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Bootstrap regularity for integro-differential operators
and its application to nonlocal minimal surfaces

BEGOÑA BARRIOS, ALESSIO FIGALLI AND ENRICO VALDINOCI

Abstract. We prove that C1,↵ s-minimal surfaces are of class C1. For this,
we develop a new bootstrap regularity theory for solutions of integro-differential
equations of very general type, which we believe is of independent interest.
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1. Introduction

Motivated by the structure of interphases arising in phase transition models with
long range interactions, in [4] the authors introduced a nonlocal version of minimal
surfaces. These objects are obtained by minimizing a “nonlocal perimeter” inside
a fixed domain �: fix s 2 (0, 1), and given two sets A, B ⇢ Rn , let us define the
interaction term

L(A, B) :=

Z
A

Z
B

dx dy
|x � y|n+s

.

The nonlocal perimeter of E inside � is defined as

Per(E,�, s) := L
�
E \�, (Rn

\ E) \�
�

+ L
�
E \�, (Rn

\ E) \ (Rn
\�)

�
+ L

�
(Rn

\ E) \�, E \ (Rn
\�)

�
.

Then nonlocal (s-)minimal surfaces correspond to minimizers of the above func-
tional with the “boundary condition” that E \ (Rn

\�) is prescribed.
It is proved in [4] that “flat s-minimal surface” are C1,↵ for all ↵ < s, and

in [1, 9, 10] that, as s ! 1�, the s-minimal surfaces approach the classical ones,
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both in a geometric sense and in a 0-convergence framework, with uniform esti-
mates as s ! 1�. In particular, when s is sufficiently close to 1, they inherit some
nice regularity properties from the classical minimal surfaces (see also [8,13,14] for
the relation between s-minimal surfaces and the interfaces of some phase transition
equations driven by the fractional Laplacian).

On the other hand, all the previous literature only focused on the C1,↵ regular-
ity, and higher regularity was left as an open problem. In this paper we address this
issue, and we prove that C1,↵ s-minimal surfaces are indeed C1, according to the
following result1:

Theorem 1.1. Let s2(0, 1), and @E be an s-minimal surface in KR for some R >
0. Assume that

@E \ KR =

�
(x 0, xn) : x 0

2 Bn�1R and xn = u(x 0)
 

(1.1)

for some u : Bn�1R ! R, with u 2 C1,↵(Bn�1R ) for any ↵ < s and u(0) = 0. Then

u 2 C1(Bn�1⇢ ) 8 ⇢ 2 (0, R).

The regularity result of Theorem 1.1 combined with [4, Theorem 6.1] and [10,
Theorems 1, 3, 4, 5], implies also the following results (here and in the sequel,
{e1, e2, . . . , en} denotes the standard Euclidean basis):

Corollary 1.2. Fix so 2 (0, 1). Let s 2 (so, 1) and @E be an s-minimal surface
in BR for some R > 0. There exists ✏? > 0, possibly depending on n, so and ↵, but
independent of s and R, such that if

@E \ BR ✓ {|x · en| 6 ✏?R}

then @E \ BR/2 is a C1-graph in the en-direction.

Corollary 1.3. There exists ✏o 2 (0, 1) such that if s 2 (1� ✏o, 1), then:

• If n 6 7, any s-minimal surface is of class C1
;

• If n = 8, any s-minimal surface is of class C1 except, at most, at countably
many isolated points.

1 Here and in the sequel, we write x 2 Rn as x = (x 0, xn) 2 Rn�1 ⇥ R. Moreover, given r > 0
and p 2 Rn , we define

Kr (p) := {x 2 Rn : |x 0
� p0

| < r and |xn � pn | < r}.

As usual, Br (p) denotes the Euclidean ball of radius r centered at p. Given p0
2 Rn�1, we set

Bn�1r (p0) := {x 0
2 Rn�1 : |x 0

� p0
| < r}.

We also use the notation Kr := Kr (0), Br := Br (0), Bn�1r := Bn�1r (0).
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More generally, in any dimension n there exists ✏n 2 (0, 1) such that if s 2 (1 �

✏n, 1) then any s-minimal surface is of classC1 outside a closed set6 of Hausdorff
dimension n � 8.

Also, Theorem 1.1 here combined with [15, Corollary 1] gives the following
regularity result in the plane:
Corollary 1.4. Let n = 2. Then, for any s 2 (0, 1), any s-minimal surface is a
smooth embedded curve of class C1.

In order to prove Theorem 1.1 we establish in fact a very general result about
the regularity of integro-differential equations, which we believe is of independent
interest.

For this, we consider a kernel K = K (x, w) : Rn
⇥ (Rn

\ {0}) ! (0,+1)
satisfying some general structural assumptions. In the following, � 2 (1, 2).

First of all, we suppose that K is close to an autonomous kernel of fractional
Laplacian type, namely8><

>:
there exist a0, r0 > 0 and ⌘ 2 (0, a0/4) such that���� |w|

n+� K (x, w)

2� �
� a0

���� 6 ⌘ 8 x 2 B1, w 2 Br0 \ {0}.
(1.2)

Moreover, we assume that28>>>>>><
>>>>>>:

there exist k 2 N [ {0} and Ck > 0 such that

K 2 Ck+1�B1 ⇥ (Rn
\ {0})

�
,

k@µ
x @

✓
wK (·, w)kL1(B1) 6

Ck
|w|

n+�+|✓ |

8µ, ✓ 2 Nn, |µ| + |✓ | 6 k + 1, w 2 Rn
\ {0}.

(1.3)

Our main result is a “Schauder regularity theory” for solutions3 of an integro-
differential equation. Here and in the sequel we use the notation

�u(x, w) := u(x + w) + u(x � w) � 2u(x). (1.4)

Theorem 1.5. Let � 2 (1, 2), k 2 N[{0}, and u 2 L1(Rn) be a viscosity solution
of the equationZ

Rn
K (x, w) �u(x, w)dw = f (x, u(x)) inside B1, (1.5)

with f 2 Ck+1(B1 ⇥ R). Assume that K : B1 ⇥ (Rn
\ {0}) ! (0,+1) satisfies

assumptions (1.2) and (1.3) for the same value of k.

2 Observe that we use | · | both to denote the Euclidean norm of a vector and, for a multi-index
case ↵ = (↵1, . . . ,↵n) 2 Nn , to denote |↵| := ↵1 + · · · + ↵n . However, the meaning of | · | will
always be clear from the context.
3 We adopt the notion of viscosity solution used in [5–7].
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Then, if ⌘ in (1.2) is sufficiently small (the smallness being independent of k),
we have u 2 Ck+�+↵(B1/2) for any ↵ < 1, and

kukCk+�+↵(B1/2) 6 C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
, (1.6)

where4 C > 0 depends only on n, � , k, Ck , and k f kCk+1(B1⇥R).

Let us notice that, since the right-hand side in (1.5) depends on u, there is no
uniqueness for such an equation. In particular it is not enough for us to prove a-
priori estimates for smooth solutions and then argue by approximation, since we do
not know if our solution can be obtained as a limit of smooth solution.

We also note that, if in (1.3) one replaces the Ck+1-regularity of K with the
Ck,�-assumption

k@µ
x @

✓
wK (·, w)kC0,� (B1) 6

Ck
|w|

n+�+|✓ |
, (1.7)

for all |µ| + |✓ | 6 k, then we obtain the following:

Theorem 1.6. Let � 2 (1, 2), k 2 N[{0}, and u 2 L1(Rn) be a viscosity solution
of equation (1.5) with f 2 Ck,�(B1 ⇥ R). Assume that K : B1 ⇥ (Rn

\ {0}) !

(0,+1) satisfies assumptions (1.2) and (1.7) for the same value of k.
Then, if ⌘ in (1.2) is sufficiently small (the smallness being independent of k),

we have u 2 Ck+�+↵(B1/2) for any ↵ < �, and

kukCk+�+↵(B1/2) 6 C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
,

where C > 0 depends only on n, � , k, Ck , and k f kCk,� (B1⇥R).

The proof of Theorem 1.6 is essentially the same as the one of Theorem 1.5, the
only difference being that instead of differentiating the equations (see for instance
the argument in Section 2.4) one should use incremental quotients. Although this
does not introduce any major additional difficulties, it makes the proofs longer and
more tedious. Hence, since the proof of Theorem 1.5 already contains all the main
ideas to prove also Theorem 1.6, we will show the details of the proof only for
Theorem 1.5.

