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Semigroups generated by elliptic operators
in non-divergence form on C0(�)

WOLFGANG ARENDT AND REINER MICHAEL SCHÄTZLE

Abstract. Let� ⇢ Rn be a bounded open set satisfying the uniform exterior cone
condition. Let A be a uniformly elliptic operator given by

Au =

nX
i, j=1

ai j@i j u +

nX
j=1

b j@ j u + cu

where
a ji = ai j 2 C(�̄) and b j , c 2 L1(�), c  0 .

We show that the realization A0 of A in

C0(�) := {u 2 C(�̄) : u
|@�

= 0}

given by

D(A0) := {u 2 C0(�) \ W2,n
loc (�) : Au 2 C0(�)}

A0u := Au

generates a bounded holomorphic C0-semigroup on C0(�). The result is in par-
ticular true if � is a Lipschitz domain. So far the best known result seems to be
the case where � has C2-boundary [12, Section 3.1.5]. We also study the elliptic
problem

�Au = f
u
|@�

= g .

Mathematics Subject Classification (2010): 35K20 (primary); 35J25, 47D06
(secondary).

1. Introduction

The aim of this paper is to study elliptic and parabolic problems for operators in
non-divergence form with continuous second order coefficients and to prove exis-
tence (and uniqueness) of solutions which are continuous up to the boundary of the
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domain. Such parabolic equations are a classical subject in pde. The considera-
tion of operators in non-divergence form occurs naturally in many situations, for
example in the context of stochastic differential equations, where the correspond-
ing parabolic equation is frequently called Kolmogorov’s equation [8, page 4], or in
the non-linear theory, where regularity results play an important role. Here we are
interested in continuity up to the boundary. More precisely, we want to investigate
when an elliptic operator generates an analytic semigroup on

C0(�) := {u 2 C(�̄) : u|@� = 0}

where � ⇢ Rn is a bounded, open set. We refer to Lunardi’s monograph [12] for a
systematic theory of holomorphic semigroups generated by elliptic operators. Also
in this monograph such semigroups are studied on spaces of continuous functions.

Throughout this paper � is a bounded open set in Rn, n � 2, with boundary
@�. We consider the operatorA given by

Au :=

nX
i, j=1

ai j@i j u +

nX
j=1

b j@ j u + cu

with real-valued coefficients ai j , b j , c satisfying

b j 2 L1(�) , j = 1, . . . , n , c 2 L1(�) , c  0
ai j 2 C(�) \ L1(�) , ai j = a ji ,
nP

i, j=1
ai j (x)⇠i⇠ j � 3|⇠ |2 (x 2 �, ⇠ 2 Rn)

where 3 > 0 is a fixed constant.
Only for part of the results we need that the ai j are continuous up to the bound-

ary (as is assumed in the Abstract). Of course, the assumption that ai j = a ji is no
restriction of generality (replacing ai j by

ai j+a ji
2 otherwise).

Our best results are obtained under the hypothesis that � satisfies the uniform
exterior cone condition (and thus in particular if � has Lipschitz boundary). Then
we show that for each f 2 Ln(�), g 2 C(@�) there exists a unique u 2 C(�̄) \

W 2,n
loc (�) such that

(E)

⇢
�Au = f
u|@� = g .

(Corollary 3.4). This result is proved with the help of Alexandrov’s maximum
principle (which is responsible for the choice of p = n) and other standard results
for elliptic second order differential operators (put together in the appendix). Our
main concern is the parabolic problem

(P)

8<
:

ut = Au
u(0, ·) = u0
u(t, x) = 0 x 2 @� , t > 0 .
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with Dirichlet boundary conditions. Under the uniform exterior cone condition, we
show that the realization A0 ofA in C0(�) given by

D(A0) := {v 2 C0(�) \ W 2,n
loc (�) : Av 2 C0(�)}

A0v := Av

generates a bounded, C0-semigroup on C0(�), which is holomorphic, if in addition
ai j 2 C(�̄). This improves the known results, which are presented in the mono-
graphe of Lunardi [12, Corollary 3.1.21] for � of class C2 (and b j , c uniformly
continuous).

We would like to mention one particular reason why continuity at the bound-
ary is important. If one considers semilinear equations the semilinear term f (u)
is usually treated by a fixed point argument. For this it is useful that the composi-
tion mapping u 7! f (u) is locally Lipschitz continuous on the underlying function
space X , where f : R ! R defines the semilinear term. If X = L p, then this is
merely the case if f is already globally Lipschitz continuous, a condition which is
too strong for many applications. However, on C0(�) local Lipschitz continuity of
f implies the same property of the composition operator. We refer to the mono-
graph [7] of Cazenave-Haraux where the space C0(�) is used for this purpose.

For applications, the improvement from C2 to Lipschitz boundary is certainly
the most important case of our results. But it is natural to ask for the minimal hy-
potheses on coefficients and boundary. It is interesting that one may relax the condi-
tion at the boundary if more regularity of the coefficients is assumed and vice versa.
Three regularity properties at the boundary are considered in this paper: Lipschitz
boundary (as the strongest concerning our results), the uniform exterior cone con-
dition and Wiener regularity as the weakest property. Concerning the coefficients
ai j we assume global Lipschitz-continuity as the strongest, Dini continuity, Hölder
continuity, continuity up to the boundary, and just continuity in the interior as the
weakest possible assumption, formulated as our standing hypothesis above. The
interplay among these properties seems interesting to us and we devote some par-
ticular attention to it. For example, our weakest condition at the boundary, namely
Wiener regularity, suffices for the generation of a holomorphic semigroup on C0(�)
and for well-posedness of (E) if the second order coefficients are globally Lipschitz
continuous. On the other hand if merely ai j 2 C(�̄) then we need that � fulfills
the exterior cone condition.

