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On Hilbert’s 17th problem and Pfister’s multiplicative formulae
for the ring of real analytic functions

FRANCESCA ACQUISTAPACE, FABRIZIO BROGLIA AND JOSÉ F. FERNANDO

Abstract. In this work, we present “infinite” multiplicative formulae for count-
able collections of sums of squares (of meromorphic functions on Rn). Our for-
mulae generalize the classical Pfister’s ones concerning the representation as a
sum of 2r squares of the product of two elements of a field K which are sums
of 2r squares. As a main application, we reduce the representation of a positive
semidefinite analytic function on Rn as a sum of squares to the representation
as sums of squares of its special factors. Recall that roughly speaking a special
factor is an analytic function on Rn which has just one complex irreducible factor
and whose zeroset has dimension between 1 and n � 2.
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1. Introduction

It is well known that the ring of analytic functions on a real analytic manifold M
is far from being a unique factorization domain because factorization involves, in
the non compact case, infinitely many factors and if H1(M, Z2) 6= 0 there are an-
alytic functions on M which admit different factorizations (see [21]). However, if
we focus on Rn , we are able to associate to a real analytic function on Rn a (possi-
bly infinite) collection of irreducible factors (see Section 6.2), unique up to analytic
units, and we provide some procedure involving sheaf theory (via a sheaf-product,
see Section 2.3) to recover the initial analytic function from its irreducible factors.
Thus, we manage an additional tool: factorization, and one of the main purposes
of this work is to reduce the representation of an analytic function f : Rn

! R
as a sum of squares (of meromorphic functions on Rn) to the representation of
the irreducible factors of f which divide it with odd multiplicity. This involves the
development of “infinite” Pfister’s multiplicative formulae for the field of meromor-
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phic functions onRn . Such approach generalizes the classical result concerning the
representation of analytic function with discrete zeroset as sum of squares provided
in [5], which was our starting point for the study of Hilbert’s 17th problem in the
analytic case (see [2,8]). Of course, the zero sets of the irreducible factors of an an-
alytic function with discrete zeroset are singletons, which is obviously the simplest
possible case.

Since we are concerned with the analytic setting, the involved sum of squares
might be infinite. More precisely, the representation of a positive semidefinite ana-
lytic function onRn as an infinite sum of squares (of meromorphic functions onRn)
consists in finding a non identically zero analytic function g such that g2 f is an infi-
nite sum of squares

P
i�1 a2i of analytic functions which converges in the following

strong sense: there is an open neighborhood � of Rn in Cn to which all involved
data f , g, ai extend to holomorphic functions F , G, Ai and the series

P
i�1 A2i

converges to G2F in the ringH(�) of holomorphic functions on � endowed with
the usual compact–open topology (see Definition 2.10 for further details). Observe
that in an infinite representation as sum of squares the “denominator” is the same
for all the summands of the series. Clearly, this situation can be always achieved
for finite sum of squares finding a common denominator of such representation. In
what follows, {⇤k}k�1 denotes a collection of objects ⇤k which is either countable
or finite but we are not interested in the precise number of its elements. In this
framework our main result is the following:

Theorem 1.1 (Analytic Pfister’s formulae). Let { fk}k�1 be a collection of posi-
tive semidefinite analytic functions on Rn such that the family {Xk = { fk = 0}}k�1
of their zero sets is locally finite. Let f be a positive semidefinite sheaf-product of
the functions fk , that is, a positive semidefinite analytic function on Rn such that

fORn,x =

(Q
k�1,x2Xk fk,xORn,x if x 2

S
k�1 Xk ,

ORn,x otherwise.

Then,

(i) If each fk is a finite sum of squares, f is an infinite sum of squares.
(ii) If each fk is a sum of 2r squares (for a fixed r), f is a sum of 2n+r squares.
(iii) If each fk is an infinite sum of squares, there is a positive semidefinite analytic

function q on Rn such that {q = 0} ⇢ { f = 0}, dim{q = 0} < dim{ f = 0}
and q f is an infinite sum of squares.

We say that an analytic function f : Rn
! R is of Nash type if there is an open

neighborhood W of { f = 0} in Rn and an analytic diffeomorphism ' from an
(affine) Nash manifold M to W such that f �' is the product of a Nash function on
M times an analytic unit. Recall that a Nash manifold M is a semialgebraic subset
of some Rm which is in addition an analytic submanifold of Rm ; a Nash function f
on M is an analytic function with semialgebraic graph (see [4, Section 8] for further
details). As first consequences of Theorem 1.1, [14, 20] and [4, 8.5.6] we have the
following two results.



ON HILBERT’S 17TH PROBLEM AND PFISTER’S FORMULAE 335

Theorem 1.2. Let { fk}k�1 be a collection of positive semidefinite analytic functions
on Rn such that the family {Xk = { fk = 0}}k�1 of their zero sets is locally finite
and each Xk is either compact or of Nash type. Let f be a positive semidefinite
sheaf-product of the functions fk . Then, f is an infinite sum of squares.

Theorem 1.3. Let { fk}k�1 be a collection of positive semidefinite analytic functions
on Rn such that the family {Xk = { fk = 0}}k�1 of their zero sets is locally finite
and each fk is of Nash type. Let f be a positive semidefinite sheaf-product of the
functions fk . Then, f is a sum of 2n+1 squares.

Theorems 1.2 and 1.3 can be understood as natural but substantial generaliza-
tions of the classical results [5, Theorem 1] and [15, Section 4, Theorem 2]; once
more, both classical results can be obtained as a new application of Theorem 1.1
(see Section 6). We summarize the statements of such classical results as follows:

Theorem 1.4. Let f be a positive semidefinite analytic function on Rn whose zero
set is the union of a discrete set and a compact set. Then, f is a finite sum of
squares.

The representation of positive semidefinite functions on a real variety as a sum
of squares has attracted the attention of many specialists in number theory, quadratic
forms, real algebra and real geometry. This problem goes back to the celebrated
Hilbert’s 17th problem for polynomial functions. Its solution by E. Artin in 1927
(see [3]) was the starting point for the development of the theory of the real spec-
trum of a ring, introduced byM. Coste andM.-F. Roy and which has been the crucial
technique to approach many problems in Real Geometry (for more details see [4]).
The real spectrum has been often used to approach Hilbert’s 17th problem in “fini-
tary situations”: polynomial functions, Nash functions, analytic function germs at
points or at compact sets,. . . but it has fallen short to deal with analytic functions
on Rn for dimension n � 3 without some compactness assumptions (see [14, 20]).
Hilbert’s 17th problem for analytic functions asks whether:
H17. Every positive semidefinite analytic function f : Rn

! R is a finite sum of
squares (of meromorphic functions).

In fact, we show in [2], that a positive solution to H17 above implies the finite-
ness of the Pythagoras number p(Rn) of the fieldM(Rn) of meromorphic functions
on Rn; recall that p(Rn) is either the least integer p such that each finite sum of
squares in M(Rn) can be represented as a sum of p squares in M(Rn) or +1

if such an integer does not exist. This reveals that in the analytic setting there is
a strong connection between the qualitative and the quantitative aspects of H17,
which seems to not appear in the “finitary situations” commented above. Furthe-
more, if we were able to represent irreducible positive semidefinite analytic func-
tions as sums of squares of meromorphic functions, the real Nullstellensatz proved
in [1] in terms of nonnegative functions would get a formulation in terms of the real
radical as in the polynomial case. Thus, obstructions to get H17 or to get Risler’s
Nullstellensatz are essentially the same in the real analytic setting.



336 FRANCESCA ACQUISTAPACE, FABRIZIO BROGLIA AND JOSÉ F. FERNANDO

Clearly, infinite sums of squares are positive semidefinite, and this allows us to
weaken the classical formulation H17 and ask whether:
H171. Every positive semidefinite analytic function f : Rn

! R is an infinite sum
of squares (of meromorphic functions).

As one realizes immediately, Theorem 1.1 reduces H171, by means of the
obvious inductive process and Theorem 1.4 for the initial step, to represent posi-
tive semidefinite irreducible analytic functions as infinite sum of squares, and H17
to represent positive semidefinite irreducible analytic functions as finite sum of
squares and to prove the finiteness of the Pythagoras number p(Rn) of the field
M(Rn).

The article is organized as follows. In Section 2 we collect some constructions
and preliminary results that will be used several times in the subsequent sections.
Next, Section 3 is devoted to prove Theorems 1.1(ii) and 1.3, while in Section 4
we approach the proof of Theorem 1.1(i) and in Section 5 we demonstrate The-
orem 1.1(iii). Finally, Section 6 is dedicated to present some further applications
of Theorem 1.1; the main one concerns the reduction of the representation of a
positive semidefinite analytic function on Rn as a sum of squares to the repre-
sentation as sums of squares of its special factors. We also show how analytic
Pfister’s formulae can be generalized for an arbitrary (affine) analytic manifold
and we point out that all the results developed in this article, even those concern-
ing factorization, run, almost in the same way, for any analytic manifold M with
H1(M, Z2) = H2(M, Z) = 0.

2. Preliminaries

Although we deal with real analytic functions, we will of course use some complex
analysis. All through this work holomorphic functions will refer to the complex
case and analytic functions to the real case. For further readings about holomorphic
functions we refer the reader to the classical [11]. We begin by introducing some
notations.

2.1. General terminology

Denote the coordinates in Cn by z = (z1, . . . , zn), with zi = xi +

p

�1yi , where
xi = Re(zi ) and yi = Im(zi ) are respectively the real and the imaginary parts of
zi . Consider the usual conjugation � : Cn

! Cn, z 7! z = (z1, . . . , zn), whose
set of fixed points is Rn . A subset A ⇢ Cn is � -invariant if � (A) = A; obviously,
A\ � (A) is the biggest � -invariant subset of A. Let � ⇢ Cn be a � -invariant open
set and let F : � ! C be a holomorphic function. We say that F is � -invariant if
F(z) = (F � � )(z) for all z 2 �. This implies that F restricts to a (real) analytic
function on � \ Rn . In general, we denote by:

<(F) : � ! C, z 7!
F(z)+(F�� )(z)

2 and =(F) : � ! C, z 7!
F(z)�(F�� )(z)

2
p

�1
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the real and the imaginary parts of F , which satisfy F = <(F)+

p

�1=(F). Note
that both are � -invariant holomorphic functions. We will use the standard notation
O� (respectively ORn ) for the sheaf of holomorphic function germs (respectively
of real analytic function germs). For the sake of clearness, the ring of holomorphic
functions on � is denoted by H(�) while the ring of analytic functions on Rn is
denoted by O(Rn). Given a holomorphic function F 2 H(�), we denote {F =

0} = {z 2 � : F(z) = 0}; analogously, { f = 0} denotes the zeroset {x 2 W :

f (x) = 0} of an analytic function f 2 O(W ) on an open subset W ⇢ Rn . The
notations Int and Cl stand for topological interiors and closures, respectively.

2.2. Globally principal ideals

We are mainly concerned with X = Rn or a contractible open Stein subsets� ofCn

because on this type spaces each locally principal analytic (coherent) sheaf of ideals
F is globally principal. As a classical application of Cartan’s Theorem B (see [7]),
this kind of sheaves provides a global section of the sheaf D = OX/O⇤

X of germs
of positive divisors on X . By means of the long exact sequence of cohomology, we
deduce that F has a global generator f 2 H0(X,OX ) if H1(X,O⇤

X ) = 0. Using
the exponential standard exact sequences of sheaves corresponding to X , we deduce
that

H1(X,O⇤

X ) ⇠
=

(
H1(Rn, Z2) = 0 if X = Rn ,
H2(�, Z) = 0 if X = �.

In what follow we will use freely this fact: For such kind of analytic spaces X , each
locally principal analytic (coherent) sheaf of idealsF on X is globally principal. Of
course, two global generators of F differ just by a unit. Recall also, the following
fact that will be used freely: Given an open neighborhood �0 of Rn in Cn , there
exists a � -invariant contractible open Stein neighborhood� of Rn inCn contained
in �0 (see [7, Section 1, Proposition 1]).