The paper is organized as follows: in the next section we prove Theorem 1.5,
and then in Section 3 we write the fractional minimal surface equation in a suitable
form so that we can apply Theorems 1.5 and 1.6 to prove Theorem 1.1.

4 As customary, when � + ↵ 2 (1, 2) (respectively � + ↵ > 2), by (1.6) we mean that u 2

Ck+1,�+↵�1(B1/2) (respectively u 2 Ck+2,�+↵�1(B1/2)). (To avoid any issue, we will always
implicitly assume that ↵ is chosen different from 2� � , so that � + ↵ 6= 2.)
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2. Proof of Theorem 1.5

The core of the proof of Theorem 1.5 is the step k = 0, which will be proved in
several steps.

2.1. Toolbox

We collect here some preliminary observations on scaled Hölder norms, covering
arguments, and differentiation of integrals that will play an important role in the
proof of Theorem 1.5. This material is mainly technical, and the expert reader may
go directly to Section 2.2 at page 619.

2.1.1. Scaled Hölder norms and coverings

Given m 2 N, ↵ 2 (0, 1), x 2 Rn , and r > 0, we define the Cm,↵-norm of a
function u in Br (x) as

kukCm,↵(Br (x)) :=

X
|� |6m

kD� ukL1(Br (x)) +

X
|� |=m

sup
y 6=z2Br (x)

|D� u(y) � D� u(z)|
|y � z|↵

.

For our purposes it is also convenient to look at the following classical rescaled
version of the norm:

kuk⇤

Cm,↵(Br (x)) :=

mX
j=0

X
|� |= j

r jkD� ukL1(Br (x))

+

X
|� |=m

rm+↵ sup
y 6=z2Br (x)

|D� u(y) � D� u(z)|
|y � z|↵

.

This scaled norm behaves nicely under covering, as the next observation points out:

Lemma 2.1. Let m 2 N, ↵ 2 (0, 1), ⇢ > 0, and x 2 Rn . Fix � 2 (0, 1), and
suppose that B⇢(x) is covered by finitely many balls {B�⇢/2(xk)}Nk=1. Then, there
exists Co > 0, depending only on � and m, such that

kuk⇤

Cm,↵(B⇢(x)) 6 Co
NX
k=1

kuk⇤

Cm,↵(B�⇢(xk)).
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Proof. We first observe that, if j 2 {0, . . . ,m} and |� | = j ,

⇢ jkD� ukL1(B⇢(x)) 6 �� j (�⇢) j max
k=1,...,N

kD� ukL1(B�⇢(xk))

6 ��m
NX
k=1

(�⇢) jkD� ukL1(B�⇢(xk))

6 ��m
NX
k=1

kuk⇤

Cm,↵(B�⇢(xk)).

Now, let |� | = m: we claim that

⇢m+↵ sup
y 6=z2B⇢(x)

|D� u(y) � D� u(z)|
|y � z|↵

6 2��(m+↵)
NX
k=1

kuk⇤

Cm,↵(B�⇢(xk)).

To check this, we take y, z 2 B⇢(x) with y 6= z and we distinguish two cases.
If |y � z| < �⇢/2 we choose ko 2 {1, . . . , N } such that y 2 B�⇢/2(xko). Then |z �

xko | 6 |z � y| + |y � xko | < �⇢, which implies y, z 2 B�⇢(xko), therefore

⇢m+↵ |D� u(y) � D� u(z)|
|y � z|↵

6 ⇢m+↵ sup
ỹ 6=z̃2B�⇢(xko )

|D� u(ỹ) � D� u(z̃)|
|ỹ � z̃|↵

6 ��(m+↵)
kuk⇤

Cm,↵(B�⇢(xko )).

Conversely, if |y � z| > �⇢/2, recalling that ↵ 2 (0, 1) we have

⇢m+↵ |D� u(y) � D� u(z)|
|y � z|↵

6 2��↵⇢mkD� ukL1(B⇢(x))

6 2��↵⇢m
NX
k=1

kD� ukL1(B�⇢(xk))

6 2��(m+↵)
NX
k=1

kuk⇤

Cm,↵(B�⇢(xk)).

This proves the claim and concludes the proof.

Scaled norms behave also nicely in order to go from local to global bounds, as
the next result shows:
Lemma 2.2. Let m 2 N, ↵ 2 (0, 1), and u 2 Cm,↵(B1). Suppose that there exist
µ 2 (0, 1/2) and ⌫ 2 (µ, 1] for which the following holds: for any ✏ > 0 there
exists 3✏ > 0 such that, for any x 2 B1 and any r 2 (0, 1� |x |], we have

kuk⇤

Cm,↵(Bµr (x)) 6 3✏ + ✏kuk⇤

Cm,↵(B⌫r (x)). (2.1)

Then there exist constants ✏o, C > 0, depending only on n, m, µ, ⌫, and ↵, such
that

kukCm,↵(Bµ) 6 C3✏o .
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Proof. First of all we observe that

kuk⇤

Cm,↵(Bµr (x)) 6 kukCm,↵(Bµr (x)) 6 kuk⇤

Cm,↵(B1)

because r 2 (0, 1), which implies that

Q := sup
x2B1

r2(0,1�|x |]

kuk⇤

Cm,↵(Bµr (x)) < +1.

We now use a covering argument: pick � 2 (0, 1/2] to be chosen later, and fixed
any x 2 B1 and r 2 (0, 1 � |x |] we cover Bµr (x) with finitely many balls
{B�µr/2(xk)}Nk=1, with xk 2 Bµr (x), for some N depending only on � and the
dimension n. We now observe that, since µ < 1/2,

|xk | + r/2 6 |xk � x | + |x | + r/2 6 µr + |x | + r/2 < r + |x | 6 1. (2.2)

Hence, since � 6 1/2, we can use (2.1) (with x = xk and r scaled to �r) to obtain

kuk⇤

Cm,↵(B�µr (xk)) 6 3✏ + ✏kuk⇤

Cm,↵(B�⌫r (xk)).

Then, using Lemma 2.1 with ⇢ := µr and � = µ/(2⌫), and recalling (2.2) and the
definition of Q, we get

kuk⇤

Cm,↵(Bµr (x)) 6 Co
NX
k=1

kuk⇤

Cm,↵(B�µr (xk))

6 CoN3✏ + Co✏
NX
k=1

kuk⇤

Cm,↵(B�⌫r (xk))

= CoN3✏ + Co✏
NX
k=1

kuk⇤

Cm,↵(Bµr/2(xk))

6 CoN3✏ + ✏CoNQ.

Using the definition of Q again, this implies

Q 6 CoN3✏ + ✏CoNQ,

so that, by choosing ✏o := 1/(2CoN ),

Q 6 2CoN3✏o .

Thus we have proved that

kuk⇤

Cm,↵(Bµr (x)) 6 2CoN3✏o 8 x 2 B1, r 2 (0, 1� |x |],

and the desired result follows setting x = 0 and r = 1.
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2.1.2. Differentiating integral functions

In the proof of Theorem 1.5 we will need to differentiate, under the integral sign,
smooth functions that are either supported near the origin or far from it. This pur-
pose will be accomplished in Lemmata 2.5 and 2.6, after some technical bounds
that are needed to use the Dominated Convergence Theorem.

Recall the notation in (1.4).
Lemma 2.3. Let r > r 0 > 0, v 2 C3(Br ), x 2 Br 0 , h 2 R with |h| < (r � r 0)/2.
Then, for any w 2 Rn with |w| < (r � r 0)/2, we have

|�v(x + he1, w) � �v(x, w)| 6 |h| |w|
2
kvkC3(Br ).

Proof. Fixed x 2 Br 0 and |w| < (r � r 0)/2, for any h 2 [(r 0
� r)/2, (r � r 0)/2] we

set g(h) := v(x + he1 + w) + v(x + he1 � w) � 2v(x + he1). Then

|g(h) � g(0)| 6 |h| sup
|⇠ |6|h|

|g0(⇠)|

6 |h| sup
|⇠ |6|h|

��@1v(x + ⇠e1 + w) + @1v(x + ⇠e1 � w) � 2@1v(x + ⇠e1)
��.