In order to show the existence of a semigroup, we have to study the elliptic
problem (E) before (to verify the range condition in the Hille-Yosida theorem). At
first we consider the Poisson equation with homogeneous boundary data g = 0
(Section 1). This is done merely on the basis of the standard elliptic theory, as
presented in the monograph of Gilbarg-Trudinger [9], and leads in relatively ele-
mentary way to two important cases (ai j Lipschitz, � Wiener-regular in Theorem
1.1 and uniform exterior cone condition for � and ai j merely bounded and contin-
uous in the interior in Theorem 1.4).

In Section 2 we show that the Poisson problem is equivalent to the Dirichlet
problem (i.e., f = 0). This is of independent interest. But it also allows us to
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use results of Krylov [10] to obtain a further case for the Generation Theorem 3.1
(namely ai j Dini-continuous and � merely Wiener regular). The main results on
the parabolic equations are obtained in Section 3.

We conclude the introduction by mentioning which results are known if an
elliptic operator in divergence form with measurable bounded coefficients is con-
sidered (instead of our operator in non-divergence form). Such operator defines
a mapping A : H1loc(�) ! D(�)0 . If � is Wiener regular, then for each f 2

L p(�), p > n
2 , and each g 2 C(@�) there exists a unique u 2 C(�̄)\H1loc(�) such

thatAu = f, u|@� = g (see [9, Theorem 8.31]). However, in general the solution is
no longer inW 2,n

loc (�) as in the case considered in the present paper. Concerning the
generation theorem, one knows that the part A0 of A in C0(�), defined on the do-
main D(A0) := {u 2 H1loc(�) \C0(�) : Au 2 C0(�)} generates holomorphic C0-
semigroup on C0(�), see [1], again on the sole hypothesis that� is Wiener regular.
The same remains true for operators in non-divergence form of the type m ·1; i.e.
in the very special case of isotropic coefficients (ai j (x) = m(x), i, j = 1, . . . , n).
This remains even true in the case wherem(x) degenerates at the boundary (see [3]).

2. The Poisson problem

We consider the bounded open set � ⇢ Rn and the elliptic operator A from the
introduction. At first we consider the case where the second order coefficients are
Lipschitz continuous. Then we merely need a very mild regularity condition on
�. We say that � is Wiener regular if for each g 2 C(@�) there exists a solution
u 2 C2(�) \ C(�̄) of the Dirichlet problem

1u = 0
u|@� = g .

The name comes from Wiener’s characterization via capacity [9, (2.37)]. If � sat-
isfies the exterior cone condition, then � is Wiener regular.

Theorem 2.1. Assume that the second order coefficients ai j are globally Lipschitz
continuous. If � is Wiener regular, then for each f 2 Ln(�), there exists a unique
u 2 W 2,n

loc (�) \ C0(�) such that

�Au = f .

The point is that for Lipschitz continuous ai j the operator A may be written in
divergence form. This is due to the following lemma.

Lemma 2.2. Let h : � ! R be Lipschitz continuous. Then h 2 W 1,1(�). In
particular, hu 2 W 1,2(�) for all u 2 W 1,2(�) and @ j (hu) = (@ j h)u + h@ j u.

Proof. One can extend h to a Lipschitz function on Rn (without increasing the
Lipschitz constant, see [15]). Now the result follows from [8, 5.8 Theorem 4].



ELLIPTIC OPERATORS IN NON-DIVERGENCE FORM 421

Proof of Theorem 2.1. We assume that � is Dirichlet regular. Uniqueness follows
from Aleksandrov’s maximum principle Theorem A.1. In order to solve the prob-
lem we replace A by an operator in divergence form in the following way. Let

b̃ j := b j �

nP
i=1

@i ai j , j = 1, . . . , n. Then b̃ j 2 L1(�). Consider the elliptic

operatorAd in divergence form given by

Adu =

nX
i, j=1

@i (ai j@ j u) +

nX
j=1

b̃ j@ j u + cu .

Let f 2 Ln(�). By [9, Theorem 8.31] or [1, Corollary 4.6] there exists a unique
u 2 C0(�) \ W 1,2

loc (�) such that �Adu = f weakly, i.e.,
dX

i, j=1

Z
�

ai j@ j u@iv �

dX
j=1

Z
�

b̃ j@ j uv �

Z
�

cuv =

Z
�

f v

for all v 2 D(�) (the space of all test functions). We mention in passing that u 2

W 1,2
0 (�) by [1, Lemma 4.2]. For our purposes, it is important that u 2 W 2,2

loc (�) by
Friedrich’s theorem [9, Theorem 8.8]. Here we use again that the ai j are uniformly
Lipschitz continuous but do not need any further hypothesis on b j and c. It follows
from Lemma 2.2 that ai j@ j u 2 W 1,2

loc (�) and @i (ai j@ j u) = (@i ai j )@ j u + ai j@i j u.
ThusAdu = Au. Now it follows from [9, Lemma 9.16] that u 2 W 2,n

loc (�).