2.3. Real and complex sheaf-products

For our purposes, given a (countable) collection of either analytic functions on Rn

or holomorphic functions on a contractible open Stein subsets � of Cn whose zero
sets constitute a locally finite family, we need to construct an either analytic or
holomorphic function which behaves (up to multiplication by a unit) as the (possibly
infinite) product of all the functions in the collection. To that end, we recall a well-
known procedure that will be called sheaf-product for short. More precisely,
Definition 2.1. Let { fk}k�1 be a collection of analytic functions on Rn such that
the family {Xk = { fk = 0}}k�1 of their zero sets is locally finite in Rn . Then, there
exists a unique global generator f 2 O(Rn) (up to multiplication by a unit) of the
locally principal analytic sheaf of ideals

Fx =

(Q
k�1,x2Xk fk,xORn

x if x 2 X =

S
k�1 Xk ,

ORn,x if x 2 Rn
\ X .
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We will refer to this generator f as the sheaf-product⇡ fk of the analytic functions
fk . Notice that if each fk is positive semidefinite, we may always assume that so is
⇡ fk .

Analogously, given a collection {Fk}k�1 of holomorphic functions on a con-
tractible open Stein subset � of Cn such that the family {Zk = {Fk = 0}}k�1 of
their zero sets is locally finite in �, we define the sheaf-product ⇡ Fk of the holo-
morphic functions Fk . Notice that, by means of the following lemma, if�\Rn

6= ?
and � and each Fk are � -invariant, we may always choose ⇡ Fk also � -invariant.

Lemma 2.2. Let � be a � -invariant contractible open subset of Cn such that � \

Rn
6= ? and let F : � ! C be a holomorphic function. Suppose that there exists

a unit u 2 H(�) such that F � � = uF . Then, there exists a unit v 2 H(�) such
that vF : � ! C is � -invariant.

Proof. We may assume that F is not identically zero. Since F � � = uF , we also
have F = u � � F � � , and so, F � � = uu � � F � � ; hence, uu � � = 1. Since
� is contractible, there exists a unit v 2 H(�) such that v2 = u. Notice that
vv � � = 1, because (vv � � )2 = uu � � = 1 and its restriction to � \ Rn

6= ? is
positive. Then,

(vF) � � = v � � F � � = v(v � � )2F � � = vu � � F � � = vF,

and so, vF is � -invariant, as wanted.

2.4. Real and complex sheaf-extension

Let X ⇢ Rn be a global analytic set and letU be a neighborhood of X inRn . Given
an analytic function g : U ! R such that {g = 0} ⇢ X , we would like to find a
global analytic function f : Rn

! R which behaves as an extension of g (up to
multiplication by a unit). We also approach the analogous situation in the complex
case.
Definition 2.3. Let X ⇢ Rn be a global analytic set and let f : W ! R be an
analytic function on a neighborhood W of X in Rn such that { f = 0} ⇢ X . Then,
there is a unique global generator bf 2 O(Rn) (up to multiplication by a unit) of the
locally principal analytic sheaf of ideals

Fx =

(
fxORn,x if x 2 X ,
ORn,x if x 2 Rn

\ X .

We call bf the sheaf-extension of f to Rn . Of course, if f is positive semidefinite,
we may assume that so is bf .

Analogously, given a contractible open Stein subset� ofCn , an analytic subset
Z of�, an open neighborhoodU of Z in� and a holomorphic function F : U ! C
such that {F = 0} ⇢ Z , we define the sheaf-extension bF of F to �. As before if
� \ Rn

6= ? and �, U and F are � -invariant, we may always choose F also
� -invariant.
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For our purposes, it will be crucial to “sheaf-extend” holomorphically to a suit-
able common domain countable families of either analytic or holomorphic functions
whose zero sets constitute a locally finite family. The following “topological” pre-
liminary results will help us to achieve our aim.

Lemma 2.4. Let X be a paracompact second countable topological space and let
{Tk}k�1 be a locally finite family of closed sets in X . For each k � 1, let Vk be an
open neighborhood of Tk in X . Then, there exists open neighborhoods Uk ⇢ Vk of
Tk in X such that the family {Uk}k�1 is locally finite in X .

Proof. For each x 2 X there is an open neighborhood Wx of x that meets only
finitely many Tk . The family {Wx

}x2X is an open covering of X ; hence, it has
an open refinement {W`}`�1 which is countable and locally finite in X . We define
U 0

k =

S
W`\Tk 6=?W` and observe that Tk ⇢ U 0

k . We claim that the family {U 0

k}k�1
is locally finite in X .

Indeed, fix a point x 2 X and let V x be a neighborhood of x which intersects
finitely many W`, say W`1, . . . ,W`r . Now, the union

Sr
j=1W` j meets only finitely

many Tk , say Tk1, . . . , Tks ; hence, if k 6= k1, . . . , ks , the intersection U 0

k \ V x
= ?.

To finish, just take Uk = U 0

k \ Vk .

Lemma 2.5. Let {�k}k�1 be a locally finite family of open subsets of Cn and for
each k � 1 let Tk ⇢ �k be a closed subset of�k such that ClCn (Tk)\Rn

= Tk\Rn .
Then, there exists a (� -invariant contractible Stein) open neighborhood � of Rn in
Cn such that � \ Tk is a closed subset of � for all k � 1.

Proof. The obstruction to take �0 =

S
k�1�k as the open neighborhood of Rn in

Cn in the statement appears essentially at the sets ClCn (Ti ) \� j for j 6= i . To get
rid of such obstruction, we proceed as follows.

First, since the family {�k}k�1 is locally finite in Cn , so are the families
{Tk}k�1, {ClCn (Tk)}k�1 and {ClCn (Tk) \�k}k�1. Thus,

S =

[
k�1

ClCn (Tk) and Ck =

[
j 6=k

ClCn (Tj ) \� j

are closed subset of Cn . Consider the open set of Cn

� = (Cn
\ S) [

[
k�1

�k \ Ck .

We check first that Rn
⇢ �. Since ClCn (Tk) \ Rn

= Tk \ Rn , we have

Ck \ Rn
=

[
j 6=k

(ClCn (Tj ) \ Rn) \� j =

[
j 6=k

(Tj \ Rn) \� j = ?,

for all k � 1 and S \ Rn
=

S
k�1 Tk \ Rn . Thus, since Tk ⇢ �k ,

Rn
\� =

⇣
Rn

\

[
k�1

Tk \ Rn
⌘

[

[
k�1

�k \ Rn
= Rn.
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Next, we show that each intersection T`\� is closed in� for ` � 1. Fix ` � 1 and
observe that since � is open in Cn , we have Cl�(T` \�) = ClCn (T`) \�; hence,
it is enough to show that ClCn (T`) \ � ⇢ T` for each ` � 1. Indeed, since T` is
closed in �`, we have ClCn (T`) \ �` = T`; hence, since ClCn (T`) \ �` ⇢ Ck if
k 6= `, we deduce

ClCn (T`) \� =

[
k�1

ClCn (T`) \ (�k \ Ck)

⇢ ClCn (T`) \�` [

[
k 6=`

ClCn (T`) \ (ClCn (T`) \�`) = T`,

as wanted. As always, we may assume that � is � -invariant contractible and Stein.

Lemma 2.6. Let V be an open neighborhood of Rn in Cn and let Z ⇢ V be a
closed subset of V . Let � be an open subset of Cn such that Z \ Rn

⇢ � ⇢ V .
Then, ClCn (Z \�) \ Rn

= (Z \�) \ Rn .

Proof. Since Z is closed in V , we have ClCn (Z) \ V = Z . Thus, since Rn
⇢ V ,

we have ClCn (Z) \ Rn
= ClCn (Z) \ V \ Rn

= Z \ Rn; hence,

Z \ Rn
⇢ ClCn (Z \�) \ Rn

⇢ ClCn (Z) \ Rn
= Z \� \ Rn,

and we are done.

Next, we point out here a sufficient and necessary condition to assure that a
countable family of closed subsets of an open set � ⇢ Cn is locally finite.

Lemma 2.7. Let � ⇢ Cn be an open set and let {T`}`�1 be a family of closed
subsets of �. Then, the family {T`}`�1 is locally finite if and only if there exists an
exhaustion {K`}`�1 of � by compact sets such that T` \ K` = ? for all ` � 1.

Proof. The if part is straightforward and we do not include the concrete details. For
the converse, we begin by fixing an exhaustion {Lk}k�1 of � by compact sets, that
is, Int�(L1) 6= ?, Lk ⇢ Int�(Lk+1) and � =

S
k�1 Lk . For each k � 1, we define

`(k) = sup{` � 1 : Lk \ T` 6= ?}.

and notice that `(k) < +1 because the family {T`}`�1 is locally finite. Morever,
the sequence {`(k)}k�1 is increasing and it tends to +1 because � =

S
k�1 Lk .

Next, we choose a closed ball L0 contained in Int�(L1) \

S`(1)
j=1 Tj and define

K 0

` =

(
L0 if `(0) = 1  `  `(1)
Lk if `(k) + 1  `  `(k + 1)

Observe that K 0

`\T` = ?, K 0

`(k) ⇢ Int�(K 0

`(k)+1) for all k � 0 and
S
`�1 K 0

` = �.
Finally, modifying slightly the compact sets K 0

`, we obtain the desired exhaustion
{K`}`�1.
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2.5. Sheaf-extensions to a suitable common domain

After the previous preparation, we approach the holomorphic “sheaf-extension” to
a suitable common (complex) domain of a collection of either analytic functions on
Rn whose zero sets constitute a locally finite family ofRn or holomorphic functions
whose (complex) domains of definition constitute a locally finite family of open
subsets of Cn . Namely,

Lemma 2.8. Let { fk}k�1 be a collection of analytic functions on Rn such that the
family {Xk = { fk = 0}}k�1 of their zero sets is locally finite in Rn . Then, there
exist a � -invariant open neighborhood � of Rn in Cn and � -invariant holomorphic
functions bFk 2 H(�) such that the family {{

bFk = 0}}k�1 of their zero sets is locally
finite in Cn and for each k � 1 there is a positive unit uk 2 O(Rn) satisfyingbFk |Rn = uk fk .

Proof. We may assume that all the fk are non identically zero. For each k � 1,
let Vk ⇢ Cn be a � -invariant open neighborhood of Rn in Cn such that fk extends
to a � -invariant holomorphic function Fk : Vk ! C. By Lemma 2.4, there is a
locally finite family in Cn of � -invariant open sets {�k}k�1 such that Xk ⇢ �k ⇢

Vk . Let Tk = {Fk = 0} \ �k which is � -invariant and, by Lemma 2.6, satisfy
ClCn (Tk) \ Rn

= Xk = Tk \ Rn .
Next, by Lemma 2.5, there is a � -invariant open neighborhood � of Rn in Cn

such that each intersection � \ Tk is a closed subset of �. Next, for each k � 1
let bFk 2 H(�) be a � -invariant sheaf-extension of Fk to �. A straightforward
computation shows that the holomorphic functions {

bFk}k�1 satisfy the desired con-
ditions.

Lemma 2.9. Let {�k}k�1 be a locally finite family in Cn of � -invariant open sets
and for each k � 1 let Gk : �k ! C be a � -invariant holomorphic function.
Denote Sk = {Gk = 0} and assume that Sk \ Rn is a (closed) global analytic set
of Rn and ClCn (Sk) \ Rn

= Sk \ Rn for each k � 1. Then, there are a � -invariant
open neighborhood � of Rn in Cn such that Sk \� is closed in � and � -invariant
sheaf-extensions bGk 2 H(�) of the functions Gk .

Proof. We may assume that Gk is not identically zero in any of the connected com-
ponents of �k . Next, by Lemma 2.5, there is a � -invariant contractible open Stein
neighborhood � of Rn in Cn such that Zk = Sk \ � is a closed subset of � for
all k � 1. Next, for each k � 1 let bGk 2 H(�) be a � -invariant sheaf-extension
of Gk to �. A straightforward computation shows that the holomorphic functions
{
bGk}k�1 satisfy the desired conditions.