Noticing that |x + ⇠e1 ± w| 6 r 0
+ |h| + |w| < r , a second order Taylor expansion

of @1v with respect to the variable w gives��@1v(x+⇠e1+w)+@1v(x+⇠e1�w)�2@1v(x+⇠e1)
�� 6 |w|

2
k@1vkC2(Br ). (2.3)

Therefore

|�v(x + he1, w) � �v(x, w)| = |g(h) � g(0)| 6 |h| |w|
2
kvkC3(Br ),

as desired.

Lemma 2.4. Let r > r 0 > 0, v 2 W 1,1(Rn), h 2 R. Then, for any w 2 Rn ,

|�v(x + he1, w) � �v(x, w)| 6 4|h|krvkL1(Rn).

Proof. It sufficed to proceed as in the proof of Lemma 2.3, but replacing (2.3) with
the following estimate:��@1v(x + ⇠e1 + w) + @1v(x + ⇠e1 � w) � 2@1v(x + ⇠e1)

�� 6 4k@1vkL1(Rn).

Lemma 2.5. Let ` 2 N, r 2 (0, 2), K satisfy (1.3), and U 2 C`+20 (Br ). Let � =

(�1, . . . , �n) 2 Nn with |� | 6 ` 6 k + 1. Then

@
�
x

Z
Rn
K (x, w) �U(x, w) dw =

Z
Rn
@
�
x
⇣
K (x, w) �U(x, w)

⌘
dw

=

X
16i6n
06�i6�i

�=(�1,...,�n)

✓
�1
�1

◆
) . . .

✓
�n
�n

◆
)

Z
Rn
@�x K (x, w) �(@

���
x U)(x, w) dw (2.4)

for any x 2 Br .
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Proof. The latter equality follows from the standard product derivation formula,
so we focus on the proof of the first identity. The proof is by induction over |� |.
If |� | = 0 the result is trivially true, so we consider the inductive step. We take x
with r 0

:= |x | < r , we suppose that |� | 6 ` � 1 and, by inductive hypothesis, we
know that

g� (x) := @
�
x

Z
Rn
K (x, w) �U(x, w) dw =

Z
Rn
✓(x, w) dw

with

✓(x, w) :=

X
16i6n
06�i6�i

�=(�1,...,�n)

✓
�1
�1

◆
) . . .

✓
�n
�n

◆
)@�x K (x, w) �(@

���
x U)(x, w) dw.

By (1.3), if 0 < |h| < (r � r 0)/2 then

|@�x K (x + he1, w) � @�x K (x, w)| 6 C|�|+1|h| |w|
�n�� . (2.5)

Moreover, if |w| < (r � r 0)/2, we can apply Lemma 2.3 with v := @
���
x U and

obtain

|�(@
���
x U)(x + he1, w) � �(@

���
x U)(x, w)| 6 |h| |w|

2
kUkC |���|+3(Br ). (2.6)

On the other hand, by Lemma 2.4 we obtain

|�(@
���
x U)(x + he1, w) � �(@

���
x U)(x, w)| 6 4 |h| k@���

x UkC1(Rn).

All in all,

|�(@
���
x U)(x + he1, w) � �(@

���
x U)(x, w)|

6 |h| kUkC |���|+3(Rn)min{4, |w|
2
}.

(2.7)

Analogously, a simple Taylor expansion provides also the bound

|�(@
���
x U)(x, w)| 6 kUkC |���|+2(Rn)min{4, |w|

2
}. (2.8)

Hence, (1.3), (2.5), (2.7), and (2.8) give
��@�x K (x + he1, w) �(@

���
x U)(x + he1, w) � @�x K (x, w) �(@

���
x U)(x, w)

��
6
��@�x K (x + he1, w)

⇥
�(@

���
x U)(x + he1, w) � �(@

���
x U)(x, w)

⇤��
+

��⇥@�x K (x + he1, w) � @�x K (x, w)
⇤
�(@

���
x U)(x, w)

��
6 C1|h| min{|w|

�n�� , |w|
2�n��

},
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with C1 > 0 depending only on `, C` and kUkC`+2(Rn). As a consequence,

|✓(x + he1, w) � ✓(x, w)| 6 C2|h| min{|w|
�n�� , |w|

2�n��
},

and, by the Dominated Convergence Theorem, we get
Z

Rn
@x1✓(x, w) dw = lim

h!0

Z
Rn

✓(x + he1, w) � ✓(x, w)

h
dw

= lim
h!0

g� (x + he1) � g� (x)
h

= @x1g� (x),

which proves (2.4) with � replaced by � + e1. Analogously one could prove the
same result with � replaced by � + ei , concluding the inductive step.

The differentiation under the integral sign in (2.4) may also be obtained under
slightly different assumptions, as next result points out:

Lemma 2.6. Let ` 2 N, R > r > 0. Let U 2 C`+1(Rn) with U = 0 in BR .
Let � = (�1, . . . , �n) 2 Nn with |� | 6 `. Then (2.4) holds true for any x 2 Br .

Proof. If x 2 Br ,w 2 B(R�r)/2 and |h| 6 (R�r)/2, we have that |x+w+he1| < R
and so �U(x + he1, w) = 0. In particular

�U(x + he1, w) � �U(x, w) = 0

for small h when w 2 B(R�r)/2. This formula replaces (2.6), and the rest of the
proof goes on as the one of Lemma 2.5.

2.1.3. Integral computations

Here we collect some integral computations which will be used in the proof of
Theorem 1.5.

Lemma 2.7. Let v : Rn
! R be smooth and with all its derivatives bounded. Let

x 2 B1/4, and � , � 2 Nn , with �i > �i for any i 2 {1, . . . , n}. Then there exists a
constant C 0 > 0, depending only on n and � , such that

����
Z

Rn
@�x K (x, w) �(@

���
x v)(x, w) dw

���� 6 C 0 C|� | kvkC |���|+2(Rn). (2.9)

Furthermore, if
v = 0 in B1/2 (2.10)
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we have ����
Z

Rn
@�x K (x, w) �(@

���
x v)(x, w) dw

���� 6 C 0 C|� | kvkL1(Rn). (2.11)

Proof. By (1.3) and (2.8) (with U = v),
Z

Rn

��@�x K (x, w)
�� ��� �(@���

x v)(x, w)
��� dw

6C|�|

✓
kvkC |���|+2(Rn)

Z
B2

|w|
�n��+2 dw + 4kvkC |���|(Rn)

Z
Rn

\B2
|w|

�n�� dw

◆
,

which proves (2.9).
We now prove (2.11). For this we notice that, thanks to (2.10), v(x + w) and

v(x�w) (and also their derivatives) are equal to zero if x and w lie in B1/4. Hence,
by an integration by parts we see that

Z
Rn
@�x K (x, w) �(@

���
x v)(x, w) dw

=

Z
Rn
@�x K (x, w) @���

w

⇥
v(x + w) � v(x � w)

⇤
dw

=

Z
Rn

\B1/4
@�x K (x, w) @���

w

⇥
v(x + w) � v(x � w)

⇤
dw

= (�1)|���|

Z
Rn

\B1/4
@�x @

���
w K (x, w)

⇥
v(x + w) � v(x � w)

⇤
dw.

Consequently, by (1.3),
����
Z

Rn
@�x K (x, w) �(@

���
x v)(x, w) dw

����
6 2C|� | kvkL1(Rn)

Z
Rn

\B1/4
|w|

�n���|���| dw,

proving (2.11).

2.2. Approximation by nicer kernels

In what follows, it will be convenient to approximate the solution u of (1.5) with
smooth functions u" obtained by solving equations similar to (1.5), but with kernels
K" which coincide with the fractional Laplacian in a neighborhood of the origin.
Indeed, this will allow us to work with smooth functions, ensuring that in our com-
putations all integrals converge. We will then prove uniform estimates on u", which
will give the desired C�+↵-bound on u by letting " ! 0.
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To simplify the notation, up to multiply both K and f by 1/a0, we assume
without loss of generality that the constant a0 in (1.2) is equal to 1.

