\ Ngc(9€2) we know u(x) > € and so ¢ (x) = w(u(x)) =€
and thus pg(x)(z) = p (é) e~ ! and there for Y(x) = f u(x —z)pe(z)dz. Thus (5.4)
is established. Finally by (5.21), (5.5) follows. O

Lemma 5.4. Let Q be a convex domain and |2QAB1(0)] < B. Letu(x) = d(x, 02)
and for ¢ > 0 define ug := u * pg. For any a € Q\ N4 (0S2) we have

Vus(x)| — 1] < ce_lV(Vu, Byc(a)) for any x € Byc(a). (5.39)

Proof. Firstly recall that since u is concave we have Vi is BV. Let w = f34£ (a)Vudx.
By Poincaré’s inequality (see Remark 3.45 [4])

/ [Vu — w|dz < ceV (Vu, Bse(a)). (5.40)
By (a)

Now

71661 — |w||

/ 11 —|wlldz
By (a)

/ [IVul| —|wlldz
By (a)
(5.40)

< eV (Vu, B (a)).

Thus |1 — |w]|| < cw and so there must exists v € S! such that |[v — w| <

|1 — |w|| hence putting this together with (5.40) we have

][ |Vu —vldz <c
Bye(a)

Hence for any w € By.(a)

V(Vu,€B4s(a)). (541)

Ve (w) — vl

‘ / (Vu(2) — v) pe(w — 2)dz

< ce?

/ (Vu(z) —v) p(e™(z — w))dz

< 08_2/ |Vu(z) —vldz
Boe (w)

(541 V(Vu, Bse(a))
S

&

This completes the proof of Lemma 5 4. O
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Lemma 5.5. Let Q be a convex domain and |2QAB1(0)| < B. Let u(x) = d(x, 0€2)
and define ug := u x p,. Define A := Q\ (Ngg (02) U B4ﬁ% (O)), we will show

1
B2
that for any € € (0, 5]

1 2|? 2 P 3
fs— ‘1—|w8| ) +s‘v us| dz < cps. (542)
A

Proof of Lemma. By the 5r Covering Theorem [20, Theorem 2.1], we can find a
finite collection of balls J := [B% xp):i=1,2,... m} that are piecewise disjoint
and A C UL, Bae(x).

Note that for any i = 1, 2, ... n, since the set of ball in J are pairwise disjoint,
for some constant C there are at most C balls from the set {Bs.(xx) : k =1, ...m}
intersecting Bsg(x;). Thus || > /", 1 g, (x)lloo(@) < C1 and this obviously implies
122551 Uy i) < Ci.

Forx,y e R?letx ® y := (Y31 ¥132). Fora € A if x € By (a),letw =
JCBS(x) Vudx. Now

Ve ()| = ' / Viu(z) ® Vpe(x — 2)dz

X —2 _3

-3 f (Vu —w)dz
Boe (x)
(5.40)

< ce 72V (Vu, By (a)).

=

(5.43)

<ce¢

So
2
dz

‘Vzug

) m
dZSZc/

Boe (xi)

/ ‘Vzul9
A

i=1
m
2 2 2
< e ViUl Ty, )
i=1

O 2 (Z e~ (V(Vu, B4g(xi)))2) (5.44)

i=1

m

(4%1) Cﬂﬁ_ég—l (Z V(Vu, B48(x1')))

i=l1
< cBToe 1V (Vu, A)

(4.10) 3
< cefl,BE.
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Now
/ ’1—|w5|2‘2dzgci/ 11— |Vuel? dz
A ; Bo (xi)
IS SN 2B 11— Vel 5o
n (5.45)
=S BV (Vu, Bas(xi)
i=1
< cefV(Vu, Q\B, 1 0)
(4%()) c,Bl%s.
Putting (5.45) together with (5.44) establishes (5.42). ]

Lemma 5.6. Let n(x) = |x|, € > 0 and define n.(x) := f N(2)pe(x — 2)dz. Then

2 2 1\ .2
/ ‘1 — Vel ‘ dz < clog(s~)e (5.46)
B1(0)

2
/ ‘Vzns
B1(0)

Proof of Lemma. Note for x € By:(0),z € Bg(x)

and

dz < clog(e ™). (5.47)

z X z|x| —xz|
lz| x| |z] x|
zlx| —x |x| x|x| —x|z| (5.48)
lz| |x] lz] x|
ce
< .
T x|l —e
So for x & By:(0)
z
|V778(x) - T ‘/ps ( —> dz
x| |zl
(5.49)

(5.48) ce
<

x| — &
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Since [ |§—| ® Vpe(x —z)dz = 0, for any x & By.(0)

VZe(x) = ‘ / Ve (2) ® Ve (x — 2)dz

‘/ (Vns(z) - —) ® Vpe(x —2)dz

N / (i _ i) & Vs (x — 2)dz (5.50)
x| |zl
(5.48),(5.49) ce
=< /Vps(x —2)dz
x| — &
C
< .
T x| —e
Hence
2 1 1 2
/ ‘vzﬂs(x)‘ dx 02V c/ / ( ) dH'zdr
B1(0)\Bu: (0) 4¢ Jom,0) \ 2zl — ¢
1
1
< c/ —dr (5.51)
e T

< clog(s_l).