2.6. Infinite sums of squares

As we have already commented, we are concerned about infinite sum of squares
and we recall here some statements from [2]. We begin with the precise definition
of infinite sum of squares of analytic functions.
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Definition 2.10. LetW ⇢ Rn be an open set. An infinite sum of squares of analytic
functions on W is a series

P
k�1 f 2k where all fk 2 O(W ), such that:

(i) The fk’s have holomorphic extensions Fk’s, all defined on the same open
neighborhood � of W in Cn , and

(ii)
P

k�1 supK |Fk |2 < +1 for every compact set K ⇢ �.

Accordingly, the infinite sum of squares
P

k�1 f 2k defines well an analytic function
f on W = �\ Rn and we write f =

P
k�1 f 2k 2 O(W ). Of course, this definition

trivially includes finite sums of squares. Hence, it makes sense to say that an ele-
ment of the ring O(W ) is a sum of p squares in O(W ), even for p = +1. Next,
an analytic function f : W ! R is a sum of p  +1 squares (of meromorphic
functions) on W if there is g 2 O(W ) \ {0} such that g2 f is a sum of p squares of
analytic functions on W . The set {g = 0} is the zeroset of the denominators of that
representation of f as a sum of squares. More generally, we say that an analytic
function f : W ! R is a sum of squares (of meromorphic functions) at { f = 0} if
there is an open neighborhood V of { f = 0} inW such that f |V is a sum of squares
on V .

The choice of a suitable sum of squares representation is a crucial matter and
we need often to have controlled denominators, that is, the zeroset {g = 0} of
the denominators of the representation of f as sum of squares is contained in the
zeroset { f = 0}. In [2, 4.1] we proved the following.

Lemma 2.11. Let W ⇢ Rn be an open set and let f : W ! R be an analytic
function which is a sum of p  +1 squares on W . Then, f is a sum of q 

2n�1 p squares in a perhaps smaller neighborhood W 0 of { f = 0} with controlled
denominators.

Moreover, the “local” representations as sum of squares on a neighborhood of
the zeroset of a positive semidefinite analytic function can be always extended to
Rn by means of the following result proved in [2, 1.8, 4.1]. Although the statement
we present here could seem more general than the one we presented there, its proof
is exactly the same.

Theorem 2.12. Let f : Rn
! R be an analytic function and suppose that f

is a sum of p  +1 squares at { f = 0}. Then, there exist analytic functions
g, h, q : Rn

! R such that q is a sum of 2n�1 p squares of analytic functions on
Rn , {g = 0} ⇢ {h = 0} = { f = 0} and g2 f = h2 + q.

The main tool to prove the previous result in case p = +1 involves the fol-
lowing result (proved in [2, 2.4]) which approaches the extension of sum of squares
of � -invariant holomorphic functions.

Proposition 2.13. Let � be a � -invariant open Stein neighborhood of Rn in Cn

and let 8 2 H(�) be a � -invariant holomorphic function. Let V be a � -invariant
nonempty open set such that {8 = 0} \ V is closed in �. Let {Ck}k�1 ⇢ H(V ) be
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a collection of � -invariant holomorphic functions such that
P

k supL |Ck |2 < +1

for every compact set L ⇢ V . Then, there exist � -invariant holomorphic functions
Ak : � ! C, such that

P
k supK |Ak |2 < +1 for every compact set K ⇢ � and

8|V divides all the differences Ak |V � Ck .

A relevant consequence of Subsection 2.5 and Proposition 2.13 is the follow-
ing result which concerns the holomorphic extension of countably many sums of
squares to the same complex neighborhood.

Lemma 2.14. Let { fk}k�1 be a collection of analytic functions on Rn such that:

• the family {Xk = { fk = 0}}k�1 of their zero sets is locally finite in Rn , and
• each fk is a sum of pk squares at Xk , where 1  pk  +1.

Then, there are a � -invariant open neighborhood � of Rn in Cn , positive real
constants ck for k � 1 and � -invariant homolomorphic functions Gk, bFk, Akj 2

H(�) for k � 1 and 1  j  qk = 2n+1 pk such that:

(i) bFk |Rn = uk fk for a positive unit uk 2 O(Rn).
(ii) The family {{G2kbFk = 0}}k�1 is locally finite in� and {G2kbFk = 0}\Rn

= Xk .
(iii) The sum Ak = (dkG2kbFk)2 +

Pqk
j=1 A

2
k j converges in � in the sense of Defini-

tion 2.10(ii) for each family of real values {dk}k�1 satisfying dk � ck . More-
over,
• {Ak |Rn = 0} = Xk and the family {{Ak = 0}}k�1 is locally finite in�; and
• Ak = G2kbFkQk for some � -invariant Qk 2 H(�), which does not vanish
on a neighborhood Vk of {G2kbFk = 0} [ Rn .

Proof. We will split the proof into several steps.
STARTING POINT. By Theorem 2.12 we can find a representation of fk as a sum of
qk = 2n�1 pk squares on Rn with controlled denominators. This provides:

(1) By Lemma 2.8, there are a � -invariant open neighborhood �0 of Rn in Cn

and � -invariant holomorphic functions bFk 2 H(�0) such that the family
{{
bFk = 0}}k�1 is locally finite in Cn , bFk |Rn = uk fk and uk 2 O(Rn) is a

positive unit.
(2) There are � -invariant open neighborhoods Uk of Rn in Cn and � -invariant

holomorphic functions G 0

k, Bkj : Uk ! C such that G 02
k
bFk =

Pqk
j=1 B

2
k j and

{G 0

k = 0} \ Rn
⇢ Xk .

STEP 1: EXTENSION OF DENOMINATORS. The family {Tk = {
bFk = 0} \ Uk}k�1

is, by (1) above, locally finite in Cn . Now, by Lemma 2.4, there is a locally finite
family in Cn of � -invariant open sets {�k}k�1 in Cn such that Tk ⇢ �k ⇢ Uk .
Consider the � -invariant sets Sk = {G 02

k
bFk |Uk = 0} \�k . By Lemma 2.6, we have

ClCn (Sk) \ Rn
= Xk = Sk \ Rn for all k � 1.

Now, by Lemma 2.9, we find a � -invariant open neighborhood � ⇢ �0 of Rn

in Cn such that � \ Sk is a closed subset of � and � -invariant sheaf-extensions
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Gk =
bG 0

k 2 H(�) of the functions G 0

k . To simplify notations, denote again by bFk
its restriction to � and by �k and Sk their respective intersections with �.

Let vk 2 H(�k) be a � -invariant unit such that Gk |�k = vkG 0

k |�k . Thus, if we
write Ckj = vk Bk j |�k , we have

(G2kbFk)|�k = v2k (G
02
k
bFk)|�k =

qkX
j=1

(vk Bk j |�k )
2

=

qkX
j=1

C2k j .

Moreover, the family {Sk = {G2kbFk = 0}}k�1 is locally finite in � and {G2kbFk =

0} \ Rn
= Xk for all k � 1.

STEP 2: GLOBALIZATION OF SUMS OF SQUARES. Here we replace the sums of
squares

Pqk
j=1 C

2
k j , which are defined only on the sets�k , by global sum of squaresPqk

j=1 A
2
k j satisfying the conditions in the statement.

Fix k � 1 and observe that �k \ {G2kbFk = 0} = Sk which is a closed subset
of �. We apply Proposition 2.13 to 8 = (G2kbFk)2, V = �k and C j = Ckj and we
find � -invariant holomorphic functions Akj on �, such that

•

Pqk
j=1 supK |Akj |2 < +1 for all compact sets K ⇢ �, and

• (G2kbFk)2 divides Akj � Ckj on �k .

Next, let {Kk}k�1 be an exhaustion of � by compact sets such that Sk \ Kk = ?
for all k � 1 (see Lemma 2.7). Denote A0

k =

Pqk
j=1 A

2
k j and let

ck = 1+

maxKk (|A0

k |)

minKk (|G2kbFk |2) > 0.

Write Ak0 = dkG2kbFk for dk � ck and define Ak = A2k0 + A0

k =

P
j�0 A2k j . Each

function Ak is holomorphic and � -invariant on � and its restriction to Rn vanishes
only at Xk , because so does Ak0|Rn . Moreover, let us check that for such choice of
dk’s the family {{Ak = 0}}k�1 is locally finite in �. By Lemma 2.7, it is enough to
prove that {Ak = 0} \ Kk = ? for all k � 1.

Indeed, suppose by way of contradiction that there exists z 2 {Ak = 0}\K`(k);
then, (dkG2kbFk)2(z) = �A0

k(z) and since (G2kbFk)(z) 6= 0, we have

1  c2k  d2k =

|A0

k(z)|
|(G2kbFk)(z)|2 < 1+

maxK`(k) (|A0

k |)

minK`(k) (|G2kbFk |2) = ck  dk,

a contradiction.
Next, we claim that: The meromorphic function Qk = Ak/(G2kbFk) is holomor-

phic on � and it does not vanish on a neighborhood of {G2kbFk = 0} [ Rn .
Since the zeroset of G2kbFk in � is Sk ⇢ �k , we have

{Ak = 0} \ Rn
= Xk ⇢ Sk ⇢ �k
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and our claim reduces to show that Qk is holomorphic unit on an open neighborhood
of Sk . Indeed, on �k we have:

qkX
j=1

A2k j � G2kbFk =

qkX
j=1

A2k j �

qkX
j=1

C2k j =

qkX
j=1

(A2k j � C2k j ).

Of course, all involved series are convergent on the compact sets of �k . Also, by
construction, (G2kbFk)2 divides on�k each term A2k j�C

2
k j = (Akj+Ckj )(Akj�Ckj );

hence, it divides their sum
Pqk

j=1 A
2
k j � G2kbFk . Thus, we can write

Ak =

qkX
j=0

A2k j = A2k0 +

qkX
j=1

A2k j = G2kbFk + Hk(G2kbFk)2 = QkG2kbFk,

where Hk 2 H(�k) and Qk = 1+HkG2kbFk in�k ; hence, shrinking�k if necessary,
we get that Qk is a � -invariant holomorphic unit on �k , as wanted.

3. Bounded analytic Pfister’s formula

The classical Pfister’s formula (see [18]) says that in a field K the subset of sums of
2r squares is closed under multiplication. In order to ease the writing of what fol-
lows we will use the standard notation due to Pfister: Given an element f of a ring
A, the expression f = p means that f is a sum of p squares in A; when several
p ’s appear in the same formula, they need not be the same. For instance, Pfis-
ter’s formula can be re-written as 2r 2r = 2r . In fact, by means of complex
numbers, quaternions and octonions we have also the equality 2r 2r = 2r for
r = 1, 2, 3 in any ring A. The main purpose of this section is to prove Theorems
1.1(ii) and 1.3. By means of Lemma 2.11, Theorem 1.1(ii) reduces to prove the
following statement.

Theorem 3.1 (Bounded analytic Pfister’s formula). Let { fk}k�1 be a collection
of analytic functions on Rn such that the family {Xk = { fk = 0}}k�1 of their
zero sets is locally finite. Assume that each fk is a sum of 2r squares at Xk with
controlled denominators (for a fixed r). Then, ⇡ fk is a sum of 2r+1 squares with
controlled denominators.

3.1. Pfister’s multiplicative formulae

One way to prove Pfister’s multiplicative formulae consists in providing, given an
element a = 2r in K (respectively A), a matrix Ma 2 M2r (K ) of order 2r
and coefficients in K (respectively in A) such that Mt

aMa = aI2r . Once this is
done, if a, b are sums of 2r squares, we have (MaMb)

t (MaMb) = abI2r and this
provides a representation of ab as a sum of 2r squares; of course, I2r denotes the
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identity matrix of the ring M2r (K ) (respectively M2r (A)). For our purposes, we
present next a slight modification of the procedure to construct such matrices (see
also [16, 7.1]).

Lemma 3.2. Let A be a unitary commutative ring and let gi , fi 2 A for i = 1, 2.
Suppose that there exist matrices M1,M2 2 M2r (A) such that Mt

i Mi = g2i fi I2r .
Then, there is a matrix M 2 M2r+1(A) such that MtM = g2 f I2r where g =

g1g22 f2 and f = f1 + f2.

Proof. A straighforward computation shows that

M =

 
g22 f2M1 �g1g2 f2M2
g1g2 f2M2 M2Mt

1M2

!
2 M2r (A)

is the matrix we sought.