Let ⌘ 2 C1(Rn) satisfy

⌘ =

(
1 in B1/2,
0 in Rn

\ B3/4,

and for any ", � > 0 set ⌘"(w) := ⌘
�

w
"

�
for any " > 0, ⌘̂�(x) := ��n⌘(x/�). Then

we define

K"(x, w) := ⌘"(w)
2� �

|w|
n+� + (1� ⌘"(w))K̂"(x, w), (2.12)

where
K̂"(x, w) := K (x, w) ⇤

⇣
⌘̂"2(x)⌘̂"2(w)

⌘
, (2.13)

and

L"v(x) :=

Z
Rn
K"(x, w) �v(x, w)dw. (2.14)

We also define
f"(x) := f (x, u(x)) ⇤ ⌘̂"(x). (2.15)

Note that we get a family f" 2 C1(B1) such that

lim
"!0+

f" = f uniformly in B3/4.

Finally, we define u" 2 L1(Rn) \ C(Rn) as the unique solution to the following
linear problem: (

L"u" = f"(x) in B3/4
u" = u in Rn

\ B3/4.
(2.16)

It is easy to check that the kernels K" satisfy (1.2) and (1.3) with constants indepen-
dent of " (recall that, to simplify the notation, we are assuming a0 = 1). Also, since
K satisfies assumption (1.3) with k = 0 and the convolution parameter "2 in (2.12)
is much smaller than ", the operators L" converge to the operator associated to K
in the weak sense introduced in [6, Definition 22]. Indeed, let v a smooth function
satisfying

|v| 6 M in Rn, |v(w) � v(x) � (w � x) · rv(x)| 6 M|x � w|
2

8w 2 B1(x),
(2.17)
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for some M > 0. Then, from (1.3) and (2.17), it follows that

Z
Rn

����⌘"(w)
2� �

|w|
n+� + (1� ⌘"(!))

�
K (x, w) ⇤ ⌘̂"2(x)⌘̂"2(w)

�
� K (x, w)

����
⇥ |�v(x, w)| dw

6
Z

Rn

✓
⌘"(w)

���� 2� �

|w|
n+� � K (x, w)

����
+(1�⌘"(!))

��K (x,w)⇤ ⌘̂"2(x)⌘̂"2(w)�K (x, w)
��◆

|�v(x,w)|dw

6
Z
B"
C|w|

2�n��
+

Z
Rn

\B"

��K (x,w) ⇤ ⌘̂"2(x)⌘̂"2(w)�K (x, w)
��
|�v(x,w)|dw

6 C"2�� + I,

(2.18)

with

I :=

Z
Rn

\B"

��K (x, w) ⇤ ⌘̂"2(x)⌘̂"2(w) � K (x, w)
��
|�v(x, w)| dw.

By (1.3), (2.17), and the fact that � > 1, we have

I =

Z
Rn

\B"

Z
B1

Z
B1

���K (x�"2y,w�"2w̃)⌘(y)⌘(w̃)�K (x, w)
��� dy dw̃ |�v(x, w)| dw

6
Z

Rn
\B"

C"2

|w|
n+1+� |�v(x, w)| dw

6 C
Z
B1\B"

"2

|w|
n�1+� dw + C

Z
Rn

\B1

"2

|w|
n+1+� dw

6 C("3�� + "2).

Combining this estimate with (2.18), we get

Z
Rn

����⌘"(w)
2� �

|w|
n+� +(1� ⌘"(!))(K (x,w) ⇤ ⌘̂"2(x)⌘̂"2(w))�K (x, w)

���� �v(x,w)dw

6 C"2�� ,

where C depends of M and � . Since � < 2 we conclude that

kL" � Lk ! 0 as " ! 0.
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Thanks to this fact, we can repeat almost verbatim5 the proof of [6, Lemma 7] to
obtain the uniform convergence

u" ! u on Rn as " ! 0. (2.20)

2.3. Smoothness of the approximate solutions

We prove now that the functions u" defined in the previous section are of class C1

inside a small ball (whose size is uniform with respect to "): namely, there exists
r 2 (0, 1/4) such that, for any m 2 Nn

kDmu"kL1(Br ) 6 C (2.21)

for some positive constant C = C(m, �, ", kukL1(Rn), k f kL1(B1⇥R)).
For this, we observe that by (2.12)

2� �

|w|
n+� = K"(x, w) � (1� ⌘"(w))K̂"(x, w) + (1� ⌘"(w))

2� �

|w|
n+� ,

5 In order to repeat the argument in the proof of [6, Lemma 7] one needs to know that the functions
u" are equicontinuous, which is a consequence of [6, Lemmata 2 and 3]. To be precise, to apply [6,
Lemma 3] one would need the kernels to satisfy the bounds (2�� )�

|w|
n+� 6 K⇤(x, w) 6 (2�� )3

|w|
n+� for

all w 6= 0, while in our case the kernel K (and so also K") satisfies

(2� � )�

|w|
n+� 6 K (x, w) 6

(2� � )3

|w|
n+� 8 |w| 6 r0 (2.19)

with � := a0�⌘,3 := a0+⌘, and r0 > 0 (observe that, by our assumptions in (1.2), � > 3a0/4).
However this is not a big problem: if v 2 L1(Rn) satisfiesZ

Rn
K⇤(x, w) �v(x, w) dw = f (x) in B3/4

for some kernel satisfying (1.3) and (2�� )�
|w|

n+� 6 K⇤(x, w) 6 (2�� )3
|w|

n+� only for |w| 6 r0, we define

K 0(x, w) := ⇣(w)K⇤(x, w) + (2� � ) 1�⇣(w)
|w|

n+� , with ⇣ a smooth cut-off function supported inside
Br0 , to getZ

Rn
K 0(x, w) �v(x, w) dw = f (x) +

Z
Rn

[1� ⇣(w)]

✓
�K⇤(x, w) +

2� �

|w|
n+�

◆
�v(x, w) dw.

Since 1�⇣(w) = 0 near the origin, by assumption (1.3), the second integral is uniformly bounded
as a function of x , so [6, Lemma 3] applied to K 0 gives the desired equicontinuity.
Finally, the uniqueness for the boundary problem

(R
Rn K (x, w) �v(x, w) dw = f (x, u(x)) in B3/4,

v = u in Rn \ B3/4.

follows by a standard comparison principle argument (see for instance the argument used in the
proof of [2, Theorem 3.2]).
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so for any x 2 B1/4

2� �

2cn,�
(�1)�/2u"(x) =

Z
Rn

2� �

|w|
n+� �u"(x, w)dw

= f"(x) �

Z
Rn

(1� ⌘"(w))K̂"(x, w) �u"(x, w)dw

+

Z
Rn

(1� ⌘"(w))
2� �

|w|
n+� �u"(x, w)dw

(here cn,� is the positive constant that appears in the definition of the fractional
Laplacian, see e.g. [11, 16]). Then, for any x 2 B1/4 it follows that

(�1)�/2u"(x)

= dn,�

f"(x) +

Z
Rn

(1� ⌘"(w))

✓
2� �

|w|
n+� � K̂"(x, w)

◆
�u"(x, w)dw

�

=: dn,� [ f"(x) + h"(x)]
=: dn,� g"(x),

(2.22)

with dn,� :=

2cn,�
2� �

.

Making some changes of variables we can rewrite h" as follows:

h"(x) =

Z
Rn

(1� ⌘"(w � x))
✓

2� �

|w � x |n+�
� K̂"(x, w � x)

◆
u"(w)dw

+

Z
Rn

(1� ⌘"(x � w))

✓
2� �

|w � x |n+�
� K̂"(x, x � w)

◆
u"(w)dw

� 2u"(x)
Z

Rn
(1� ⌘"(w))

✓
2� �

|w|
n+� � K̂"(x, w)

◆
dw.

(2.23)

We now notice that “the function h" is locally as smooth as u"”, is the sense that for
any m 2 N and U ⇢ B1/4 open we have

kh"kCm(U) 6 C",m
�
1+ ku"kCm(U)

�
(2.24)

for some constant C",m > 0. To see this observe that, in the first two integrals, the
variable x appears only inside ⌘" and in the kernel K̂", and ⌘" is equal to 1 near
the origin. Hence the first two integrals are smooth functions of x (recall that K̂"
is smooth, see (2.13)). The third term is clearly as regular as u" because the third
integral is smooth by the same reason as before. This proves (2.24).