Remark 2.3. Theorem 1.1 is formulated as it is needed for the main result in Sec-
tion 4. Actually, more is true. Let f 2 L p(�) where p > n

2 . Then there ex-
ists a unique u 2 W 2,p

loc (�) \ C0(�) such that �Au = f . Uniqueness follows
from [9, Lemma 9.16]: If Au = 0 then u 2 W 2,q

loc (�) for all q � p. So we can
apply Alexandrov’s maximum principle. In order to prove existence, we choose
fk 2 Ln(�) converging to f in L p(�) as k ! 1. By the proof of Theorem 2.1 we
find uk 2 C0(�) \ W 2,n

loc (�) such that �Aduk = �Auk = fk . Choose �m ⇢⇢ �

such that �m ⇢ �m+1,
S
m2N

�m = �. Then clearly uk 2 W 2,2(�m) ⇢ W 1,2(�m).

Thus [9, Theorem 8.16] shows that
kuk � u`kL1(�m)  kuk � u`kC(@�m) + Ck fk � f`kL p(�m)

for all m 2 N. Letting m ! 1 it follows that
kuk � u`kL1(�)  Ck fk � f`kL p(�) .

Thus u := lim
k!1

uk converges in C0(�). By the Calderon-Zygmund estimate The-
orem A.2

kuk � u`kW 2,p(B%)  c%(p)(kuk � u`kL p(B2%) + k fk � f`kL p(B2%))

whenever B̄2% ⇢ �. Thus u 2 W 2,p
loc (�) and lim

k!1

uk = u in W 2,p
loc (�). It follows

that �Au = lim
k!1

�Auk = f .
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Now we return to the general assumption ai j 2 C(�) \ L1(�) and do no
longer assume that the ai j are Lipschitz continuous. The following result is stated
in [9, Theorem 9.30] with a sketchy proof referring to the Perron method. We
include a direct proof based on our Theorem 2.1, for the convenience of the reader.

Theorem 2.4. Assume that � satisfies the uniform exterior cone condition. Then
for all f 2 Ln(�) there exists a unique u 2 C0(�)\W 2,n

loc (�) such that�Au = f .

Proof. As for Theorem 2.1 we merely have to prove existence of a solution. We
extend ai j by �i j outside � and mollify to obtain aki j 2 C1(Rn) ⇢ Lip(�) uni-
formly elliptic and bounded, converging to ai j locally uniformly in �. Let Ak
be the elliptic operator with the second order coefficients ai j of A replaced by
aki j . Let f 2 Ln(�). By Theorem 2.1, for each k 2 N there exists a unique
uk 2 W 2,n

loc (�) \ C0(�) such that �Akuk = f . By Hölder regularity (Theorem
A.3) there exists a constant c which does not depend on k 2 N such that

kukkC↵(�)  c(k f kLn(�) + kukkLn(�)) .

By Aleksandrov’s maximum principle kukkL1(�)  c1k f kLn(�) for all k 2 N
and some constant c1. Thus (uk)k2N is bounded in C↵(�). By the Arzela-Ascoli
theorem we may assume that uk converges uniformly to u 2 C0(�) as k ! 1

(passing to a subsequence if necessary). Let B2% ⇢ � where B2% is a ball of radius
2%. Since the modulus of continuity of the aki j is locally bounded in �, by the
interior Calderon-Zygmund estimate Theorem A.2

kukkW 2,n(B%)  c2(kukkLn(B2%) + k f kLn(B2%))

for all k 2 N and some constant c2, which depends on % and the position of B%. It
follows from reflexivity that u 2 W 2,n(B%) and uk * u in W 2,n(B%) as k ! 1

after extraction of a subsequence. Since �Akuk = f , it follows that �Au = f . In
fact, since uk * u weakly in W 2,n(B%), it follows that @i j uk * @i j u in Ln(B%) as
k ! 1. Thus sup

k
k@i j ukkLn(B%) < 1. It follows that

(aki j � ai j )@i j uk ! 0 in Ln(B%) as k ! 1

and consequently aki j@i j uk * ai j@i j u in Ln(B%).

3. The Dirichlet problem

In this section we show the equivalence between well-posedness of the Poisson
problem

(P)
�Au = f
u|@� = 0



ELLIPTIC OPERATORS IN NON-DIVERGENCE FORM 423

and the Dirichlet problem

(D)
Au = 0
u|@� = g

where f 2 Ln(�) and g 2 C(@�) are given. We consider the operator A defined
in the previous section and define its realization A in Ln(�) (recall that � ⇢ Rn)
by

D(A) := {u 2 C0(�) \ W 2,n
loc (�) : Au 2 Ln(�)}

Au := Au .

Thus the Poisson problem can be formulated in a more precise way by asking under
which conditions A is invertible (i.e. bijective from D(A) to Ln(�) with bounded
inverse A�1

: Ln(�) ! Ln(�)). By Aleksandrov’s maximum principle, A is
always injective. Note that for µ > 0, the operator A� µ := A� µI has the same
form as A (the order-0-coefficient c being just replaced by c � µ).