In our case A = O(Rn), we are concerned about “controling denominators”.
This is done by means of the following result.

Lemma 3.3. Let f, a 2 O(Rn) be analytic functions such that f = a2+ 2r�1 in
O(Rn) and {a = 0} = { f = 0}. Then, there exist g 2 O(Rn) with {g = 0} ⇢ { f =

0} and a matrix M 2 M2r (O(Rn)) such that MtM = g2 f I2r .

Proof. Indeed, if r = 1, f = a2 + b2 it is enough to take g = 1 and

M =

✓
a �b
b a

◆
2 M2(O(Rn)).

Assume now r > 1, and let f1 = (35a)
2
+ 2r�2 and f2 = (45a)

2
+ 2r�2 such

that f = f1 + f2. Notice that { f1 = 0} = { f2 = 0} = {a = 0} = { f = 0}. By
induction, there are analytic functions g1, g2 2 O(Rn) such that {gi = 0} ⇢ { fi =

0} and matrices Mi 2 M2r�1(O(Rn)) such that Mt
i Mi = g2i fi I2r�1 for i = 1, 2. By

Lemma 3.2, there is a matrix M 2 M2r+1(O(Rn)) such that MtM = g2 f I2r where
g = g1g22 f2. Observe that {g = 0} = {g1 = 0} [ {g2 = 0} [ { f2 = 0} = { f = 0},
as wanted.

Remark 3.4. (i) Of course, if f = p in O(Rn), there exists a 2 O(Rn) such that
f = a2 + p in O(Rn) and {a = 0} = { f = 0}.

Indeed, 1 + f is a positive unit of O(Rn) and so u =
1

p

1+ f 2 O(Rn). Thus,
if we denote a = f u, we have f = ( f + f 2)u2 = a2 + u2 p = a2 + p and
{a = 0} = { f = 0}.
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(ii) If f = 2r in O(Rn) with r  3, we may choose a matrix M f 2 M2r (O(Rn))
such that Mt

f M f = f I2r . Namely,

f =a21 + a22, f =a21 + a22 + a23 + a24, f =a21+ a22+ a23+ a24+ a25+ a26+ a27+ a28 .

M f =
⇣ a1 �a2
a2 a1

⌘
, M f=

0
@

a1 �a2 �a3 �a4
a2 a1 a4 �a3
a3 �a4 a1 a2
a4 a3 �a2 a1

1
A,M f=

0
BBBBBBBB@

a1 �a2 �a3 �a4 �a5 �a6 �a7 �a8
a2 a1 �a5 �a8 a3 �a7 a6 a4
a3 a5 a1 �a6 �a2 a4 �a8 a7
a4 a8 a6 a1 �a7 �a3 a5 �a2
a5 �a3 a2 a7 a1 �a8 �a4 a6
a6 a7 �a4 a3 a8 a1 �a2 �a5
a7 �a6 a8 �a5 a4 a2 a1 �a3
a8 �a4 �a7 a2 �a6 a5 a3 a1

1
CCCCCCCCA

.

3.2. Pfister’s bundles

Following some ideas developed in [13, Section 2] to approach the representation
of a positive semidefinite analytic function on an analytic surface as sum of squares
of analytic functions, we will associate a suitable analytic vector bundle endowed
with a Riemannian metric to each finite sum of squares in O(Rn).
Definition 3.5. Let f 2 O(Rn) be an analytic function. We define a Pfister’s bun-
dle for f as a tupleP( f ) = (E( f ),⇡, Rn

; h·, ·i, s) consisting of:

• an analytic vector bundle (E( f ),⇡, Rn) of finite rank,
• a Riemannian metric h·, ·i on E , and
• a global analytic section s : Rn

! E( f ) such that hs, si = f .

Remark 3.6. An analytic vector bundle overRn is topologically trivial becauseRn

is contractible; hence, it is, by [10], also analytically trivial. Thus, a Pfister’s bundle
P( f ) for f of rank p admits p unitary analytic sections s1, . . . , sp : Rn

! E
which are pairwise orthogonal, that is, hsi , s j i = �i j for 1  i, j  n.

Next, we characterize the finite sums of squares in terms of Pfister’s bundles.
Namely:

Lemma 3.7. Let f 2 O(Rn) be an analytic function. Then, f is a finite sum of
squares if and only if there exist g 2 O(Rn) \ {0} and a Pfister’s bundle P(g2 f )
of finite rank for g2 f . Moreover, if P(g2 f ) has rank p, then f can be represented
as a sum of p squares and the zeroset of the denominators of such representation is
contained in {g = 0}.

Proof. Suppose first that f is a sum of 2r�1 squares, that is, there is g0 2 O(Rn) \

{0} such that g20 f is a sum of 2
r�1 squares inO(Rn). By Remark 3.4(i) and Lemma

3.3, there exist g1 2 O(Rn) \ {0} and a matrix Mh 2 M2r (O(Rn)) such that
Mt
hMh = hI2r where h = (g0g1)2 f ; denote g = g0g1.
Write p = 2r and consider the analytic vector bundle (E,⇡, Rn) where E =

Rn
⇥ Rp and ⇡ : Rn

⇥ Rp
! Rn is the projection onto the first space. Consider
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the analytic Riemannian metric on (E � E,⇡ 0, Rn) = (Rn
⇥ R2p,⇡ 0) given by

h·, ·i(x, (v1, . . . , vp), (w1, . . . , wp)) =

pX
`=1

v`w`.

Let u 2 Rp be any unitary vector and consider the global section

s : Rn
! E, x 7! (x,Mh(x)(u)).

Since hs, si = h, the tupleP(h)=((E,⇡, Rn), s) is a Pfister’s bundle for h= g2 f .
Conversely, suppose that there exists a Pfister’s bundle P (g2 f ) =

((E,⇡, Rn), h·, ·i, s) of rank p for g2 f , where g 2 O(Rn) \ {0}. By Remark 3.6,
there exists a family of analytic sections {s1, . . . , sp} of (E,⇡, Rn) such that
hsi , s j i = �i j for 1  i, j  p. Write now s =

Pp
i=1 ai si , where ai = hs, si i 2

O(Rn), and notice that

g2 f = hs, si = a21 + · · · + a2p

is a sum of p squares in O(Rn); hence, f is a sum of p squares and the zeroset of
the denominators of such representation is contained in {g = 0}, as wanted.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1

By Lemma 3.7, it is enough to provide g 2 O(Rn) with {g = 0} ⇢ { f = 0} and a
Pfister bundle of rank p = 2r+1 for g2 f . We proceed in several steps:
INITIAL PREPARATION. For each k � 1, there exist, by Theorem 2.12, analytic
functions g0k, ak 2 O(Rn) such that {g0k = 0} ⇢ {ak = 0} = { fk = 0} and
g20k fk = a2k + 2r in O(Rn). For each k � 1 there are, by Lemma 3.3, an analytic
function g1k 2 O(Rn) with {g1k = 0} ⇢ { fk = 0} and a matrix Mk 2 Mp(O(Rn))

such that Mt
kMk = hk Ip where hk = (g0kg1k)2 fk .

Denote f = ⇡ fk and g = ⇡ (g0kg1k) and observe that {g = 0} ⇢ { f = 0}
and h = g2 f = ⇡hk where hk = (g0kg1k)2 fk . Thus, it is enough to construct a
Pfister’s bundleP(h) = ((E,⇡, Rn), s) of rank p for h.

For each k � 0 consider the set Wk = Rn
\

S
i>k Xi . Observe that since the

family {Xk}k�1 is locally finite, each set Wk is open in Rn and Rn
=

S
k�1Wk .

STEP 1: CONSTRUCTION OF THE VECTOR BUNDLE. Note that since Mt
kMk =

hk Ip, we have that Mk(x) 2 GL(Rp) if and only if x 2 Rn
\ {hk = 0}. Observe

that if 0  i < j , then Wi \Wj = Wi and we define the following transition maps:

gi j : Wi \ Wj =Wi ! GL(Rp), x 7!
1

p

(h j |Wi )(x)···(hi+1|Wi )(x)
Mj (x) · · ·Mi+1(x),

g ji : Wi \ Wj =Wi ! GL(Rp), x 7!
1

p

(h j |Wi )(x)···(hi+1)|Wi (x)
Mt
i+1(x) · · ·Mt

j (x),
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Obviously, we define gii : Wi \ Wi = Wi ! GL(Rp), x 7! Ip. Now, using the
fact that Mt

kMk = hk Ip for all k � 1, we have g jk(x) · gi j (x) = gik(x) for all
0  i, j, k and all x 2 Wi \Wj \Wk = Wmin{i, j,k}. The functions gi j : Wi \Wj !

GL(Rp) are the transition maps of an analytic vector bundle (E,⇡, Rn) with fiber
Rp. For each i � 0 let �i : ⇡�1(Wi ) ! Wi ⇥ Rp be homeomorphisms such that
(� j � ��1

i )(z, v) = (z, gi j (z)(v)) for all (z, v) 2 (Wi \ Wj ) ⇥ Rp and all j � 0.
Moreover, for each x 2 Wi and each j � 0, the matrices gi j (x) 2 GL(Rp) are in
fact ortogonal matrices, that is, gi j (x)gi j (x)t = Ip.
STEP 2: CONSTRUCTION OF THE RIEMANIANN METRIC. Consider the analytic
Riemannian metric on (E � E,⇡ 0, Rn) given by

h·, ·i �  �1
i (x, (v1, . . . , vp), (w1, . . . , wp)) =

pX
`=1

v`w`,

where  i : ⇡ 0�1(Wi ) ! Wi ⇥ (Rp
� Rp) are homeomorphisms such that

( j �  �1
i )(z, u, v) = (z, gi j (z)(v), gi j (z)(w))

for all (z, v,w) 2 (Wi \ Wj ) ⇥ R2p and all j � 0. Since each matrix gi j (x) 2

GL(Rp) is orthogonal, we deduce that h·, ·i is well-defined.
STEP 3: CONSTRUCTION OF THE ANALYTIC SECTION. Let u 2 Rp be any unitary
vector and let s : Rn

! E be the global analytic section satisfying

�0 � s|W0 : W0 ! W0 ⇥ Rp
⇢ Wi ⇥ Rp, x 7! (x,

p
(h|W0)(x)u).

Let us check that such section exists. Indeed, for each i � 1, we have

(�i�s|W0)=(�i��
�1
0 )�(�0�s|W0) : W0!W0⇥Rp, x 7!(x,

p
(h|W0)(x)g0i (x)(u))

where
p
h|W0(x)g0i (x)(u) =

r
(h|W0 )(x)

(h1|W0 )(x)···(hi |W0 )(x)
Mi (x) · · ·M1(x)(u). (?)

Moreover, in Wi = Rn
\

S
j>i X j the function

h|Wi
(h1|Wi )···(hi |Wi )

is analytic and van-
ishes nowhere; hence, it admits an analytic square root inWi . SinceRn

=

S
i�0Wi ,

we have, by means of equality (?) above, an analytic section s : Rn
! E of

(E,⇡, Rn) such that

�i � s : Wi 7! Wi ⇥ Rp, x 7!

⇣
x,
r

(h|Wi )(x)
(h1|Wi )(x)···(hi |Wi )(x)

Mi (x) · · ·M1(x)(u)
⌘
.

Moreover, the analytic function hs, si : Rn
! R is determined by its value on the

points x 2 W0 and so

hs, si|W0(x) = h

p
(h|W0)(x)u,

p
(h|W0)(x)ui = (h|W0)(x)hu, ui = (h|W0)(x);

hence, we conclude hs, si = h, and we are done.
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Remark 3.8. By means of Remark 3.4(ii), one can adapt the previous proof to
show that: If each fk in the statement of Theorem 3.1 is a sum of 2r squares in
O(Rn) with r=0, 1, 2, 3, then also f is a sum of 2r squares inO(Rn). In particular,
all the examples in [8, Section 3] are sums of 4 squares of analytic functions on Rn .

Finally in this section, we present the proof of Theorem 1.3 as a consequence
of Theorem 3.1 with the supplement that the representation as sum of squares of the
involved sheaf-product f has controlled denominators.