We are now going to prove that the functions u" belong to C1(B1/5), with

ku"kCm(B1/4�rm ) 6 C(r1,m, �, ", ku"kL1(Rn), k f kL1(B1⇥R)) (2.25)

for any m 2 N, where rm := 1/20� 25�m (so that 1/4� rm > 1/5 for any m).
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To show this, we begin by observing that, since � 2 (1, 2), by (2.22), (2.24),
and [6, Theorem 61], we have that u" 2 L1(Rn)\C1,�(B1/4�r1) for any � < ��1
(r1 = 1/100), and

ku"kC1,� (B1/4�r1 )
6 C"

⇣
kukL1(Rn) + k f kL1(B1⇥R)

⌘
. (2.26)

Now, to get a bound on higher derivatives, the idea would be to differentiate (2.22)
and use again (2.24) and [6, Theorem 61]. However we do not have C1 bounds on
the function u" outside B1/4�r1 , and therefore we can not apply directly this strategy
to obtain the C2,↵ regularity of the function u".

To avoid this problem we follow the localization argument in [5, Theorem
13.1]: we take � > 0 small (to be chosen) and we consider a smooth cut-off function

# :=

(
1 in B1/4�(1+�)r1,

0 on Rn
\ B1/4�r1,

and for fixed e 2 Sn�1 and |h| < �r1 we define

v(x) :=

u"(x + eh) � u"(x)
|h|

. (2.27)

The function v(x) is uniformly bounded in B1/4�(1+�)r1 because u 2 C1(B1/4�r1).
We now write v(x) = v1(x) + v2(x), being

v1(x) :=
#u"(x+ eh)�#u"(x)

|h|
and v2(x) :=

(1�#)u"(x + eh)�(1�#)u"(x)
|h|

.

By (2.26) it is clear that
v1 2 L1(Rn)

and that (recall that |h| < �r1)

v1 = v inside B1/4�(1+2�)r1 . (2.28)

Moreover, for x 2 B1/4�(1+2�)r1 , using (2.22), (2.15), and (2.24) we get���(�1)�/2v1(x)
��� =

���(�1)�/2v(x) � (�1)�/2v2(x)
���

=

����g"(x + eh) � g"(x)
|h|

� (�1)�/2v2(x)
����

6 C"
⇣
1+ ku"kC1(B1/4�r1 )

⌘
+

���(�1)�/2v2(x)
��� .

(2.29)

Now, let us denote by Ko(y) :=
cn,�

|y|n+� the kernel of the fractional Laplacian. Since
for x 2 B1/4�(1+2�)r1 and |y| < �r1 we have that (1� #)u"(x ± y) = 0, it follows
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from a change of variable that

|(�1)�/2v2(x)| 6
����
Z

Rn
(v2(x + y) + v2(x � y) � 2v2(x))Ko(y)dy

����
6
����
Z

Rn

(1� #)u"(x + y + eh) � (1� #)u"(x + y)
|h|

Ko(y)dy
����

+

����
Z

Rn

(1� #)u"(x � y + eh) � (1� #)u"(x � y)
|h|

Ko(y)dy
����

6
Z

Rn
(1� #)|u"|(x + y)

���Ko(y � eh) � Ko(y)
|h|

���dy
+

Z
Rn

(1� #)|u"|(x � y)
���Ko(y � eh) � Ko(y)

|h|

���dy
6 ku"kL1(Rn)

Z
Rn

\B�r1

1
|y|n+�+1 dy

6 C�ku"kL1(Rn).

Therefore, by (2.29) we obtain��(�1)�/2v1(x)
��6C",�

⇣
1+ ku"kC1(B1/4�r1 ) + ku"kL1(Rn)

⌘
, x 2 B1/4�(1+2�)r1,

and we can apply [6, Theorem 61] to get that v1 2 C1,�(B1/4�r2) for any � < ��1,
with

kv1kC1,� (B1/4�r2 )
6 C"

⇣
1+ kv1kL1(Rn) + ku"kC1(B1/4�r1) + ku"kL1(Rn)

⌘
,

provided � > 0 was chosen sufficiently small so that r2 > (1 + 2�)r1. By (2.27),
(2.28), and (2.26), this implies that u" 2 C2,�(B1/4�r2), with

ku"kC2,� (B1/4�r2 )
6 C"

⇣
1+ ku"kC1(B1/4�r1 ) + ku"kL1(Rn)

⌘

6 C"
⇣
1+ kukL1(Rn) + k f kL1(B1⇥R)

⌘
.

Iterating this argument we obtain (2.25), as desired.

2.4. Uniform estimates and conclusion of the proof for k = 0

Knowing now that the functions u" defined by (2.16) are smooth inside B1/5 (see
(2.25)), our goal is to obtain a-priori bounds independent of ".

By [6, Theorem 61] applied6 to u, we have that u 2 C1,�(B1�R1) for any
� < � � 1 and R1 > 0, with

kukC1,� (B1�R1 )
6 C

�
kukL1(Rn) + k f kL1(B1⇥R)

�
. (2.30)

6 As already observed in the footnote on page 622, the fact that the kernel satisfies (2.19) only for
small w is not a problem, and one can easily check that [6, Theorem 61] still holds in our setting.
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Then, for any " sufficiently small, f" 2 C1(B1/2) with

k f"kC1(B1/2) 6 C 0

⇣
1+ kukC1(B1�R1 )

⌘
6 C 0C

�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
,

(2.31)

where C 0 > 0 depends on k f kC1(B1⇥R) only.
Consider a cut-off function ⌘̃ which is 1 inside B1/7 and 0 outside B1/6.
Then, recalling (2.16), we write the equation satisfied by u" as

f"(x) =

Z
Rn
K"(x, w) �(⌘̃u")(x, w)dw +

Z
Rn
K"(x, w) �((1� ⌘̃)u")(x, w)dw,

and by differentiating it, say in direction e1, we obtain (recall Lemmata 2.5 and 2.6)

@x1 f"(x) =

Z
Rn
K"(x, w)�(@x1(⌘̃u"))(x, w)dw

+

Z
Rn
@x1
⇥
K"(x, w)�((1� ⌘̃)u")(x, w)

⇤
dw

+

Z
Rn
@x1K"(x, w)�(⌘̃u")(x, w)dw

for any x 2 B1/5. It is convenient to rewrite this equation as
Z

Rn
K"(x, w)�(@x1(⌘̃u"))(x, w)dw = A1 � A2 � A3,

with

A1 := @x1 f"(x),

A2 :=

Z
Rn
@x1K"(x, w)�(⌘̃u")(x, w)dw

A3 :=

Z
Rn
@x1
⇥
K"(x, w)�((1� ⌘̃)u")(x, w)

⇤
dw.

We claim that

kA1 � A2 � A3kL1(B1/14) 6 C
⇣
1+ kukL1(Rn) + ku"kC2(B1/6)

⌘
(2.32)

with C depending only on k f kC1(B1⇥R). To prove this, we first observe that by
(2.31)

kA1kL1(B1/14) 6 C
�
1+ kukL1(Rn)

�
.
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Also, since |@x1 K̂"(x, w)|6C|w|
�(n+� ),7 by (2.9) (used with � =� :=(1, 0, . . . , 0)

and v := ⌘̃u") we get

kA2kL1(B1/14) 6 Ck⌘̃u"kC2(Rn) 6 Cku"kC2(B1/6),

where we used that ⌘̃ is supported in B1/6.
Moreover, since (1 � ⌘̃)u" = 0 inside B1/7, we can use (2.11) with v :=

(1� ⌘̃)u" to obtain����
Z

Rn
@x1K"(x, w) �((1� ⌘̃)u")(x, w) dw

����
+

����
Z

Rn
K"(x, w) @x1�((1� ⌘̃)u")(x, w) dw

����
6 C Ck k(1� ⌘̃)u"kL1(Rn)

for any x 2 B1/14, which gives (note that, by an easy comparison principle,
ku"kL1(Rn) 6 C(1+ kukL1(Rn)))

kA3kL1(B1/14) 6 C(1+ kukL1(Rn)).