Proposition 3.1. The operator A is closed, injective and has closed range. If A is
invertible, then the operator Ã obtained by replacing the coefficient of order 0 by
another coefficient 0 � c̃ 2 L1(�) is also invertible. In particular, if A � µ0 has
dense range in Ln(�) for some µ0 � 0, then A � µ is invertible for all µ � 0,

Proof. By the Aleksandrov maximum principle (Theorem A.1) there exists a con-
stant c1 > 0 such that

kuk1  c1kµu � AukLn(�) (3.1)

for all u 2 D(A), µ � 0. In order to show that A is closed, let uk 2 D(A) such that
uk ! u in Ln(�) and Auk ! f in Ln(�). It follows from (3.1) that u 2 C0(�)
and lim

k!1

uk = u in C0(�). Let B2% be a ball of radius 2% such that B2% ⇢ �. By
the Calderon-Zygmund estimate (Theorem A.2)

kuk � u`kW 2,n(B%)  c%(kuk � u`kLn(B2%) + kA(uk � u`)kLn(B2%)) .

It follows that (uk)k2N converges to u in W 2,n(B%). Consequently Auk ! Au in
Ln(B%). Thus Au = f on B%. Since the ball is arbitrary, it follows that u 2 D(A)
and Au = f . We have thus shown that A is closed. Now it follows from (3.1)
that the range of A is closed. Next we show that invertibility is independent of
the choice of the coefficient of order 0. Assume that A is invertible. Consider
A(t) = A + t (c̃ � c), which corresponds to replacing c by c + t (c̃ � c), which is
still  0 for t 2 [0, 1]. Moreover, D(A(t)) = D(A). We want to show that A(1) is
invertible. The set

M := {t 2 [0, 1] : A(t) is invertible}
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contains t = 0 by hypothesis. Since u 7! (c̃�c)u is a bounded operator on Ln(�),
the set M is open. In fact, assume that A(t0) is invertible. If

|t � t0|kc � c̃kL1(�)kA(t0)�1kL(Ln(�)) < 1 ,

then S := I � (t � t0)(c � c̃)A(t0)�1 is invertible in L(Ln(�)) by the Neumann
series. It follows that A(t) = SA(t0) is invertible.

It remains to show that M is closed. Let tk 2 M such that lim
k!1

tk = t0. Let
f 2 Ln(�). There exist uk 2 D(A) such that A(tk)uk = f . By Aleksandrov’s
maximum principle we have

kukk1  c1k f kLn(�) (k 2 N) .

Moreover,

A(tk)(uk � u`) = (A(t`) � A((tk))u`
= (t` � tk)(c̃ � c)u` .

From Aleksandrov’s maximum principle we conclude now that

kuk � u`k1  c21|t` � tk | kc̃ � ck1k f kLn(�) .

It follows that lim
k!1

uk = u exists in C0(�). Observe that

Auk = A(tk)uk � tk(c̃ � c)uk
= f � tk(c̃ � c)uk

converges to f � t0(c̃ � c)u in C0(�) and hence in Ln(�). Since A is closed, it
follows that u 2 D(A) and Au = f � t0(c̃� c)u; i.e., A(t0)u = f . We have shown
that A(t0) is surjective. As noted before, A(t0) is injective. Hence t0 2 M .

We call a function u on � A-harmonic if u 2 W 2,p
loc (�) for some p > 1 and

Au = 0. By [9, Theorem 9.16] each A-harmonic function u is in T
q>1

W 2,q
loc (�).

Given g 2 C(@�), the Dirichlet problem consists in finding an A-harmonic func-
tion u 2 C(�̄) such that u|@� = g. We say that � is A-regular if for each
g 2 C(@�) there is a solution of the Dirichlet problem. Uniqueness follows from
the maximum principle [9, Theorem 9.6]

�ku�

|@�
kC(@�)  u(x)  ku+

|@�
kC(@�) (3.2)

for all x 2 �̄, which holds for eachA-harmonic function u 2 C(�̄). In particular,

kukC(�̄)  kukC(@�) . (3.3)
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Theorem 3.2. If the operator A is invertible then � is A-regular. Conversely, if
ai j 2 C(�̄) and � isA-regular, then A is invertible.

Thus for ai j 2 C(�̄) well-posedness of the problems (P) and (D) are equiva-
lent.

For the proof we need the following lemma which we learnt from H. Amann.
We are grateful to him for the permission to include it. Recall from the Introduction
that we assume throughout that ai j = a ji .

Lemma 3.3. a) There exist ãi j 2 Cb(Rn) such that ãi j = ã j i , ãi j (x) = ai j (x) if
x 2 � and

nX
i, j=1

ai j (x)⇠i⇠ j �

3

2
|⇠ |2

for all ⇠ 2 Rn, x 2 �.

b) There exist aki j 2 C1(�̄) such that aki j = akji ,
nP

i, j=1
aki j (x)⇠i⇠ j �

3
2 |⇠ |2 and

lim
k!1

aki j (x) = ai j (x) uniformly on �̄.

Proof. a) Let bi j : Rn
! R be a bounded, continuous extension of ai j to Rn .

Replacing bi j by
bi j+b ji
2 , we may assume that bi j = b ji . Since the function ' :

Rn
⇥ S1 ! R given by '(x, ⇠) :=

nP
i, j=1

bi j (x)⇠i⇠ j is continuous and S1 := {⇠ 2

Rn
: |⇠ | = 1} is compact, the set �1 := {x 2 Rn

: '(x, ⇠) > 3
2 for all ⇠ 2 S1}

is open and contains �̄. Let 0  '1,'2 2 C(Rn) such that '1(x) + '2(x) = 1
for all x 2 Rn and '2(x) = 1 for x 2 Rn

\ �1,'1(x) = 1 for x 2 �̄. Then
ãi j := '1bi j +

3
2 '2�i j fulfills the requirements.

b) Let (%k)k2N be a mollifier satisfying supp %k ⇢ B1/k(0). Then aki j = ãi j ⇤

%k 2 C1(Rn) and lim
k!1

aki j (x) = ãi j (x) = ai j (x) uniformly in x 2 �̄. If 1k <

dist(@�1,�), then for x 2 �, ⇠ 2 Rn

nX
i, j=1

aki j (x)⇠i⇠ j =

Z
|y|<1/k

nX
i, j=1

ãi j (x � y)⇠i⇠ j%k(y) dy

�

3

2

Z
|y|<1/k

%k(y) dy =

3

2
.