Proof of Theorem 1.3. First, letWk be an open neighborhood of { fk = 0} inRn and
let 'k : Mk ! Wk be an analytic diffeomorphism such that Mk is a Nash manifold
and fk � 'k = ukgk , where gk : Mk ! R is a positive semidefinite Nash function
and uk 2 O(Mk) is a positive unit. By Artin-Mazur’s Theorem [4, 8.8.4] and [16,
7.4], each Nash function gk is a sum of 2n squares with controlled denominators
in the quotient field of the ring N (Mk) of Nash functions on Mk . Thus, each fk
is a sum of 2n squares at { fk = 0} with controlled denominators; hence, f is,
by Theorem 3.1, a sum of 2n+1 squares of meromorphic functions with controlled
denominators.

4. Unbounded analytic Pfister formula

The main purpose of this section is to prove Theorem 1.1(i). We first provide a
precise statement of what we will prove.
Theorem 4.1 (Unbounded analytic Pfister formula). Let { fk}k�1 be a collection
of positive semidefinite analytic functions on Rn such that the family {Xk = { fk =

0}}k�1 of their zero sets is locally finite and each fk is a finite sum of squares at Xk .
Then, ⇡ fk is an infinite sum of squares (with controlled denominators).

We have shown in Lemma 3.7 that if f 2 O(Rn) is a finite sum of squares,
there exist g 2 O(Rn) \ {0} and a Pfister bundleP(g2 f ) of finite rank p for g2 f .
In fact, p is an upper bound for the number of squares needed to represent f as a
sum of squares. Thus, to approach the unbounded situation presented in Theorem
4.1, it seems convenient to work with a bundle of infinite rank; an initial candidate
for the fiber could be the Hilbert space `2(R) of real square-summable sequences.
However, since we also need to take care of the uniform convergence of infinite
sums of squares, we must work in a complex open Stein neighborhood � of Rn

in Cn and we must build up a vector bundle with fiber the complex Hilbert space
`2(C) of complex square-summable sequences. We begin by fixing and recalling
some notation and terminology about Hilbert spaces and vector bundles with fiber
a Hilbert space.

4.1. Hilbert spaces, holomorphic functions and vector bundles

The Hilbert space `2(C) is the vector space

`2(C) =

n
w = (wk)k�1 :

X
k�1

|wk |
2 < +1

o
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endowed with the usual (hermitian) inner product given by the formula

hw, viu =

X
k�1

wkvk .

We refer the reader to [19] for the general theory of Hilbert spaces. We denote
by E = {em = (�mk)k�1}m�1 the standard orthonormal basis of `2(C) and by
B(`2(C)) the C-linear space of bounded (linear) operators `2(C) ! `2(C); more-
over, the set of those bounded operators which are invertible and whose inverse
is also bounded will be denoted by B⇤(`

2(C)). Given a bounded operator T 2

B(`2(C)), we define its adjoint as the unique bounded operator T ⇤
2 B(`2(C))

such that hv, T (w)iu = hT ⇤(v),wiu for all v,w 2 `2(C).
We refer here the reader to [12] and [23, Section 3] for the general theory of

holomorphic functions with values in a Banach space and for the general theory of
holomorphic Banach vector bundles. Let� be an open subset ofCn . From [23, Def.
3.1] and the related comments, one deduces almost straightforwardly that a function
F : � ! `2(C) is holomorphic if and only if F belongs to theH(�)-module

n
F = (Fk)k�1 : Fk 2 H(�),

X
k�1

sup
K

|Fk |2 < +1 8K ⇢ � compact
o
.

Observe that if G, H : � ! `2(C) are holomorphic, then hG, H � � iu : � !

C defines an holomorphic function on �, which is moreover � -invariant, and an
infinite sum of squares if � is � -invariant and G = H .
Proposition and Definition 4.2. Let M = (mi j ) 2 Mp(C) be a matrix and con-
sider the linear operator TM : `2(C) ! `2(C) whose matrix with respect to the
standard basis E of `2(C) is the infinite matrix

0
BBB@
M 0 0 · · ·

0 M 0 · · ·

0 0 M · · ·

...
...

...
. . .

1
CCCA .

Then:

(i) TM is a bounded operator of `2(C).
(ii) TM1·M2 = TM1 � TM2 for all M1,M2 2 Mp(C).
(iii) TIp = id`2(C), where Ip denotes the identity matrix of Mp(C).
(iv) If M is invertible, then TM is an invertible bounded operator whose inverse is

the bounded operator TM�1 .
(v) T ⇤

M = TM⇤ , where M⇤ denotes the transpose conjugated of M .

We call TM the bounded operator of `2(C) associated to M .
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Proof of Proposition 4.2. Observe first that the linear operator TM is given by the
formula v = (vk)k�1 7!

P
k�1 vkTM(ek), where

TM(ek) =

pX
i=1

mi jepq+i if k = pq + j with q � 0 and 1  j  p.

Notice that TM(v) = (uk)k�1 is a well defined sequence of complex numbers be-
cause u pq+i =

Pp
j=1mi jvpq+ j for all q � 0, 1  i  p. Only the fact that

TM(`2(C)) ⇢ `2(C) and the boundness of TM require some comment; all the other
statements (ii)-(v) are straightforward. From the inequality

hTM(v), TM(v)iu  p3 max
1i, jp

{|mi j |
2
}hv, viu 8 v 2 `2(C), (⇤)

follows that TM(v) 2 `2(C) for all v 2 `2(C) and that TM is a bounded operator.
Thus, we proceed with the proof of (⇤).

Indeed, denote m = max1i, jp{|mi j |
2
} and observe first that if 1  r, s  p

and q � 0,

|hTM(epq+r ), TM(epq+s)iu| = |hTM(er ), TM(es)iu|

=

���
pX

i=1
mirmis

���



pX
i=1

|mirmis |  pm.

Consider the sequences of positive real numbers v⇤
= (|vk |)k�1 andws = (wsk)k�1

for 1  s  p, where wsk = |vpj+s | if k = pj + r with 1  r  p and j � 0. We
have

hv⇤, v⇤

iu =

X
k�1

|vk |
2

= hv, viu and hws, wsiu = p
X
j�1

|vpj+s |
2

 phv, viu;

hence, in particular v⇤, ws 2 `2(C). Moreover,

hv⇤, wsiu =

X
k�1

vkwsk =

X
j�0

pX
r=1

|vpj+r ||ws,pj+r | =

X
j�0

pX
r=1

|vpj+r ||vpj+s |

Next, observe that if `1 = pq1 + r1 and `2 = pq2 + r2 where 1  r1, r2  p and
q1 6= q2, then hTM(e`1), TM(e`2)iu = 0. Thus, for each q � 1, we have (using



ON HILBERT’S 17TH PROBLEM AND PFISTER’S FORMULAE 353

Schwarz’s inequality)

0 

���D
pqX
k=1

vkTM(ek),
pqX
`=1

v`TM(e`)
E
u

���

=

���
pqX
k=1

pqX
`=1

vkv`hTM(ek), TM(e`)iu
���

=

���
qX
j=0

pX
r=1

pX
s=1

vpj+rvpj+shTM(er ), TM(es)iu
���



qX
j=0

pX
r=1

pX
s=1

|vpj+r ||vpj+s |pm

= pm
pX

s=1

⇣ qX
j=0

pX
r=1

|vpj+r ||vpj+s |
⌘

 pm
pX

s=1
hv⇤, wsiu

 pm
pX

s=1

p
hv⇤, v⇤

iu
p

hws, wsiu  p3mhv, viu.

Since the previous inequality holds for all q � 1, we have hTM(v), TM(v)iu 

p3mhv, viu, and we are done.

Remark 4.3. Let�⇢Cn be a � -invariant open set and let M=(mi j )2Mp(H(�))
be a � -invariant matrix such that M(z)t M(z) = Ip for all z 2 �. Then, Mt

� � =

� � Mt and so T ⇤

M(z) = TMt
�� (z) and T ⇤

M�� (z) � TM(z) = TM(z) � T ⇤

M�� (z) = id for
each z 2 �.

4.2. Pfister’s multiplicative formulae

After the introduction of the bounded operator of `2C associated to a complex square
matrix, we associate to each � -invariant sum of squares ofH(�) a � -invariant Pfis-
ter matrix inM2r+1(H(�)) which is almost unitary. This result can be understood
as the counterpart of Lemma 3.3 in the setting of this section. More precisely,
Lemma 4.4 (Pfister’s complex matrix). Let � ⇢ Cn be a � -invariant open set
and let B 2 H(�) be � -invariant such that its zeroset does not meet the compact
set K ⇢ �. Let A = 2r in H(�) be � -invariant. Then, there exists a positive
real constant c > 0 such that for each d � c, there exist a � -invariant G 2 H(�)
satisfying {G2 = 0} \ K = ? and a � -invariant matrix M 2 M2r+1(H(�)) such
that MtM = G2((dB)2 + A)I2r+1 .

Proof. Indeed, if r = 0, A = A20 and taking c = 1+
maxK (|A|)

minK (|B|
2)
, G = 1 and

M =

✓
dB �A0
A0 dB

◆
2 M2(H(�))

we are done.
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Assume r � 1, and let A1 = 2r�1 and A2 = 2r�1 such that A = A1+ A2.
By induction, there are positive real constants ci > 0 such that for each di �

ci , there are � -invariant Gi 2 H(�) satisfying {G2i ((di B)2 + Ai ) = 0} \ K =

? and a � -invariant matrix Mi 2 M2r (H(�)) such that Mt
i Mi = G2i ((di B)2 +

Ai )I2r . Take c = max{c0,
p

2c1,
p

2c2} where c0 = 1 +
maxK (|A|)

minK (|B|
2)
, and for each

d � c consider the � -invariant functions Gi 2 H(�) and the � -invariant matrices
Mi 2 M2r (H(�)) corresponding to the constants di =

d
p

2
� ci . Next, take

G = G1G22F2, where F2 = ((d2B)2 + A2), and

M =

✓
G22F2M1 �G1G2F2M2

G1G2F2M2 M2Mt
1M2

◆

and notice that {G2((dB)2 + A) = 0} \ K = ?. A straighforward computation
shows that these are the M and G we sought.

The following result, of technical nature, assures the existence of � -invariant
open Stein neighborhoods ofRn inCn which admit open exhaustions, whose mem-
bers (not necessarily contractible) have a good behaviour with respect to the square
root operator. Namely,

Lemma 4.5. Let� be a � -invariant open neighborhood ofRn inCn and let {1i}i�1
be an open covering of � such that 1i ⇢ 1i+1 for all i � 1. Then, there exist a
� -invariant contractible open Stein neighborhood�0

⇢ � ofRn inCn and an open
covering {�i }i�1 of �0 such that

• �i ⇢ �i+1 and Wi = Rn
\1i ⇢ �i ⇢ 1i for each i � 1.

• Each � -invariant holomorphic unit u 2 H(�i ) admits a � -invariant holomor-
phic square root on �i .

Proof. Denote W0 = ? and observe that the sets {Wi \ Wi�1}i�1 constitute a par-
tition of Rn . For each x = (x1, . . . , xn) 2 Wi \ Wi�1 choose a � -invariant open
polydisc

Bx = {z = (z1, . . . , zn) 2 Cn
: |zi � xi | < "x , 1  i  n} ⇢ 1i

centered at x and of radius "x > 0. For each i � 1, define �0

i =

S
x2Wi

Bx which
is a � -invariant open neighborhood of Wi in 1i . Of course, since Wi ⇢ Wi+1 for
i � 1, also �0

i ⇢ �0

i+1. Moreover, Rn
=

S
i�1Wi ⇢

S
i�1�

0

i ⇢

S
i�11i = �.

Let u 2 H(�0

i ) be a � -invariant holomorphic unit. For each x 2 Wi the re-
striction u|Bx admits a � -invariant holomorphic square root vx 2 H(Bx ) whose
restriction to Bx \ Rn is strictly positive. Now, by the Identity Principle, the func-
tions vx glue properly to provide a � -invariant (no-where vanishing) holomorphic
function on �0

i
v : �0

i ! C, z 7! vx (z) if z 2 Bx ,

satisfying v2 = u. Thus, u admits a � -invariant holomorphic square root in �0

i .
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Finally, we choose a � -invariant contractible open Stein neighborhood �0
⇢S

i�1�
0

i of Rn in Cn . A straightforward computation shows that the � -invariant
open sets �i = �0

i \�0 are those we sought.