The above estimates imply (2.32).
Since @x1(⌘̃u") is bounded on the whole of Rn , by (2.32) and [6, Theorem 61]

we obtain that @x1(⌘̃u") 2 C1,�(B1/14�R2) for any R2 > 0, with

k@x1(⌘̃u")kC1,� (B1/14�R2 )
6 C

⇣
1+ kukL1(Rn) + ku"kC2(B1/6)

⌘
,

which implies

ku"kC2,� (B1/15) 6 C
⇣
1+ kukL1(Rn) + ku"kC2(B1/6)

⌘
. (2.33)

To end the proof we need to reabsorb theC2-norm on the right hand side. To do this,
we observe that by standard interpolation inequalities (see for instance [12, Lemma
6.35]), for any � 2 (0, 1) there exists C� > 0 such that

ku"kC2(B1/6) 6 �ku"kC2,� (B1/5) + C�ku"kL1(Rn). (2.34)

Hence, by (2.33) and (2.34) we obtain

ku"kC2,� (B1/15) 6 C�(1+ kukL1(Rn)) + C�ku"kC2,� (B1/5). (2.35)

7 This can be easily checked using the definition of K̂" and (1.3). Indeed, because of the presence
of the term (1� ⌘"(w)) which vanishes for |w| 6 "/2, one only needs to check thatZ

Rn
|w � z|�n�� ⌘̂"2(z) dz 6 C|w|

�n�� for |w| > "/2,

which is easy to prove (we leave the details to the reader).
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To conclude, one needs to apply the above estimates at every point inside B1/5 at
every scale: for any x 2 B1/5, let r > 0 be any radius such that Br (x) ⇢ B1/5.
Then we consider

vx",r (y) := u"(x + ry), (2.36)

and we observe that vx",r solves an analogous equation as the one solved by u" with
the kernel given by

K x
",r (y, z) := rn+� K"(x + ry, r z)

and with right-hand side

F",r (y) := r�
Z

Rn
f (x + ry � x̃, u(x + ry � x̃))⌘̂"(x̃)dx̃ .

We now observe that the kernels K x
",r satisfy assumptions (1.2) and (1.3) uniformly

with respect to ", r , and x . Moreover, for |x | + r 6 1/5, and " small, we have

kF",rkC1(B1/2) 6 r�C(1+ kukC1(B3/4)),

with C > 0 depending on k f kC1(B1⇥R) only. Hence, by (2.30) this implies

kF",rkC1(B1/2) 6 r�C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
.

Thus, applying (2.35) to vx",r (by the discussion we just made, the constants are all
independent of ", r , and x) and scaling back, we get

ku"k⇤

C2,� (Br/15(x))
6 C�

�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
+ C�ku"k⇤

C2,� (Br/5(x))
.

Using now Lemma 2.2 inside B1/5 with µ = 1/15, ⌫ = 1/5, m = 2, and 3� =

C�(1+ kukL1(Rn) + k f kL1(B1⇥R)), we conclude (observe that 1/15 · 1/5 = 1/75)

ku"kC2,� (B1/75) 6 C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
,

which implies

kukC2,� (B1/75) 6 C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�

by letting " ! 0 (see (2.20)). Since � < � � 1, this is equivalent to

kukC�+↵(B1/75) 6 C
�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
, for any ↵ < 1.

A standard covering/rescaling argument completes the proof of Theorem 1.5 in the
case k = 0.



BOOTSTRAP REGULARITY AND NONLOCAL MINIMAL SURFACES 629

2.5. The induction argument

We already proved Theorem 1.5 in the case k = 0.
We now show by induction that, for any k > 1,

kukCk+�+↵(B1/23k+4 )
6 Ck

�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
, (2.37)

for some constant Ck > 0: by a standard covering/rescaling argument, this proves
(1.6) and so Theorem 1.5. As we shall see, the argument is more or less identical
to the case k = 0. To be fully rigorous, we should apply the regularization ar-
gument with the functions u" as done in the previous step. However, to simplify
the notation and make the argument more transparent, we will skip the regular-
ization.

Define g(x) := f (x, u(x)), and consider a cut-off function ⌘̃ which is 1 inside
B1/23k+5 and 0 outside B1/23k+4 .

By Lemmata 2.5 and 2.6 we differentiate the equation k+1 times according to
the following computation: first we observe that, since (2.37) is true for k � 1 and
we can choose ↵ 2 (2��, 1) so that �+↵ > 2, we deduce that g 2 Ck+1(B1/23k+4)
with

kgkCk+1(B1/23k+4 ) 6 C
⇣
1+ kukCk+1(B1/23k+4 )

⌘

6 C
�
kukL1(Rn) + k f kL1(B1⇥Rn)

�
,

(2.38)

with C > 0 depending on k f kCk+1(B1⇥R) only. Now we take � 2 Nn with |� | =

k + 1 and we differentiate the equation to obtain

@� g(x)

=

X
16i6n
06�i6�i

�=(�1,...,�n)

✓
�1
�1

◆
. . .

✓
�n
�n

◆Z
Rn
@�x K (x, w) �(@

���
x (⌘̃u))(x, w) dw

+

X
16i6n
06�i6�i

�=(�1,...,�n)

✓
�1
�1

◆
. . .

✓
�n
�n

◆Z
Rn
@�x K (x, w) �(@

���
x (1� ⌘̃)u)(x, w) dw.

Then, we isolate the term with � = 0 in the first sum:

Z
Rn
K (x, w) �(@

�
x (⌘̃u))(x, w) dw = A1 � A2 � A3
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with

A1 := @� g(x),

A2 :=

X
16i6n
06�i6�i

�=(�1,...,�n)6=0

✓
�1
�1

◆
. . .

✓
�n
�n

◆Z
Rn
@�x K (x, w) �(@

���
x (⌘̃u))(x, w) dw

A3 :=

X
16i6n
06�i6�i

�=(�1,...,�n)

✓
�1
�1

◆
. . .

✓
�n
�n

◆Z
Rn
@�x K (x, w) �(@

���
x (1� ⌘̃)u)(x, w) dw.

We claim that

kA1 � A2 � A3kL1(B1/23k+6 ) 6 C
⇣
1+ kukL1(Rn) + kukCk+2(B1/23k+4 )

⌘
. (2.39)

Indeed, by the fact that |� � �| 6 k we see that

kA2kL1(B1/23k+6 ) 6 C Ck k⌘̃ukCk+2(Rn)

6 C Ck kukCk+2(B1/23k+4 ).
(2.40)

Furthermore, since (1 � ⌘̃)u = 0 inside B1/23k+5 , we can use (2.11) with v :=

(1� ⌘̃)u to obtain
kA3kL1(B1/23k+6 ) 6 CkukL1(Rn).

This last estimate, (2.38), and (2.40) allow us to conclude the validity of (2.39).
Now, by [6, Theorem 61] applied to @�x (⌘̃u) we get

kukC�+k+↵(B1/23k+7 )
6 C

⇣
1+ kukCk+2(B1/23k+4 ) + kukL1(Rn)

⌘
,

which is the analogous of (2.33) with � +↵ = 2+�. Hence, arguing as in the case
k = 0 (see the argument after (2.33)) we conclude that

kukC�+k+↵(B1/23(2k+1)+5 )
6 C

�
1+ kukL1(Rn) + k f kL1(B1⇥R)

�
.

A covering argument shows the validity of (2.37), concluding the proof of Theo-
rem 1.5.

3. Proof of Theorem 1.1

The idea of the proof is to write the fractional minimal surface equation in a suitable
form so that we can apply Theorem 1.5.
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3.1. Writing the operator on the graph of u

The first step of our proof consists in writing the s-minimal surface functional in
terms of the function u which (locally) parameterizes the boundary of a set E .
More precisely, we assume that u parameterizes @E \ KR and that (without loss of
generality) E\KR is contained in the ipograph of u. Moreover, since by assumption
u(0) = 0 and u is of class C1,↵ , up to rotating the system of coordinates (so that
ru(0) = 0) and reducing the size of R, we can also assume that

@E \ KR ⇢ Bn�1R ⇥ [�R/8, R/8]. (3.1)

Let ' 2 C1(R) be an even function satisfying

'(t) =

(
1 if |t | 6 1/4,
0 if |t | > 1/2,

and define the smooth cut-off functions

⇣R(x 0) := '(|x 0

|/R), ⌘R(x) := '(|x 0

|/R)'(|xn|/R).

Observe that

⇣R = 1 in Bn�1R/4 , ⇣R = 0 outside Bn�1R/2 ,

⌘R = 1 in KR/4, ⌘R = 0 outside KR/2.