Proof of Theorem 3.2. a) Assume that A is invertible.
First step. Let g 2 C(@�) be of the form g = G|@� where G 2 C2(�̄). Then
AG 2 Ln(�). Let v = A�1(AG), then u := G � v solves the Dirichlet problem
for g.



426 WOLFGANG ARENDT AND REINER MICHAEL SCHÄTZLE

Second step. Let g 2 C(@�) be arbitrary. Extending g continuously and mollifying
we find gk 2 C(@�) of the kind considered in the first step such that g = lim

k!1

gk
in C(@�). Let uk 2 C(�̄) be A-harmonic satisfying uk |@� = gk . By (3.3) u :=

lim
k!1

uk exists in C(�̄). In particular, u|@� = g. Let B2% ⇢ �. Then by the
Calderon-Zygmund estimate Theorem A.2

kukkW 2,p(B%)  c%kukkL p(B2%)  c%ckukkC(�̄)

(remember that Auk = 0). Thus (uk)k2N is bounded in W 2,p(B%). Passing to a
subsequence, we can assume that uk * u in W 2,p(B%). This implies that Au = 0
in B%. Since the ball is arbitrary, it follows that u is A-harmonic. Thus u is a
solution of the Dirichlet problem (D).
b) Conversely, assume that � is A-regular. Let f 2 Ln(�). We want to find
u 2 D(A) such that Au = f . Let B be a ball containig �̄ and extend f by 0 to B.
Then by Theorem 2.4 we find v 2 C0(B) \ W 2,n

loc (B) such that ˜Av = f . Here ˜A is
an extension of A to the ball B according to Lemma 3.3a). Let g = v|@� . Then by
our assumption there exists anA-harmonic function w 2 C(�̄) such that w|@� = g.
Let u = v � w. Then u 2 C0(�) \ W 2,n

loc (�) and Au = Av = f ; i.e. u 2 D(A)
and Au = f . We have shown that A is surjective, which implies invertibility by
Proposition 3.1.

Corollary 3.4. Assume that one of the following two conditions is satisfied:

a) � is Wiener regular and the coefficients ai j are globally Lipschitz continuous,
or

b) the ai j are in C(�̄) and � satisfies the exterior cone condition.

Then � isA-regular. More generally, for all f 2 Ln(�), g 2 C(@�) there exists a
unique u 2 C(�̄) \ W 2,n

loc (�) satisfying

�Au = f
u|@� = g .

Proof. Since A is closed by Proposition 3.1 it follows from Theorem 2.1 (in the case
a)) and from Theorem 2.4 (in the case b)) that A is invertible. Thus � is A regular
by Theorem 3.2. Let f 2 Ln(�), g 2 C(@�). Since � isA-regular, there exists an
A-harmonic function u1 2 C(�̄) such that u1|@� = g. Since A is invertible, there
exists a function u0 2 C0(�) \ W 2,n

loc (�) such that �Au0 = f . Let u := u0 + u1.
Then u 2 C(�̄) \ W 2,n

loc (�), u|@� = g and �Au = f . Uniqueness follows from
Theorem A.1.

For the Laplacian A = 1,1-regularity is Wiener regularity as defined in the
beginning of Section 1. It is a most interesting question how A-regularity and 1-
regularity are related. In general it is not true that A-regularity implies Wiener
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regularity. In fact, K. Miller [14] gives an example of an elliptic operator A with
ai j 2 C(�̄) and b j = c = 0 such that the pointed unit disc {x 2 R2 : 0 < |x | < 1}
is A-regular even though it is not 1-regular. The other implication seems to be
open (it is known to be false for non-continuous measurable coefficients, see [13]).
The fact that the uniform exterior cone property (which is much stronger than 1-
regularity) implies A-regularity (Corollary 3.4) had been proved before by Krylov
[10, Theorem 5] with the help of partially probabilistic methods. If � is merely
1-regular, then it seems not to be known whether � is A-regular. Known results
concerning this question are based on further restrictive conditions on the coeffi-
cients ai j . By Theorem 2.1 in connection with Theorem 2.2 we obtain a positive
answer for globally Lipschitz continuous ai j . The best result seems to be [10, The-
orem 4] which goes in both directions: If the ai j are Dini-continuous (in particular,
if they are Hölder-continuous), then � is 1-regular if and only if � isA-regular.

Things are different in the isotropic case (i.e. if ai j is independent of i, j 2

1, . . . , n): In that case, for merely measurable ai j the operator A is invertible if and
only if � is Wiener regular, see [3].

4. Generation results

An operator B on a complex Banach space X is said to generate a bounded holo-
morphic semigroup if (�� B) is invertible for Re � > 0 and

sup
Re �>0

k�(�� B)�1k < 1 .

Then there exist ✓ 2 (0,⇡/2) and a holomorphic bounded function T : 6✓ !