After all the previous preparation we are ready to prove Theorem 4.1.

Proof of Theorem 4.1

The proof is rather similar to that of Theorem 3.1; but since this proof is quite more
involved and the details are quite more technical, we include it in full detail. The
proof runs in several steps:

INITIAL PREPARATION. First, we may assume that pk = 2rk and we write qk =

2n+1 pk . By Lemma 2.14, there exist a � -invariant open neighborhood � of Rn in
Cn and � -invariant homolomorphic functions Gk, bFk, Akj : � ! C for k � 1 and
1  j  qk such that:

(i) bFk |Rn = uk fk for a positive unit uk 2 O(Rn).

(ii) The family {{G2kbFk = 0}}k�1 is locally finite in� and {G2kbFk = 0}\Rn
= Xk .

(iii) For each family of values {dk}k�1 satisfying dk � ck , the finite sums Ak =

(dkG2kbFk)2 +

Pqk
j=1 A

2
k j satisfy

• {Ak |Rn = 0} = Xk and the family {{Ak = 0}}k�1 is locally finite in�; and

• Ak = G2kbFkQk for some � -invariant Qk 2 H(�), which does not vanish
on a neighborhood Vk of {G2kbFk = 0} [ Rn .

Since the family {{G2kbFk = 0}}k�1 is locally finite, there exists, by Lemma 2.7, an
exhaustion {Kk}k�1 of � by compact sets such that {G2kbFk = 0} \ Kk = ? for all
k � 1. By Lemma 4.4, applied to Bk = G2kbFk , the sum of squaresPqk

j=1 A
2
k j and

the compact set Kk , there exist a real number dk � ck , a � -invariant G 0

k 2 H(�)

satisfying {G 02
k = 0} \ Kk = ? and a � -invariant matrix Mk 2 M2qk (H(�)) such

that Mt
kMk = G 02

k Ak I2qk , where Ak = (dk Bk)2 +

Pqk
j=1 A

2
k j .

To simplify notation, we denote again by Gk the function GkG 0

k and by Ak the
function G 02

k Ak . Observe that, by Lemma 2.7, the family {{Gk = 0}}k�1 is locally
finite. Let bF = ⇡ bFk , G = ⇡Gk and A = ⇡ Ak and denote f =

bF |Rn , g = G|Rn

and a = A|Rn . Observe that f = ⇡ fk and in fact, by (iii) above, g2 f = ua
for a positive unit u 2 O(Rn). Thus, we are reduced to prove that A is an infinite
sum of squares of � -invariant holomorphic functions on � and this is done in the
subsequent steps.

STEP 2: CONSTRUCTION OF A SUITABLE VECTOR BUNDLE WITH FIBER `2(C).
For each i � 0, denote by1i the open subset�\

S
k>i {Ak = 0} ofCn . By Lemma

4.5, there exist a � -invariant contractible open Stein neighborhood�0
⇢ � of Rnin
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Cn and an open covering {�i }i�1 of �0 such that

• �i ⇢ �i+1 and Wi = Rn
\1i ⇢ �i ⇢ 1i for each i � 0.

• Each � -invariant holomorphic unit u 2 H(�i ) admits a � -invariant holomor-
phic square root on �i .

In particular, the restrictions to �i of the quotients (which vanish nowhere in �i )

Hi =

A
A1 · · · Ai

and Bi j =

1
Ai+1 · · · A j

admit � -invariant holomorphic square roots in �i for 0  i < j . To simplify
notations, we denote �0 again by �.

For each k � 0 consider the product �k ⇥ `2(C). Since the � -invariant matrix
Mk 2 M2qk (H(�)) constructed in the previous step satisfies Mt

kMk = Ak I2qk , we
deduce that TMk(z) : `2(C) ! `2C is an isomorphism for each z 2 � \ {Ak = 0}.

Observe that if 0  i < j , then �i \ � j = �i and we define the following
transition functions:

�i j : �i \� j = �i ! B⇤(`
2(C)), z 7!

q
Bi j |�i (z) TMj (z) � · · · � TMi+1(z),

� j i : �i \� j = �i ! B⇤(`
2(C)), z 7!

q
Bi j |�i (z) T

⇤

Mi+1�� (z) � · · · � T ⇤

Mj�� (z).

Obviously, we define �i i : �i \ �i = �i ! B⇤(`
2(C)), z 7! id. Now, using the

fact that
T ⇤

Mk�� (z) � TMk(z) = TMk(z) � T ⇤

Mk�� (z) = Ak(z) id

for all k � 1 and all z 2 �, one checks that � jk(z) · �i j (z) = �ik(z) for all 0 

i, j, k and all z 2 �i \ � j \ �k = �min{i, j,k}. Thus, the holomorphic functions
�i j : �i \ � j ! B⇤(`

2(C)) are the transition functions of a holomorphic Hilbert
vector bundle E = (E,⇡,�) with fiber `2(C) (see [23, Section 1, Section 3]). For
each i � 0 denote by  i : ⇡�1(�i ) ! �i ⇥ `2(C) homeomorphisms such that
 j �  �1

i (z, v) = (z, �i j (z)(v)) for all (z, v) 2 �min{i, j} ⇥ `2(C) and all i, j � 0.
Moreover, observe that for each z 2 �i and each j � 0, the bounded operators
�i j (z) 2 B⇤(`

2(C)) satisfy the equality

�i j (z) · � ⇤

i j (� (z)) = � ⇤

i j (� (z)) · �i j (z) = id . (⇤)

STEP 3: CONSTRUCTION OF A SUITABLE HERMITIAN STRUCTURE. Next, con-
sider the Whitney sum E � E �

= (E � E� ,⇡ 0,�) of E = (E,⇡,�) with
E �

= (E� ,⇡,�), where this last vector bundle corresponds to the antiholomor-
phic structure of E. Recall that given 0  i, j the transition function of E � E �

corresponding to the intersection �i \� j is

0i j : �i \� j ! B⇤(`
2(C) � `2(C)), z 7! �i j (z) � �i j (� (z)).
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For each i � 0 denote by9i : ⇡ 0�1(�i ) ! �i⇥(`2(C)�`2(C)) homeomorphisms
such that9 j �9

�1
i (z, v) = (z,0i j (z)(v,w)) for all (z, v,w) 2 �min{i, j}⇥(`2(C)�

`2(C)) and all i, j � 1. We define the Hermitian metric as follows. For each i � 0
and each z 2 �i , consider

h·, ·i �9�1
i : �i ⇥ (`2(C) ⇥ `2(C)) ! C, (z, v,w) 7! hv,wiu.

Let us see that h·, ·i is well defined. To that end, fix i, j � 1 and (z, v,w) 2

�min{i, j} ⇥ (`2(C) � `2(C)) and let us check the following equality

h·, ·i �9�1
j (z, v,w) = h·, ·i �9�1

i (z, v,w).

Indeed, using (⇤) above we deduce

h·, ·i �9�1
j (z, v,w) = h·, ·i � (9�1

i �9i ) �9�1
j (z, v,w)

= h·, ·i �9�1
i � 0i j (z, v,w)

= h·, ·i �9�1
i (z, �i j (z)(v), (�i j � � )(z)(w))

= h�i j (z)(v), (�i j � � )(z)(w)iu

= h� ⇤

i j (� (z)) · �i j (z)(v),wiu

= hv,wiu = h·, ·i �9�1
i (z, v,w).

Moreover, given holomorphic sections ↵,� : � ! E, we define in the obvious way
the section ↵� (� �� ) : � ! E�E � , to which we can apply h·, ·i : E�E �

! C,
and we get the holomorphic function h↵,� � � i : � ! C.
STEP 4: CONSTRUCTION OF SUITABLE HOLOMORPHIC SECTIONS. Denote by
E = {e`}`�1 the standard basis of `2(C). Let us construct holomorphic sections
s` : � ! E such that

 0 � s`|�0 : �0 ! �0 ⇥ `2(C) ⇢ �i ⇥ `2(C), z 7! (z,
p
A|�0(z)e`)

Indeed, since A vanishes nowhere in�0, the square root
p
A|�0 is well-defined and

holomorphic in �0. For each i � 1, we have

( i � s`|�0)
= ( i �  �1

0 ) � ( 0 � s`|�0) : �0 ! �0 ⇥ `2(C), z 7! (z,
p
A|�0(z)�0i (z)(e`))

where p
A|�0(z)�0i (z)(e`) =

p
Hi |�0(z)(TMi (z) � · · · � TM1(z))(e`).

Moreover, the square roots
p
Hi |�i : �i ! C are well-defined and holomorphic

on �i . Since � =

S
i�0�i , we define s` : � ! E such that

 i � s` : �i ! �i ⇥ `2(C), z 7!

⇣
z,
p
Hi |�i (z)(TMi (z) � · · · � TM1(z))(e`)

⌘
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which is a holomorphic section of E. Moreover, consider the holomorphic functions
hsk, s` � � i : � ! C. Notice that, by the Identity Principle, the holomorphic
functions hsk, s` � � i : � ! C are determined by their value on the points z 2 �0.
Thus, since

hsk, s` � � i|�0(z) = h( 0 � sk)(z), ( 0 � s` � � )(z)iu
= h

p
A|�0(z)ek,

p
A|�0 � � (z)e`iu

= (
p
A|�0(z))

2
hek, e`iu

= A|�0(z)�k`,

we deduce that hsk, s` � � i = A�k` for k, ` � 1.

STEP 5: REPRESENTATION OF A AS A SUM OF SQUARES. First, since the fiber
bundle is trivial on�, there exists, by [23, 3.13], a nowhere-vanishing holomorphic
section ⌧ : � ! E ; hence, the restriction to Rn of the � -invariant holomorphic
function u = h⌧, ⌧ � � i : � ! C is strictly positive. Thus, shrinking � if nec-
essary (but keeping all its properties) there exists a no-where vanishing � -invariant
holomorphic function v : � ! C such that u = v2.

Next, let us check that on �⇤
= � \ {A = 0} the following equality holds

A|�⇤⌧ |�⇤ =

X
`�1

h⌧, s` � � i|�⇤s`|�⇤ (•)

Indeed, since �⇤
=

S
i�0�

⇤

i , where �
⇤

i = �⇤
\�i , it is enough to check that

A|�⇤

i
⌧ |�⇤

i
=

X
`�1

h⌧, s` � � i|�⇤

i
s`|�⇤

i
(?)

for all i � 0. Let ⌘i : �⇤

i ! `2(C) be a nowhere vanishing holomorphic function
such that  i � ⌧ |�⇤

i
(z) = (z, ⌘i (z)) for each z 2 �⇤

i . Consider the holomorphic
function

�i : �⇤

i ! `2(C), z 7!

B0i (z)p
Hi |�i (z)

(T ⇤

M1(z) � · · · � T ⇤

Mi (z))(⌘i (z))

and write �i =

P
`�1 �i`e`, where �i` 2 H(�⇤

i ) and
P
`�1 supK |�i`|

2 < +1 for
all K ⇢ �⇤

i compact. Then,

 i � ⌧ |�⇤

i
(z) = (z, ⌘i (z)) =

⇣
z,
p
Hi |�i (z)(TMi (z) � · · · � TM1(z))(�i (z))

⌘

=

⇣
z,
X
k�1

�ik(z)
⇣p

Hi |�i (z)(TMi (z) � · · · � TM1(z))(ek)
⌘⌘

=

X
`�1

�i`(z)( i � s`|�⇤

i
)(z);
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hence, ⌧ |�⇤

i
=

P
`�1 �i`(z)s`|�⇤

i
. Now, using the fact that hsk, s` � � i = A�k` for

k, ` � 1, we deduce that

h⌧ |�⇤

i
, sk � � |�⇤

i
i =

DX
`�1

�i`(z)s`|�⇤

i
, sk � � |�⇤

i

E
=�ikhsk |�⇤

i
, sk � � |�⇤

i
i=�ik A|�⇤

i
,

from which follows equality (?) and so (•).
Extending formula (•) by zero, we deduce that A⌧ =

P
`�1h⌧, s` � � is`;

hence,
Av2 = Ah⌧, ⌧ � � i = hA⌧, ⌧ � � i

=

X
`�1

h⌧, s` � � ihs`, ⌧ � � i

=

X
`�1

h⌧, s` � � i(h⌧, s` � � i � � )

Therefore, since each summand h⌧, s` � � i(h⌧, s` � � i � � ) is a sum of two squares
of � -invariant holomorphic functions on �, we conclude that A is an infinite sum
of squares of � -invariant holomorphic functions on �, as wanted.