We claim that, for any x 2 @E \

⇣
Bn�1R/2 ⇥ [�R/8, R/8]

⌘
,

Z
Rn
⌘R(y � x)

�E (y) � �Rn
\E (y)

|x � y|n+s
dy

= 2
Z

Rn�1
F
✓
u(x 0

� w0) � u(x 0)

|w0
|

◆
⇣R(w0)

|w0
|
n�1+s dw0,

(3.2)

where
F(t) :=

Z t

0

d⌧
(1+ ⌧ 2)(n+s)/2

.

Indeed, writing y = x � w we have (observe that ⌘R is even)Z
Rn
⌘R(y � x)

�E (y) � �Rn
\E (y)

|x � y|n+s
dy

=

Z
Rn
⌘R(w)

�E (x � w) � �Rn
\E (x � w)

|w|
n+s dw (3.3)

=

Z
Rn�1

⇣R(w0)

"Z R/4

�R/4

�E (x � w) � �Rn
\E (x � w)�

1+ (wn/|w0
|)2
�(n+s)/2 dwn

#
dw0

|w0
|
n+s ,
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where the last equality follows from the fact that '(|wn|/R) = 1 for |wn| 6 R/4,
and that by (3.1) and by symmetry the contributions of �E (x�w) and �Rn

\E (x�w)
outside {|wn| 6 R/4} cancel each other.

We now compute the inner integral: using the change of variable t := wn/|w
0
|

we have
Z R/4

�R/4

�E (x � w)�
1+ (wn/|w0

|)2
�(n+s)/2 dwn

=

Z R/4

u(x 0)�u(x 0
�w0)

1�
1+ (wn/|w0

|)2
�(n+s)/2 dwn

= |w0

|

Z R/(4|w0
|)

(u(x 0)�u(x 0
�w0))/|w0

|

1�
1+ t2

�(n+s)/2 dt

= |w0

|


F
✓

R
4|w|

0

◆
� F

✓
u(x 0) � u(x 0

� w0)

|w|
0

◆�
.

In the same way,

Z R/4

�R/4

�Rn
\E (x � w)�

1+ (wn/|w0
|)2
�(n+s)/2 dwn

= |w0

|


F
✓
u(x 0) � u(x 0

� w0)

|w|
0

◆
� F

✓
�

R
4|w0

|

◆�
.

Therefore, since F is odd, we immediately get that

Z R/4

�R/4

�E (x � w) � �Rn
\E (x � w)�

1+ (wn/|w0
|)2
�(n+s)/2 dwn = 2|w0

|F
✓
u(x 0

� w0) � u(x 0)

|w0
|

◆
,

which together with (3.3) proves (3.2).
Let us point out that to justify these computations in a pointwise fashion one

would need u 2 C1,1(x) (in the sense of [3, Definition 3.1]). However, by using the
viscosity definition it is immediate to check that (3.2) holds in the viscosity sense
(since one only needs to verify it at points where the graph of u can be touched with
paraboloids).

3.2. The right-hand side of the equation

Let us define the function

9R(x) :=

Z
Rn
[1� ⌘R(y � x)]

�E (y) � �Rn
\E (y)

|x � y|n+s
dy. (3.4)
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Since 1 � ⌘R(y � x) vanishes on a neighborhood of {x = y}, it is immediate to
check that the function  R(z) :=

1�⌘R(z)
|z|n+s is of class C1, with

|@↵ R(z)| 6
C|↵|

1+ |z|n+s
8↵ 2 Nn.

Hence, since 1/(1+ |z|n+s) 2 L1(Rn) we deduce that

9R 2 C1(Rn), with all its derivatives uniformly bounded. (3.5)

3.3. An equation for u and conclusion

By [4, Theorem 5.1] we have that the equation
Z

Rn

�E (y) � �Rn
\E (y)

|x � y|n+s
dy = 0

holds in the viscosity sense for any x 2 (@E)\KR . Consequently, by (3.2) and (3.4)
we deduce that u is a viscosity solution of

Z
Rn�1

F
✓
u(x 0

� w0) � u(x 0)

|w0
|

◆
⇣R(w0)

|w0
|
n�1+s dw0

= �

9R(x 0, u(x 0))

2

inside Bn�1R/2 . Since F is odd, we can add the term F
�

� ru(x 0) ·
w0

|w0
|

�
inside the

integral in the left hand side (since it integrates to zero), so the equation actually
becomes
Z

Rn�1


F
✓
u(x 0

� w0) � u(x 0)

|w0
|

◆
� F

✓
�ru(x 0) ·

w0

|w0
|

◆�
⇣R(w0)

|w0
|
n�1+s dw0

= �

9R(x 0, u(x 0))

2
.

(3.6)

We would like to apply the regularity result from Theorem 1.6, exploiting (3.5) to
bound the right-hand side of (3.6). To this aim, using the Fundamental Theorem of
Calculus, we rewrite the left hand side in (3.6) as

Z
Rn�1

�
u(x 0

� w0) � u(x 0) + ru(x 0) · w0
�a(x 0,�w0)⇣R(w0)

|w0
|
n+s dw0, (3.7)

where

a(x 0,�w0) :=

Z 1

0

 
1+
✓
t
u(x 0

�w0)�u(x 0)

|w0
|

�(1�t)ru(x 0) ·

w0

|w0
|

◆2!�(n+s)/2

dt.
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Now, we claim thatZ
Rn�1

�u(x 0, w0) KR(x 0, w0) dw0

= �9R(x 0, u(x 0)) + AR(x 0), (3.8)

where
KR(x 0, w0) :=

[a(x 0, w0) + a(x 0,�w0)]⇣R(w0)

2|w0
|
(n�1)+(1+s)

and

AR(x 0):=

Z
Rn�1

[u(x 0

�w0)�u(x 0)+ru(x 0)·w0

]

[a(x 0, w0) � a(x 0,�w0)]⇣R(w0)

|w0
|
n+s dw0.

To prove (3.8) we introduce a short-hand notation: we define

u±(x 0, w0) :=u(x 0

±w0)�u(x 0)⌥ru(x 0) ·w0, a±(x 0, w0) :=a(x 0,±w0)
⇣R(w0)

|w0
|
n+s ,

while the integration over Rn�1, possibly in the principal value sense, will be de-
noted by I [·]. With this notation, and recalling (3.7), it follows that (3.6) can be
written

�

9R
2

= I [u�a�

]. (3.9)

By changing w0 with �w0 in the integral given by I , we see that

I [u+a+

] = I [u�a�

],

consequently (3.9) can be rewritten as

�

9R
2

= I [u+a+

]. (3.10)

Notice also that

u+

+ u�

= �u, I [u+(a+

� a�)] = I [u�(a�

� a+)]. (3.11)

Hence, adding (3.9) and (3.10), and using (3.11), we obtain

�9R = I [u+a+

] + I [u�a�

]

=

1
2
I [(u+

+ u�)(a+

+ a�)] +

1
2
I [(u+

� u�)(a+

� a�)]

=

1
2
I [�u (a+

+ a�)] +

1
2
I [(u+

� u�)(a+

� a�)]

=

1
2
I [�u (a+

+ a�)] � I [u�(a+

� a�)],

which proves (3.8).
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Now, to conclude the proof of Theorem 1.1 it suffices to apply Theorem 1.6
iteratively: more precisely, let us start by assuming that u 2 C1,�(Bn�12r ) for some
r 6 R/2 and any � < s. Then, by the discussion above we get that u solvesZ

Rn�1
�u(x 0, w0) Kr (x 0, w0) dw0

= �9r (x 0, u(x 0)) + Ar (x) in Bn�1r .