Now as |Vne(x)] < ¢ and |V2n€(x)| < ce~ ! for any x € B1_<(0) so

/ )Vzne
Bic (0)

Thus putting this together with (5.51) establishes (5.47).
2 (5.49)
Note ||Vne(x)| — 117 < ’Vne(x) le c(|x|€%e)2 S0 arguing in the same

way as in (5.51) we have (5.46). ]

2
dz < ce.

5.2. Proof of Proposition 5.1

Let u(x)=d(x, 02),let w : R — R be the smooth monotonic function from the
proof of Lemma 5.3. So w satisfies (5.6) and sup |w| < ce”'. As in Lemma 5.3;
for x € N.(02) N 2 define
¢ (x) = wu(x)). (5.52)
Let ,
v(x) := min {u(x), 1—-88%2 + |x|}

and define

§(x) = / v(x — 2)Pg(x)(2)dz.
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Let I := {x u(x) > 1 —88% + |x|}. Define Ag:= Q\(Nse (3Q)UN, (TT)).

Note that £(x) = u(x) for any x € Ag.

Recall from (5.10) the function v defined in Lemma 5.3. Note that for any
x € Ngc(02) N L function ¢ we defined by (5.52) is identical to ¢ defined by (5.7)
in Lemma 5.3. Hence as u = v in Ng.(d2) N Q we have £(x) = ¥ (x) for any
X € Ngc(0€2) N 2 thus

(5.2).(5.3)
=

1 2? 2. |7
/ € ‘I—IVSI ‘ —i—e‘V S) dx CE.
N (092)N

Since ¥ = u, in Ag, from (5.42) we have on e ! |1 — |V§|2\2 + € \V2§|2dx <

cB 6 and so putting this two inequalities together we have
1 2|? 2. ]2 3
/ ¢ ‘1—|vg| ’ +e’v g( dx < cBTs. (5.53)
Q\Ne(IT)

Now, as for any x € [T\N(0I1), w(x) =1 — 8,8% + |x| and s0 uc(x) = ne(x) +

(1 - 8,3%) where 1(x) = |x| and e = 1 * pe. So VE(x) = Vne(x) and V2E(x) =
V21 (x) thus applying Lemma 5.6 we have

2 2 (5.46),(5.47)
/ e_l‘l—IVSIZ) +e)v25‘ dx U celog(e™). (5.54)
MI\N. (8TT)

Since w is Lipschitz, £ is Lipschitz and so from (4.43) we have
1 2|2 2
/ e )1—|vg| ‘ dx < B
Ne(91T)

And note for any x € Q\N,(9R)
X —Z
/Vv(z%V,o( . )dz

2
f E)VZE‘ dx < ce VN3
Ne(9IT)

(4.43) 3
< c¢Bn.

-1

‘Vzé(x)‘ =3 < ce

SO

Putting these inequalities together we have
1 2|? 2.1% 3
/ e ‘1—|vg| ‘ —l—e‘V g| dx < cB>. (5.55)
Ne(0IT)
Now inequalities (5.53), (5.54) and (5.55) give us that & satisfies (5.1). And since

&(x) = ¥(x) on N (0€2) N 2 from (5.5) satisfies V&(x) - ny = 1 for any x € 9.
This completes the proof of Proposition 5.1. O
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5.3. Proof Corollary 1.2

Let @ = infycq [QAB(y)|. Let B = 4(a + €), note that since we can assume

without loss of generality that o 4+ € < % so B < 1. This implies B < ﬁ% and so
1

€ < ’BTZ. Now we can also assume without loss of generality that [2AB1(0)| < B.

So we can apply Proposition 5.1 which gives us the existence of § € A(£2) such

that(5.1) hold true. Hence we have that inf,c 5 (@) fe (1) < cﬂ%. Let v € A(R2) be
the minimiser of /. and since v satisfies

2 2 _
/|1—|VU|ZHV21)‘dz§/E1|1—|Vv|2‘ —I—e‘Vzv‘ dz < cp%
Q Q
3
and as € € (0, £7)
2|? 1
‘1—|W| ( dz < cp.
Q

Thus we have that (1.4), (1.5) are satisfied and hence by Theorem 1.4

J.

Applying Lemma 4.4 we have fQ\B L 0) Vv —V¢|? < C,BSAJT. So arguing in the
B8

2
|
dz < c¢B562,

Z
Vu(z) + —
|z]

same way as the proof of Corollary 1.3 we have [[v — ¢|y12q) < cﬂﬁ <c(e +

1
o) 5462 ]
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