5. Infinite sums of squares

In this section we prove the following result, from which Theorem 1.1(iii) follows
straightforwardly, and which generalizes statement [8, 1.4] for dimension n.

Theorem 5.1. Let { fk}k�1 be a collection of positive semidefinite analytic functions
on Rn such that the family Xk = { fk = 0} of their zero sets is locally finite in Rn

and each fk is an infinite sum of squares at Xk . Let {Yi }i�1 be the collection of
the global irreducible components (in the sense of [22]) of the global analytic set
X =

S
k�1 Xk and for each i � 1 define

Fi = {k � 1 : Yi \ Xk 6= ?} and I = {i � 1 : #Fi = +1}.

Then, there exist a positive semidefinite analytic function q on Rn such that:

(i) {q = 0} ⇢

S
j,`2I, j 6=`(Y j \ Y`).

(ii) q⇡ fk is an infinite sum of squares with controlled denominators.

Remark 5.2.
(i) If each irreducible component Yi is compact, then I = ? and q is just a
positive unit of O(Rn). Hence, f is an infinite sum of squares of analytic
functions on Rn; see Example 6.2, for an example of a special factor whose
zeroset has countably many global irreducible components and all of them are
compact.
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(ii) If for each j, ` 2 I with j 6= ` the intersection Y j \ Y` is a discrete set, then
f is an infinite sum of squares on Rn . This follows from the fact that {q = 0}
is contained in a discrete set and so, by [5, Theorem 1] or Theorem 1.4, q is a
finite sum of squares.

(iii) If n = 3, then dimYi = 1 for all i � 1; hence, each intersection Y j \ Y`
with j 6= ` is a discrete set and so, by (ii), f is an infinite sum of squares (see
also [8, Section 1, pag. 72]).

(iv) Let f : Rn
! R be a positive semidefinite analytic function and suppose

that there exist non-identically zero positive semidefinite analytic functions
q1, q2 2 O(Rn) such that h1 = f q1 and h2 = f q2 are infinite sum of squares.
Then, q1 is an infinite sum of squares if and only if so is q2. This, follows
straightforwardly from the fact that q1q2 f 2 = h1h2 is an infinite sum of
squares.

Proof of Theorem 5.1

The proof runs in several steps:
REDUCTION: For our purposes it is enough to construct analytic functions g, h, q
(which are the restrictions to Rn of � -invariant holomorphic functions on a suitable
� -invariant open neighborhood� of Rn in Cn) satisfying the following conditions:

• {g = 0} ⇢ X .
• h is an infinite sum of squares of analytic functions on Rn such that {h = 0} ⇢

X .
• q is positive semidefinite and {q = 0} ⇢

S
j,`2I, j 6=`(Y j \ Y`).

• g2⇡ fk = qh.

STEP 1: INITIAL PREPARATION OF REAL AND COMPLEX DATA. First, by Lemma
2.14, there are a � -invariant open neighborhood � of Rn in Cn , positive real con-
stants ck for k � 1 and � -invariant homolomorphic functions Gk, bFk, Akj 2 H(�)
for k, j � 1 such that:

•
bFk |Rn = uk fk for a positive unit uk 2 O(Rn).

• The family {{G2kbFk = 0}}k�1 is locally finite in � and {G2kbFk = 0} \ Rn
= Xk .

• The sum Ak = (ckG2kbFk)2+Ppk
j=1 A

2
k j converges in� in the sense of Definition

2.10(ii);
• {Ak |Rn = 0} = Xk and the family {{Ak = 0}}k�1 is locally finite in �; and
• Ak = G2kbFkQk for some � -invariant Qk 2 H(�), which does not vanish on a
neighborhood Vk of {G2kbFk = 0} [ Rn .

Denote bF = ⇡ bFk , G0 = ⇡Gk , bf =
bF |Rn and g0 = G0|Rn . Since each fk

is positive semidefinite, so is each bFk |Rn and we may assume that bf is positive
semidefinite. In fact, since bFk |Rn = uk fk for each k � 1, there exists a positive unit
u 2 O(Rn) such that bf = u f . Observe also that {g0 = 0} ⇢

S
k�1 Xk = X .
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Next, for each i � 1, we define Gi = {k � 1 : Yi ⇢ Xk} and notice that Gi is
a finite set for each i � 1. Now, for each i � 1, consider

Hi =

(
Fi if Fi is finite,
Gi otherwise,

and define Pi =

Q
k2Hi

G2kbFk and Bi =

Q
k2Hi

Ak , which is a convergent sum of
squares

P
`�1 B2i` on� in the sense of Definition 2.10(ii). Of course, each function

Pi divides G20bF inH(�) for all i � 1. Moreover, Bi = Pi
Q

k2Hi
Qk = Pi Di and

the restriction of Di =

Q
k2Hi

Qk to Rn is strictly positive on Rn . Thus, Bi |Rn is
Pi |Rn times a positive unit of O(Rn).
STEP 2: CONSTRUCTION OF THE INFINITE SUM OF SQUARES h. In this step we
construct the sum of squares of analytic functions h announced in the reduction
above. Fix an exhaustion of � by compact sets {Ki }i�1, that is, K1 6= ;, Ki ⇢

IntCn (Ki+1) and
S

i�1 Ki = �. For each i � 1, we set

µi = sup
Ki

���G20bFPi
���2X
`�1

sup
Ki

|Bi`2| and �i =

1p
2iµi

.

For each i � 1, we have the following inequalities

X
`�1

sup
Ki

����i G
2
0
bF

Pi
Bi`
���2  � 2i sup

Ki

���G20bFPi
���2X
`�1

sup
Ki

|Bi`2| 

1
2i

. (I)

Now, let K be a compact subset of �. As � ⇢

S
i�1 IntCn (Ki ), K is contained in

some Ki0 , hence in all Ki for i � i0, and so:

X
i,`�1

sup
K

����i G
2
0
bF

Pi
Bi`
���2= i0�1X

i=1

X
`�1

sup
K

����i G
2
0
bF

Pi
Bi`
���2 +

X
i�i0

X
`�1

sup
K

����i G
2
0
bF

Pi
Bi`
���2



i0�1X
i=1

sup
K

����i G
2
0
bF

Pi

���2X
`�1

sup
K

|Bi`2|

+

X
i�i0

X
`�1

sup
Ki

����i G
2
0
bF

Pi
Bi`
���2



i0�1X
i=1

sup
K

����i G
2
0
bF

Pi

���2X
`�1

sup
K

|Bi`2| +

X
i�i0

1
2i

< +1.

Consequently, we define the � -invariant holomorphic function we were looking for
as

H = G40bF2 +

X
i,`�1

⇣
�i
G20bF
Pi

Bi`
⌘2

;
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hence, h = H |Rn is an infinite sum of squares of analytic functions on Rn and

{h = 0} ⇢ {g0 = 0} [ {
bf = 0} ⇢ X.

For our later purposes it is more convenient to have a different representation of H .
Namely, let us check that

H = G40bF2 +

X
i�1

⇣
�i
G20bF
Pi

⌘2
Bi . (?)

Indeed, since Bi =

P
`�1 B2i` for each i � 1, it is enough to check that the seriesP

i�1(�i
G20bF
Pi )2Bi converges in the sense of Definition 2.10(ii). Indeed, observe

that for each i, j � 1, we have supK j |Bi | 

P
`�1 supK j |Bi`|

2 and so, using (I),
we deduce

sup
K j

����i G
2
0
bF

Pi

���2|Bi | = sup
K j

����i G
2
0
bF

Pi

���2 sup
K j

|Bi |

 � 2i sup
K j

���G20bFPi
���2X
`�1

sup
K j

|Bi`2| 

1
2i

.

Let K be a compact subset of the open set � and let i0 � 1 be such that K ⇢ Ki
for i � i0. We have

X
i�1

sup
K

����i G
2
0
bF

Pi

���2|Bi | =

i0�1X
i=1

sup
K

����i G
2
0
bF

Pi

���2|Bi | +

X
i�i0

sup
K

����i G
2
0
bF

Pi

���2|Bi |



i0�1X
i=1

sup
K

����i G
2
0
bF

Pi

���2 sup
K

|Bi | +

X
i�i0

1
2i

< +1.

STEP 3: CONSTRUCTION OF THE POSITIVE SEMIDEFINITE FUNCTION q AND
THE “DENOMINATOR” g. In this step we construct the functions g, q announced in
the reduction above and we show that everything holds.

Let us check first that G20bF divides H in O(�). By [8, 4.4], it is enough to
check that G20bF divides each summand of H on a neighborhood of Z = {G20bF =

0} =

S
k�1 Zk where Zk = {G2kbFk = 0}. Fix i � 1 and observe that since

Bi = Pi Di , we have

⇣
�i
G20bF
Pi

⌘2
Bi = � 2i

G20bF
Pi

G20bF
Pi

Bi = G20bF
⇣
� 2i Di

G20bF
Pi

⌘
.

Thus, there exists a holomorphic function Q : � ! C such that QG20bF = H . Of
course, since� and G0, bF, H are � invariant, so is Q; and, since g20 = G20|Rn , bf =
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bF |Rn and h = H |Rn are positive semidefinite analytic functions, so is q = Q|Rn .
In fact, since qg20 bf = h, we have {q = 0} ⇢ {h = 0} ⇢ X . Denote g = qg0

p

u,
where u is the positive analytic unit satisfying bf = u f already constructed in STEP
I, and observe that

g2 f = q2g20u f = q2g20 bf = qh and {g = 0} = {g0 = 0} [ {q = 0} ⇢ X

Thus, we have got the required representation g2 f = hq once we prove that

{q = 0} ⇢

[
j,`2I, j 6=`

(Y j \ Y`).

Indeed, fix i � 1 and recall that Bi = Pi Di , where Di 2 O(�) is a holomorphic
function on � whose restriction to Rn is a positive analytic unit. Moreover,

Hi =
⇣
Q�� 2i Di

G20bF
Pi

⌘
G20bF=H�

⇣
�i
G20bF
Pi

⌘2
Bi =G40bF2+ X

j�1, j 6=i

⇣
� j

G20bF
Pj

⌘2
Bj .

is a � -invariant holomorphic function on � whose restriction to Rn is an infinite
sum of squares of analytic functions on Rn . Write Q0

i = Q � � 2i Di
G20bF
Pi which is a

� -invariant holomorphic function on � such that

Hi = Q0

iG
2
0
bF and Q = Q0

i + � 2i Di
G20bF
Pi

.

Since the restrictions to Rn of Hi ,G20, bF are positive semidefinite also the restric-
tion of Q0

i to Rn is positive semidefinite and so

{q = 0} ⇢ {

G20bF
Pi

} \ Rn
=

[
k 62Hi

Xk .

Now, if i 62 I , that is, if Fi is a finite set, we have that Hi = Fi and

Yi \ {q = 0} ⇢ Yi \

[
k 62Hi

Xk = ?;

hence, {q = 0}\
S

j 62I Y j = ?. Next, if i 2 I , thenHi = Gi = {k � 1 : Yi ⇢ Xk}
and

Yi \ {q = 0} ⇢ Yi \

⇣⇣ [
k 62Hi

Xk
⌘

\

[
j 62I

Y j
⌘

⇢ Yi \

[
j2I, j 6=i

Y j .

Putting all together, we deduce

{q = 0} = X \ {q = 0} =

[
i�1

Yi \ {q = 0} =

[
i2I

Yi \ {q = 0} ⇢

[
i, j2I,i 6= j

Yi \ Y j ,

and we are done.
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6. Applications to Hilbert’s 17th Problem

We begin this section with the construction of the irreducible factors of analytic and
holomorphic functions.