Moreover, one can easily check that the regularity of u implies that the assumptions
of Theorem 1.6 with k = 0 are satisfied with � := 1 + s and a0 := 1/(1 � s).
(Observe that (1.7) holds since kukC1,� (Bn�12r )

.) Furthermore, it is not difficult to
check that, for |w0

| 6 1,��
[u(x 0

� w0) � u(x 0) + ru(x 0) · w0

] [a(x 0, w0) � a(x 0,�w0)]
�� 6 C|w0

|
2�+1,

which implies that the integral defining Ar is convergent by choosing � > s/2.
Furthermore, a tedious computation (which we postpone to Subsection 3.4 below)
shows that

Ar 2 C2��s(Bn�1r ). (3.12)

Hence, by Theorem 1.6 with k = 0 we deduce that u 2 C1,2�(Bn�1r/2 ). But then this
implies that Ar 2 C4��s(Bn�1r/4 ) and so by Theorem 1.6 again u 2 C1,4�(Bn�1r/8 ) for
all � < s. Iterating this argument infinitely many times8 we get that u 2 Cm(Bn�1�mr )
for some � > 0 small, for any m 2 N. Then, by a simple covering argument we
obtain that u 2 Cm(Bn�1⇢ ) for any ⇢ < R and m 2 N, that is, u is of class C1

inside B⇢ for any ⇢ < R. This completes the proof of Theorem 1.1.

3.4. Hölder regularity of AR

We now prove (3.12), i.e., if u 2 C1,�(Bn�12r ) then Ar 2 C2��s(Bn�1r ) (r 6 R/2).
For this we introduce the following notation:

U(x 0, w0) := u(x 0

� w0) � u(x 0) + ru(x 0) · w0

and
p(⌧ ) :=

1
(1+ ⌧ 2)

n+s
2

.

8 Note that, once we know that kukCk,� (Bn�12r )
is bounded for some k > 2 and � 2 (0, 1], for any

|� | 6 k � 1 we get

@
�
x Ar (x)=

Z
Rn�1

@
�
x
�
[u(x 0

� w0) � u(x 0) + ru(x 0) · w0
] [a(x 0, w0) � a(x 0,�w0)]

� ⇣r (w0)

|w0
|
n+s dw0,

and exactly as in the case k = 0 one shows that��@�x �[u(x 0
� w0) � u(x 0) + ru(x 0) · w0

] [a(x 0, w0) � a(x 0,�w0)]
��� 6 C|w0

|
2�+1

8 |w0
|61,

and that Ar 2 Ck�1,2��s(Bn�1r ).
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In this way we can write

a(x 0,�w0)=

Z 1

0
p
✓
t
u(x 0

� w0) � u(x 0)

|w0
|

� (1� t)ru(x 0) ·

w0

|w0
|

◆
dt . (3.13)

Let us define
A(x 0, w0) := a(x 0, w0) � a(x 0,�w0).

Then we have

Ar (x 0) =

Z
Rn�1

U(x 0, w0)
A(x 0, w0)

|w0
|
n+s ⇣r (w

0) dw0.

To prove the desired Hölder condition for the function Ar (x 0), we first note that

U(x 0, w0) =

Z 1

0

⇥
ru(x 0) � ru(x 0

� tw0)
⇤
dt · w0.

Since u 2 C1,�(Bn�1R ) and 2r 6 R, we get

|U(x 0, w0)�U(y0, w0)| 6 C min{|x 0

�y0

|
�
|w0

|, |w0

|
�+1

}, for y0
2 Bn�1r (3.14)

and
|U(x 0, w0)| 6 C|w0

|
�+1. (3.15)

Therefore, from (3.14) and (3.15) it follows that, for any y0
2 Bn�1r ,

|Ar (x 0) � Ar (y0)|

=

����
Z

Rn�1

�
U(x 0, w0)A(x 0, w0) �U(y0, w0)A(y0, w0)

� ⇣r (w0)

|w0
|
n+s dw0

����
6 C

Z
Rn�1

min{|x 0

� y0

|
�
|w0

|, |w0

|
�+1

}

|A(x 0, w0)|

|w0
|
n+s ⇣r (w

0) dw0

+ C
Z

Rn�1
|w0

|
�+1 |A(x 0, w0) �A(y0, w0)|

|w0
|
n+s ⇣r (w

0) dw0

=: I1(x 0, y0) + I2(x 0, y0).

(3.16)

To estimate the last two integrals we define

A⇤(x 0, w0) := a(x 0, w0) � p
✓

ru(x 0) ·

w0

|w0
|

◆
.

With this notation we have

A(x 0, w0) = A⇤(x 0, w0) �A⇤(x 0,�w0). (3.17)
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By (3.13) and (3.15), since |p0(t)| 6 C and p is even, it follows that

|A⇤(x 0,�w0)|

6
Z 1

0

Z 1

0

���� dd� p
✓
�t
u(x 0

� w0) � u(x 0)

|w0
|

� [�(1� t) + (1� �)]ru(x 0) ·

w0

|w0
|

◆���� d� dt
6
Z 1

0
t
|U(x 0, w0)|

|w0
|

✓Z 1

0

����p0

✓
�t
U(x 0, w0)

|w0
|

� ru(x 0) ·

w0

|w0
|

◆���� d�
◆
dt

6 C|w0

|
�

(3.18)

for all |w0
| 6 r .

Estimating A⇤(x 0, w0) in the same way, by (3.17) and (3.18), we get, for any
� > s/2,

I1(x 0, y0) 6 C
Z

Rn�1
min{|x 0

� y0

|
�
|w0

|, |w0

|
�+1

}|w0

|
��n�s⇣r (w

0) dw0

6 C|x 0

� y0

|
�

Z r

|x 0
�y0

|

t��s�1dt +

Z
|x 0

�y0
|

0
t2��s�1 dt

6 C|x 0

� y0

|
2��s .

(3.19)

On the other hand, to estimate I2 we note that

|A(x 0, w0) �A(y0, w0)| 6 |A⇤(x 0, w0) �A⇤(y0, w0)|

+ |A⇤(y0,�w0) �A⇤(x 0,�w0)|.
(3.20)

Hence, arguing as in (3.18) we have

|A⇤(x 0,�w0) �A⇤(y0,�w0)|

6
Z 1

0
t
|U(x 0, w0)|

|w0
|

Z 1

0

����p0

✓
�t
U(x 0, w0)

|w0
|

� ru(x 0) ·

w0

|w0
|

◆

� p0

✓
�t
U(y0, w0)

|w0
|

� ru(y0) ·

w0

|w0
|

◆����d� dt
+

Z 1

0
t
|U(x 0,w0)�U(y0,w0)|

|w0
|

Z 1

0

����p0

✓
�t
U(y0,w0)

|w0
|

�ru(y0)·
w0

|w0
|

◆����d� dt
=: I2,1(x 0, y0) + I2,2(x 0, y0).

(3.21)

We bound each of these integrals separately. First, since |p0(t)| 6 C , it follows
immediately from (3.14) that

I2,2(x 0, y0) 6 C min{|x 0

� y0

|
�, |w0

|
�
}. (3.22)
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On the other hand, by (3.15), (3.14), and the fact that u 2 C1,�(Bn�1R ) and p0 is
uniformly Lipschitz, we get

I2,1(x 0, y0) 6 C|w0

|
�

✓
|U(x 0, w0) �U(y0, w0)|

|w0
|

+ |ru(x 0) � ru(y0)|

◆

6 C|w0

|
�
⇣
min{|x 0

� y0

|
�, |w0

|
�
} + |x 0

� y0

|
�
⌘

6 C|w0

|
�
|x 0

� y0

|
� .

(3.23)

Then, assuming without loss of generality r 6 1 (so that also |x 0
� y0

| 6 1), by
(3.21), (3.22), and (3.23) it follows that

|A⇤(x 0,�w0)�A⇤(y0,�w0)|6C
✓
min{|x 0

�y0

|
�,|w0

|
�
}+|w0

|
�
|x 0

�y0

|
�

◆

6C min{|x 0

� y0

|
�, |w0

|
�
}.

(3.24)

As |A⇤(y0, w0) �A⇤(x 0, w0)| is bounded in the same way, by (3.20), we have

|A(x 0, w0) �A(y0, w0)| 6 C min{|x 0

� y0

|
�, |w0

|
�
}.

By arguing as in (3.19), we get that, for any s/2 < � < s,

I2(x 0, y0) 6 C
Z

Rn�1
|w0

|
�+1min{|x 0

� y0
|
�, |w0

|
�
}

|w0
|
n+s ⇣r (w

0)dw0

6 C|x 0

� y0

|
2��s .

(3.25)

Finally, by (3.16), (3.19) and (3.25), we conclude that

|Ar (x 0) � Ar (y0)| 6 C|x 0

� y0

|
2��s, y0

2 Bn�1r ,

as desired.
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