L(X) satisfying T (z1 + z2) = T (z1)T (z2) such that

lim
n!1

et Bn = T (t) in L(X) (4.1)

for all t > 0, where Bn = nB(n � B)�1 2 L(X). Here 6✓ is the sector 6✓ :=

{rei↵ : r > 0, |↵| < ✓}.
If B is an operator on a real Banach space X we say that B generates a bounded

holomorphic semigroup if its linear extension BC to the complexification XC of X
generates a bounded holomorphic semigroup TC on XC. In that case TC(t)X ✓ X
(see [12, Corollary 2.1.3]); in particular T (t) := TC(t)|X 2 L(X). We call T =

(T (t))t>0 the semigroup generated by B. It satisfies lim
t#0

T (t)x = x for all x 2 X

(i.e., it is a C0-semigroup) if and only if D(B) = X . We refer to [12, Chapter 2]
and [2, Sec. 3.7] for these facts and further information.

In this section we consider the parts Ac and A0 of A in C(�̄) and C0(�) as
follows:

D(Ac) := {u 2 C0(�) \ W 2,n
loc (�) : Au 2 C(�̄)}

Acu := Au and
D(A0) := {u 2 C0(�) \ W 2,n

loc (�) : Au 2 C0(�)}

A0u := Au .
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Thus Ac is the part of A in C(�̄) and A0 the part of Ac in C0(�). Note that
D(A0) ✓ D(Ac) ✓

T
q>1

W 2,q
loc by [9, Lemma 9.16]. The main result of this section

is the following.

Theorem 4.1. Assume that the ai j are in C(�̄) and that � is A-regular. Then Ac
generates a bounded holomorphic semigroup T on C(�̄). The operator A0 gener-
ates a bounded holomorphic C0-semigroup T0 on C0(�). Moreover, T (t)C0(�) ✓

C0(�) and
T0(t) = T (t)|C0(�) .

Recall that � isA-regular if one of the following conditions is satisfied:

(a) � satisfies the uniform exterior cone condition or
(b) � is Wiener regular and the coefficients ai j are Dini-continuous.

In particular, � isA-regular if
(a0) � is a Lipschitz-domain or
(b0) � is Wiener-regular and the ai j are Hölder continuous.

In the following complex maximum principle (Proposition 4.3) we extendA to the
complex space W 2,p

loc (�) without changing the notation. We first prove a lemma.

Lemma 4.2. Let B ✓ � be a ball of center x0 and let u 2 W 2,p(B), p > n, be a
complex-valued function such that Au 2 C(B). If |u(x0)| � |u(x)| for all x 2 B,
then

Re
h
u(x0)(Au)(x0)

i
 0 .

Proof. We may assume that x0 = 0. If the claim is wrong, then there exist " > 0
and a ball B% ⇢ B such that Re

h
u(x)(Au)(x)

i
� " on B%.

Since @ j |u|2 = (@ j u)ū + u@ j u = 2Re
⇥
@ j uū

⇤
, and @i j (uū) = (@i j u)ū + @i u@ j u +

@ j u@i u + u@i j u, and since by ellipticity

Re
X
i, j

ai j@i u@ j u � 0 , Re
X
i, j

ai j@ j u@i u � 0 ,

it follows that

A|u|2 � Re
X
i, j

ai j (@i j u)ū + Re
X
i, j

ai j u@i j u

+

X
j
b j2Re

⇥
@ j uū

⇤
+ cuū

� 2Re (Auū) � 2" on B% .

Let  (x) = |u|2� ⌧ |x |2, ⌧ > 0. Choosing ⌧ > 0 small enough, we haveA| | � "
on B%.
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Since  2 W 2,p(B%) \ C(B%), and since �A| |  �" on B%, by Aleksandrov’s
maximum principle [9, Theorem 9.1], see Theorem A.1, it follows that

|u(0)|2 = | (0)|  sup
@B%(0)

 

= sup
@B%(0)

|u|2 � ⌧%2

 |u(0)|2 � ⌧%2 < |u(0)|2 ,

a contradiction. For the last inequality we used the hypothesis on x0 = 0.

Proposition 4.3 (complex maximum principle). Let u 2 C(�̄) \ W 2,n
loc (�) such

that �u�Au = 0 where Re � > 0. If there exists x0 2 � such that |u(x)|  |u(x0)|
for all x 2 �, then u ⌘ 0. Consequently,

max
�̄

|u(x)| = max
@�

|u(x)| .

Proof. If |u(x)| |u(x0)| for all x 2�, then by Lemma 4.2, Re
h
u(x0)(Au)(x0)

i


0. Since �u = Au, it follows that

Re �|u(x0)|2 = Re
h
u(x0)(Au)(x0)

i
 0 .

Hence u(x0) = 0.

Next, recall that an operator B on a real Banach space X is calledm-dissipative
if �� B is invertible and

�k(�� B)�1k  1 for all � > 0 .