6.1. Irreducible factors of a holomorphic function

It has been well-known for long (see [22] and [9]) that every (complex) analytic sub-
set Z of an open set� ⇢ Cn can be uniquely decomposed into a locally finite family
of irreducible analytic sets, which are called the irreducible components of Z . Here
an analytic subset Y of � is irreducible if Y is not the union of two analytic subsets
Y1,Y2 of� both different from Y . Analogously, a holomorphic function F 2 H(�)
is irreducible if it cannot be written as the product of two holomorphic functions on
� with nonempty zeroset. Given holomorphic functions G, F 2 H(�), we say that
G divides F with multiplicity k � 0 if Gk divides F but Gk+1 does not; of course,
taking germs at any point of � at which both F and G vanish one can always com-
pute this multiplicity. In case H2(�, Z) = 0 (for instance, when it retracts to Rn)
the decomposition into irreducible components of (complex) analytic subsets of �
provides a procedure to decompose each holomorphic function F 2 H(�) as the
sheaf-product of its irreducible factors. Indeed, let Z = {F = 0} and let {Zk}k�1
be the irreducible components of Z . Now, since dim Zk = n � 1, for each z 2 Zk
there exists a holomorphic function germ ⇠k,z 2 O�,z that generates the ideal of the
analytic germ Zk,z in �z . Consider the locally principal coherent analytic sheaf Ik
of ideals

Ik,z =

(
⇠k,zO�,z if z 2 Zk,
O�,z if z 2 � \ Zk .

which is therefore globally principal and is generated by a function Hk 2 H(�).
For each k � 1 let mk denote the multiplicity of division of F by Hk . A straighfor-
ward computation shows that F = ⇡Hmk

k . We call {Hk}k�1 the collection of the
irreducible factors of F .

The factorization of a real analytic functions is similar but quite more involv-
ing.

6.2. Irreducible factors of an analytic function

We say that an analytic function f 2 O(W ) on an open setW ⇢ Rn is irreducible if
it cannot be written as the product of two analytic functions with nonempty zeroset.
Similarly, given analytic functions g, f 2 O(Rn), we say that g divides f with
multiplicity k � 0 if gk divides f but gk+1 does not; again such a k exists and it is
finite.

Given a closed set Z ⇢ Cn , germs (of sets or of holomorphic functions) at
Z are defined exactly as germs at a point, through neighborhoods of Z in Cn; we
denote by FZ the germ at Z of a holomorphic function F defined in some neighbor-
hood of Z . If F 2 H(�) is a � -invariant, Rn

⇢ � and Z = Rn , then the germ FRn
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can be identified with the function f := F |Rn , because each of them determines
uniquely the other one.

We define the irreducible factors of f 2 O(Rn) as follows. Let F : � ! C
be a holomorphic extension of f to an open neighborhood � of Rn in Cn . By
[22, 6. Prop.9], there exists a unique locally finite family of irreducible germs
{Yk}k�1 at Rn such that Y j 6⇢ Yk if j 6= k and {F = 0}Rn =

S
k�1 Yk . By [22, 6.

Prop.8, Cor.2], for each k � 1 there exists a � -invariant contractible open Stein
neighborhood �k of Rn in Cn and an irreducible analytic set Zk in �k such that
Zk,Rn = Yk . Once more, since dim Zk = n � 1, there exists Hk 2 H(�k) which
generates the ideal I�k (Zk) of holomorphic functions on �k vanishing identically
on Zk . Notice that if Zk is � -invariant, we may further assume, by Lemma 2.2,
that Hk is also � -invariant. On the other hand, if Zk is not � -invariant, then Hk � �
divides F in �k with the same multiplicity as Hk . For each k � 1, we define

Fk =

(
Hk if Zk is � -invariant

HkHk � � if Zk is not � -invariant

Observe that fk = Fk |Rn 2 O(Rn) is irreducible and divides f for all k � 1. We
eliminate the repetitions and denote again by { fk}k�1 the collection of the previous
irreducible factors. Denote by mk the multiplicity of division of f by fk . A straigh-
forward computation shows that f = ⇡ f mk

k . We call { fk}k�1 the collection of the
real irreducible factors of f .
Definition 6.1. We focus a special attention in a particular type of irreducible fac-
tor. Following [8], we say that fk is a special factor of f if:

(i) The germ Zk,Rn is � -invariant,
(ii) fk divides f with odd multiplicity, and
(iii) The dimension d of { fk = 0} satisfies 1  d  n � 2.

Of course, we may always assume that the special factors fk of f are positive
semidefinite analytic functions. The reason for asking that the dimension of the
zeroset of a special factor is strictly positive is the following: as we know, an irre-
ducible factor fk of f satisfying conditions (i) and (ii) above and whose zero set has
dimension zero is a finite sum of squares (use once more [5, Theorem 1]); hence, it
produces no obstruction to represent f as an either finite or infinite sum of squares.

Contrary to what happens in the complex case the zeroset of a special factor
can be reducible as a real global analytic set; see [8, 2.7] or the example below.
Example 6.2. For each k � 0 consider the polynomial functions on R2 and R3
respectively given by the formulae fk(x, y) = (x � k)2 + y2 � 1 and gk(x, y, z) =

z + fk . Let f : R2 ! R and g : R3 ! R be the sheaf-products of the fk’s and the
g0

ks respectively. For each k, ` � 0 with ` 6= k, we have { fk = 0} \ { f` = 0} 6= ?
if and only if |` � k|  1; and, if such is the case, the two intersection points of
{ fk = 0} and { f` = 0} are

p`,k,± =

⇣`+ k
2

,±

p
3� (k � `)2

2

⌘
.
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For each real number M > 0, consider the analytic function

hM : R3 ! R, (x, y, z) 7! g2 + z4 + M2 f 2(z).

Observe that {hM = 0} =

S
k�0{(x, y, 0) : (x�k)2+ y2�1}, which is a countable

locally finite union of circunferences, which are compact analytic subsets of R3.
Observe that for each k, ` � 0 with k 6= ` and |` � k|  1, the initial form of the
germ of hM((x, y, z)+q`,k,±) at q`,k,± = (p`,k,±, 0) is a homogeneous polynomial
of the type

P`,k,± = ↵2(z + u)2(z + v)2 + z4 + M�2u2v2

where u = (`� k)x ±

p
3� (k � `)2y and v = �(`� k)x ±

p
3� (k � `)2y and

↵,� are nonzero real numbers depending of q`,k,±. By [8, 2.6], we may choose
M > 0 in such a way that all the homogeneous polynomials P`,k,± are irreducible.
For this choice of M one can prove, following the same ideas developed in [8, 2.7],
that hM is a special factor.

6.3. Applications

Now, we apply all we have learnt concerning factorization of analytic functions to
localize the obstruction to represent a positive semidefinite analytic function as an
either finite or infinite sum of squares.

Lemma 6.3. Let f : Rn
! R be a positive semidefinite analytic function. Then,

f = gh where g is a finite sum of squares and h is a square free positive semidefinite
analytic function whose irreducible factors are the special factors of f . In fact, g
is a sum of 2n+1 squares.

Proof. First, let {hk}k�1 be the special factors of f and let {g j } j�1 be all the others
irreducible factors. Denote 2nk + 1 the multiplicity of division of f by hk and m j
be the multiplicity of division of f by g j . Notice that if m j is odd and {g j = 0} is
not a singleton, then there exists a � -invariant open neighborhood � j of Rn in Cn ,
a holomorphic extension G j of g j to � j and an (irreducible) holomorphic function
Hj 2 H(� j ) such that G j = Hj Hj � � . Thus, in particular g j and so g

m j
j are sums

of two squares inO(Rn). On the other hand, if {g j = 0} has dimension zero (and so
it is a point) we claim that g j and so g

m j
j are sums of 2n+1 squares (with controlled

denominators). Indeed, if {g j = 0} = {a}, the germ g j,a is a sum of p = 2n + n
squares (because a suitable modification of the germ is algebraic, see [5, 418-420]).
In fact, by means of [16, 7.4] such representation may be achieved with controlled
denominators. Now, the claim follows from Theorem 2.12.

Next, consider the sheaf-product g = (⇡hnkk )2(⇡ gm j
j ) and observe that, by

Theorem 3.1, g is a sum of 2n+1 squares. Next, let h = ⇡hk and observe that we
may assume that f = gh. Clearly, the irreducible factors of h are the special factors
of f , and we are done.
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Remark 6.4. If n = 2 it is clear that the zero sets of the irreducible factors have
either dimension 0 or 1. Of course, if f is positive semidefinite, the zero sets of
the irreducible factors g j which divide f with odd multiplicity have dimension 0,
and so they are singletons {a j }. In fact, in [6, III.Lemme 7(a)] it is proved that
the germ g j,a j is a sum of two squares. This implies that there exists a � -invariant
open neighborhood � j of R2 in C2, a holomorphic extension G j of g j to � and
an (irreducible) holomorphic function Hj 2 H(� j ) such that G j = Hj Hj � � .
Thus, in particular g j is a sum of two squares in O(Rn), and so, by Theorem 3.1
and Remark 3.4(ii), one deduces that f is a sum of two squares.

Moreover, the previous discussion proves that the special factors only appear
for n � 3. Hence, obstructions for a positive answer to H17 and H171 can only
arise for n � 3 and, of course, they are focused on the special factors.

Proof of Theorem 1.4. First, by Lemma 6.3, we write f = gh where g is a finite
sum of squares and h is a square free positive semidefinite analytic function whose
irreducible factors are the special factors of f . Since the zero set of f is the union of
a discrete set and a compact set, it follows that the zero set of h is compact; hence,
h is, by [14, 20], a finite sum of squares and so also f is a finite sum of squares, as
wanted.

In this framework, Theorems 1.1, 1.2 and 1.3 together with Lemma 6.3 provide
the following results.

Corollary 6.5. Let f : Rn
! R be a positive semidefinite analytic function and

let {hk}k�1 be its special factors. We have:

(i) If each hk is a sum of 2r squares at {hk = 0}, then f is a sum of 2n+r squares
(with controlled denominators).

(ii) If each hk is a finite sum of squares at {hk = 0}, then f is an infinite sum of
squares.

(iii) If each hk is an infinite sum of squares at {hk = 0}, there is a positive semidef-
inite q 2 O(Rn) such that {q = 0} ⇢ { f = 0}, dim{q = 0} < dim{ f = 0}
and q f is an infinite sum of squares.

Corollary 6.6. Let f : Rn
! R be a positive semidefinite analytic function and

let {hk}k�1 be its special factors. We have:

(i) If each hk is of Nash type, then f is a sum of 2n+1 squares (with controlled
denominators).

(ii) If each {hk = 0} is either compact or of Nash type, then f is an infinite sum
of squares.

6.4. Pfister’s formulae for arbitrary affine analytic manifolds

Let us show how to extend Pfister’s formulae (see Theorem 1.1) to an affine analytic
manifold M of dimension d. First, we embed M as a closed set inRn for n = 2d+1
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(see [17, 2.15.12]); hence, there is an analytic function h : Rn
! R with zero set

{h = 0} = M . Consider an open tubular neighborhood U of M in Rn , endowed
with the corresponding analytic retraction ⇡ : U ! M . By composition with ⇡ ,
all functions extend from M to U . Moreover, if f 2 O(M) is positive semidefinite,
then so is f 0

= ( f � ⇡) + h|2U and its zero set { f
0
= 0} = { f = 0} is a closed

subset of M . In addition, if f 2 O(M) is a sum of p squares at { f = 0}, then
f 0

= ( f � ⇡) + h|2U is a sum of p + 1 squares at { f 0
= 0} = { f = 0}. Hence,

we can generalize the statements already proposed in Theorems 1.1, 1.2 and 1.3 for
an arbitrary affine analytic manifold M of dimension d, just changing n by 2d + 1.
If in addition H1(M, Z2) = H2(M, Z) = 0, analogous factorization results to the
ones for Rn hold for M , and so we can generalize Corollaries 6.5 and 6.6 for M
changing again n by 2d + 1.
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