Now we show that the operator Ac is m-dissipative and that the resolvent is
positive (i.e., maps non-negative functions to non-negative functions).
Proposition 4.4. Assume that A is invertible. Then Ac is m-dissipative and (� �

Ac)�1 � 0 for � > 0.
Proof. Let � > 0. Since by Theorem 3.2 the operator (� � A) is bijective, also
(�� Ac) is bijective.
a) We show that (� � Ac)�1 � 0. Let f 2 C(�̄), f  0, u := (� � Ac)�1 f .
Assume that u+

6= 0. Since u 2 C0(�), there exists x0 2 � such that u(x0) =

max
�

u > 0. Then by Lemma 4.2,Au(x0)  0. Since �u �Au = f , it follows that
�u(x0)  f (x0)  0 a contradiction.
b) Let f 2 C(�̄), u = (�� Ac)�1 f . We show that k�ukC(�̄)  k f kC(�̄). Assume
first that f � 0, f 6= 0. Then u � 0 by a) and u 6= 0. Let x0 2 � such
that u(x0) = kukC(�̄). Then (Acu)(x0)  0 by Lemma 4.2. Hence �u(x0) 

�u(x0) � (Acu)(x0) = f (x0)  k f kC(�̄).
If f 2 C(�̄) is arbitrary, then by a) |(� � Ac)�1 f |  (� � Ac)�1| f | and so
k�(�� Ac)�1 f kC(�̄)  k f kC(�̄).
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Now we consider the complex extension of Ac (still denoted by Ac) to the
space of all complex-valued functions on �̄ which we still denote by C(�̄). Our
aim is to prove that for Re � > 0 the operator (�� Ac)�1 is invertible and

k(�� Ac)�1k 

M
|�|

,

where M is a constant. For that, we extend the coefficents ai j to uniformly contin-
uous bounded real-valued functions on Rn satisfying the strict ellipticity condition

Re
dX

i, j=1
ai j (x)⇠i ⇠̄ j �

3

2
|⇠ |2

(⇠ 2 Rn, x 2 Rn), keeping the same notation, see Lemma 3.3a). We extend b j , c to
bounded measurable functions on Rn such that c  0 (keeping the same notation).
Now we define the operator B1 on L1(Rn) by

D(B1) := {u 2

T
p>1

W 2,p
loc (Rn) : u,Bu 2 L1(Rn)}

where B1u := Bu ,

Bu :=

dP
i, j=1

ai j@i j u +

dP
j=1

b j@ j u + cu for u 2 W 2,p
loc (Rn) .

We will show that the operator B1 is sectorial (Theorem 4.6 below). This is proved
in [12, Theorem 3.1.7] under the assumption that the coefficients b j , c are uniformly
continuous. We give a perturbation argument to deduce the general case from the
case b j = c = 0. The following lemma shows in particular that the domain of B1

is independent of b j and c.

Lemma 4.5. One has D(B1) ⇢ W 1,1(Rn). Moreover, for each " > 0 there exists
c" � 0 such that

kukW 1,1(Rn)  "kB1ukL1(Rn) + c"kukL1(Rn)

for all u 2 D(B1).

Proof. Consider an arbitrary ball B1 in Rn of radius 1 and the corresponding ball
B2 of radius 2. Let p > n. Since the injection ofW 2,p(B1) into C1(B̄1) is compact,
for each " > 0 there exists c0" > 0 such that

kukC1(B̄1)  "kukW 2,p(B1) + c0"kukL1(B1) .

By the Calderon-Zygmund estimate this implies that

kukC1(B̄1)  "c1(kB1ukL1(B2) + kukL1(B2))

+c0"kukL1(B1)

 "c1kB1ukL1(Rn) + ("c1 + c0") · kukL1(Rn) .
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Since kukW 1,1(Rn) = sup
B1

kukC1(B1), where the supremum is taken over all balls of

radius 1 in Rn , the claim follows.

Theorem 4.6. There exist M � 0,! 2 R such that (�� B1) is invertible and

k�(�� B1)�1k  M (Re � > !) .

Proof. Denote by B0
1
the operator with the coefficients b j , c replaced by 0. Lemma

4.5 implies that D(B0
1

) = D(B1) and (applied to B0
1

) that

k(B1 � B0
1

)ukL1(Rn)  "kB0
1
ukL1(Rn) + c0"kukL1(Rn)

for all u 2 D(B0
1

), " > 0 and some c0" � 0. Since B0
1
is sectorial by [12, Theorem

3.1.7] the claim follows from the usual holomorphic perturbation result [2, Theorem
3.7.23].

Now we use the maximum principle, Lemma 4.2, to carry over the sectorial
estimate from Rn to�. This is done in a very abstract framework by Lumer-Paquet
[11], see [6, Section 2.5] for the Laplacian.

Proof of Theorem 4.1. Let ! be the constant from Theorem 4.6 and let Re � >
!, f 2 C(�̄), u = (�� Ac)�1 f . Then

u 2 C0(�) \

\
p>1

W 2,p
loc (�) and �u �Au = f .

Extend f by 0 to Rn and let v = (� � B1)�1 f . Then �v � Av = f on � and
k�vkL1(�)  Mk f kC(�̄) by Theorem 4.6. Moreover, w := v � u 2 C(�̄) \T
p�1

W 2,p
loc (�), �w �Aw = 0 on � and w(z) = v(z) for all z 2 @�. Then by the

complex maximum principle Proposition 4.3,

kwkC(�̄) = max
z2@�

|v(z)| 

M
|�|

k f kC(�̄) .

Consequently,

kukC(�̄) = ku � v + vkC(�̄)

 kwkC(�̄) + kvkC(�̄)



2M
|�|

k f kC(�̄) .

This is the desired estimate which shows that Ac is sectorial. By [12, Proposition
2.1.11] there exist a sector 6✓ +! := {!+ rei↵ : r > 0, |↵| < ✓} with ✓ 2 (⇡2 ,⇡),
! � 0, and a constant M1 > 0 such that

(�� Ac)�1 exists for � 2 6✓ + ! and k�(�� Ac)�1k  M1 .
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Thus there exists r > 0 such that (� � Ac) is invertible and k�(� � Ac)�1k  M
whenever Re � > 0 and |�| > r . Since A is invertible by Theorem 3.2, it follows
that Ac is bijective. Since the resolvent set of Ac is nonempty, Ac is closed. Thus Ac
is invertible. Since by Proposition 4.4 Ac is resolvent positive, it follows from [2,
Proposition 3.11.2] that there exists " > 0 such that (�� Ac) is invertible whenever
Re � > �". As a consequence,

sup
|�|r
Re �>0

k�(�� Ac)�1k < 1 .

Together with the previous estimates this implies that

k�(�� Ac)�1k  M2

whenever Re � > 0 for some constant M2. Thus Ac generates a bounded holo-
morphic semigroup T on C(�̄). Since D(Ac) ⇢ C0(�) and D(�) ⇢ D(Ac)
it follows that D(Ac) = C0(�). The part of Ac in C0(�) is A0. So it follows
from [12, Remark 2.1.5, Proposition 2.1.4] that A0 generates a bounded, holomor-
phic C0-semigroup T0 on C0(�) and T0(t) = T (t)|C0(�) on C0(�).

If the coefficients ai j are merely in C(�) \ L1(�) as in our standing hy-
pothesis we cannot extend the operator to Rn and our proof of analyticity of the
semigroup breaks down. But we still obtain a C0-semigroup on C0(�)

More precisely, we have the following result.

Proposition 4.7. Assume that� satisfies the uniform exterior cone condition. Then
A0 generates a positive, contractive, irreducible C0-semigroup on C0(�). More-
over,

kT (t)k  Me�"t (t � 0)

for some M > 0, " > 0. The resolvent (�� A0)�1 is compact for all � 2 %(A0).

Proof. By Theorem 2.4 the operator A is invertible. It follows from Proposition 4.3
that A0 is m-dissipative. Since D(A0) is dense, by the Lumer-Phillips Theorem the
operator A0 generates a positive, contractive C0-semigroup (T0(t))t�0 on C0(�). It
follows from Theorem A.3 that D(A0) ⇢ C↵(�). Since the embedding of C↵(�)
into C(�̄) is compact, it follows that the resolvent of A0 is compact. Since the
resolvent is positive by Proposition 4.3, it follows from [2, 3.11] that the semigroup
is positive.

Next show that u := (��A0)�1 f is strictly positive if 0  f 2 C0(�), f 6= 0.
Assume that u(x)  0 for some x 2 �. Let v = �u. Then Av � �v = f � 0. It
follows from the maximum principle [9, Theorem 9.6] that v is constant. Since v 2

C0(�), it follows that v ⌘ 0. Hence also f ⌘ 0. This proves the claim. It follows
from [16, B-III.3.1] that the semigroup (T0(t))t�0 is irreducible. [2, Theorem 5.3.8]
implies that the semigroup is exponentially stable.



ELLIPTIC OPERATORS IN NON-DIVERGENCE FORM 433

A. Results on elliptic partial differential equations

In this section, we collect some results on elliptic partial differential equations,
which can be found in text books, for example [9]. We consider the elliptic operator
A from the Introduction.

Theorem A.1 (Aleksandrov’s maximum principle, [9, Theorem 9.1]). Let f 2

Ln(�), u 2 C(�̄) \ W 2,n
loc (�) such that

�Au  f .

Then
sup
�
u  sup

@�
u+

+ c1k f +

kLn(�)

where the constant c1 depends merely on n, diam�, the ellipticity constant 3 and
kb jkLn(�), j = 1 . . . , n. Consequently, if u 2 C0(�) and �Au = f , then

kukL1(�)  c1k f kLn(�))

and u  0 if f  0.

For the next two results we assume that the ellipticity constant 3 > 0 is so
small that kai jkL1 , kb jkL1 , kckL1 

1
3 .

Theorem A.2 (Interior Calderon-Zygmund estimate, [9, Theorem 9.11]).
Let B2% be a ball of radius 2% such that B2% ⇢ �, and let u 2 W 2,p(B2%), where
1 < p < 1. Then

kukW 2,p(B%)  c%(kAukL p(B2%) + kukL p(B2%))

where B% is the ball of radius % concentric with B2%. The constant % merely depends
on 3, n, %, p and the continuity moduli of the ai j .

Theorem A.3 (Hölder regularity, [9, Corollary 9.29]). Assume that � satisfies
the uniform exterior cone condition. Let u 2 C0(�) \ W 2,n

loc (�) and f 2 Ln(�)
such that �Au = f . Then u 2 C↵(�) and

kukC↵(�)  C(k f kLn(�) + kukL2(�))

where ↵ > 0 and c > 0 depend merely on �,3 and n.

In [9, Corollary 9.29] it is supposed that u 2 W 2,n(�). But an inspection of
the proof and of the results preceding [9, Corollary 9.29] shows that u 2 W 2,n

loc (�)
suffices. The above Hölder regularity also holds for solutions of equations in diver-
gence form when the right-hand side f is in Lq(�) for some q > n

2 , see [9, Theo-
rem 8.29].
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Math. Acad. Sci. Paris, Sér. A 284 (1977), 237–240.
[12] A. LUNARDI, “Analytic Semigroups and Optimal Regularity in Parabolic Problems”,
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